WorldWideScience

Sample records for tonus cfd code

  1. Water evaporation over sump surface in nuclear containment studies: CFD and LP codes validation on TOSQAN tests

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA BP 68, 91192 Gif-sur-Yvette (France); Degrees du Lou, O. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA BP 68, 91192 Gif-sur-Yvette (France); Arts et Métiers ParisTech, DynFluid Lab. EA92, 151, boulevard de l’Hôpital, 75013 Paris (France); Gelain, T. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA BP 68, 91192 Gif-sur-Yvette (France)

    2013-10-15

    Highlights: • Simulations of evaporative TOSQAN sump tests are performed. • These tests are under air–steam gas conditions with addition of He, CO{sub 2} and SF{sub 6}. • ASTEC-CPA LP and TONUS-CFD codes with UDF for sump model are used. • Validation of sump models of both codes show good results. • The code–experiment differences are attributed to turbulent gas mixing modeling. -- Abstract: During the course of a severe accident in a Nuclear Power Plant, water can be collected in the sump containment through steam condensation on walls and spray systems activation. The objective of this paper is to present code validation on evaporative sump tests performed on TOSQAN facility. The ASTEC-CPA code is used as a lumped-parameter code and specific user-defined-functions are developed for the TONUS-CFD code. The seven tests are air–steam tests, as well as tests with other non-condensable gases (He, CO{sub 2} and SF{sub 6}) under steady and transient conditions (two depressurization tests). The results show a good agreement between codes and experiments, indicating a good behavior of the sump models in both codes. The sump model developed as User-Defined Functions (UDF) for TONUS is considered as well validated and is ‘ready-to-use’ for all CFD codes in which such UDF can be added. The remaining discrepancies between codes and experiments are caused by turbulent transport and gas mixing, especially in the presence of non-condensable gases other than air, so that code validation on this important topic for hydrogen safety analysis is still recommended.

  2. Modelling of water sump evaporation in a CFD code for nuclear containment studies

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Bessiron, M., E-mail: matthieu.bessiron@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Perrotin, C., E-mail: christophe.perrotin@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France)

    2011-05-15

    Highlights: We model sump evaporation in the reactor containment for CFD codes. The sump is modelled by an interface temperature and an evaporation mass flow-rate. These two variables are modelled using energy and mass balance. Results are compared with specific experiments in a 7 m3 vessel (Tonus Qualification ANalytique, TOSQAN). A good agreement is observed, for pressure, temperatures, mass flow-rates. - Abstract: During the course of a hypothetical severe accident in a pressurized water reactor (PWR), water can be collected in the sump containment through steam condensation on walls and spray systems activation. This water is generally under evaporation conditions. The objective of this paper is twofold: to present a sump model developed using external user-defined functions for the TONUS-CFD code and to perform a first detailed comparison of the model results with experimental data. The sump model proposed here is based on energy and mass balance and leads to a good agreement between the numerical and the experimental results. Such a model can be rather easily added to any CFD code for which boundary conditions, such as injection temperature and mass flow-rate, can be modified by external user-defined functions, depending on the atmosphere conditions.

  3. Overview of hypersonic CFD code calibration studies

    Science.gov (United States)

    Miller, Charles G.

    1987-01-01

    The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.

  4. The extensive international use of commercial computational fluid dynamics (CFD) codes

    International Nuclear Information System (INIS)

    Hartmut Wider

    2005-01-01

    What are the main reasons for the extensive international success of commercial CFD codes? This is due to their ability to calculate the fine structures of the investigated processes due to their versatility, their numerical stability and that they can guarantee the proper solution in most cases. This was made possible by the constantly increasing computer power at an ever more affordable prize. Furthermore it is much more efficient to have researchers use a CFD code rather than to develop a similar code system due to the time consuming nature of this activity and the high probability of hidden coding errors. The centralized development and upgrading makes these reliable CFD codes possible and affordable. However, the CFD companies' developments are naturally concentrated on the most profitable areas, and thus, if one works in a 'non-priority' field one cannot use them. Moreover, the prize of renting CFD codes, applications to complex systems such as whole nuclear reactors and the need to teach students gives the development of self-made codes still plenty of room. But CFD codes can model detailed aspects of large systems and subroutines generated by users can be added. Since there are only a few heavily used CFD codes such as FLUENT, STAR-CD, ANSYS CFX, these are used in many countries. Also international training courses are given and the news bulletins of these codes help to spread the news on further developments. A larger number of international codes would increase the competition but would at the same time make it harder to select the most appropriate CFD code for a given problem. Examples will be presented of uses of CFD codes as more detailed system codes for the decay heat removal from reactors, the application to aerosol physics and the application to heavy metal fluids using different turbulence models. (author)

  5. Development of 2-d cfd code

    International Nuclear Information System (INIS)

    Mirza, S.A.

    1999-01-01

    In the present study, a two-dimensional computer code has been developed in FORTRAN using CFD technique, which is basically a numerical scheme. This computer code solves the Navier Stokes equations and continuity equation to find out the velocity and pressure fields within a given domain. This analysis has been done for the developed within a square cavity driven by the upper wall which has become a bench mark for testing and comparing the newly developed numerical schemes. Before to handle this task, different one-dimensional cases have been studied by CFD technique and their FORTRAN programs written. The cases studied are Couette flow, Poiseuille flow with and without using symmetric boundary condition. Finally a comparison between CFD results and analytical results has also been made. For the cavity flow the results from the developed code have been obtained for different Reynolds numbers which are finally presented in the form of velocity vectors. The comparison of the developed code results have been made with the results obtained from the share ware version of a commercially available code for Reynolds number of 10.0. The disagreement in the results quantitatively and qualitatively at some grid points of the calculation domain have been discussed and future recommendations in this regard have also been made. (author)

  6. Extending the capabilities of CFD codes to assess ash related problems

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, B. B.

    2004-01-01

    This paper discusses the application of FLUENT? in theanalysis of grate-fired biomass boilers. A short description of theconcept used to model fuel conversion on the grate and the couplingto the CFD code is offered. The development and implementation ofa CFD-based deposition model is presented...... in the reminder of thepaper. The growth of deposits on furnace walls and super heatertubes is treated including the impact on heat transfer rates determinedby the CFD code. Based on the commercial CFD code FLUENT?,the overall model is fully implemented through the User DefinedFunctions. The model is configured...

  7. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  8. Evaporation over sump surface in containment studies: code validation on TOSQAN tests

    International Nuclear Information System (INIS)

    Malet, J.; Gelain, T.; Degrees du Lou, O.; Daru, V.

    2011-01-01

    During the course of a severe accident in a Nuclear Power Plant, water can be collected in the sump containment through steam condensation on walls and spray systems activation. The objective of this paper is to present code validation on evaporative sump tests performed on the TOSQAN facility. The ASTEC-CPA code is used as a lumped-parameter code and specific user-defined-functions are developed for the TONUS-CFD code. The tests are air-steam tests, as well as tests with other non-condensable gases (He, CO 2 and SF 6 ) under steady and transient conditions. The results show a good agreement between codes and experiments, indicating a good behaviour of the sump models in both codes. (author)

  9. A CFD code comparison of wind turbine wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses fo...

  10. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  11. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  12. Assessment of CFD Codes for Nuclear Reactor Safety Problems - Revision 2

    International Nuclear Information System (INIS)

    Smith, B.L.; Andreani, M.; Bieder, U.; Ducros, F.; Bestion, D.; Graffard, E.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Hoehne, T.; Houkema, M.; Komen, E.; Mahaffy, J.; Menter, F.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Krepper, E.; Song, C.H.; Watanabe, T.; Zigh, G.; Boyd, C.F.; Archambeau, F.; Bellet, S.; Munoz-Cobo, J.M.; Simoneau, J.P.

    2015-01-01

    Following recommendations made at an 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety (NRS) Problems', held in Aix-en-Provence, France, 15-16 May, 2002, and a follow-up meeting 'Use of Computational Fluid Dynamics (CFD) Codes for Safety Analysis of Reactor Systems including Containment', which took place in Pisa on 11-14 Nov., 2002, a CSNI action plan was drawn up which resulted in the creation of three Writing Groups, with mandates to perform the following tasks: (1) Provide a set of guidelines for the application of CFD to NRS problems; (2) Evaluate the existing CFD assessment bases, and identify gaps that need to be filled; (3) Summarise the extensions needed to CFD codes for application to two-phase NRS problems. Work began early in 2003. In the case of Writing Group 2 (WG2), a preliminary report was submitted to Working Group on the Analysis and Management of Accidents (WGAMA) in September 2004 that scoped the work needed to be carried out to fulfil its mandate, and made recommendations on how to achieve the objective. A similar procedure was followed by the other two groups, and in January 2005 all three groups were reformed to carry out their respective tasks. In the case of WG2, this resulted in the issue of a CSNI report (NEA/CSNI/R(2007)13), issued in January 2008, describing the work undertaken. The writing group met on average twice per year during the period March 2005 to May 2007, and coordinated activities strongly with the sister groups WG1 (Best Practice Guidelines) and WG3 (Multiphase Extensions). The resulting document prepared at the end of this time still represents the core of the present revised version, though updates have been made as new material has become available. After some introductory remarks, Chapter 3 lists twenty-three (23) NRS issues for which it is considered that the application of CFD would bring real benefits

  13. Proceedings of the workshop on Benchmarking of CFD Codes for Application to Nuclear Reactor Safety (CFD4NRS)

    International Nuclear Information System (INIS)

    2007-01-01

    Computational Fluid Dynamics (CFD) is to an increasing extent being adopted in nuclear reactor safety analyses as a tool that enables specific safety relevant phenomena occurring in the reactor coolant system to be better described. The Committee on the Safety of Nuclear Installations (CSNI), which is responsible for the activities of the Nuclear Energy Agency that support advancing the technical base of the safety of nuclear installations, has in recent years conducted an important activity in the CFD area. This activity has been carried out within the scope of the CSNI working group on the analysis and management of accidents (GAMA), and has mainly focused on the formulation of user guidelines and on the assessment and verification of CFD codes. It is in this GAMA framework that the present workshop was organized and carried out. The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to GAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. Numerical simulations with a strong emphasis on validation were welcomed in such areas as heat transfer, buoyancy, stratification, natural circulation, free-surface modelling, turbulent mixing and multi-phase flow. These would relate to such NRS-relevant issues as: pressurized thermal shocks, boron dilution, hydrogen distribution, induced breaks, thermal striping, etc. The use of systematic error quantification and Best Practice Guidelines was encouraged. Papers reporting experiments providing high-quality data suitable for CFD validation, specifically in the area of NRS, were given high priority. Here, emphasis was placed on the availability of local measurements, especially multi-dimensional velocity measurements obtained using such techniques as laser-doppler velocimetry, hot

  14. The Development of Severe Accident Codes at IRSN and Their Application to Support the Safety Assessment of EPR

    International Nuclear Information System (INIS)

    Caroli, Cataldo; Bleyer, Alexandre; Bentaib, Ahmed; Chatelard, Patrick; Cranga, Michel; Van Dorsselaere, Jean-Pierre

    2006-01-01

    IRSN uses a two-tier approach for development of codes analysing the course of a hypothetical severe accident (SA) in a Pressurized Water Reactor (PWR): on one hand, the integral code ASTEC, jointly developed by IRSN and GRS, for fast-running and complete analysis of a sequence; on the other hand, detailed codes for best-estimate analysis of some phenomena such as ICARE/CATHARE, MC3D (for steam explosion), CROCO and TONUS. They have been extensively used to support the level 2 Probabilistic Safety Assessment of the 900 MWe PWR and, in general, for the safety analysis of the French PWR. In particular the codes ICARE/CATHARE, CROCO, MEDICIS (module of ASTEC) and TONUS are used to support the safety assessment of the European Pressurized Reactor (EPR). The ICARE/CATHARE code system has been developed for the detailed evaluation of SA consequences in a PWR primary system. It is composed of the coupling of the core degradation IRSN code ICARE2 and of the thermal-hydraulics French code CATHARE2. The CFD code CROCO describes the corium flow in the spreading compartment. Heat transfer to the surrounding atmosphere and to the basemat, leading to the possible formation of an upper and lower crust, basemat ablation and gas sparging through the flow are modelled. CROCO has been validated against a wide experimental basis, including the CORINE, KATS and VULCANO programs. MEDICIS simulates MCCI (Molten-Corium-Concrete-Interaction) using a lumped-parameter approach. Its models are being continuously improved through the interpretation of most MCCI experiments (OECD-CCI, ACE...). The TONUS code has been developed by IRSN in collaboration with CEA for the analysis of the hydrogen risk (both distribution and combustion) in the reactor containment. The analyses carried out to support the EPR safety assessment are based on a CFD formulation. At this purpose a low-Mach number multi-component Navier-Stokes solver is used to analyse the hydrogen distribution. Presence of air, steam and

  15. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  16. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Science.gov (United States)

    Blyth, Taylor S.

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  17. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  18. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...

  19. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  20. Coupling calculation of CFD-ACE computational fluid dynamics code and DeCART whole-core neutron transport code for development of numerical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog

    2005-03-15

    Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.

  1. Coupling calculation of CFD-ACE computational fluid dynamics code and DeCART whole-core neutron transport code for development of numerical reactor

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog

    2005-03-01

    Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too

  2. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, G., E-mail: giacomino.bandini@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Polidori, M. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Gerschenfeld, A.; Pialla, D.; Li, S. [Commissariat à l’Energie Atomique (CEA) (France); Ma, W.M.; Kudinov, P.; Jeltsov, M.; Kööp, K. [Royal Institute of Technology (KTH) (Sweden); Huber, K.; Cheng, X.; Bruzzese, C.; Class, A.G.; Prill, D.P. [Karlsruhe Institute of Technology (KIT) (Germany); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Geffray, C.; Macian-Juan, R. [Technische Universität München (TUM) (Germany); Maas, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2015-01-15

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes.

  3. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  4. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  5. A multiscale numerical algorithm for heat transfer simulation between multidimensional CFD and monodimensional system codes

    Science.gov (United States)

    Chierici, A.; Chirco, L.; Da Vià, R.; Manservisi, S.; Scardovelli, R.

    2017-11-01

    Nowadays the rapidly-increasing computational power allows scientists and engineers to perform numerical simulations of complex systems that can involve many scales and several different physical phenomena. In order to perform such simulations, two main strategies can be adopted: one may develop a new numerical code where all the physical phenomena of interest are modelled or one may couple existing validated codes. With the latter option, the creation of a huge and complex numerical code is avoided but efficient methods for data exchange are required since the performance of the simulation is highly influenced by its coupling techniques. In this work we propose a new algorithm that can be used for volume and/or boundary coupling purposes for both multiscale and multiphysics numerical simulations. The proposed algorithm is used for a multiscale simulation involving several CFD domains and monodimensional loops. We adopt the overlapping domain strategy, so the entire flow domain is simulated with the system code. We correct the system code solution by matching averaged inlet and outlet fields located at the boundaries of the CFD domains that overlap parts of the monodimensional loop. In particular we correct pressure losses and enthalpy values with source-sink terms that are imposed in the system code equations. The 1D-CFD coupling is a defective one since the CFD code requires point-wise values on the coupling interfaces and the system code provides only averaged quantities. In particular we impose, as inlet boundary conditions for the CFD domains, the mass flux and the mean enthalpy that are calculated by the system code. With this method the mass balance is preserved at every time step of the simulation. The coupling between consecutive CFD domains is not a defective one since with the proposed algorithm we can interpolate the field solutions on the boundary interfaces. We use the MED data structure as the base structure where all the field operations are

  6. Implementation of CFD module in the KORSAR thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Yudov, Yury V.; Danilov, Ilia G.; Chepilko, Stepan S. [Alexandrov Research Inst. of Technology (NITI), Sosnovy Bor (Russian Federation)

    2015-09-15

    The Russian KORSAR/GP (hereinafter KORSAR) computer code was developed by a joint team from Alexandrov NITI and OKB ''Gidropress'' for VVER safety analysis and certified by the Rostechnadzor of Russia in 2009. The code functionality is based on a 1D two-fluid model for calculation of two-phase flows. A 3D CFD module in the KORSAR computer code is being developed by Alexandrov NITI for representing 3D effects in the downcomer and lower plenum during asymmetrical loop operation. The CFD module uses Cartesian grid method with cut cell approach. The paper presents a numerical algorithm for coupling 1D and 3D thermal- hydraulic modules in the KORSAR code. The combined pressure field is calculated by the multigrid method. The performance efficiency of the algorithm for coupling 1D and 3D modules was demonstrated by solving the benchmark problem of mixing cold and hot flows in a T-junction.

  7. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Karbojian, Aram, E-mail: karbojan@kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2015-08-15

    Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper.

  8. Development of Geometry Optimization Methodology with In-house CFD code, and Challenge in Applying to Fuel Assembly

    International Nuclear Information System (INIS)

    Jeong, J. H.; Lee, K. L.

    2016-01-01

    The wire spacer has important roles to avoid collisions between adjacent rods, to mitigate a vortex induced vibration, and to enhance convective heat transfer by wire spacer induced secondary flow. Many experimental and numerical works has been conducted to understand the thermal-hydraulics of the wire-wrapped fuel bundles. There has been enormous growth in computing capability. Recently, a huge increase of computer power allows to three-dimensional simulation of thermal-hydraulics of wire-wrapped fuel bundles. In this study, the geometry optimization methodology with RANS based in-house CFD (Computational Fluid Dynamics) code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI (General Grid Interface) function is developed for in-house CFD code. Furthermore, three-dimensional flow fields calculated with in-house CFD code are compared with those calculated with general purpose commercial CFD solver, CFX. The geometry optimization methodology with RANS based in-house CFD code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI function is developed for in-house CFD code as same as CFX. Even though both analyses are conducted with same computational meshes, numerical error due to GGI function locally occurred in only CFX solver around rod surface and boundary region between inner fluid region and outer fluid region.

  9. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  10. Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation

    Science.gov (United States)

    Edwards, Thomas A.; Flores, Jolen

    1989-01-01

    Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.

  11. Utilizing GPUs to Accelerate Turbomachinery CFD Codes

    Science.gov (United States)

    MacCalla, Weylin; Kulkarni, Sameer

    2016-01-01

    GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.

  12. Validation of a CFD code for Unsteady Flows with cyclic boundary Conditions

    International Nuclear Information System (INIS)

    Kim, Jong-Tae; Kim, Sang-Baik; Lee, Won-Jae

    2006-01-01

    Currently Lilac code is under development to analyze thermo-hydraulics of a high-temperature gas-cooled reactor (GCR). Interesting thermo-hydraulic phenomena in a nuclear reactor are usually unsteady and turbulent. The analysis of the unsteady flows by using a three dimension CFD code is time-consuming if the flow domain is very large. Hopefully, flow domains commonly encountered in the nuclear thermo-hydraulics is periodic. So it is better to use the geometrical characteristics in order to reduce the computational resources. To get the benefits from reducing the computation domains especially for the calculations of unsteady flows, the cyclic boundary conditions are implemented in the parallelized CFD code LILAC. In this study, the parallelized cyclic boundary conditions are validated by solving unsteady laminar and turbulent flows past a circular cylinder

  13. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    Science.gov (United States)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  14. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    Science.gov (United States)

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  15. TRAC-CFD code integration and its application to containment analysis

    International Nuclear Information System (INIS)

    Tahara, M.; Arai, K.; Oikawa, H.

    2004-01-01

    Several safety systems utilizing natural driving force have been recently adopted for operating reactors, or applied to next-generation reactor design. Examples of these safety systems are the Passive Containment Cooling System (PCCS) and the Drywell Cooler (DWC) for removing decay heat, and the Passive Auto-catalytic Recombiner (PAR) for removing flammable gas in reactor containment during an accident. DWC is used in almost all Boiling Water Reactors (BWR) in service. PAR has been introduced for some reactors in Europe and will be introduced for Japanese reactors. PCCS is a safety device of next-generation BWR. The functional mechanism of these safety systems is closely related to the transient of the thermal-hydraulic condition of the containment atmosphere. The performance depends on the containment atmospheric condition, which is eventually affected by the mass and energy changes caused by the safety system. Therefore, the thermal fluid dynamics in the containment vessel should be appropriately considered in detail to properly estimate the performance of these systems. A computational fluid dynamics (CFD) code is useful for evaluating detailed thermal hydraulic behavior related to this equipment. However, it also requires a considerable amount of computational resources when it is applied to whole containment system transient analysis. The paper describes the method and structure of the integrated analysis tool, and discusses the results of its application to the start-up behavior analysis of a containment cooling system, a drywell local cooler. The integrated analysis code was developed and applied to estimate the DWC performance during a severe accident. The integrated analysis tool is composed of three codes, TRAC-PCV, CFD-DW and TRAC-CC, and analyzes the interaction of the natural convection and steam condensation of the DWC as well as analyzing the thermal hydraulic transient behavior of the containment vessel during a severe accident in detail. The

  16. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    Science.gov (United States)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  17. A simplified treatment of the boundary conditions of the k- ε model in coarse-mesh CFD-type codes

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Andreani, M.

    1999-01-01

    In coarse-mesh, CFD-type codes such as the containment analysis code GOTHIC, one of the options that can be used for modelling of turbulence is the k - ε model. However, in contrast to most other CFD codes which are designed to perform detailed CFD calculations with a large number of spatial meshes, codes such as GOTHIC are primarily aimed at simplified calculation of transients in large spaces (e.g., reactor containments), and generally use coarse meshes. The solution of the two parabolic equations for the k - ε model requires the definition of boundary conditions at physical boundaries and this, in turn, requires very small spatial meshes near these boundaries. Hence, while in codes like CFX this is done in a rigorous and consistent manner, codes like GOTHIC adopt an indirect and heuristic approach, due to the fact that the spatial meshes are usually large. This can have adverse consequences during the calculation of a transient and in this work, we shall give some examples of this and outline a method by which this problem can be avoided. (author)

  18. Implementation into a CFD code of neutron kinetics and fuel pin models for nuclear reactor transient analyses

    International Nuclear Information System (INIS)

    Chen Zhao; Chen, Xue-Nong; Rineiski, Andrei; Zhao Pengcheng; Chen Hongli

    2014-01-01

    Safety analysis is an important tool for justifying the safety of nuclear reactors. The traditional method for nuclear reactor safety analysis is performed by means of system codes, which use one-dimensional lumped-parameter method to model real reactor systems. However, there are many multi-dimensional thermal-hydraulic phenomena cannot be predicated using traditional one-dimensional system codes. This problem is extremely important for pool-type nuclear systems. Computational fluid dynamics (CFD) codes are powerful numerical simulation tools to solve multi-dimensional thermal-hydraulics problems, which are widely used in industrial applications for single phase flows. In order to use general CFD codes to solve nuclear reactor transient problems, some additional models beyond general ones are required. Neutron kinetics model for power calculation and fuel pin model for fuel pin temperature calculation are two important models of these additional models. The motivation of this work is to develop an advance numerical simulation method for nuclear reactor safety analysis by implementing neutron kinetics model and fuel pin model into general CFD codes. In this paper, the Point Kinetics Model (PKM) and Fuel Pin Model (FPM) are implemented into a general CFD code FLUENT. The improved FLUENT was called as FLUENT/PK. The mathematical models and implementary method of FLUENT/PK are descripted and two demonstration application cases, e.g. the unprotected transient overpower (UTOP) accident of a Liquid Metal cooled Fast Reactor (LMFR) and the unprotected beam overpower (UBOP) accident of an Accelerator Driven System (ADS), are presented. (author)

  19. CFD code verification and the method of manufactured solutions

    International Nuclear Information System (INIS)

    Pelletier, D.; Roache, P.J.

    2002-01-01

    This paper presents the Method of Manufactured Solutions (MMS) for CFD code verification. The MMS provides benchmark solutions for direct evaluation of the solution error. The best benchmarks are exact analytical solutions with sufficiently complex solution structure to ensure that all terms of the differential equations are exercised in the simulation. The MMS provides a straight forward and general procedure for generating such solutions. When used with systematic grid refinement studies, which are remarkably sensitive, the MMS provides strong code verification with a theorem-like quality. The MMS is first presented on simple 1-D examples. Manufactured solutions for more complex problems are then presented with sample results from grid convergence studies. (author)

  20. OECD/NEA International Benchmark exercises: Validation of CFD codes applied nuclear industry; OECD/NEA internatiion Benchmark exercices: La validacion de los codigos CFD aplicados a la industria nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Miquel veyrat, A.; Munoz-Cobo, J. L.; Chiva Vicent, S.

    2016-08-01

    In the recent years, due, among others, the slowing down of the nuclear industry, investment in the development and validation of CFD codes, applied specifically to the problems of the nuclear industry has been seriously hampered. Thus the International Benchmark Exercise (IBE) sponsored by the OECD/NEA have been fundamental to analyze the use of CFD codes in the nuclear industry, because although these codes are mature in many fields, still exist doubts about them in critical aspects of thermohydraulic calculations, even in single-phase scenarios. The Polytechnic University of Valencia (UPV) and the Universitat Jaume I (UJI), sponsored by the Nuclear Safety Council (CSN), have actively participated in all benchmark's proposed by NEA, as in the expert meetings,. In this paper, a summary of participation in the various IBE will be held, describing the benchmark itself, the CFD model created for it, and the main conclusions. (Author)

  1. CFD codes and the Onsager relations

    International Nuclear Information System (INIS)

    Makai, M.

    2008-01-01

    In the last decade, papers appeared in the literature discussing a shortcoming of the basic equations of hydrodynamics: the Navier-Stokes equations do not meet the Onsager symmetry relations. Recently R. Streater wrote about the topic. The basic problem is that the solution to the Boltzmann equation f(r,v,t) depends on seven variable, nevertheless the solution of the Navier-Stokes equation yields T(r,t),v(r,t) and ?(r,t)-the temperature, velocity and density distribution, altogether ?ve functions. Clearly, the solution class of the Boltzmann equation is a broader class than the solution class of the Navier-Stokes equation. What is the importance of that question? Are the results of CFD codes questionable ones or, the contradiction can be resolved by some ignored terms of second order? (Author)

  2. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Skifton, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stoots, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Conder, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart of any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.

  3. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  4. Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications - Workshop Proceedings, CFD4NRS-3 - Experimental Validation and Application of CFD and CMFD Codes to Nuclear Reactor Safety Issues

    International Nuclear Information System (INIS)

    2012-01-01

    related to nuclear reactor safety issues. The conference consisted of 14 technical sessions. Among the topics included were containment, advanced reactors, multiphase flows, flow in a rod bundle, fire analysis, flows in dry casks, thermal analysis, mixing flows and pressurized thermal shock (PTS). About 1/3 of the papers were concerned with two-phase flow issues and the rest were devoted to single-phase CFD validation. South Korea is a candidate to host a follow-up meeting scheduled in 2012, organized by KAERI. KAERI also volunteered to sponsor and organize the second OECD/NEA CFD benchmark exercise. In the closure meeting after the panel session discussion, the representative from the Paul Scherrer Institut (PSI) proposed to host a future workshop scheduled for 2014, and to organize and sponsor the third OECD/NEA benchmark exercise based on a stratification experiment in the PANDA facility at PSI. The great majority of participants were interested in attending a follow-up workshop within two years. Comments were made during the panel session on the content of CFD4NRS-3. Two of the comments are that experiments can provide insight into the physics, and that CFD is now an accepted analysis tool, though it is very important to follow BPGs. There was a consensus on the need to maintain the high quality of the papers. The promotion of international benchmarking exercises for CFD was strongly encouraged. Another comment suggested that such workshops should be a forum to discuss novel approaches, but that one must also keep in mind that the end users are people from the nuclear safety community. The CFD4NRS, XCFD4NRS and CFD4NRS-3 workshops have proved to be very valuable means to assess the status of CFD code capabilities and validation, to exchange experiences in CFD code applications, and to monitor future progress

  5. Developing a methodology for the evaluation of results uncertainties in CFD codes; Desarrollo de una Metodologia para la Evaluacion de Incertidumbres en los Resultados de Codigos de CFD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-cobo, J. L.; Chiva, S.; Pena, C.; Vela, E.

    2014-07-01

    In this work the development of a methodology is studied to evaluate the uncertainty in the results of CFD codes and is compatible with the VV-20 standard Standard for Verification and Validation in CFD and Heat Transfer {sup ,} developed by the Association of Mechanical Engineers ASME . Similarly, the alternatives are studied for obtaining existing uncertainty in the results to see which is the best choice from the point of view of implementation and time. We have developed two methods for calculating uncertainty of the results of a CFD code, the first method based on the use of techniques of Monte-Carlo for the propagation of uncertainty in this first method we think it is preferable to use the statistics of the order to determine the number of cases to execute the code, because this way we can always determine the confidence interval desired level of output quantities. The second type of method we have developed is based on non-intrusive polynomial chaos. (Author)

  6. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  7. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  8. Development of 3D CFD code based on structured non-orthogonal grids

    International Nuclear Information System (INIS)

    Vaidya, Abhijeet Mohan; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Most of the nuclear industry problems involve complex geometries. Solution of flow and heat transfer over complex geometries is a very important requirement for designing new reactor systems. Hence development of a general purpose three dimensional (3D) CFD code is undertaken. For handling complex shape of computational domain, implementation on structured non-orthogonal coordinates is being done. The code is validated by comparing its results for 3D inclined lid driven cavity at different inclination angles and Reynolds numbers with OpenFOAM results. This paper contains formulation and validation of the new code developed. (author)

  9. Advanced Wall Boiling Model with Wide Range Applicability for the Subcooled Boiling Flow and its Application into the CFD Code

    International Nuclear Information System (INIS)

    Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.

    2010-01-01

    Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes

  10. MHD for fusion: parameters bridge between CFD tools and system codes; MHD para fusion: parametros puente entre herramientas CFD y codigos de sistema

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L.; Mas de les Valls, E.; Sedano, L. A.

    2012-07-01

    In the context of regenerating sheaths for fusion reactors, the CFD simulations of liquid metal channels (ML) are essential to know the phenomenology and obtain relevant information for design as: ML thermal gain, to know the thermal efficiency of the component, existence of hot spots, to define the materials to use, existence of flow inversion, etc. Apart from design parameters there are others, bridge parameter, required as inputs into system code. In this work shown GREENER/T4F capabilities for obtaining both parameters with a CFD tool based on open source OpenFOAM.

  11. Numerical modelling of pressure suppression pools with CFD and FEM codes

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-06-15

    Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)

  12. A CFD code comparison of wind turbine wakes

    International Nuclear Information System (INIS)

    Van der Laan, M P; Sørensen, N N; Storey, R C; Cater, J E; Norris, S E

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for four test cases. A grid resolution study, performed in EllipSys3D and SnS, shows that a minimal uniform cell spacing of 1/30 of the rotor diameter is necessary to resolve the wind turbine wake. In addition, the LES-predicted velocity deficits are also compared with Reynolds-Averaged Navier Stokes simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k-ε model and the k-ε-f p model. Where the k-ε model fails to predict the velocity deficit, the results of the k-ε-f P model show good agreement with both LES models and measurements

  13. SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals

    Science.gov (United States)

    Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.

    1996-01-01

    A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).

  14. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  15. CFD Modeling of Free-Piston Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  16. Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3

    International Nuclear Information System (INIS)

    Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.

    2014-11-01

    The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems

  17. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  18. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  19. Numerical, Analytical, Experimental Study of Fluid Dynamic Forces in Seals Volume 6: Description of Scientific CFD Code SCISEAL

    Science.gov (United States)

    Athavale, Mahesh; Przekwas, Andrzej

    2004-01-01

    The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.

  20. Modeling of local steam condensation on walls in presence of non-condensable gases. Application to a loca calculation in reactor containment using the multidimensional geyser/tonus code

    Energy Technology Data Exchange (ETDEWEB)

    Benet, L.V.; Caroli, C.; Cornet, P. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)] [and others

    1995-09-01

    This paper reports part of a study of possible severe pressurized water reactor (PWR) accidents. The need for containment modeling, and in particular for a hydrogen risk study, was reinforced in France after 1990, with the requirement that severe accidents must be taken into account in the design of future plants. This new need of assessing the transient local hydrogen concentration led to the development, in the Mechanical Engineering and Technology Department of the French Atomic Energy Commission (CEA/DMT), of the multidimensional code GEYSER/TONUS for containment analysis. A detailed example of the use of this code is presented. The mixture consisted of noncondensable gases (air or air plus hydrogen) and water vapor and liquid water. This is described by a compressible homogeneous two-phase flow model and wall condensation is based on the Chilton-Colburn formula and the analogy between heat and mass transfer. Results are given for a transient two-dimensional axially-symmetric computation for the first hour of a simplified accident sequence. In this there was an initial injection of a large amount of water vapor followed by a smaller amount and by hydrogen injection.

  1. CFD and system analysis code investigations of the multidimensional flow mixing phenomena in the reactor pressure vessel

    International Nuclear Information System (INIS)

    Ceuca, S.C.; Herb, J.; Schoeffel, P.J.; Hollands, T.; Austregesilo, H.; Hristov, H.V.

    2017-01-01

    The realistic numerical prediction of transient fluid-dynamic scenarios including the complex, three-dimensional flow mixing phenomena occurring in the reactor pressure vessel (RPV) both in normal or abnormal operation are an important issue in today's reactor safety assessment studies. Both Computational Fluid Dynamics (CFD) tools as well as fluid-dynamic system analysis codes, each with its advantages and drawbacks, are commonly used to model such transients. Simulation results obtained with the open-source CFD tool-box OpenFOAM and the German thermal-hydraulic system code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients), the later developed by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) for the analysis of the whole spectrum of operational transients, design-basis accidents and beyond design basis accidents anticipated for nuclear energy facilities, are compared against experimental data from the ROssendorf Coolant Mixing (ROCOM) test facility. In the case of the OpenFOAM CFD simulations the influence of various turbulence models and numerical schemes has been assessed while in the case of the system analysis code ATHLET a multidimensional nodalization recommended for real power plant applications has been employed. The simulation results show a good agreement with the experimental data, indicating that both OpenFOAM and ATHLET can capture the key flow features of the mixing processes in the Reactor Pressure Vessel (RPV). (author)

  2. Recent developments in CFD and their impact on fuel assembly optimization

    International Nuclear Information System (INIS)

    Lascar, Celine; Alleborn, Norbert; Leberig, Mario; Jones, J.; Martin, M.

    2010-01-01

    In the recent past, progress in computer hardware and in Computational Fluid Dynamics (CFD) codes has made CFD attractive for thermal-hydraulic applications of the nuclear industry. Available code systems have a separated treatment of 1-phase and 2-phase CFD. While 1-phase phenomena (relevant for example to determine pressure losses in fuel assembly) can be reliably predicted with today's CFD programs, 2-phase CFD is still in the process of strong development in modeling 2- phase phenomena. AREVA NP is investing major efforts and resources (i) to develop knowledge and mastery of CFD models, their associated parameters, and the ranges of applications; (ii) to ensure validation of the in-house CFD codes and methodologies by gathering a large experimental databank; and (iii) to build state-ofthe- art tools and hardware to support this CFD development. All CFD work presented in this paper was performed with the commercial code STAR-CD. (orig.)

  3. MISTRA facility for containment lumped parameter and CFD codes validation. Example of the International Standard Problem ISP47

    International Nuclear Information System (INIS)

    Tkatschenko, I.; Studer, E.; Paillere, H.

    2005-01-01

    During a severe accident in a Pressurized Water Reactor (PWR), the formation of a combustible gas mixture in the complex geometry of the reactor depends on the understanding of hydrogen production, the complex 3D thermal-hydraulics flow due to gas/steam injection, natural convection, heat transfer by condensation on walls and effect of mitigation devices. Numerical simulation of such flows may be performed either by Lumped Parameter (LP) or by Computational Fluid Dynamics (CFD) codes. Advantages and drawbacks of LP and CFD codes are well-known. LP codes are mainly developed for full size containment analysis but they need improvements, especially since they are not able to accurately predict the local gas mixing within the containment. CFD codes require a process of validation on well-instrumented experimental data before they can be used with a high degree of confidence. The MISTRA coupled effect test facility has been built at CEA to fulfil this validation objective: with numerous measurement points in the gaseous volume - temperature, gas concentration, velocity and turbulence - and with well controlled boundary conditions. As illustration of both experimental and simulation areas of this topic, a recent example in the use of MISTRA test data is presented for the case of the International Standard Problem ISP47. The proposed experimental work in the MISTRA facility provides essential data to fill the gaps in the modelling/validation of computational tools. (author)

  4. [Baroreflexes originated in vertebral artery zones upon peripheral vein tonus, systemic arterial blood pressure, and external respiration].

    Science.gov (United States)

    Agadzhanian, N A; Kupriianov, S V

    2008-06-01

    The investigation was intended to study the role ofbaroreceptors ofhemodynamically isolated zone of vertebral arteries in regulation of peripheral veins tonus, arterial pressure and external respiration. Pressure decrease in this vascular reflexogenic zone led to reflex responses of increase in femoral vein tonus, elevation of blood pressure level and stimulation of external respiration. The opposite reflex responses of cardio-respiratory functional system to initial pressure activation of vertebral arteries baroreceptors are observed. Basing on generalization of our own findings and similar physiological and morphological researches of other authors, it is established that afferentation from the vertebral artery zone is a reflexogenic factor of somatic muscles' veins tonus regulation. These reflexes of capacity vessels tonic activity changes are part of cardio-respiratory responses of maintaining the tissue gaseous exchange.

  5. Uncertainty and Sensitivity Analyses for CFD Codes: an Attempt of a State of the Art on the Basis of the CEA Experience

    International Nuclear Information System (INIS)

    Crecy, Agnes de; Bazin, Pascal

    2013-01-01

    Uncertainty and sensitivity analyses, associated to best-estimate calculations become paramount for licensing processes and are known as BEPU (Best-Estimate Plus Uncertainties) methods. A recent activity such as the BEMUSE benchmark has shown that the present methods are mature enough for the system thermal-hydraulics codes, even if issues such as the quantification of the uncertainties of the input parameters, and especially, the physical models must be improved. But CFD codes are more and more used for fine 3-D modeling such as, for example, those necessary in dilution or stratification problems. The application of the BEPU methods to CFD codes becomes an issue that must be now addressed. That is precisely the goal of this paper. It consists of two main parts. In the chapter 2, the specificities of CFD codes for BEPU methods are listed, with focuses on the possible difficulties. In the chapter 3, the studies performed at CEA are described. It is important to note that CEA research in this field is only beginning and must not be viewed as a reference approach. (authors)

  6. International research progress of CFD application in analysis of nuclear power system

    International Nuclear Information System (INIS)

    Li Linsen; Wang Kan; Song Xiaoming

    2009-01-01

    This paper introduces the latest international research progress of CFD application in nuclear reactor system analysis. CFD method has been applied to a few 3-D single phase transient simulations, including flow field modeling of the reactor cores, assemblies, and vessel plenums. On the other hand, CFD method applied to reactor system still needs further validation and benchmarking, meanwhile,the application of CFD also needs to be studied, including the setup of the Best Practice Guidelines (BPG). Furthermore, CFD codes are used to couple with thermal-hydraulic system codes or neutronic codes. Eventually, in two phase field and turbulence modeling, CFD codes are still being developed. (authors)

  7. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment; Erprobung und Validierung von CFD-Codes fuer die Simulation von unfalltypischen Phaenomenen im Sicherheitseinschluss

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-15

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H{sub 2

  8. CFD simulation with Code-Saturne of the light gas stratification erosion by a vertical air gas injection using a Low Mach number algorithm

    International Nuclear Information System (INIS)

    Hou Bingxu; Yu Jiyang; Senechal, Dorothee; Mechitoua, Namane; Min Jiesheng; Chen Guofei

    2015-01-01

    During CFD simulations of the flows at low Mach number regime, the classical assumption which neglects the dilatable effect of gas is no longer applicable when the temperature variation or the concentration variation of the mixture's components is too large in the fluid domain. To be able to correctly predict the flow at such a regime, some authors have recourse to a Low Mach number algorithm. This algorithm is based on the well-known pressure-based algorithm or elliptic solver for incompressible flows, SIMPLE, with a modification for the treatment of the pressure which is split into two parts (the hydrodynamic pressure and the thermodynamic pressure) and a dilatable term added in the mass equation. This algorithm has been implemented in the CFD code, Code_—Saturne, developed by EDF R and D, and applied for the CFD simulations of the erosion phenomena of light gas stratification by air injection. This paper is devoted to the analytical work with the Low Mach number algorithm based on the ST1 series of the SETH-2 campaign provided by the OECD project on the PANDA test facility of PSI. The first part is focused on a mesh sensitivity analysis, which is a common procedure for CFD codes validation. The second part of the paper presents a comparison between the CFD results obtained with the standard algorithms used for incompressible flows and the Low Mach number algorithm. The third part is an analysis of the CFD results obtained on the reference mesh with both different Froude numbers corresponding to the tests ST1_—7 (Fr=6.04) and ST1_—10 (Fr=7.95) from the ST1 series. In the last part the authors perform the knowledge of the initial light gas distribution effect on the stratification erosion and the capability of the CFD codes to predict this phenomenon with an area governed by diffusion regime (at the top of the vessel) and another one by forced convection near the injection. (author)

  9. CFD simulation of homogenisation time measured by radiotracers

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostik, M.; Jahoda, M.

    2004-01-01

    A methodology for CFD (Computational Fluid Dynamics) simulation of radiotracer experiments was suggested. The most important parts of the methodology for validation of CFD results by radiotracers are: a) successful simulation of tracer experiment by CFD code (numerical solution of tracer dispersion in a stirred tank), which results in tracer concentration field at several time intervals; b) post-process data treatment, which uses detection chain description and which enables to simulate the detector measurement of homogenisation time from the tracer concentration field evaluated by CFD code. (author)

  10. CFD analysis on heat transfer in low Prandtl number fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)

    2011-07-01

    Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)

  11. CFD analyses of steam and hydrogen distribution in a nuclear power plant

    International Nuclear Information System (INIS)

    Siccama, N.B.; Houkema, M.; Komen, E.M.J.

    2003-01-01

    A detailed three-dimensional Computational Fluid Dynamics (CFD) model of the containment of the nuclear power plant has been prepared in order to assess possible multidimensional phenomena. In a first code-to-code comparison step, the CFD model has been used to compute a reference accident scenario which has been analysed earlier with the lumped parameter code SPECTRA. The CFD results compare qualitatively well with the SPECTRA results. Subsequently, the actual steam jet from the primary system has been modelled in the CFD code in order to determine the hydrogen distribution for this realistically modelled source term. Based on the computed hydrogen distributions, it has been determined when use of lumped parameter codes is allowed and when use of CFD codes is required. (author)

  12. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  13. Single-phase mixing studies by means of a directly coupled CFD/system-code tool

    International Nuclear Information System (INIS)

    Bertolotto, Davide; Chawla, Rakesh; Manera, Annalisa; Smith, Brian; Prasser, Horst-Michael

    2008-01-01

    The present paper describes the coupling of the 3D computational fluid dynamics (CFD) code CFX with the best estimate thermal-hydraulic code TRACE. Two different coupling schemes, i.e. an explicit and a semi-implicit one, have been tested. Verification of the coupled CFX/TRACE code has first been carried out on the basis of a simple test case consisting of a straight pipe filled with liquid subject to a sudden acceleration. As a second validation step, measurements using advanced instrumentation (wire-mesh sensors) have been performed in a simple, specially constructed test facility consisting of two loops connected by a double T-junction. Comparisons of the measurements are made with calculation results obtained using the coupled codes, as well as the individual codes in stand-alone mode, thereby clearly bringing out the effectiveness of the achieved coupling for simulating situations in which three-dimensional mixing phenomena are important. (authors)

  14. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  15. Vasovagal tonus index in dog with myxomatous mitral valve disease

    Directory of Open Access Journals (Sweden)

    Bruna C. Brüler

    Full Text Available ABSTRACT: The vasovagal tonus index (VVTI is a useful and assessable index, obtained from standard ECG recordings, that is used to estimate heart rate variability (HRV, and may provide valuable information regarding the likelihood of progression into congestive heart failure (CHF. In this paperwork, we investigated how the vasovagal tonus index (VVTI behaves in dogs with naturally-occurring myxomatous mitral valve disease (MMVD Electrocardiographic (ECG recordings and echocardiographic data of 120 patients diagnosed with MMVD were reviewed. The VVTI was calculated from twenty consecutive RR intervals for each dog enrolled in the study. Lower VVTI values were found in MMVD patients in American College of Veterinary Internal Medicine (ACVIM stage C compared with stages B1 and B2. Values were also lower in patients with severe cardiac remodeling. When a cut-off value of 6.66 is used, VVTI was able to discriminate MMVD patients in stage C from B1 and B2 dogs with a sensitivity of 70 per cent and a specificity of 77 per cent. MMVD dogs in which VVTI is lower than 6.66 are 30% more likely to develop congestive heart failure (CHF.

  16. Computational Fluid Dynamics (CFD) in Nuclear Reactor Safety (NRS) - Proceedings of the workshop on Experiments and CFD Code Application to Nuclear Reactor Safety (XCFD4NRS)

    International Nuclear Information System (INIS)

    2008-01-01

    Computational Fluid Dynamics (CFD) is to an increasing extent being adopted in nuclear reactor safety analyses as a tool that enables specific safety relevant phenomena occurring in the reactor coolant system to be better described. The Committee on the Safety of Nuclear Installations (CSNI), which is responsible for the activities of the OECD Nuclear Energy Agency that support advancing the technical base of the safety of nuclear installations, has in recent years conducted an important activity in the CFD area. This activity has been carried out within the scope of the CSNI working group on the analysis and management of accidents (GAMA), and has mainly focused on the formulation of user guidelines and on the assessment and verification of CFD codes. It is in this GAMA framework that a first workshop CFD4NRS was organized and held in Garching, Germany in 2006. Following the CFD4NRS workshop, this XCFD4NRS Workshop was intended to extend the forum created for numerical analysts and experimentalists to exchange information in the field of Nuclear Reactor Safety (NRS) related activities relevant to Computational Fluid Dynamics (CFD) validation, but this time with more emphasis placed on new experimental techniques and two-phase CFD applications. The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to GAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The scope of XCFD4NRS includes: - Single-phase and two-phase CFD simulations with an emphasis on validation in areas such as: boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These applications should relate to NRS-relevant issues such as: pressurized thermal shocks, critical heat flux, pool heat exchangers, boron dilution, hydrogen

  17. Three-dimensional all-speed CFD code for safety analysis of nuclear reactor containment: Status of GASFLOW parallelization, model development, validation and application

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-05-15

    Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high

  18. Application of CFD technique for HYFLEX aerodynamic design

    OpenAIRE

    Yamamoto, Yukimitsu; Watanabe, Shigeya; Ishiguro, Mitsuo; Ogasawara, Ko; 山本 行光; 渡辺 重哉; 石黒 満津夫; 小笠原 宏

    1994-01-01

    An overview of the application of Computational Fluid Dynamics (CFD) technique for the HYFLEX (Hypersonic Flight Experiment) aerodynamic design by using the numerical simulation codes in the supersonic and hypersonic speed ranges is presented. Roles of CFD required to make up for the short term of development and small amount of the wind tunnel test cases, application in the HYFLEX aerodynamic design and their application methods are described. The procedure of CFD code validation by the expe...

  19. Comparative study of muscular tonus in spastic tetra paretic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull

    International Nuclear Information System (INIS)

    Iwabe, Cristina; Piovesana, Ana Maria Sedrez Gonzaga

    2003-01-01

    The objective was to compare distribution and intensity of muscular tonus in spastic tetra paretic cerebral palsy (CP), correlating the clinical data with lesion location in the central nervous system. Twelve children aged two to four years old with predominantly cortical lesions (six children) and subcortical lesions (six children) were included. The tonus was analyzed in the upper (UULL) and lower limbs (LLLL) based on Durigon and Piemonte protocol. The result showed that there was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. It was concluded that in this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL. (author)

  20. Safety Injection Tank Performance Analysis Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.

  1. The Feasibility of Multidimensional CFD Applied to Calandria System in the Moderator of CANDU-6 PHWR Using Commercial and Open-Source Codes

    Directory of Open Access Journals (Sweden)

    Hyoung Tae Kim

    2016-01-01

    Full Text Available The moderator system of CANDU, a prototype of PHWR (pressurized heavy-water reactor, has been modeled in multidimension for the computation based on CFD (computational fluid dynamics technique. Three CFD codes are tested in modeled hydrothermal systems of heavy-water reactors. Commercial codes, COMSOL Multiphysics and ANSYS-CFX with OpenFOAM, an open-source code, are introduced for the various simplified and practical problems. All the implemented computational codes are tested for a benchmark problem of STERN laboratory experiment with a precise modeling of tubes, compared with each other as well as the measured data and a porous model based on the experimental correlation of pressure drop. Also the effect of turbulence model is discussed for these low Reynolds number flows. As a result, they are shown to be successful for the analysis of three-dimensional numerical models related to the calandria system of CANDU reactors.

  2. Application of an atmospheric CFD code to wind resource assessment in complex terrain

    International Nuclear Information System (INIS)

    Laporte, Laurent

    2008-01-01

    This thesis is organized in two parts. The first part presents the use of the atmospheric CFD code Mercure Saturne to estimate the wind resource in complex terrain. A measurement campaign was led by EDF to obtain data for validation. A methodology was developed using meso-scale profiles as boundary conditions. Clustering of meteorological situations was used to reduce the number of simulations needed to calculate the wind resource. The validation of the code on the Askervein hill, the methodology and comparisons with measurements from the complex site are presented. The second part presents the modeling of wakes with the Mercure Saturne code. Forces, generated by the blades on the wind, are modeled by source terms, calculated by the BEM method. Two comparisons are proposed to validate the method: the first compares the numerical model with wind tunnel measurements from a small wind turbine, the second with measurements made on porous disks in an atmospheric boundary layer wind tunnel (author) [fr

  3. A simplified model of Passive Containment Cooling System in a CFD code

    International Nuclear Information System (INIS)

    Jiang, X.W.; Studer, E.; Kudriakov, S.

    2013-01-01

    Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate

  4. Inhibitory Effect of Ginkgo Biloba Extract on the Tonus of the Small Intestine and the Colon of Rabbits

    Directory of Open Access Journals (Sweden)

    Svetlana Trivic

    2010-03-01

    Full Text Available Ginkgo biloba is widely used in folk medicine. Patients very often use the plant preparation with no concern for purity. They also tend to increase the dosage by themselves and this may result in certain insufficiently researched acute effects. Due to this extremely widespread application, the aim of this work is an examination of the possible acute effects of Ginkgo bilobaon the motility of the small and the large intestine of rabbits. Тhe effects of Gingium® - a standardized ginkgo biloba extract (GBE [one milliliter preparation contained 8.8–10.8 mg ginkgo flavonol glycoside and 2.0–2.8 mg lactone ring-containing terpenes (ginkgolides and bilobalides], on the tonus of isolated segments of the ileum and the colon of rabbits were examined. The experiments were carried out on isolated bowel incisions according to the Magnus method. Data was registered by physiography (Narco-Bio-System. Our results show that GBE (0.006 g/L, - 0.06 g/L concentration-dependently reduces the tonus of the ileum and the colon of rabbits. Apart from that, GBE reduces the increase of the tonus of the ileum caused by acetylcholine (ACh, but does not change colon tonus intensified by ACh. This indicates that the effects of the used extract in the ileum are predominantly achieved through cholinergic mechanisms, while the relaxant effects in the colon are achieved in some other way.

  5. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    Science.gov (United States)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  6. ARC Code TI: CFD Utility Software Library

    Data.gov (United States)

    National Aeronautics and Space Administration — The CFD Utility Software Library consists of nearly 30 libraries of Fortran 90 and 77 subroutines and almost 100 applications built on those libraries. Many of the...

  7. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  8. The role of CFD computer analyses in hydrogen safety management

    International Nuclear Information System (INIS)

    Komen, E.M.J; Visser, D.C; Roelofs, F.; Te Lintelo, J.G.T

    2014-01-01

    The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems, like e.g. passive autocatalytic recombiners (PARs), and for the assessment of the associated residual risk of hydrogen combustion. Traditionally, so-called Lumped Parameter (LP) computer codes are being used for these purposes. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The objective of the current paper is to address the following questions: - When are CFD computer analyses needed complementary to the traditional LP code analyses for hydrogen safety management? - What is the validation status of the CFD computer code for hydrogen distribution, mitigation, and combustion analyses? - Can CFD computer analyses nowadays be executed in practical and reliable way for full scale containments? The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities. (authors)

  9. Large-eddy simulation of stratified atmospheric flows with the CFD code Code-Saturne

    International Nuclear Information System (INIS)

    Dall'Ozzo, Cedric

    2013-01-01

    Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convective situations in daytime and stable situations in the nighttime is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is especially difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R and D, Code-Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the sub-grid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed. In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different sub-grid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code-Saturne is realized in order to decrease their effects. (author) [fr

  10. Flask fluid flow simulation using CFD

    International Nuclear Information System (INIS)

    Swindlehurst, W.E.; Livesey, E.; Worthington, D.

    1989-01-01

    BNFL and its subsidiary Company, PNTL, design and operate waterfilled LWR fuel transport flasks for the international transport of irradiated fuel. Although some 150 flasks are currently in operation, new flask designs are being developed. As part of the supporting R and D program, Computational Fluid Dynamics (CFD) codes are being investigated as a means of predicting fluid movements and temperatures within the complex internal geometry of flasks. The ability to simulate fluid flow is particularly important when convection heat transfer is significant. Although obviously relevant to water filled flasks, the technique is applicable to dry flask thermal assessments (where experience shows that convection heat transfer is often underestimated). Computational Fluid Dynamics has emerged in recent years as an important technique in engineering design and safety assessments. Cheaper computing and the development of general CFD codes allows complex engineering structures to be analyzed. However, because of this complexity, it is essential that the application and associated modeling assumptions are critically reviewed. To assess the ability of a CFD code to model flask internals, the code PHOENICS has been used to model the fluid movements in a BNFL Excellox-type flask and the results compared with test data

  11. Study of Pressure Drop in Fixed Bed Reactor Using a Computational Fluid Dynamics (CFD Code

    Directory of Open Access Journals (Sweden)

    Soroush Ahmadi

    2018-04-01

    Full Text Available Pressure drops of water and critical steam flowing in the fixed bed of mono-sized spheres are studied using SolidWorks 2017 Flow Simulation CFD code. The effects of the type of bed formation, flow velocity, density, and pebble size are evaluated. A new equation is concluded from the data, which is able to estimate pressure drop of a packed bed for high particle Reynolds number, from 15,000 to 1,000,000.

  12. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  13. Dispersion simulation of airborne effluent through tree canopy using OpenFOAM CFD code

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Venkatesan, R.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Nuclear plants are often surrounded by tree canopy as a part of landscaping and green belt development. The transport and dispersion of air borne pollutants within the tree/plant canopies is greatly controlled by turbulence. The density of the tree canopy, the height and type of the trees is of importance while determining the intensity of turbulence. In order to study the mechanical effect of the canopy and the consequent modification in the ground level concentration pattern from a ground level release of radioactivity, a CFD code called OpenFOAM is used. The main task of this study is the implementation of flow and dispersion through plant canopies in Open FOAM

  14. Best Practices for Reduction of Uncertainty in CFD Results

    Science.gov (United States)

    Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.

    2003-01-01

    This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.

  15. Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow

    Science.gov (United States)

    Tucker, P. Kevin

    1993-01-01

    The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.

  16. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment

    International Nuclear Information System (INIS)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-01

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H_2 deflagration

  17. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    Science.gov (United States)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  18. OpenFOAM: Open source CFD in research and industry

    Science.gov (United States)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  19. User Interface Developed for Controls/CFD Interdisciplinary Research

    Science.gov (United States)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  20. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  1. CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment

    Energy Technology Data Exchange (ETDEWEB)

    Heitsch, Matthias, E-mail: Matthias.Heitsch@ec.europa.e [Institute for Energy, Joint Research Centre, PO Box 2, 1755 ZG Petten (Netherlands); Huhtanen, Risto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Techy, Zsolt [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Fry, Chris [Serco, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH (United Kingdom); Kostka, Pal [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Niemi, Jarto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Schramm, Berthold [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany)

    2010-02-15

    In the PHARE project 'Hydrogen Management for the VVER440/213' (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration. Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results. Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.

  2. OpenFOAM: Open source CFD in research and industry

    Directory of Open Access Journals (Sweden)

    Hrvoje Jasak

    2009-12-01

    Full Text Available The current focus of development in industrial Computational Fluid Dynamics (CFD is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries of practical engineering use in “non-traditional” areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  3. Development of a system code with CFD capability for analyzing turbulent mixed convection in gas-cooled reactors

    International Nuclear Information System (INIS)

    Kim, Hyeon Il

    2010-02-01

    In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced

  4. Verification of supersonic and hypersonic semi-empirical predictions using CFD

    International Nuclear Information System (INIS)

    McIlwain, S.; Khalid, M.

    2004-01-01

    CFD was used to verify the accuracy of the axial force, normal force, and pitching moment predictions of two semi-empirical codes. This analysis considered the flow around the forebody of four different aerodynamic shapes. These included geometries with equal-volume straight or tapered bodies, with either standard or double-angle nose cones. The flow was tested at freestream Mach numbers of M = 1.5, 4.0, and 7.0. The CFD results gave the expected flow pressure contours for each geometry. The geometries with straight bodies produced larger axial forces, smaller normal forces, and larger pitching moments compared to the geometries with tapered bodies. The double-angle nose cones introduced a shock into the flow, but affected the straight-body geometries more than the tapered-body geometries. Both semi-empirical codes predicted axial forces that were consistent with the CFD data. The agreement between the normal forces and pitching moments was not as good, particularly for the straight-body geometries. But even though the semi-empirical results were not exactly the same as the CFD data, the semi-empirical codes provided rough estimates of the aerodynamic parameters in a fraction of the time required to perform a CFD analysis. (author)

  5. Investigation on a coupled CFD/DSMC method for continuum-rarefied flows

    Science.gov (United States)

    Tang, Zhenyu; He, Bijiao; Cai, Guobiao

    2012-11-01

    The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.

  6. CFD validation experiments for hypersonic flows

    Science.gov (United States)

    Marvin, Joseph G.

    1992-01-01

    A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.

  7. Location and sizing of a plant stack: Design study using CFD

    International Nuclear Information System (INIS)

    Petrangeli, Gianni

    2011-01-01

    Highlights: → The paper is a test of applicability of CFD Codes to a nuclear plant stack. → Six cases are studied and comparison is made with common methods. → A comparison with field test data is made. → The study shows that CFD Codes are adequate even in presence of complicated building arrangements. - Abstract: The effect of the presence of a stack on the ground level concentration of emissions near the plant is to significantly decrease the concentrations (in practical cases of interest, by a factor of 5-10), while the presence of nearby plant buildings is to partly eliminate this beneficial effect due to the effect of the building wake. The author of this paper believes that the practical methods currently used for the evaluation of ground concentrations in these cases deserve some improvement. One line of development here suggested is the use of Computer Fluid Dynamics (CFD) codes. The author believes that presently available Code Packages in this field are sufficiently accurate. A number of case studies are presented in this paper, with the aim of encouraging the use of these rather simple methods of study. Moreover, a comparison of calculation results with a field test results confirms also the quantitative reliability of the calculation method here proposed. The main conclusions of this exercise could be the following: -The use of CFD Computer Codes seems suitable for atmospheric dispersion calculations of interest to the nuclear plant designer and safety analyst; in particular, for design studies aimed at the definition of nuclear plant and stack arrangements, the result of this exercise seem to indicate that the methods here used are completely suitable for the comparison of various solutions. -The use of CFD codes may avoid wrong decisions, like the elimination of a stack in the design of a nuclear plant; excessive and detrimental over-conservatism can also be avoided. -When adequate guidance is provided, as this paper attempts to do (), the CFD

  8. Chronically administered 3-nitropropionic acid produces selective lesions in the striatum and reduces muscle tonus.

    Science.gov (United States)

    Shimano, Y; Kumazaki, M; Sakurai, T; Hida, H; Fujimoto, I; Fukuda, A; Nishino, H

    1995-12-01

    Systemically administered 3-nitropropionic acid (3- NPA), irreversible inhibitor of succinate dehydrogenase, produced characteristic bilateral lesions in the striatum (STR) in the rat. Inside the lesion, neutrophils invaded and strong immunoreaction for IgG as well as complement factor C3b/C4b receptor (C3b/C4br) were observed. The core of the lesion lost the immunoreaction for glial fibrillary acidic protein (GFAP) while the marginal area had abundant GFAP-labeled astrocytes around the vessels. Intoxicated rats often became somnolent and were awkward in cooperative movement on a pole climbing test, but they had a quite good memory retention in a passive avoidance learning. Muscle tonus in some of the intoxicated rats became hypotonic with low voltage electromyogram (EMG) activity, especially in lower limbs. In summary, 3-NPA intoxicated rats had selective bilateral lesions in the STR and exhibited disturbances in a cooperative movement owing to the impairment in muscle tonus, thus it would be a useful animal model to deduce the central pathogenesis of Huntington's disease.

  9. Assessment of computational fluid dynamics (CFD) for nuclear reactor safety problems

    International Nuclear Information System (INIS)

    Smith, B. L.; Andreani, M.; Bieder, U.; Bestion, D.; Ducros, F.; Graffard, E.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Hoehne, T.; Rohde, U.; Lucas, D.; Komen, E.; Houkema, M.; Mahaffy, J.; Moretti, F.; Morii, T.; Muehlbauer, P.; Song, C.H.; Zigh, G.; Menter, F.; Watanabe, T.

    2008-01-01

    The basic objective of the present work was to provide documented evidence of the need to perform CFD simulations in Nuclear Reactor Safety (NRS), concentrating on single-phase applications, and to assess the competence of the present generation of CFD codes to perform these simulations reliably. The fulfilling of this objective involves multiple tasks, summarized as: to provide a classification of NRS problems requiring CFD analysis, to identify and catalogue existing CFD assessment bases, to identify shortcomings in CFD approaches, to put into place a means for extending the CFD assessment database, with an emphasis on NRS applications. The resulting document is presented here. After some introductory remarks, chapter 3 lists twenty-two NRS issues for which it is considered that the application of CFD would bring real benefits in terms of better predictive capability. This classification is followed by a short description of the safety issue, a state-of-the-art summary of what has been attempted, and what is still needed to be done to improve reliability. Chapter 4 details the assessment bases that have already been established in both the nuclear and non-nuclear domains, and discusses the usefulness and relevance of the work to NRS applications, where appropriate. This information is augmented in Chapter 5 by descriptions of the existing CFD assessment bases that have been established around specific, NRS problems. Typical examples are experiments devoted to the boron dilution issue, pressurised thermal shock, and thermal fatigue in pipes. Chapter 6 is devoted to identifying the technology gaps which need to be closed to make CFD a more trustworthy analytical tool. Some deficiencies identified are lack of a Phenomenon Identification and Ranking Table (PIRT), limitations in the range of application of turbulence models, coupling of CFD with neutronics and system codes, and computer power limitations. Most CFD codes currently being used have their own, custom

  10. A coupled RELAPS-3D/CFD methodology with a proof-of-principle calculation; TOPICAL

    International Nuclear Information System (INIS)

    Aumiller, D.L.; Tomlinson, E.T.; Bauer, R.C.

    2000-01-01

    The RELAP5-3D computer code was modified to make the explicit coupling capability in the code fully functional. As a test of the modified code, a coupled RELAP5/RELAP5 analysis of the Edwards-O'Brien blowdown problem was performed which showed no significant deviations from the standard RELAP5-3D predictions. In addition, a multiphase Computational Fluid Dynamics (CFD) code was modified to permit explicit coupling to RELAP5-3D. Several calculations were performed with this code. The first analysis used the experimental pressure history from a point just upstream of the break as a boundary condition. This analysis showed that a multiphase CFD code could calculate the thermodynamic and hydrodynamic conditions during a rapid blowdown transient. Finally, a coupled RELAP5/CFD analysis was performed. The results are presented in this paper

  11. Application of Simple CFD Models in Smoke Ventilation Design

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans

    2004-01-01

    The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...

  12. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  13. Simulation of the heat transfer of a irradiated fuel storage container with code CFD STAR- CCM+; Simulacion de la transferencia de calor de un contenedor de almacenamiento de combustible irradiado con el codigo CFD STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Barrera matalla, J. E.; Hernandez Gomez, J.; Riverala Gurruchaga, J.

    2012-07-01

    Irradiated fuel has become an object of interest in the industry by the importance of ensuring its safety during long periods of storage time. New containers, stores, methods and codes will be used to ensure a suitable cooling and residual heat removal, and secure the safety of fuel elements in dry storage. The codes CFD (Computational Fluid Dynamics) have great potential to help in design of containers and stores, improving thermal-hydraulic performance and the extraction of heat generated.

  14. Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Grazevicius, Audrius; Kaliatka, Algirdas [Lithuanian Energy Institute, Kaunas (Lithuania). Lab. of Nuclear Installation Safety

    2017-07-15

    The main functions of spent fuel pools are to remove the residual heat from spent fuel assemblies and to perform the function of biological shielding. In the case of loss of heat removal from spent fuel pool, the fuel rods and pool water temperatures would increase continuously. After the saturated temperature is reached, due to evaporation of water the pool water level would drop, eventually causing the uncover of spent fuel assemblies, fuel overheating and fuel rods failure. This paper presents an analysis of loss of heat removal accident in spent fuel pool of BWR 4 and a comparison of two different modelling approaches. The one-dimensional system thermal-hydraulic computer code RELAP5 and CFD tool ANSYS Fluent were used for the analysis. The results are similar, but the local effects cannot be simulated using a one-dimensional code. The ANSYS Fluent calculation demonstrated that this three-dimensional treatment allows to avoid the need for many one-dimensional modelling assumptions in the pool modelling and enables to reduce the uncertainties associated with natural circulation flow calculation.

  15. CFD computations of the second round of MEXICO rotor measurements

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Boorsma, K.

    2016-01-01

    A comparison, between selected wind tunnel data from the NEW MEXICO measuring campaign and CFD computations are shown. The present work, documents that a state of the art CFD code, including a laminar turbulent transition model, can provide good agreement with experimental data. Good agreement...

  16. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jé rô me; Mundani, Ralf-Peter; Rank, Ernst; van Treeck, Christoph

    2015-01-01

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers

  17. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Ivo, Kljenak; Miroslav, Babic; Borut, Mavko

    2007-01-01

    The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)

  18. Validation and comparison of two-phase flow modeling capabilities of CFD, sub channel and system codes by means of post-test calculations of BFBT transient tests

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim; Manes, Jorge Perez; Imke, Uwe; Escalante, Javier Jimenez; Espinoza, Victor Sanchez, E-mail: victor.sanchez@kit.edu

    2013-10-15

    Highlights: • Simulation of BFBT turbine and pump transients at multiple scales. • CFD, sub-channel and system codes are used for the comparative study. • Heat transfer models are compared to identify difference between the code predictions. • All three scales predict results in good agreement to experiment. • Sub cooled boiling models are identified as field for future research. -- Abstract: The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in the validation and qualification of modern thermo hydraulic simulations tools at various scales. In the present paper, the prediction capabilities of four codes from three different scales – NEPTUNE{sub C}FD as fine mesh computational fluid dynamics code, SUBCHANFLOW and COBRA-TF as sub channels codes and TRACE as system code – are assessed with respect to their two-phase flow modeling capabilities. The subject of the investigations is the well-known and widely used data base provided within the NUPEC BFBT benchmark related to BWRs. Void fraction measurements simulating a turbine and a re-circulation pump trip are provided at several axial levels of the bundle. The prediction capabilities of the codes for transient conditions with various combinations of boundary conditions are validated by comparing the code predictions with the experimental data. In addition, the physical models of the different codes are described and compared to each other in order to explain the different results and to identify areas for further improvements.

  19. Modelling of Air Flow trough a Slatted Floor by CFD

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne; Morsing, Svend

    In this paper two different CFD-approaches are investigated to model the airflow through a slatted floor. Experiments are carried out in a full-scale test room. The computer simulations are carried out with the CFD-code FLOVENT, which solves the time-averaged Navier-Stokes equations by use of the k...

  20. A CFD validation roadmap for hypersonic flows

    Science.gov (United States)

    Marvin, Joseph G.

    1993-01-01

    A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.

  1. ALTINYAYLA (TONUS) İLÇESİ HALI ÖRNEKLERİ’NİN MOTİF YÖNÜNDEN İNCELENMESİ

    OpenAIRE

    KAYNAR, Hülya; TONUS, Emine

    2016-01-01

    Anadolu’da yüzyıllardır devam eden dokumacılık kültürü ve kendine özgü karakteristik özellikler taşıyan birçok halı dokuma merkezi bulunmaktadır. Sivas yöresi de bu dokumacılık merkezlerinden birisidir. Sivas il merkezinde ve bazı ilçelerinde çok yoğun olmakla birlikte hemen hemen bütün ilçelerinde havlı ve düz dokuma izlerine rastlanmaktadır. Bu ilçelerden biri de, halıları yöre ismiyle ün yapmış olan Altınyayla (Tonus)’dır. “Tonus halıları”, ilçenin ismi Altınyayla olarak değişmesine rağm...

  2. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    Science.gov (United States)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  3. Flow analysis of tubular fuel assembly using CFD code

    International Nuclear Information System (INIS)

    Park, J. H.; Park, C.; Chae, H. T.

    2004-01-01

    Based on the experiences of HANARO, a new research reactor is under conceptual design preparing for future needs of research reactor. Considering various aspects such as nuclear physics, thermal-hydraulics, mechanical structure and the applicability of HANARO technology, a tubular type fuel has been considered as that of a new research reactor. Tubular type fuel has several circular fuel layers, and each layer consists of 3 curved fuel plates arranged with constant small gap to build up cooling channels. In the thermal-hydraulic point, it is very important to maintain each channel flow velocity be equal as much as possible, because the small gaps between curved thin fuel plates independently forms separate coolant channels, which may cause a thermal-hydraulic problem in certain conditions. In this study, commercial CFD(Computational Fluid Dynamics) code, Fluent, has been used to investigate flow characteristics of tubular type fuel assembly. According to the computation results for the preliminary conceptual design, there is a serious lack of uniformity of average velocity on the each coolant channel. Some changes for initial conceptual design were done to improve the balance of velocity distribution, and analysis was done again, too. The results for the revised design showed that the uniformity of each channel velocity was improved significantly. The influence of outermost channel gap width on the velocity distribution was also examined

  4. Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+

    International Nuclear Information System (INIS)

    Goyal, P.; Dutta, Anu; Singh, R.K.

    2014-01-01

    The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)

  5. Hypersonic simulations using open-source CFD and DSMC solvers

    Science.gov (United States)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  6. Coarse-grid-CFD. An advantageous alternative to subchannel analysis

    International Nuclear Information System (INIS)

    Class, A.G.; Himmel, S.R.; Viellieber, M.O.

    2011-01-01

    In the 1960 th to 80 th when current GEN II reactor technology was developed, the only possible approach was to use one-dimensional subchannel analysis to compute the flow inside a fuel bundle so that the subchannel scale could be resolved. For simulations of the whole reactor core either system codes or homogenization were employed. In system codes resolution of individual assemblies was the state of the art. Homogenization used porous media equations simulations and averaged the thermohydraulics on reactor core scale. Current potent computing power allows using Computational Fluid Dynamics (CFD) to simulate individual fuel assemblies. Yet the large number of fuel assemblies within the core forbids exploiting CFD for core wide simulation. We propose to combine ideas of subchannel analysis and CFD to develop a new methodology which takes advantage of the fast development of commercial CFD software and the efficiency of subchannel analysis. In this methodology was first applied to simulate a wire-wrap fuel bundle of the High Performance Light Water Reactor (HPLWR). Computations using an inviscid Euler solver on an extremely coarse grid were tuned to predict the true thermohydraulics by adding volumetric forces. These forces represent the non-resolved sub-grid physics. The volumetric forces cannot be measured directly. However, they can be accessed from detailed CFD simulations resolving all relevant physics. Parameterization of these subgrid forces can be realized analogous to models in subchannel codes. In the present work we extend the methodology to the open source solver OpenFOAM and a specific hexagonal fuel assembly which is studied in the framework of liquid metal cooled GEN IV reactor concepts. (orig.)

  7. PIV, radiotracers and CFD for flow anomalies

    International Nuclear Information System (INIS)

    Houdek, P.; Reitspiesova, I.; Zitny, R.; Thyn, J.

    2004-01-01

    Experimental investigation of flow asymmetries in continuous direct ohmic heater by using PIV and stimulus response technique (radioisotope 99 Tc) is presented together with CFD modelling by using finite element code FEMINA. (author)

  8. radEq Add-On Module for CFD Solver Loci-CHEM

    Science.gov (United States)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  9. Toward a CFD-grade database addressing LWR containment phenomena

    International Nuclear Information System (INIS)

    Paladino, Domenico; Andreani, Michele; Zboray, Robert; Dreier, Jörg

    2012-01-01

    Highlights: ► The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. ► The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. ► The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  10. Advanced CFD and radiotracer techniques - A complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    Tu, J.Y.

    2004-01-01

    A CFD and RTD Education Package was developed, in which lecture notes, tutorials and computer softwares for both CFD and RTD are included. A user-friendly web-based interface has been prepared to allow lecturers more effectively conducting their training courses or workshops, and to provide students or users more easily learning the CFD and RTD knowledge and practising computer softwares. This report gives an overview of the advances in development and use of CFD models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and softwares are highlighted. Integration of advanced CFD modelling with radiotracer techniques as a complementary technology for future research and industrial applications is discussed. The features and examples of the developed CFD and RTD Education package are presented. (author)

  11. Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD codes

    Science.gov (United States)

    Morsa, Luigi; Festa, Giandomenico; Zuppardi, Gennaro

    2012-11-01

    The present study is the logical continuation of a former paper by the first author in which the influence of the chemical models by Gupta and by Park on the computation of heat flux on the Orion and EXPERT capsules was evaluated. Tests were carried out by the direct simulation Monte Carlo code DS2V and by the computational fluiddynamic (CFD) code H3NS. DS2V implements the Gupta model, while H3NS implements the Park model. In order to compare the effects of the chemical models, the Park model was implemented also in DS2V. The results showed that DS2V and H3NS compute a different composition both in the flow field and on the surface, even using the same chemical model (Park). Furthermore DS2V computes, by the two chemical models, different compositions in the flow field but the same composition on the surface, therefore the same heat flux. In the present study, in order to evaluate the influence of these chemical models also in a CFD code, the Gupta and the Park models have been implemented in FLUENT. Tests by DS2V and by FLUENT, have been carried out for the EXPERT capsule at the altitude of 70 km and with velocity of 5000 m/s. The capsule experiences a hypersonic, continuum low density regime. Due to the energy level of the flow, the vibration equation, lacking in the original version of FLUENT, has been implemented. The results of the heat flux computation verify that FLUENT is quite sensitive to the Gupta and to the Park chemical models. In fact, at the stagnation point, the percentage difference between the models is about 13%. On the opposite the DS2V results by the two models are practically equivalent.

  12. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  13. Application of CFD in Indonesian Research: A review

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kishinami, K.; Daimaruya, M.; Kawai, H.

    2018-04-01

    Computational Fluid Dynamics (CFD) is a numerical method that solves fluid flow and related governing equations using a computational tool. The studies on CFD, its methodology and its application as a research tool, are increasing. In this study, application of CFD by Indonesian researcher is briefly reviewed. The main objective is to explore the characteristics of CFD applications in Indonesian researchers. Considering the size and reputation, this study uses Scopus publications indexed data base. All of the documents in Scopus related to CFD which is affiliated by at least one of Indonesian researcher are collected to be reviewed. Research topics, CFD method, and simulation results are reviewed in brief. The results show that there are 260 documents found in literature indexed by Scopus. These documents divided into research articles 125 titles, conference paper 135 titles, book 1 title and review 1 title. In the research articles, only limited researchers focused on the development of CFD methodology. Almost all of the articles focus on using CFD in a particular application, as a research tool, such as aircraft application, wind power and heat exchanger. The topics of the 125 research articles can be divided into 12 specific applications and 1 miscellaneous application. The most popular application is Heating Ventilating and Air Conditioning and followed by Reactor, Transportation and Heat Exchanger applications. The most popular commercial CFD code used is ANSYS Fluent and only several researchers use CFX.

  14. A study on the dependency between turbulent models and mesh configurations of CFD codes

    International Nuclear Information System (INIS)

    Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook

    2015-01-01

    This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream

  15. A study on the dependency between turbulent models and mesh configurations of CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)

    2015-10-15

    This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.

  16. CFD modeling of combustion processes using KIVA3V Code with partially stirred reactor model for turbulence-combustion interactions

    International Nuclear Information System (INIS)

    Jarnicki, R.; Sobiesiak, A.

    2002-01-01

    In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling

  17. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  18. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  19. CFD analysis of poison injection in AHWR calandria

    International Nuclear Information System (INIS)

    Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)

  20. Toward a CFD-grade database addressing LWR containment phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Andreani, Michele; Zboray, Robert; Dreier, Joerg [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. Black-Right-Pointing-Pointer The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. Black-Right-Pointing-Pointer The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  1. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  2. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report; Entwicklung und Validierung dreidimensionaler CFD Verfahren fuer Anwendungen in der Reaktorsicherheit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-15

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case

  3. Detailed thermalhydraulic analysis of induced break severe accidents using the massively parallel CFD code TrioU/Priceles

    International Nuclear Information System (INIS)

    Bieder, U.; Calvin, C.

    2003-01-01

    This paper reports the preliminary studies carried out with the CFD (computational fluid dynamics) code Trio U to study the natural gas circulation that may flow in the primary circuit of a pressurized water reactor during a high-pressure severe accident scenario. Two types of 3-dimensional simulations have been performed on one loop using a LES (large eddy simulations) approach. In the first type of calculations, the gas flow in the hot leg has been investigated with a simplified representation of the reactor vessel and the Steam Generator (SG) tubes. Structured and unstructured meshing have been tested on the full-scale geometry with and without radiative heat transfer modelling between walls and gas. The second type of calculations deals with the gas circulation in the SG. The first results show a good agreement with the available experimental data and provide some confidence in the Trio U code to simulate complex natural flows. (authors)

  4. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  5. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-12-01

    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  6. A supportive architecture for CFD-based design optimisation

    Science.gov (United States)

    Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong

    2014-03-01

    Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture

  7. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  8. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    Science.gov (United States)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  9. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...

  10. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  11. Methods for increasing upper airway muscle tonus in treating obstructive sleep apnea: systematic review.

    Science.gov (United States)

    Valbuza, Juliana Spelta; de Oliveira, Márcio Moysés; Conti, Cristiane Fiquene; Prado, Lucila Bizari F; de Carvalho, Luciane Bizari Coin; do Prado, Gilmar Fernandes

    2010-12-01

    Treatment of obstructive sleep apnea (OSA) using methods for increasing upper airway muscle tonus has been controversial and poorly reported. Thus, a review of the evidence is needed to evaluate the effectiveness of these methods. The design used was a systematic review of randomized controlled trials. Data sources are from the Cochrane Library, Medline, Embase and Scielo, registries of ongoing trials, theses indexed at Biblioteca Regional de Medicina/Pan-American Health Organization of the World Health Organization and the reference lists of all the trials retrieved. This was a review of randomized or quasi-randomized double-blind trials on OSA. Two reviewers independently applied eligibility criteria. One reviewer assessed study quality and extracted data, and these processes were checked by a second reviewer. The primary outcome was a decrease in the apnea/hypopnea index (AHI) of below five episodes per hour. Other outcomes were subjective sleep quality, sleep quality measured by night polysomnography, quality of life measured subjectively and adverse events associated with the treatments. Three eligible trials were included. Two studies showed improvements through the objective and subjective analyses, and one study showed improvement of snoring, but not of AHI while the subjective analyses showed no improvement. The adverse events were reported and they were not significant. There is no accepted scientific evidence that methods aiming to increase muscle tonus of the stomatognathic system are effective in reducing AHI to below five events per hour. Well-designed randomized controlled trials are needed to assess the efficacy of such methods.

  12. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED UNCLASSIFIED CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM ... OpenFOAM to replace some of the Fluent simulations. The fidelity of the Fluent code has been carefully validated, but the accuracy of parts of the... OpenFOAM code have not been so extensively tested. To test the accuracy of the OpenFOAM software, CFD simulations have been performed on the DSTO

  13. Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia, E-mail: sophia.buckingham@vki.ac.be [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2015-12-15

    Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.

  14. CFD Analyses for Water-Air Flow With the Euler-Euler Two-Phase Model in the Fluent4 CFD Code

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Schmidt, Holger

    2002-01-01

    calculation results were adjusted for a good agreement with the experimental data. The analysis results were very valuable for designing the final water/steam facility for final CHF tests. The validation against data from the air-water experiments proved that the present CFD codes approach to the state where they can be used for simulating such two-phase experiments, where the fraction of both phases is essential and the flow is strongly affected by the density differences. It is still too early to predict, if the CFD calculation of the 1:1 scale critical heat flux experiments is successful, could the result be used for formulating a new type of a critical heat flux correlation, where the effects of CRD's on the flow patterns and gap dimensions are model parameters. (authors)

  15. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  16. Validation of NEPTUNE-CFD on ULPU-V experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Mathieu, E-mail: mathieu.jamet@edf.fr; Lavieville, Jerome; Atkhen, Kresna; Mechitoua, Namane

    2015-11-15

    In-vessel retention (IVR) of molten corium through external cooling of the reactor pressure vessel is one possible means of severe accident mitigation for a class of nuclear power plants. The aim is to successfully terminate the progression of a core melt within the reactor vessel. The probability of success depends on the efficacy of the cooling strategy; hence one of the key aspects of an IVR demonstration relates to the heat removal capability through the vessel wall by convection and boiling in the external water flow. This is only possible if the in-vessel thermal loading is lower than the local critical heat flux expected along the outer wall of the vessel, which is in turn highly dependent on the flow characteristics between the vessel and the insulator. The NEPTUNE-CFD multiphase flow solver is used to obtain a better understanding at local scale of the thermal hydraulics involved in this situation. The validation of the NEPTUNE-CFD code on the ULPU-V facility experiments carried out at the University of California Santa Barbara is presented as a first attempt of using CFD codes at EDF to address such an issue. Two types of computation are performed. On the one hand, a steady state algorithm is used to compute natural circulation flow rates and differential pressures and, on the other, a transient algorithm computation reveals the oscillatory nature of the pressure data recorded in the ULPU facility. Several dominant frequencies are highlighted. In both cases, the CFD simulations reproduce reasonably well the experimental data for these quantities.

  17. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    Science.gov (United States)

    2018-02-09

    AFRL-RV-PS- TR-2018-0056 AFRL-RV-PS- TR-2018-0056 DEMONSTRATION OF HYBRID DSMC-CFD CAPABILITY FOR NONEQUILIBRIUM REACTING FLOW Thomas E...4. TITLE AND SUBTITLE Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9453-17-1...simulation codes. The models are based on new ab-intio rate data obtained using state -of-the-art potential energy surfaces for air species. A probability

  18. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  19. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  20. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-01-01

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ''hot spots'' do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ''first principles''. Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates

  1. Comparative study of muscular tonus in spastic tetra paretic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull; Estudo comparativo do tono muscular na paralisia cerebral tetraparetica em criancas com lesoes predominantemente corticais ou subcorticais na tomografia computadorizada de cranio

    Energy Technology Data Exchange (ETDEWEB)

    Iwabe, Cristina [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Neurologia; Piovesana, Ana Maria Sedrez Gonzaga [Universidade Estadual de Campinas, SP (Brazil). Ambulatorio Multidisciplinar de Paralisia Cerebral e Neurologia Infantil

    2003-09-01

    The objective was to compare distribution and intensity of muscular tonus in spastic tetra paretic cerebral palsy (CP), correlating the clinical data with lesion location in the central nervous system. Twelve children aged two to four years old with predominantly cortical lesions (six children) and subcortical lesions (six children) were included. The tonus was analyzed in the upper (UULL) and lower limbs (LLLL) based on Durigon and Piemonte protocol. The result showed that there was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. It was concluded that in this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL. (author)

  2. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  3. A proposed framework for computational fluid dynamics code calibration/validation

    International Nuclear Information System (INIS)

    Oberkampf, W.L.

    1993-01-01

    The paper reviews the terminology and methodology that have been introduced during the last several years for building confidence n the predictions from Computational Fluid Dynamics (CID) codes. Code validation terminology developed for nuclear reactor analyses and aerospace applications is reviewed and evaluated. Currently used terminology such as ''calibrated code,'' ''validated code,'' and a ''validation experiment'' is discussed along with the shortcomings and criticisms of these terms. A new framework is proposed for building confidence in CFD code predictions that overcomes some of the difficulties of past procedures and delineates the causes of uncertainty in CFD predictions. Building on previous work, new definitions of code verification and calibration are proposed. These definitions provide more specific requirements for the knowledge level of the flow physics involved and the solution accuracy of the given partial differential equations. As part of the proposed framework, categories are also proposed for flow physics research, flow modeling research, and the application of numerical predictions. The contributions of physical experiments, analytical solutions, and other numerical solutions are discussed, showing that each should be designed to achieve a distinctively separate purpose in building confidence in accuracy of CFD predictions. A number of examples are given for each approach to suggest methods for obtaining the highest value for CFD code quality assurance

  4. RANS based CFD methodology for a real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Ho, E-mail: jhjeong@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of); Song, Min-Seop [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of); Lee, Kwi-Lim [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of)

    2017-03-15

    Highlights: • This paper presents a suitable way for a practical RANS based CFD methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR. • A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI function in a general-purpose commercial CFD code, CFX. • The RANS based CFD methodology is implemented with high resolution scheme and SST turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC and JNC. Furthermore, the RANS based CFD methodology can be successfully extended to the real scale 217-pin wire-wrapped fuel bundles of KAERI PGSFR. • Three-dimensional thermal-hydraulic characteristics have been also investigated briefly. - Abstract: This paper presents a suitable way for a practical RANS (Reynolds Averaged Navier-Stokes simulation) based CFD (Computational Fluid Dynamics) methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI (Korea Atomic Energy Research Institute) PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor). The main purpose of the current study is to support license issue for the KAERI PGSFR core safety and to elucidate thermal-hydraulic characteristics in a 217-pin wire-wrapped fuel assembly of KAERI PGSFR. A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI (General Grid Interface) function in a general-purpose commercial CFD code, CFX. The innovative grid generation method with GGI function can achieve to simulate a real wire shape with minimizing cell skewness. The RANS based CFD methodology is implemented with high resolution scheme in convection term and SST (Shear Stress Transport) turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC (Power reactor and Nuclear fuel

  5. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  6. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-10-01

    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  7. Possible User-Dependent CFD Predictions of Transitional Flow in Building Ventilation

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2016-01-01

    A modified backward-facing step flow with a large expansion ratio of five (5) was modelled by 19 teams without benchmark solutions or experimental data for validation in an ISHVAC-COBEE July 2015 Tianjin Workshop, entitled as “to predict low turbulent flow”. Different computational fluid dynamics...... (CFD) codes/software, turbulence models, boundary conditions, numerical schemes and convergent criteria were adopted based on the own CFD experience of each participating team. The largest coefficient of variation is larger than 50% and the largest relative maximum difference of penetration length......, is shown to be still a very challenging task. This calls for a solid approach of validation and uncertainty assessment in CFD “experiments”. The users are recommended to follow an existing guideline of uncertainty assessment of CFD predictions to minimize the errors and uncertainties in the future....

  8. CFD analysis for spacer grid mixing vane design

    International Nuclear Information System (INIS)

    Park, Sung-Kew; Kim, Kang-Hoon; Park, Eung-Jun; Jung, Yil-Sup; Suh, Jung-Min; Jeong, Ji-Hun

    2008-01-01

    A computational fluid dynamics (CFD) analysis for a rod bundle with the larger scale model (6x6 array model) has been performed to develop the base shape of mixing vane in accordance with the hydraulic and thermal performance. Explanatory parameters are span pressure drop and span average heat transfer coefficient. The concern related to hot spot is also considered as a subsidiary criterion. Of the several candidates, the final candidate was determined by using the CFD analysis code, STAR-CD. And then, the optimization for it was performed using the response surface method (RSM) that the proper tolerance was considered under the two acceptance criteria such as lower span pressure drop while maintaining the span average heat transfer coefficient with respect to the current shape. The optimized mixing vane shape was verified by the CFD analysis including the effects of allowable tolerance. (author)

  9. Swirl flow analysis in a helical wire inserted tube using CFD code

    International Nuclear Information System (INIS)

    Park, Yusun; Chang, Soon Heung

    2010-01-01

    An analysis on the two-phase flow in a helical wire inserted tube using commercial CFD code, CFX11.0, was performed in bubbly flow and annular flow regions. The analysis method was validated with the experimental results of Takeshima. Bubbly and annular flows in a 10 mm inner diameter tube with varying pitch lengths and inserted wire diameters were simulated using the same analysis methods after validation. The geometry range of p/D was 1-4 and e/D was 0.08-0.12. The results show that the inserted wire with a larger diameter increased swirl flow generation. An increasing swirl flow was seen as the pitch length increased. Regarding pressure loss, smaller pitch lengths and inserted wires with larger diameters resulted in larger pressure loss. The average liquid film thickness increased as the pitch length and the diameter of the inserted wire increased in the annular flow region. Both in the bubbly flow and annular flow regions, the effect of pitch length on swirl flow generation and pressure loss was more significant than that of the inserted wire diameters. Pitch length is a more dominant factor than inserted wire diameter for the design of the swirl flow generator in small diameter tubes.

  10. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    Science.gov (United States)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form

  11. Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Hyatt, Andrew J.

    2010-01-01

    Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.

  12. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  13. CFD analysis for the hydrogen transport in the primary contention of a BWR using the codes OpenFOAM and Gas-Flow

    International Nuclear Information System (INIS)

    Jimenez P, D. A.

    2014-01-01

    The accidents in Unit 2 of the Three Mile Island Nuclear Power Plant (NPP) in the United States (March 28 th , 1979), the one in Unit 4 of the NPP Chernobyl in Ukraine (April 26 th , 1986) and the explosions in some units of Fukushima NPP in Japan (March 11 th , 2011) boosted the investigations on severe accidents with core damage and, in particular, the threat to the ultimate barrier by an eventual explosion from uncontrolled Hydrogen combustion within the containment was considered of particular relevance. Research programs for analyzing Hydrogen behavior and control during this kind of accidents were early initiated by research and regulatory bodies. Assessment on Hydrogen behavior once it has been postulated to be released on the containment system can be divided into two phases, in the first one, transport and the concentrations of the gas mixtures and steam in each volume or area comprised between the structures of the containment are calculated, in the second one, the propagation of the detonation of the Hydrogen is calculated if there are the conditions to occur. Currently, there are computer programs that can be used in one, or both stages of computation, and they are based on one of the two solution methods in current use, one of them are integrated codes (e.g. MELCOR), which consists in assuming the containment as a network composed of hydraulic tanks or nodes on which the balance equations of mass and energy have to be solved, the network is connected by ducts or connections where the momentum balance equation arise. This methodology relies on the use of semi-empirical relationships and the criteria used to define a geometric pattern, are subjective. The second method, which is having relevance due to the large computing power of modern computers, is the numerical solution of the three-dimensional Navier-Stokes equations in complex geometries. This method of solution is known as Computational Fluid Dynamics (CFD), and offers the advantage of using a

  14. Fully consistent CFD methods for incompressible flow computations

    DEFF Research Database (Denmark)

    Kolmogorov, Dmitry; Shen, Wen Zhong; Sørensen, Niels N.

    2014-01-01

    Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure...

  15. CFD analysis of liquid metal cooled rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.M.; Suh, K.Y. [Seoul National Univ. (Korea, Republic of)

    2007-07-01

    The model subassembly of the BREST-type reactor core is a pin bundle of square arrangement. In this bundle there are two zones which differ with respect to pin diameters and level of heat production. The model pin bundle contains one spacer grid which is located near the midplane of the rod bundle geometry. The coolant consists of a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Experiments were performed in order to observe the thermal hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperatures, central measuring pin simulator external surface temperatures, and coolant velocities at the perimeter of the measuring pin simulator. A computational fluid dynamics (CFD) code is used to simulate the liquid metal flows in subchannels. Semi-fine mesh structures were used to model the flow with reasonable accuracy and speed once rigorous node resolution dependency had been tested. A subchannel analysis code was used to investigate the flows as well. Since the subchannel analysis code is based on a lumped parameter model, it only calculates the subchannel averaged velocity values. The CFD code results were averaged on the subchannel basis to be comparable with the results from the subchannel code. The mixing vane is not considered for the time being so as to simplify the problem and to reduce the computational cost. The two codes showed similar results. The difference between the experimental and computational results is considered to mainly originate from the existence of the mixing vane. (authors)

  16. CFD analysis of liquid metal cooled rod assembly

    International Nuclear Information System (INIS)

    Son, H.M.; Suh, K.Y.

    2007-01-01

    The model subassembly of the BREST-type reactor core is a pin bundle of square arrangement. In this bundle there are two zones which differ with respect to pin diameters and level of heat production. The model pin bundle contains one spacer grid which is located near the midplane of the rod bundle geometry. The coolant consists of a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Experiments were performed in order to observe the thermal hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperatures, central measuring pin simulator external surface temperatures, and coolant velocities at the perimeter of the measuring pin simulator. A computational fluid dynamics (CFD) code is used to simulate the liquid metal flows in subchannels. Semi-fine mesh structures were used to model the flow with reasonable accuracy and speed once rigorous node resolution dependency had been tested. A subchannel analysis code was used to investigate the flows as well. Since the subchannel analysis code is based on a lumped parameter model, it only calculates the subchannel averaged velocity values. The CFD code results were averaged on the subchannel basis to be comparable with the results from the subchannel code. The mixing vane is not considered for the time being so as to simplify the problem and to reduce the computational cost. The two codes showed similar results. The difference between the experimental and computational results is considered to mainly originate from the existence of the mixing vane. (authors)

  17. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report

    International Nuclear Information System (INIS)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-01

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case simulating a pump trip

  18. CFD Activity at Aerojet Related to Seals and Fluid Film Bearing

    Science.gov (United States)

    Bache, George E.

    1991-01-01

    Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.

  19. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    Science.gov (United States)

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  20. Application perspectives of simulation techniques CFD in nuclear power plants; Perspectivas de aplicacion de tecnicas de modelado CFD en plantas nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F., E-mail: igalindo@iie.org.mx [Instituto de Investigaciones Electricas, Reforma No. 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2013-10-15

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  1. Isothermal coarse mixing: experimental and CFD modelling

    International Nuclear Information System (INIS)

    Gilbertson, M.A.; Kenning, D.B.R.; Hall, R.W.

    1992-01-01

    A plane, two-dimensional flow apparatus has been built which uses a jet of solid 6mm diameter balls to model a jet of molten drops falling into a tank of water to study premixing prior to a vapour explosion. Preliminary experiments with unheated stainless steel balls are here compared with computational fluid dynamics (CFD) calculations by the code CHYMES. (6 figures) (Author)

  2. CFD analysis of heat transfer in a vertical annular gas gap

    International Nuclear Information System (INIS)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2011-01-01

    Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)

  3. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  4. Hypersonic CFD applications at NASA Langley using CFL3D and CFL3DE

    Science.gov (United States)

    Richardson, Pamela F.

    1989-01-01

    The CFL3D/CFL3DE CFD codes and the industrial use status of the codes are outlined. Comparison of grid density, pressure, heat transfer, and aerodynamic coefficience are presented. Future plans related to the National Aerospace Plane Program are briefly outlined.

  5. Use of Lump Parameter Codes at SNSA

    International Nuclear Information System (INIS)

    Muehleisen, A.

    2006-01-01

    The lump parameter codes are due to the specifics of Slovenian regulation used only in a very limited scope by the SNSA itself. The law requires that most of the analysis needed for regulatory decision making have to be performed by technical support organisations (TSOs). The use of lump parameter codes is therefore limited to the amount needed to maintain necessary technical competence and to support, to a degree, the reasoning for raising new issues and methodologies. SNSA has available its own NPP MELCOR model and uses for its own purposes NPP Krsko RELAP model. RELAP model is also part of the SNSA NPA analyser. Here presented recent uses at SNSA include use of NPA in support of a project, aimed at estimating maturity and uses of CFD codes for regulatory purposes, transition from MELCOR 1.8.3 to 1.8.5 model and its validation, developing MELCOR PAR model and use of NPA for training purposes. NPA use in support of investigation of CFD usability has been in performing lump parameter code calculation against which the CFD results could be compared. The case of SI injection and the following boron distribution in the reactor vessel has been used for this purpose. The comparison showed that for the particular case there is no urgent need for CFD code calculations, nevertheless the project clearly demonstrated wealth of additional information that can be gained by the use of CFD code. As far as MELCOR model is concerned, only transition of the model to the newer code version has been performed and PAR input prepared and tested. Even though there is a feeling at SNSA that some preliminary analysis with it (such as analysis of typical accidents with PARs present and analysis in support of wet cavity modification) would be useful as a support for decision making as well as for simple training purposes we have not been able to perform them due to other priorities and lack of human resources. SNSA is additionally tasked with support to TSOs in their efforts to maintain and

  6. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  7. Perspectives on CFD analysis in nuclear reactor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Christopher, E-mail: christopher.boyd@nrc.gov

    2016-04-01

    The U.S. Nuclear Regulatory Commission is tasked with ensuring that the commercial use of nuclear materials in the United States is safe. This includes the review and evaluation of submitted analyses that support the safety justification for specific reactor-system components or scenarios. Typically these analyses involve the use of codes that have a proven history of validation and acceptance for the specific application of interest. The use of computational fluid dynamics (CFD) has not been as widespread in regulatory activities and the experience level with acceptance is more limited. The ever-increasing capacity of computers, along with the growing number of capable analysts, ensures us that CFD applications will continue to grow in usage for nuclear safety analysis. The challenge ahead is to ensure that these tools are properly validated and applied in order to build up the necessary evidence for more common acceptance in regulatory processes. The challenges include a continuation of the development and maintenance of best-practice guidance, development of problem-specific CFD-grade benchmark studies, the application of verification and validation techniques, and the development of practical treatments for uncertainties and scaling. Through these efforts, it is anticipated that CFD methods will continue to gain acceptance for use in nuclear reactor safety applications.

  8. Aeroelastic simulation using CFD based reduced order models

    International Nuclear Information System (INIS)

    Zhang, W.; Ye, Z.; Li, H.; Yang, Q.

    2005-01-01

    This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)

  9. CFD analyses in regulatory practice

    International Nuclear Information System (INIS)

    Bloemeling, F.; Pandazis, P.; Schaffrath, A.

    2012-01-01

    Numerical software is used in nuclear regulatory procedures for many problems in the fields of neutron physics, structural mechanics, thermal hydraulics etc. Among other things, the software is employed in dimensioning and designing systems and components and in simulating transients and accidents. In nuclear technology, analyses of this kind must meet strict requirements. Computational Fluid Dynamics (CFD) codes were developed for computing multidimensional flow processes of the type occurring in reactor cooling systems or in containments. Extensive experience has been accumulated by now in selected single-phase flow phenomena. At the present time, there is a need for development and validation with respect to the simulation of multi-phase and multi-component flows. As insufficient input by the user can lead to faulty results, the validity of the results and an assessment of uncertainties are guaranteed only through consistent application of so-called Best Practice Guidelines. The authors present the possibilities now available to CFD analyses in nuclear regulatory practice. This includes a discussion of the fundamental requirements to be met by numerical software, especially the demands upon computational analysis made by nuclear rules and regulations. In conclusion, 2 examples are presented of applications of CFD analysis to nuclear problems: Determining deboration in the condenser reflux mode of operation, and protection of the reactor pressure vessel (RPV) against brittle failure. (orig.)

  10. User-Dependent CFD Predictions of a Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2015-01-01

    The backward-facing step flow with an expansion ratio of 5 has been modelled by 19 teams without benchmark solution or experimental data. Different CFD codes, turbulence models, boundary conditions, numerical schemes and convergent criteria are adopted based on the participants’ own experience...

  11. Code Validation of CFD Heat Transfer Models for Liquid Rocket Engine Combustion Devices

    National Research Council Canada - National Science Library

    Coy, E. B

    2007-01-01

    .... The design of the rig and its capabilities are described. A second objective of the test rig is to provide CFD validation data under conditions relevant to liquid rocket engine thrust chambers...

  12. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  13. Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations

    OpenAIRE

    Peña, A.; Esteban, G.A.; Sancho, J.; Kolesnik, V.; Abánades Velasco, Alberto

    2009-01-01

    CFD (Computational fluid dynamics) calculation turns out to be a good approximation to the real behavior of the lithium (Li) flow of the target of the international fusion materials irradiation facility (IFMIF). A three-dimensional (3D) modelling of the IFMIF design Li target assembly, made with the CFD commercial code ANSYS-FLUENT has been carried out. The simulation by a structural mesh is focused on the thermal-hydraulic analysis inside the Li jet flow. For, this purpose, the two deuteron ...

  14. Optimization of Hydraulic Machinery Bladings by Multilevel CFD Techniques

    Directory of Open Access Journals (Sweden)

    Thum Susanne

    2005-01-01

    Full Text Available The numerical design optimization for complex hydraulic machinery bladings requires a high number of design parameters and the use of a precise CFD solver yielding high computational costs. To reduce the CPU time needed, a multilevel CFD method has been developed. First of all, the 3D blade geometry is parametrized by means of a geometric design tool to reduce the number of design parameters. To keep geometric accuracy, a special B-spline modification technique has been developed. On the first optimization level, a quasi-3D Euler code (EQ3D is applied. To guarantee a sufficiently accurate result, the code is calibrated by a Navier-Stokes recalculation of the initial design and can be recalibrated after a number of optimization steps by another Navier-Stokes computation. After having got a convergent solution, the optimization process is repeated on the second level using a full 3D Euler code yielding a more accurate flow prediction. Finally, a 3D Navier-Stokes code is applied on the third level to search for the optimum optimorum by means of a fine-tuning of the geometrical parameters. To show the potential of the developed optimization system, the runner blading of a water turbine having a specific speed n q = 41 1 / min was optimized applying the multilevel approach.

  15. Coupled full core neutron transport/CFD simulations of pressurized water reactors

    International Nuclear Information System (INIS)

    Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.

    2012-01-01

    Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)

  16. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Christian Sabin; Macian-Juan, Rafael [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Nukleartechnik

    2013-03-15

    A Hybrid Heat Transfer Coefficient module has been developed based on two Surface Renewal Theory models using CFD simulations. The validation of the model has been done on a meso-scale computational grid for CFD simulations and on a macro-scale computational grid for System Code analysis. The CFD simulation was performed for a stratified co-current two phase flow between saturated steam and sub-cooled water while the System Code analysis was performed for a Condensation Induced Water Hammer experiment. (orig.)

  17. Single-phase coolant flow CFD simulations inside the CANDU channel for the 37 and the 43 elements bundles

    International Nuclear Information System (INIS)

    Pauna, E.; Olteanu, G.; Catana, A.

    2013-01-01

    In this paper, a Computation Fluid Dynamics (CFD) simulation was performed in order to find the flow conditions in the CANDU Channel for the standard (37 elements) and the new designed bundle (43 elements) using the CFD Code S aturne software. Due to the fact that the code is a single-phase one it was considered an inlet temperature of 250 O C, a flow rate of 24.17 kg/s, an outlet pressure of 10.3 MPa and a linear power of 800 kW/m. The flow conditions were achieved by using a CFD typical chain of steps which was performed starting from preprocessing (geometry, mesh and boundary conditions), through solver and post-processing. Open Source platform (Salome-Meca geometry and mesh modules, the Code S aturne solver, Paraview and Visit for post-processing) were used as computational tool kit and an unsteady state was considered. Some simplifications were considered: the tube creep was not taken into account and all the bundles were considered aligned. The three dimensional thermal-hydraulic distributions of the temperature, pressure and velocity parameters offered information for the geometry comparison and the results were in agreement with some experimental data. CFD analysis results provided valuable data regarding the thermal-hydraulic operating conditions inside the CANDU reactor channel. (authors)

  18. CFD aspects of ADSS target design

    International Nuclear Information System (INIS)

    Shashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2004-03-01

    The preliminary studies on CFD aspects of Accelerator Driven Sub-critical System (ADSS) target design has been presented in this report. The studies involve the thermal hydraulic analysis of the Liquid Metal Spallation Target (LMST) using Lead Bismuth Eutectic (LBE) as the target material. Apart from acting as Spallation medium LBE is used to remove the heat deposited by High Energy Proton Beam. Window of the target ( one side vacuum and other side LBE) has been reported in literature to be the most critical zone where high temperatures are reached. Numerical Simulations are carried out with Artificial Neural Network coupled Computational Fluid Dynamics (CFD) code, Various studies were carried out after the verification and validation of the initial results. Window being, the main parameter to be optimised, various designs of window were tried, along with change in the window material. The best possible combination has been proposed. The thermal hydraulic studies were carried out to arrive at the acceptable operating conditions for the target. (author)

  19. A proposed methodology for computational fluid dynamics code verification, calibration, and validation

    Science.gov (United States)

    Aeschliman, D. P.; Oberkampf, W. L.; Blottner, F. G.

    Verification, calibration, and validation (VCV) of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. The exact manner in which code VCV activities are planned and conducted, however, is critically important. It is suggested that the way in which code validation, in particular, is often conducted--by comparison to published experimental data obtained for other purposes--is in general difficult and unsatisfactory, and that a different approach is required. This paper describes a proposed methodology for CFD code VCV that meets the technical requirements and is philosophically consistent with code development needs. The proposed methodology stresses teamwork and cooperation between code developers and experimentalists throughout the VCV process, and takes advantage of certain synergisms between CFD and experiment. A novel approach to uncertainty analysis is described which can both distinguish between and quantify various types of experimental error, and whose attributes are used to help define an appropriate experimental design for code VCV experiments. The methodology is demonstrated with an example of laminar, hypersonic, near perfect gas, 3-dimensional flow over a sliced sphere/cone of varying geometrical complexity.

  20. Thermal-hydraulic analysis of water cooled breeding blanket of K-DEMO using MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun; Park, Il Woong; Kim, Geon-Woo; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • The thermal design of breeding blanket for the K-DEMO is evaluated using MARS-KS. • To confirm the prediction capability of MARS, the results were compared with the CFD. • The results of MARS-KS calculation and CFD prediction are in good agreement. • A transient simulation was carried out so as to show the applicability of MARS-KS. • A methodology to simulate the entire blanket system is proposed. - Abstract: The thermal design of a breeding blanket for the Korean Fusion DEMOnstration reactor (K-DEMO) is evaluated using the Multidimensional Analysis of Reactor Safety (MARS-KS) code in this study. The MARS-KS code has advantages in simulating transient two-phase flow over computational fluid dynamics (CFD) codes. In order to confirm the prediction capability of the code for the present blanket system, the calculation results were compared with the CFD prediction. The results of MARS-KS calculation and CFD prediction are in good agreement. Afterwards, a transient simulation for a conceptual problem was carried out so as to show the applicability of MARS-KS for a transient or accident condition. Finally, a methodology to simulate the multiple blanket modules is proposed.

  1. Best Practice Guidelines for the use of CFD in Nuclear Reactor Safety Applications

    International Nuclear Information System (INIS)

    Mahaffy, J.; Chung, B.; Song, C.; Dubois, F.; Graffard, E.; Ducros, F.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Smith, B. L.; Watanabe, T.; Zigh, G.

    2007-01-01

    In May 2002, an 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' was held at Aix-en-Provence, France. One of three recommended actions was the formation of this writing group to report on the need for guidelines for use of CFD in single phase Nuclear Reactor Safety (NRS) applications. CSNI approved this writing group at the end of 2002, and work began in March 2003. A final report was submitted to GAMA in September 2004, summarizing existing Best Practice Guidelines (BPG) for CFD, and recommending creation of a BPG document for Nuclear Reactor Safety (NRS) applications. The present document is intended to provide an internally complete set of guidelines for a range of single phase applications of CFD to NRS problems. However, it is not meant to be comprehensive; it is recognized that for any specific application a higher level of specificity is possible on questions of nodalization, model selection, and validation. This document should provide direct guidance on the key considerations in known single phase applications, and general directions for resolving remaining details. The intent is that it will serve as a template for further application specific (e.g. PTS, induced break) BPG documents that will provide much more detailed information and examples. The document begins with a summary of NRS related CFD analysis in countries represented by the authors. Chapter 3 deals with definition of the problem and its solution approach. This includes isolation of the portion of the NRS problem most in need of CFD, and use of a classic thermal hydraulic (TH) safety code to provide boundary conditions for the CFD based upon less detailed simulation of the balance of plant. Chapter 4 provides guidance in choosing between various options, and also discusses use of a transient calculation with tightly coupled CFD and TH codes. Chapter 5 discusses selection of physical

  2. CFD aided analysis of a scaled down model of the Brazilian Multipurpose Reactor (RMB) pool

    International Nuclear Information System (INIS)

    Schweizer, Fernando L.A.; Lima, Claubia P.B.; Costa, Antonella L.; Veloso, Maria A.F.

    2013-01-01

    Research reactors are commonly built inside deep pools that provide radiological and thermal protection and easy access to its core. Reactors with thermal power in the order of MW usually use an auxiliary thermal-hydraulic circuit at the top of its pool to create a purified hot water layer (HWL). Thermal-hydraulic analysis of the flow configuration in the pool and HWL is paramount to insure radiological protection. A useful tool for these analyses is the application of CFD (Computational Fluid Dynamics). To obtain satisfactory results using CFD it is necessary the verification and validation of the CFD numerical model. Verification is divided in code and solution verifications. In the first one establishes the correctness of the CFD code implementation and in the former estimates the numerical accuracy of a particular calculation. Validation is performed through comparison of numerical and experimental results. This paper presents a dimensional analysis of the RMB (Brazilian Multipurpose Reactor) pool to determine a scaled down experimental installation able to aid in the HWL numerical investigation. Two CFD models were created one with the same dimensions and boundary conditions of the reactor prototype and the other with 1/10 proportion size and boundary conditions set to achieve the same inertial and buoyant forces proportions represented by Froude Number between the two models. Results comparing the HWL thickness show consistence between the prototype and the scaled down model behavior. (author)

  3. Computational Fluid Dynamics for Nuclear Reactor Safety-5 (CFD4NRS-5). Workshop Proceedings, 9-11 September 2014, Zurich, Switzerland

    International Nuclear Information System (INIS)

    Smith, Brian L.; Andreani, Michele; Badillo, Arnoldo; Dehbi, Abdel; Sato, Yohei; Smith, Brian L.; Dreier, Joerg; Kapulla, Ralf; Niceno, Bojan; Sharabi, Medhat; Bestion, Dominique; Bieder, Ulrich; Coste, Pierre; Martinez, Jean Marc; Zigh, Ghani; Boyd, Chris; Prasser, Horst-Michael; Kerenyi, Nora; Adams, Robert; Bolesch, Christian; D'Aleo, Paolo; Eismann, Ralph; Kickhofel, John; Lafferty, Nathan; Saxena, Abhishek; Kissane, Martin; ); Ulses, Anthony; ); Bartosiewicz, Yann; Seynhaeve, Jean-Marie; Caraghiaur, Diana; Munoz Cobo, Jose Luis; Glaeser, Horst; Buchholz, Sebastian; Scheuerer, Martina; Hassan, Yassin; In, Wang-Kee; Song, Chul-Hwa; Yoon, Han-Young; Kim, J.W.; Koncar, Bostjan; Tiselj, Iztoc; Lakehal, Djamel; Yadigaroglu, George; Lo, Simon; Manera, Annalisa; Petrov, Victor; Mimouni, Stephane; Benhamadouche, Sofiane; Morii, Tadashi; Suikkanen, Heikki; Toppila, Timo; Angele, Kristian; Baglietto, Emilio; Cheng, Xu; Graffard, Estelle; Ko, Jordan; Hoehne, Thomas; Lucas, Dirk; Krepper, Eckhard; Laurien, Eckart; Moretti, Fabio; Piro, Markus; Roelofs, Ferry; Veber, Pascal; Watanabe, Tadashi; Yan, Jin; Yeoh, Guan

    2016-01-01

    This present workshop, the 5. Computational Fluid Dynamics for Nuclear-Reactor Safety (CFD4NRS-5), in the biennial series of such Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) sponsored events, a tradition which began in Garching in 2006, follows the format and objectives of its predecessors in creating a forum whereby numerical analysts and experimentalists can exchange information in the application of computational fluid dynamics (CFD) to nuclear power plant (NPP) safety and future design issues. The emphasis, as always, was, in a congenial atmosphere, to offer exposure to state-of-the-art (single-phase and multi-phase) CFD applications reflecting topical issues arising in NPP design and safety, but in particular to promote the release of high-resolution experimental data to continue the CFD validation process in this application area. The reason for the increased use of multi-dimensional CFD methods is that a number of important thermal-hydraulic phenomena occurring in NPPs cannot be adequately predicted using traditional one-dimensional system hydraulics codes with the required accuracy and spatial resolution when strong three-dimensional motions prevail. Established CFD codes already contain empirical models for simulating turbulence, heat transfer, multi-phase interaction and chemical reactions. Nonetheless, such models must be validated against test data before they can be used with confidence. The necessary validation procedure is performed by comparing model predictions against trustworthy experimental data. However, reliable model assessment requires CFD simulations to be undertaken with full control over numerical errors and input uncertainties. The writing groups originally set up by the NEA have been consistently promoting the use of best practice guidelines (BPGs) in the application of CFD for just this purpose, and BPGs remain a central pillar of the simulation material accepted at this current workshop, as it was at its

  4. Application perspectives of simulation techniques CFD in nuclear power plants

    International Nuclear Information System (INIS)

    Galindo G, I. F.

    2013-10-01

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  5. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    OpenAIRE

    Naeimi Hessamedin; Domiry Ganji Davood; Gorji Mofid; Javadirad Ghasem; Keshavarz Mojtaba

    2011-01-01

    Nowadays, computational fluid dynamics codes (CFD) are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction loss...

  6. The Need to introduce CFD Methodology in Analyze Hydrogen Distribution for Postulated Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hanbee; Park, Sukyung; Kim, Kyuntae [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jongkwang [Hanbat National University, Daejeon (Korea, Republic of); Kwon, Sejin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    The regulatory requirements for combustible gas control systems in Korea is that mean hydrogen mole fraction shall be lower than 10 %, containment integrity shall be kept from combustion of hydrogen, and detonation and global fast turbulent combustion shall be avoided. KHNP provided some analysis which show hydrogen mole fraction is less than 10 % and detonation and global fast turbulence combustion are avoided for postulated severe accident events which covered over 90 % of CDF (core damage frequency) for each NPP. The results were from MAAP code that can simulate from the initiation of the accidents to hydrogen distribution inside containments. It is a Lumped-Parameter codes in which the transport of energy and mass is possible in only predetermined one direction. Therefore, there has been a long-history dispute whether one-dimensional LP codes could simulate the transportation of hydrogen accurately. For example, KHNP made a MAAP model to simulate hydrogen distribution in KSNP (Korean Standard Nuclear Plants), and the containment free volume is divided into 27 nodes in which it is assumed all the properties like each molecule mole fraction and temperate are uniform in each node. In addition, the maximum volume size of them is over 22,000 m{sup 3}, and it is not quite confident that the mole fraction of each molecules and temperature are uniform in the big size space. As for the stress test results of the Wolsong 1, civil experts asked KHNP to conduct hydrogen distribution analysis using Computational Fluid Dynamics (CFD) methodology, and if needed to install hydrogen ignitors in Wolsong 1 NPP. As a reviewer for KHNP's post actions to the Stress Test, the author also asked KHNP to do CFD analysis of hydrogen distribution, and KHNP finally agreed to analyze it using CFD by 2017. KHNP submitted a Shin-hanul 1 and 2 Operation License application in 2015, and the author also asked it to do CFD analysis to simulate hydrogen distribution for Shin-hanul 1 and 2

  7. CFD-model of the mass transfer in the vertical settler

    Directory of Open Access Journals (Sweden)

    E. K. Nagornaya

    2013-02-01

    Full Text Available Purpose. Nowadays the mathematical models of the secondary settlers are intensively developed. As a rule the engineers use the 0-D models or 1-D models to design settlers. But these models do not take into account the hydrodynamics process inside the settler and its geometrical form. That is why the CFD-models based on Navier - Stokes equations are not widely used in practice now. The use of CFD-models based on Navier - Stokes equations needs to incorporate very refine grid. It is very actually now to develop the CFD-models which permit to take into account the geometrical form of the settler, the most important physical processes and needs small computer time for calculation. That is why the development of the 2-D numerical model for the investigation of the waste waters transfer in the vertical settlers which permits to take into account the geometrical form and the constructive features of the settler is essential. Methodology. The finite - difference schemes are applied. Findings. The new 2-D-CFD-model was developed, which permits to perform the CFD investigation of the vertical settler. This model takes into account the geometrical form of the settler, the central pipe inside it and others peculiarities. The method of «porosity technique» is used to create the geometrical form of the settler in the numerical model. This technique permits to build any geometrical form of the settler for CFD investigation. Originality. Making of CFD-model which permits on the one hand to take into account the geometrical form of the settler, basic physical processes of mass transfer in construction and on the other hand requiring the low time cost in order to obtain results. Practical value. CFD-model is designed and code which is constructed on its basis allows at low cost of computer time and about the same as in the calculation of the 1-D model to solve complex multiparameter problems that arise during the design of vertical settlers with their shape and

  8. Parallel Implicit Algorithms for CFD

    Science.gov (United States)

    Keyes, David E.

    1998-01-01

    The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.

  9. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  10. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    Science.gov (United States)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  11. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  12. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    Science.gov (United States)

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  13. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  14. CFD simulation on reactor flow mixing phenomena

    International Nuclear Information System (INIS)

    Kwon, T.S.; Kim, K.H.

    2016-01-01

    A pre-test calculation for multi-dimensional flow mixing in a reactor core and downcomer has been studied using a CFD code. To study the effects of Reactor Coolant Pump (RCP) and core zone on the boron mixing behaviors in a lower downcomer and core inlet, a 1/5-scale CFD model of flow mixing test facility for the APR+ reference plant was simulated. The flow paths of the 1/5-scale model were scaled down by the linear scaling method. The aspect ratio (L/D) of all flow paths was preserved to 1. To preserve a dynamic similarity, the ratio of Euler number was also preserved to 1. A single phase water flow at low pressure and temperature conditions was considered in this calculation. The calculation shows that the asymmetric effect driven by RCPs shifted the high velocity field to the failed pump's flow zone. The borated water flow zone at the core inlet was also shifted to the failed RCP side. (author)

  15. Preliminary CFD analysis methodology for flow in a LFR fuel assembly

    International Nuclear Information System (INIS)

    Catana, A.; Ioan, M.; Serbanel, M.

    2013-01-01

    In this paper a preliminary Computational Fluid Dynamics (CFD) analysis was performed in order to setup a methodology to be used for more complex coolant flow analysis inside ALFRED nuclear reactor fuel assembly. The core contains 171 separated fuel assembly, each consisting in a hexagonal array of 127 fuel rods. Three honey comb spacer grids are proposed along fuel rods with the aim to keep flow geometry intact during reactor operation. The main goal of this paper is to compute some hydraulic parameters: pressure, velocity, wall shear stress and turbulence parameters with and without spacer grids. In this analysis we consider an adiabatic case, so far no heat transfer is considered but we pave the road toward more complex thermo hydraulic analysis for ALFRED (LFR in general). The CAELINUX CFD distribution was used with its main components: Salome-Meca (for geometry and mesh) and Code-Saturne as mono-phase CFD solver. Paraview and Visist Postprocessors were used for data extraction and graphical displays. (authors)

  16. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    International Nuclear Information System (INIS)

    Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik

    2014-01-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach

  17. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jérôme

    2015-05-22

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  18. Dicty_cDB: CFD492 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CF (Link to library) CFD492 (Link to dictyBase) - - - Contig-U10808-1 CFD492P (Link to Original site) CFD492...F 583 CFD492Z 527 CFD492P 1110 - - Show CFD492 Library CF (Link to library) Clone ID CFD492...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CF/CFD4-D/CFD492Q.Seq.d/ Representative seq. ID CFD492...P (Link to Original site) Representative DNA sequence >CFD492 (CFD492Q) /CSM/CF/CFD4-D/CFD492...omology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CFD492 (CFD492

  19. MPI to Coarray Fortran: Experiences with a CFD Solver for Unstructured Meshes

    Directory of Open Access Journals (Sweden)

    Anuj Sharma

    2017-01-01

    Full Text Available High-resolution numerical methods and unstructured meshes are required in many applications of Computational Fluid Dynamics (CFD. These methods are quite computationally expensive and hence benefit from being parallelized. Message Passing Interface (MPI has been utilized traditionally as a parallelization strategy. However, the inherent complexity of MPI contributes further to the existing complexity of the CFD scientific codes. The Partitioned Global Address Space (PGAS parallelization paradigm was introduced in an attempt to improve the clarity of the parallel implementation. We present our experiences of converting an unstructured high-resolution compressible Navier-Stokes CFD solver from MPI to PGAS Coarray Fortran. We present the challenges, methodology, and performance measurements of our approach using Coarray Fortran. With the Cray compiler, we observe Coarray Fortran as a viable alternative to MPI. We are hopeful that Intel and open-source implementations could be utilized in the future.

  20. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    Science.gov (United States)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  1. CFD simulation analysis and validation for CPR1000 pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Mingqian; Ran Xiaobing; Liu Yanwu; Yu Xiaolei; Zhu Mingli

    2013-01-01

    Background: With the rapid growth in the non-nuclear area for industrial use of Computational fluid dynamics (CFD) which has been accompanied by dramatically enhanced computing power, the application of CFD methods to problems relating to Nuclear Reactor Safety (NRS) is rapidly accelerating. Existing research data have shown that CFD methods could predict accurately the pressure field and the flow repartition in reactor lower plenum. But simulations for the full domain of the reactor have not been reported so far. Purpose: The aim is to determine the capabilities of the codes to model accurately the physical phenomena which occur in the full reactor vessel. Methods: The flow field of the CPR1000 reactor which is associated with a typical pressurized water reactor (PWR) is simulated by using ANSYS CFX. The pressure loss in reactor pressure vessel, the hydraulic loads of guide tubes and support columns, and the bypass flow of head dome were obtained by calculations for the full domain of the reactor. The results were validated by comparing with the determined reference value of the operating nuclear plant (LingAo nuclear plant), and the transient simulation was conducted in order to better understand the flow in reactor pressure vessel. Results: It was shown that the predicted pressure loss with CFD code was slightly different with the determined value (10% relative deviation for the total pressure loss), the hydraulic loads were less than the determined value with maximum relative deviation 50%, and bypass flow of head dome was approximately the same with determined value. Conclusion: This analysis practice predicts accurately the physical phenomena which occur in the full reactor vessel, and can be taken as a guidance for the nuclear plant design development and improve our understanding of reactor flow phenomena. (authors)

  2. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  3. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.; Babic, M.

    2005-01-01

    Full text of publication follows: The modelling and simulation of atmosphere mixing and stratification in nuclear power plant containments is a topic, which is currently being intensely investigated. With the increase of computer power, it has now become possible to model these phenomena with a local instantaneous description, using so-called Computational Fluid Dynamics (CFD) codes. However, calculations with these codes still take relatively long times. An alternative faster approach, which is also being applied, is to model nonhomogeneous atmosphere with lumped-parameter codes by dividing larger control volumes into smaller volumes, in which conditions are modelled as homogeneous. The flow between smaller volumes is modelled using one-dimensional approaches, which includes the prescription of flow loss coefficients. However, some authors have questioned this approach, as it appears that atmosphere stratification may sometimes be well simulated only by adjusting flow loss coefficients to adequate 'artificial' values that are case-dependent. To start the resolution of this issue, a modelling of nonhomogeneous atmosphere with a lumped-parameter code is proposed, where the subdivision of a large volume into smaller volumes is based on results of CFD simulations. The basic idea is to use the results of a CFD simulation to define regions, in which the flow velocities have roughly the same direction. These regions are then modelled as control volumes in a lumped-parameter model. In the proposed work, this procedure was applied to a simulation of an experiment of atmosphere mixing and stratification, which was performed in the TOSQAN facility. The facility is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France) and consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. In the experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and

  4. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  5. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Lee, Youho; Ahn, Yoonhan; Lee, Jeong Ik

    2016-01-01

    Highlights: • CFD analyses were performed to find performance of PCHE for supercritical CO 2 power cycle. • CFD results were obtained beyond the limits of existing correlations. • Designs of different PCHEs with different correlations were compared. • A new CFD-aided correlation covering a wider Reynolds number range was proposed. - Abstract: While most conventional PCHE designs for working fluid of supercritical CO 2 require an extension of valid Reynolds number limits of experimentally obtained correlations, Computational Fluid Dynamics (CFD) code ANSYS CFX was used to explore validity of existing correlations beyond their tested Reynolds number ranges. For heat transfer coefficient correlations, an appropriate piece-wising with Ishizuka’s and Hesselgreaves’s correlation is found to enable an extension of Reynolds numbers. For friction factors, no single existing correlation is found to capture different temperature and angular dependencies for a wide Reynolds number range. Based on the comparison of CFD results with the experimentally obtained correlations, a new CFD-aided correlation covering an extended range of Reynolds number 2000–58,000 for Nusselt number and friction factor is proposed to facilitate PCHE designs for the supercritical CO 2 Brayton cycle application.

  6. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  7. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    Science.gov (United States)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  8. Comparison of turbulence models and CFD solution options for a plain pipe

    Science.gov (United States)

    Canli, Eyub; Ates, Ali; Bilir, Sefik

    2018-06-01

    Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.

  9. Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Kosmadakis, G.M.; Dimaratos, A.M.; Pariotis, E.G.

    2011-01-01

    A theoretical investigation is conducted to examine the way the crevice regions affect the mean cylinder pressure, the in-cylinder temperature, and the velocity field of internal combustion engines running at motoring conditions. For the calculation of the wall heat flux, a wall heat transfer formulation developed by the authors is used, while for the simulation of the crevices and the blow-by a newly developed simplified simulation model is presented herein. These sub-models are incorporated into an in-house Computational Fluid Dynamics (CFD) code. The main advantage of the new crevice model is that it can be applied in cases where no detailed information of the ring-pack configuration is available, which is important as this information is rarely known or may have been altered during the engine's life. Thus, an adequate estimation of the blow-by effect on the cylinder pressure can be drawn. To validate the new model, the measured in-cylinder pressure traces of a diesel engine, located at the authors' laboratory, running under motoring conditions at four engine speeds were used as reference, together with measured velocity profiles and turbulence data of a motored spark-ignition engine. Comparing the predicted and measured cylinder pressure traces of the diesel engine for all cases examined, it is observed that by incorporating the new crevice sub-model into the in-house CFD code, significant improvements on the predictive accuracy of the model is obtained. The calculated cylinder pressure traces almost coincide with the measured ones, thus avoiding the use of any calibration constants as would have been the case with the crevice effect omitted. Concerning the radial and swirl velocity profiles and the turbulent kinetic energy measured in the spark-ignition engine, the validation process revealed that the developed crevice model has a minor influence on the aforementioned parameters. The theoretical study has been extended by investigating in the same spark

  10. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  11. Eleventh annual conference of the CFD Society of Canada (CFD 2003). Proceedings

    International Nuclear Information System (INIS)

    Ollivier-Gooch, C.

    2003-01-01

    The Eleventh Annual Conference of the CFD Society of Canada, CFD 2003, was held in Vancouver, British Columbia from May 28-30, 2003. The conference was attended by 125 delegates from twelve countries. In addition to traditional CFD applications in vehicle aerodynamics and turbulent flow, the conference also showcased a number of less traditional application areas, including fuel cells, biofluids, multi-phase flows, and flows in porous media

  12. CFD evaluation of SFP cooling capacity during normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyeog; Kim, Jin Hyuck; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    In Fukushima nuclear accident, due to earthquake, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool (SFP) generated. Because of the unavailability of offsite storage for spent nuclear fuel in Korea, the spent fuel should be placed in storage at specially designed facilities, kept and monitored in the plant. In recent years, spent fuel storage racks are being replaced with high density racks due to the lack of storage capacity. For the above reasons, the necessity is felt to analyze the safety of the spent fuel pool. Hence, to evaluate the safety of spent fuel pools, in case of loss of offsite power like the Fukushima nuclear accident, the safety analysis was conducted for Gori Unit 1 and Ulchin unit3 in order to estimate the time it takes for nuclear fuels to be uncovered, when water in the pool evaporated by decay heat of spent fuels. In addition, there are some researches evaluating heat removal, thermal hydraulic behaviors and accident circumstances in the spent fuel pool with system thermal hydraulic codes, such as RELAP, TRACE and ASTEC. Some researchers are attempting to carry out 3D CFD analysis. In this study, thermal hydraulic characteristics of the spent fuel pool of Ulchin unit 3 are investigated by using ANSYS CFX 13 which is a commercial CFD code. Three dimensional fluid flow and heat removal capacity of the spent fuel pool are evaluated by 3 D CFD simulation, while carrying out comparative analysis with the multi D analysis of MARS KS.

  13. CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes

    KAUST Repository

    Salama, Amgad; Azamatov, Abdulaziz Irgashevich; El-Amin, Mohamed; Sun, Shuyu; Huang, Huancong

    2012-01-01

    In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which

  14. The design of modern gas turbine design : beyond CFD

    International Nuclear Information System (INIS)

    Kenny, D.P.

    1998-01-01

    The progress that has been made in recent years of applying computational fluid dynamics (CFD) to the design of advanced turbine engines was discussed. Pratt and Whitney has successfully transitioned the design of the company's advanced turbine engines from a five-year design cycle based on a succession of design-test-redesign cycles to a three-year design cycle based on an analytical design methodology. The development of 3-D viscous CFD and computational structural mechanics (CSM) codes as primary design tools and a multi-disciplinary approach to applications have been major factors in achieving this success. The company also made significant progress in the development of a fully implicit unsteady stage scheme, with marked impact on performance and durability. Improvements also have been made in the life of the hot end components and in aero-acoustics. 9 figs

  15. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  16. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  17. High fidelity thermal-hydraulic analysis using CFD and massively parallel computers

    International Nuclear Information System (INIS)

    Weber, D.P.; Wei, T.Y.C.; Brewster, R.A.; Rock, Daniel T.; Rizwan-uddin

    2000-01-01

    Thermal-hydraulic analyses play an important role in design and reload analysis of nuclear power plants. These analyses have historically relied on early generation computational fluid dynamics capabilities, originally developed in the 1960s and 1970s. Over the last twenty years, however, dramatic improvements in both computational fluid dynamics codes in the commercial sector and in computing power have taken place. These developments offer the possibility of performing large scale, high fidelity, core thermal hydraulics analysis. Such analyses will allow a determination of the conservatism employed in traditional design approaches and possibly justify the operation of nuclear power systems at higher powers without compromising safety margins. The objective of this work is to demonstrate such a large scale analysis approach using a state of the art CFD code, STAR-CD, and the computing power of massively parallel computers, provided by IBM. A high fidelity representation of a current generation PWR was analyzed with the STAR-CD CFD code and the results were compared to traditional analyses based on the VIPRE code. Current design methodology typically involves a simplified representation of the assemblies, where a single average pin is used in each assembly to determine the hot assembly from a whole core analysis. After determining this assembly, increased refinement is used in the hot assembly, and possibly some of its neighbors, to refine the analysis for purposes of calculating DNBR. This latter calculation is performed with sub-channel codes such as VIPRE. The modeling simplifications that are used involve the approximate treatment of surrounding assemblies and coarse representation of the hot assembly, where the subchannel is the lowest level of discretization. In the high fidelity analysis performed in this study, both restrictions have been removed. Within the hot assembly, several hundred thousand to several million computational zones have been used, to

  18. Data resulting from the CFD analysis of ten window frames according to the UNI EN ISO 10077-2

    Directory of Open Access Journals (Sweden)

    Cristina Baglivo

    2016-09-01

    Full Text Available Data are related to the numerical simulation performed in the study entitled “CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077” (Malvoni et al., 2016 [1].The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.2 and ANSYS FLUENT 14.5 CFD code.The dataset specifically includes information about the CFD setup and boundary conditions considered as the input values of the simulations.The trend of the isotherms points out the different impacts on the thermal behaviour of all sections with air solid material or ideal gas into the cavities. Keywords: CFD, Thermal break, Window, Frame, 10077, EPBD

  19. The Test for Flow Characteristics of Tubular Fuel Assembly(II) - Experimental results and CFD analysis

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2006-12-01

    A test facility had been established for the experiment of velocity distribution and pressure drop in a tubular fuel. A basic test had been conducted to examine the performance of the test loop and to verify the accuracy of measurement by pitot-tube. In this report, test results and CFD analysis for the hydraulic characteristics of a tubular fuel, following the previous tests, are described. Coolant velocities in all channels were measured using pitot-tube and the effect of flow rate change on the velocity distribution was also examined. The pressure drop through the tubular fuel was measured for various flow rates in range of 1 kg/s to 21 kg/s to obtain a correlation of pressure drop with variation of flow rate. In addition, a CFD(Computational Fluid Dynamics) analysis was also done to find out the hydraulic characteristics of tubular fuel such as velocity distribution and pressure drop. As the results of CFD analysis can give us a detail insight on coolant flow in the tubular fuel, the CFD method is a very useful tool to understand the flow structure and phenomena induced by fluid flow. The CFX-10, a commercial CFD code, was used in this study. The two results by the experiment and the CFD analysis were investigated and compared with each other. Overall trend of velocity distribution by CFD analysis was somewhat different from that of experiment, but it would be reasonable considering measurement uncertainties. The CFD prediction for pressure drop of a tubular fuel shows a tolerably good agreement with experiment within 8% difference

  20. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project

    Energy Technology Data Exchange (ETDEWEB)

    Pialla, David, E-mail: david.pialla@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Tenchine, Denis [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Li, Simon [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 91191 Gif-sur-Yvette Cedex (France); Gauthe, Paul; Vasile, Alfredo [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DER/SESI, 13108 Saint Paul Lez Durance Cedex (France); Baviere, Roland; Tauveron, Nicolas; Perdu, Fabien [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Maas, Ludovic; Cocheme, François [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN/SEMIA/BAST, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Huber, Klaus; Cheng, Xu [Karlsruhe Institute of Technology (KIT), Institute of Fusion and Reactor Technology (IFRT), Kaiserstraße 12, Building 07.08, 76131 Karlsruhe (Germany)

    2015-08-15

    Highlights: • The PHENIX natural convection test performed during the end of life tests program. • The calculation with system codes and theirs limits. • The calculation with coupling CFD and system code, which allows better prediction. • The tasks of code validation have been done in the frame of the THINS project. - Abstract: The PHENIX sodium cooled fast reactor started operation in 1973 and was shut down in 2009. Before decommissioning, an ultimate test program was designed and performed to provide valuable data for the development of future sodium cooled fast reactors, as the so-called Astrid prototype in France. Among these ultimate tests, a thermal-hydraulic Natural Convection Test (NCT) was set-up in June 2009. Starting from a reduced power state of 120 MWt, the NCT consists of a loss of the heat sink combined with a reactor scram and a primary pumps trip leading to stabilized natural circulation in the primary sodium system. The thermal-hydraulics innovative system project (THINS project), sponsored by the European Community in the frame of the 7th FP has selected this transient for validation of both stand-alone system code simulations and coupled simulations using system and CFD codes. Participants from three organizations (CEA, IRSN and KIT) have addressed this transient using different system codes (CATHARE, DYN2B and ATHLET) and CFD codes (TRIO-U and OPEN FOAM). The present paper depicts the different modeling approaches, methodologies and compares the numerical results with the available experimental data. Finally, the main lessons learned from the work performed within the THINS project on the PHENIX NCT with respect to code development and validation are summarized.

  1. Hypersonic CFD applications for the National Aero-Space Plane

    Science.gov (United States)

    Richardson, Pamela F.; Mcclinton, Charles R.; Bittner, Robert D.; Dilley, A. Douglas; Edwards, Kelvin W.

    1989-01-01

    Design and analysis of the NASP depends heavily upon developing the critical technology areas that cover the entire engineering design of the vehicle. These areas include materials, structures, propulsion systems, propellants, integration of airframe and propulsion systems, controls, subsystems, and aerodynamics areas. Currently, verification of many of the classical engineering tools relies heavily on computational fluid dynamics. Advances are being made in the development of CFD codes to accomplish nose-to-tail analyses for hypersonic aircraft. Additional details involving the partial development, analysis, verification, and application of the CFL3D code and the SPARK combustor code are discussed. A nonequilibrium version of CFL3D that is presently being developed and tested is also described. Examples are given of portion calculations for research hypersonic aircraft geometries and comparisons with experiment data show good agreement.

  2. Dynamic analysis of the pump system based on MOC–CFD coupled method

    International Nuclear Information System (INIS)

    Yang, Shuai; Chen, Xin; Wu, Dazhuan; Yan, Peng

    2015-01-01

    Highlights: • MOC–CFD coupled method was proposed to get the pump internal and external characteristics. • The coupled strategy and procedure were explained. • Some typical simulation cases were made for different factors. • The pump head deviation grows with the severity of the transient. • Valve closure law in linear and longer pipeline will cause higher pump head deviation. - Abstract: The dynamic characteristics of pump response to transient events were investigated by combining the Method of Characteristic (MOC) and Computational Fluid Dynamics (CFD) together. In a typical pump–pipeline–valve system, similar to the reactor system, the pump is treated as three-dimensional CFD model using Fluent code, whereas the rest is represented by one-dimensional components using MOC. A description of the coupling theory and procedure ensuring proper communication within the two codes is given. Several transient flow operations have been carried out. In the initial steady-state simulation, the coupled method could accurately find the operating condition of the pump when the valve is fully open. When the valve is closed rapidly, preliminary comparative calculations demonstrate that the coupled method is efficient in simulating the dynamic behavior of the pump and capable of getting detailed fluid field evolutions inside the pump. Deviation between the dynamic pump head and the value given by the steady-state curve at the same instantaneous flow-rate was established, and the cause of the deviation was further explained by the comparison of pump internal and external characteristics. Furthermore, it was found that the deviation grows with the severity of the transient. In addition, the effects of valve closure laws and pipe length on the pump dynamic performances were evaluated. All the results showed that MOC–CFD is an efficient and promising way for simulating the interaction between pump model and piping system

  3. Finite rate chemistry for USA-series codes - rormulation and applications

    International Nuclear Information System (INIS)

    Palaniswamy, S.; Chakravarthy, S.R.; Ota, D.K.

    1989-01-01

    The USA-series of CFD codes are based on unified solution algorithms including explicit and implicit formulations, factorization and relaxation approaches, time marching and space marching methodologies, etc., in order to be able to solve a very wide class of CFD problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Recently, these codes have been enlarged to also unify different aerothermodynamic options (perfect gas, real gas including equilibrium and nonequlibrium chemistry). This paper describes aspects of the finite-rate-chemistry capability. 27 references

  4. Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation

    Science.gov (United States)

    Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.

    2018-05-01

    In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.

  5. Simplified 3d CFD flow simulation of a turbojet disc cavity with conjugate heat transfer

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available A comprehensive computational fluid dynamics (CFD) model of an actual disc cavity, complete with rotation and conjugate heat transfer, is presented. The model uses a commercially available code with geometrical accuracy including a labyrinth seal...

  6. Intelligent Patching of Conceptual Geometry for CFD Analysis

    Science.gov (United States)

    Li, Wu

    2010-01-01

    The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect

  7. Study of the distribution of steam plumes in the PANDA facility using CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuanshuan [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Cai, Jiejin, E-mail: chiven77@hotmail.com [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University, Guangzhou (China); Zhang, Huiyong [China Nuclear Power Technology Research Institute, Shenzhen 518026 (China); Yin, Huaqiang; Yang, Xingtuan [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Highlights: • The standard k–ε model has been verified for gas plume simulation in the large-scale volume. • The k–k{sub l}–ω model has been improved for gas plume simulations. • The sensitivity analyses about the computational mesh, time step, Froude numbers have been carried out. - Abstract: During a postulated severe accident in light water reactor, a large amount of steam is injected into containment through the break. This would lead to the increases of pressure and temperature, and consequently threaten the integrity of the containment. In this study the light gas (saturated steam) distribution in a large-scale multi-compartment volume is simulated by using CFD code. Several turbulence models, including the standard k–ε model, the k–k{sub l}–ω model, the transitional SST model, and the improved k–k{sub l}–ω model with considering buoyancy effect are used for the simulation. The results show that both the standard k–ε model and the improved k–k{sub l}–ω model with considering the buoyancy effect can get good results comparing to the experimental results. The improved k–k{sub l}–ω model can get much better than the original k–k{sub l}–ω model without considering the buoyancy effect for predicting the steam distribution in vessels, and some characteristics in concerned region are predicted well. The sensitivity analyses about the computational mesh, time step, Froude numbers are also carried out.

  8. Application of CFD dispersion calculation in risk based inspection for release of H2S

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Vinod, Gopika; Singh, R.K.; Rao, V.V.S.S.; Vaze, K.K.

    2011-01-01

    In atmospheric dispersion both deterministic and probabilistic approached have been used for addressing design and regulatory concerns. In context of deterministic calculations the amount of pollutants dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analysis based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. In context of probabilistic methods applying risk based inspection (wherein consequence of failure from each component needs to be assessed) are becoming popular. Consequence evaluation in a process plant is a crucial task. Often the number of components considered for life management will be too huge. Also consequence evaluation of all the components proved to be laborious task. The present paper is the results of joint collaborative work from deterministic and probabilistic modelling group working in the field of atmospheric dispersion. Even though API 581 has simplified qualitative approach, regulators find the some of the factors, in particular, quantity factor, not suitable for process plants. Often dispersion calculations for heavy gas are done with very simple model which can not take care of density based atmospheric dispersion. This necessitates a new approach with a CFD based technical basis is proposed, so that the range of quantity considered along with factors used can be justified. The present paper is aimed at bringing out some of the distinct merits and demerits of the CFD based models. A brief account of the applications of such CFD codes reported in literature is also presented in the paper. This paper describes the approach devised and demonstrated for the said issue with emphasis of CFD calculations. (author)

  9. Numerical modelling in building thermo-aeraulics: from CFD modelling to an hybrid finite volume / zonal approach; Modelisation numerique de la thermoaeraulique du batiment: des modeles CFD a une approche hybride volumes finis / zonale

    Energy Technology Data Exchange (ETDEWEB)

    Bellivier, A.

    2004-05-15

    For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)

  10. Modelling of fluid-solid interaction using two stand-alone codes

    CSIR Research Space (South Africa)

    Grobler, Jan H

    2010-01-01

    Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...

  11. Simulation of steady-state natural convection using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Zitzmann, T.; Pfrommer, P. [Univ. of Applied Sciences, Coberg (Germany); Cook, M.; Rees, S.; Marjanovic, L. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development

    2005-07-01

    Building materials play an important role in the creation of comfortable indoor environments and can reduce dependence on high energy use mechanical systems. Correct predictions between building structure and heat transfer are needed in order to achieve optimal conditions. Heat transfer is dependent on the velocity and temperature distribution in a room, particularly in the wall boundary layer. This paper discussed the modeling of air flow and heat transfer over a heated vertical plate in a differentially-heated cavity using Computational Fluid Dynamics (CFD). Guidelines on the use of CFD with unstructured meshes to model buoyancy-driven flow in a cavity were presented. Benchmark CFD results were compared with published analytical data. The finite volume method was employed using an unstructured mesh containing tetrahedral and prism elements, so that local numerical diffusion was reduced and therefore suitable for complex flows. The code was based on a couple solver for solving the differential equations using the fully implicit discretization method. Hydrodynamic equations were treated as one single system. A false time stepping method was used to reduce the number of iterations required for convergence, which also guided the solutions to a steady-state solution. It was concluded that the methodology achieves accurate predictions, and is suitable for the modeling of heat transfer optimizations. 13 refs., 7 figs.

  12. CFD Simulations of a Single-phase Mixing Experiment

    International Nuclear Information System (INIS)

    Bertolotto, Davide; Chawla, Rakesh; Manera, Annalisa; Prasser, Horst-Michael

    2008-01-01

    The current paper reports on an investigation of the capabilities of CFD codes to model multidimensional mixing phenomena in a loop. For the purpose, a test facility consisting of two loops connected by a double T-junction has been built at the Paul Scherrer Institut (PSI). Experiments were carried out, in which a tracer was injected in one loop and the tracer distribution before and after the T-junction was measured by means of wire-mesh sensors located at the outlets of the junction. The tracer distribution after the T-junction is strongly dependent on 3D mixing phenomena, which are dominant due to the particular geometry of the set-up. For the CFD analysis, a 3D model of the double T-junction was created, and different simulations were performed with ANSYS-CFX to study the sensitivity of the results with respect to parameters such as mesh refinement, integration time step, turbulence model, profiles for inlet velocity and injected tracer concentration. Thereafter, these results were compared with the experimental data. The comparisons have clearly pointed out that 3D modelling is able to reproduce (at least qualitatively) the experimental results. Moreover, it has been found that the CFD results are strongly influenced by the velocity profile assumptions at the inlets of the double T-junction. (authors)

  13. Tenth annual conference of the CFD Society of Canada (CFD 2002). Proceedings

    International Nuclear Information System (INIS)

    Barron, R.M.

    2002-01-01

    The Tenth Annual Conference of the CFD Society of Canada, CFD 2002, was held in Windsor, Ontario from June 9-11, 2002. Contributions and participation were from many countries including Canada, United States, United Kingdom, France, Belgium, Germany, Iran, India, Pakistan, China, Japan, Singapore, Kuwait and Russia. The proceedings are a collection of the papers received covering the spectrum of computational fluid dynamics (CFD) from fundamental advances to improved algorithms to traditional and innovative applications. There is also a special session on automotive applications

  14. CFD Simulations of Soap Separation; CFD-simulering av avsaapning

    Energy Technology Data Exchange (ETDEWEB)

    Birkestad, Per

    2010-07-01

    A part of Vaermeforsk, the 'Skogsindustriella programmet', has identified the possibility to increase the production of tall oil, and hence the competitiveness, in Swedish pulp mills through an increase in the efficiency of the soap separation tanks. Currently, soap is extracted from the black liquor through a sedimentation process where the less dense soap rise to the top of the liquor tank where it is removed through a over-flow ducting at the top of the tank. Vaermeforsk seeks a better understanding of the detailed flow and the separation mechanisms within the liquor tanks and has initiated a study of computational fluid dynamics (CFD) of the tanks. The aim of the study has been threefold; To develop CFD-methods for use in the study of soap separation processes, to investigate the detailed flow within two Swedish liquor tanks and one North American soap skimmer and lastly to develop new design rules for use in future designs of soap separation tanks. The project shows that CFD is a useful tool for the investigation of black liquor and soap flow within a soap separation tank. The CFD simulations of three existing liquor tanks show that the previously used design-rules based on surface loads are inadequate as the actual flow velocities within the tanks are two orders of magnitude larger than those previously used as reference (the surface load). The CFD simulations also show that the black liquor flow, and hence the soap separation, is very sensitive to density variations on the black liquor inlet and temperature variations as small as 1 deg C can significantly affect the liquor flow.

  15. Comparing internal and external run-time coupling of CFD and building energy simulation software

    NARCIS (Netherlands)

    Djunaedy, E.; Hensen, J.L.M.; Loomans, M.G.L.C.

    2004-01-01

    This paper describes a comparison between internal and external run-time coupling of CFD and building energy simulation software. Internal coupling can be seen as the "traditional" way of developing software, i.e. the capabilities of existing software are expanded by merging codes. With external

  16. CFD Analysis for the Steady State Test of CS28-1 Simulating High Temperature Chemical Reactions in CANDU Fuel Channel

    International Nuclear Information System (INIS)

    Park, Ju Hwan; Kang, Hyung Seok; Rhee, Bo Wook

    2006-05-01

    The establishment of safety analysis system and technology for CANDU reactors has been performed at KAERI. As for one of these researches, single CANDU fuel bundle has been simulated by CATHENA for the post-blowdown event to consider the complicated geometry and heat transfer in the fuel channel. In the previous LBLOCA analysis methodology adopted for Wolsong 2, 3, 4 licensing, the fuel channel blowdown phase was analyzed by a CANDU system analysis code CATHENA and the post-blowdown phase of fuel channel was analyzed by CHAN-IIA code. The use of one computer code in consecutive analyses appeared to be desirable for consistency and simplicity in the safety analysis process. However, validation of the high temperature post-blowdown fuel channel model in the CATHENA before being used in the accident analysis is necessary. Experimental data for the 37-element fuel bundle that fueled CANDU-6 has not been performed. The benchmark problems for the 37-element fuel bundle using CFD code will be compared with the test results of the 28-element fuel bundle in the CS28-1 experiment. A full grid model of FES to the calandria tube simulating the test section was generated. The number of the generated mesh in the grid model was 4,324,340 cells. The boundary and heat source conditions, and properties data in the CFD analysis were given according to the test results and reference data. Thermal hydraulic phenomena in the fuel channel were simulated by a compressible flow, a highly turbulent flow, and a convection/conduction/radiation heat transfer. The natural convection flow of CO 2 due to a large temperature difference in the gap between the pressure and the calandria tubes was treated by Boussinesq's buoyancy model. The CFD results showed good agreement with the test results as a whole. The inner/middle/outer FES temperature distributions of the CFD results showed a small overestimated value of about 30 .deg. C at the entrance region, but good agreement at the outlet region. The

  17. CFD analysis for the hydrogen transport in the primary contention of a BWR using the codes OpenFOAM and Gas-Flow; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR usando los codigos OpenFOAM y GasFlow

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.

    2014-07-01

    The accidents in Unit 2 of the Three Mile Island Nuclear Power Plant (NPP) in the United States (March 28{sup th}, 1979), the one in Unit 4 of the NPP Chernobyl in Ukraine (April 26{sup th}, 1986) and the explosions in some units of Fukushima NPP in Japan (March 11{sup th}, 2011) boosted the investigations on severe accidents with core damage and, in particular, the threat to the ultimate barrier by an eventual explosion from uncontrolled Hydrogen combustion within the containment was considered of particular relevance. Research programs for analyzing Hydrogen behavior and control during this kind of accidents were early initiated by research and regulatory bodies. Assessment on Hydrogen behavior once it has been postulated to be released on the containment system can be divided into two phases, in the first one, transport and the concentrations of the gas mixtures and steam in each volume or area comprised between the structures of the containment are calculated, in the second one, the propagation of the detonation of the Hydrogen is calculated if there are the conditions to occur. Currently, there are computer programs that can be used in one, or both stages of computation, and they are based on one of the two solution methods in current use, one of them are integrated codes (e.g. MELCOR), which consists in assuming the containment as a network composed of hydraulic tanks or nodes on which the balance equations of mass and energy have to be solved, the network is connected by ducts or connections where the momentum balance equation arise. This methodology relies on the use of semi-empirical relationships and the criteria used to define a geometric pattern, are subjective. The second method, which is having relevance due to the large computing power of modern computers, is the numerical solution of the three-dimensional Navier-Stokes equations in complex geometries. This method of solution is known as Computational Fluid Dynamics (CFD), and offers the advantage of

  18. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  19. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers

    NARCIS (Netherlands)

    Forstner, M.; Hofmeister, G.; Joeller, M.; Dahl, J.; Braun, M.; Kleditzsch, S.; Scharler, R.; Obernberger, I.

    2006-01-01

    In order to describe and predict the formation of ash deposits in biomass fired combustion plants, a mathematical model is being developed and implemented into the CFD code Fluent¿ as a post processing tool. At the present state of development the model covers the release of coarse ash particles and

  20. CFD simulation of three-dimensional motion of a vehicle with movable wings. Application to the keel of a racing yacht; 3 jigen undo suru kado yokufu shinko buttai no CFD simulation. Racing yacht keel eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Takada, N. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sato, T. [Tokyo Univ. (Japan)

    1998-12-31

    The computational fluid dynamics (CFD) is so remarkably developed in the various kinds of science and technology fields that it is utilized in aeroplane and other machines and structures. The introduction of Navier-Stokes equation into the fixed coordinate system makes it possible to perform the CFD simulation of vigorously moving body. Combining its procedure with the moving grid scheme enables us to maneuver a moving wing. A body with complicated shape like the keel of racing yacht is expressed by the multi-block grid to develop the CFD code corresponding to it. The simulation of forced motion, which is the first step of the motion simulation system, is applied to the keel of racing yacht to prove that the viscous flow field around the complicatedly shaped body. 6 refs., 17 figs., 2 tabs.

  1. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    together with a fatigue curve from a design code. For this assessment, the ASME Boiler and Pressure Vessel Code [2] is used. Previous work concentrated on the development and validation of numerical models for the simulation of turbulent mixing [3, 4]. This work focuses on the coupling between CFD and FEM models, and lifetime prediction by means of code assessment. The analysis tools that were developed are demonstrated on a test case. (orig.)

  2. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  3. AirShow 1.0 CFD Software Users' Guide

    Science.gov (United States)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  4. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report; TOPFLOW-Experimente, Modellentwicklung und Validierung zur Qualifizierung von CFD-Codes fuer Zweiphasenstroemungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-15

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  5. CFD simulation of IPR-R1 Triga subchannels fluid flow

    International Nuclear Information System (INIS)

    Silva, Vitor V.; Santos, A.; Mesquita, Amir Z.; Silva, P.S. da; Pereira, C.

    2013-01-01

    Computational fluid dynamics (CFD) codes have been extensively used in engineering problems, with increasing use in nuclear engineering. One of these computer codes is OpenFOAM. It is freely distributed with source code and offers a great flexibility in simulating particular conditions like those found in many problems in nuclear reactor analysis. The aim of this work is to simulate fluid flow and heat flux in three different configurations of subchannels of IPR-R1 TRIGA reactor using OpenFOAM. The data will be then validated against real experimental data obtained during the operation of the reactor at 100kW. This validation process is fundamental to allow the use of the software and associated model to simulate reactor's operation at different conditions, namely different power e fluid flow velocities. (author)

  6. CFD simulation of IPR-R1 Triga subchannels fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vitor V.; Santos, A.; Mesquita, Amir Z.; Silva, P.S. da, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br, E-mail: amir@cdtn.br, E-mail: psblsg@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN - MG), Belo Horizonte, MG (Brazil); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    Computational fluid dynamics (CFD) codes have been extensively used in engineering problems, with increasing use in nuclear engineering. One of these computer codes is OpenFOAM. It is freely distributed with source code and offers a great flexibility in simulating particular conditions like those found in many problems in nuclear reactor analysis. The aim of this work is to simulate fluid flow and heat flux in three different configurations of subchannels of IPR-R1 TRIGA reactor using OpenFOAM. The data will be then validated against real experimental data obtained during the operation of the reactor at 100kW. This validation process is fundamental to allow the use of the software and associated model to simulate reactor's operation at different conditions, namely different power e fluid flow velocities. (author)

  7. A CFD benchmarking exercise based on flow mixing in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L., E-mail: brian.smith@psi.ch [Thermal Hydraulics Laboratory, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, PA (United States); Angele, K. [Vattenfall R and D, Älvkarleby (Sweden)

    2013-11-15

    The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency (NEA), aimed at testing the ability of state-of-the-art computational fluid dynamics (CFD) codes to predict the important fluid flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. The results from numerical simulations are compared to measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Älvkarleby, Sweden. The test data were released only at the end of the exercise making this a truly blind CFD-validation benchmark. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results, and overall conclusions and perspectives are presented.

  8. Comparison of a semi-analytic and a CFD model uranium combustion to experimental data

    International Nuclear Information System (INIS)

    Clarksean, R.

    1998-01-01

    Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome

  9. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.-M.

    2008-01-01

    CFD code validation requires experimental data that characterize the distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The paper reports about the use of wire-mesh sensors to study turbulent mixing processes in single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of other non

  10. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2007-01-01

    CFD code validation requires experimental data that characterize distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The presentation reports about the use of wire-mesh sensors to study turbulent mixing processes in the single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of

  11. Calculations of hydrogen transport for the simulation of a Sbo in the NPP-L V using the code CFD GASFLOW

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Xolocostli M, V.; Lopez M, R.; Filio L, C.; Mugica R, C. A.; Royl, P.

    2013-10-01

    The scenario of electric power total loss in the nuclear power plant of Laguna Verde (NPP-L V) has been analyzed using the code MELCOR previously, until reaching fault conditions of the primary container. A mitigation measure to avoid the loss of the primary contention is the realization of a venting toward the secondary contention (reactor building), however this measure bears the potential explosions occurrence risk when the hydrogen accumulated in the primary container with the oxygen of the reactor building atmosphere reacting. In this work a scenario has been supposed that considers the mentioned venting when the pressure of 4.5 kg/cm 2 is reached in the primary container. The information for the hydrogen like an entrance fact is obtained of the MELCOR results and the hydrogen transport in both contentions is analyzed with the code CFD GASFLOW that allows predicting the detailed distribution of the hydrogen volumetric concentration and the possible detonation of flammability conditions in the reactor building. The results show that the venting will produce detonation conditions in the venting level (level 33) and flammability in the level of the recharge floor. The methodology here described constitutes the base of a detailed calculation system of this type of phenomena that can use to make safety evaluations in the NPP-L V on scenarios that include gases transport. (Author)

  12. Assessment of ACR moderator circulation design using CFD

    International Nuclear Information System (INIS)

    Bunama, R.; Carlucci, L.N.; Waddington, G.M.

    2004-01-01

    Assessment of the thermalhydraulic performance of the moderator circulation system for the Advanced CANDU Reactor (ACR) was carried out using the specialized Computational Fluid Dynamics (CFD) code MODTURC C LAS V2.9 IST. The assessment included modeling the moderator circulation inside the calandria vessel under nominal and isothermal flow conditions. The modeling results show that the moderator flow through the core is relatively uniform and mostly upward. The moderator temperature distribution is nearly stratified and increases monotonically from the bottom to the top of the calandria vessel. (author)

  13. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    Science.gov (United States)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  14. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  15. Sensitivity study of CFD turbulent models for natural convection analysis

    International Nuclear Information System (INIS)

    Yu sun, Park

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation

  16. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    Energy Technology Data Exchange (ETDEWEB)

    Alali, Abdullah

    2014-02-21

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  17. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    International Nuclear Information System (INIS)

    Alali, Abdullah

    2014-01-01

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  18. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has

  19. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    International Nuclear Information System (INIS)

    Pena, C.; Pellacani, F.; Macian Juan, R.; Chiva, S.; Barrachina, T.; Miro, R.

    2011-01-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has been

  20. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  1. Workshop report - A validation study of Navier-Stokes codes for transverse injection into a Mach 2 flow

    Science.gov (United States)

    Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff

    1992-01-01

    A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.

  2. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2004-01-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear k-? RANS turbulence models are applied, along with steady non-linear RANS and transient DESsimulations. The STORK 5.0 WPX blade is computed...... be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous valuesinstead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited...... a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quitewell and the two involved CFD codes give very similar results. The discrepancies observed can...

  3. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  4. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  5. A computer code for the prediction of mill gases and hot air distribution between burners sections as input parameters for 3D CFD furnace calculation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Beloshevic, Srdjan

    2006-01-01

    Current computer technology development enables application of powerful software packages that can provide a reliable insight into real operating conditions of a steam boiler in the Thermal Power Plant. Namely, an application of CFD code to the 3D analysis of combustion and heat transfer in a furnace provides temperature, velocity and concentration fields in both cross sectional and longitudinal planes of the observed furnace. In order to obtain reliable analytical results, which corresponds to real furnace conditions, it is necessary to accurately predict a distribution of mill gases and hot air between burners' sections, because these parameters are input values for the furnace 3D calculation. Regarding these tasks, the computer code for the prediction of mill gases and hot air distribution has been developed at the Department for steam boilers of the Faculty of Mechanical Engineering in Belgrade. The code is based on simultaneous calculations of material and heat balances for fan mill and air tracts. The aim of this paper is to present a methodology of performed calculations and results obtained for the steam boiler furnace of 350 MWe Thermal Power Plant equipped with eight fan mills. Key words: mill gases, hot air, aerodynamic calculation, air tract, mill tract.

  6. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  7. CFD simulation of hydrogen mixing and mitigation by means of passive auto-catalytic recombiners

    International Nuclear Information System (INIS)

    Kelm, S.; Reinecke, E-A.; Jahn, W.; Allelein, H-J.

    2011-01-01

    Modeling of passive auto-catalytic recombiners (PARs) operation in containment geometries involves a large variety of scales; thus, a CFD calculation resolving all these scales would be much too expensive. Therefore, the mechanistic PAR model REKO-DIREKT, developed at Forschungszentrum Juelich, has been coupled with the commercial CFD code ANSYS CFX in order to simulate PAR operation as well as the induced flow and transport phenomena. Based on a short introduction of REKO-DIREKT, its interface to CFX and the explicit coupling scheme is discussed. The paper is finalized by a first demonstration of simulation capabilities on the basis of the ThAI PAR-4 experiment (Becker Technologies GmbH, Eschborn, Germany). (author)

  8. From the direct numerical simulation to system codes-perspective for the multi-scale analysis of LWR thermal hydraulics

    International Nuclear Information System (INIS)

    Bestion, D.

    2010-01-01

    A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given

  9. Qualitative CFD for Rapid Learning in Industrial and Academic Applications

    Science.gov (United States)

    Variano, Evan

    2010-11-01

    We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.

  10. CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle

    International Nuclear Information System (INIS)

    Podila, K.; Rao, Y.F.

    2015-01-01

    Highlights: • Flow and heat transfer in SCWR fuel bundle design by AECL is studied using CFD. • Bare-rod bundle geometry is tested at 23.5, 25 and 28 MPa using STAR-CCM+ code. • SST k–ω low-Re model was used to study occurrence of heat transfer deterioration. - Abstract: Within the Gen-IV International Forum, AECL is leading the effort in developing a conceptual design for the Canadian SCWR. AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for occurrence of HTD in the supercritical bundle flows. In the current investigation, bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The low-Reynolds number modification of SST k–ω turbulence model along with y + < 1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5 MPa)

  11. CFD analysis of linear compressors considering load conditions

    Science.gov (United States)

    Bae, Sanghyun; Oh, Wonsik

    2017-08-01

    This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.

  12. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  13. CFD analysis of the dynamic behaviour of a fuel rod subchannel in a supercritical water reactor with point kinetics

    International Nuclear Information System (INIS)

    Ampomah-Amoako, Emmanuel; Akaho, Edward H.K.; Nyarko, Benjamin J.B.; Ambrosini, Walter

    2013-01-01

    Highlights: • The analysis of flow stability of nuclear fuel subchannels with supercritical water is presented. • The results obtained by a CFD code are compared with those of a system code. • The model includes also heat conduction in the fuel rod and point neutron kinetics. - Abstract: The paper presents the analysis by a CFD code of coupled neutronic–thermal hydraulic instabilities in a subchannel slice belonging to a square lattice assembly. The work represents a further phase in the assessment of the suitability of CFD codes for studies of flow stability of supercritical fluids; the research started in previous work with the analysis of bare 2D circular pipes and already addressed 3D subchannel slices with no allowance for heat conduction or neutronic effects. In the present phase, a more realistic system is considered, dealing with a slice of a fuel assembly subchannel containing the regions of the pellet, the gap and the cladding and including also the effect of inlet and outlet throttling. The adopted neutronic model is a point kinetics one, including six delayed neutron groups with global Doppler and fluid density feedbacks. The response of the model to perturbations applied starting from a steady-state condition at the rated power is compared with that of a similar model developed for a 1D system code. Upward, horizontal and downward flow orientations are addressed making use of a uniform power profile and changing relevant parameters as the gap equivalent conductance and the density reactivity coefficient. A bottom-peaked power profile is also considered in the case of vertical upward flow. Though the adopted model can still be considered simple in comparison with actual details of fuel assemblies, the obtained results demonstrate the potential of the adopted methodology for more accurate analyses to be made with larger computational resources

  14. Computational Fluid Dynamics (CFD-Based Droplet Size Estimates in Emulsification Equipment

    Directory of Open Access Journals (Sweden)

    Jo Janssen

    2016-12-01

    Full Text Available While academic literature shows steady progress in combining multi-phase computational fluid dynamics (CFD and population balance modelling (PBM of emulsification processes, the computational burden of this approach is still too large for routine use in industry. The challenge, thus, is to link a sufficiently detailed flow analysis to the droplet behavior in a way that is both physically relevant and computationally manageable. In this research article we propose the use of single-phase CFD to map out the local maximum stable droplet diameter within a given device, based on well-known academic droplet break-up studies in quasi-steady 2D linear flows. The results of the latter are represented by analytical correlations for the critical capillary number, which are valid across a wide viscosity ratio range. Additionally, we suggest a parameter to assess how good the assumption of quasi-steady 2D flow is locally. The approach is demonstrated for a common lab-scale rotor-stator device (Ultra-Turrax, IKA-Werke GmbH, Staufen, Germany. It is found to provide useful insights with minimal additional user coding and little increase in computational effort compared to the single-phase CFD simulations of the flow field, as such. Some suggestions for further development are briefly discussed.

  15. Synthesis of the turbulent mixing in a rod bundle with vaned spacer grids based on the OECD-KAERI CFD benchmark exercise

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Kim, Jungwoo; Song, Chul-Hwa

    2014-01-01

    Highlights: • OECD/KAERI international CFD benchmark exercise was operated by KAERI. • The purpose is to validate relevant CFD codes based on the MATiS-H experiments. • Blind calculation results were synthesized in terms of mean velocity and RMS. • Quality of control volume rather than the number of it was emphasized. • Major findings were followed OECD/NEA CSNI report. - Abstract: The second international CFD benchmark exercise on turbulent mixing in a rod bundle has been launched by OECD/NEA, to validate relevant CFD (Computational Fluid Dynamics) codes and develop problem-specific Best Practice Guidelines (BPG) based on the KAERI (Korea Atomic Energy Research Institute) MATiS-H experiments on the turbulent mixing in a 5 × 5 rod array having two different types of vaned spacer grids: split and swirl types. For this 2nd international benchmark exercise (IBE-2), the MATiS-H testing provided a unique set of experimental data such as axial and lateral velocity components, turbulent intensity, and vorticity information. Blind CFD calculation results were submitted by twenty-five (25) participants to KAERI, who is the host organization of the IBE-2, and then analyzed and synthesized by comparing them with the MATiS-H data. Based on the synthesis of the results from both the experiments and blind CFD calculations for the IBE-2, and also by comparing with the IBE-1 benchmark exercise on the mixing in a T-junction, useful information for simulating this kind of complicated physical problem in a rod bundle was obtained. And some additional Best Practice Guidelines (BPG) are newly proposed. A summary of the synthesis results obtained in the IBE-2 is presented in this paper

  16. Synthesis of the turbulent mixing in a rod bundle with vaned spacer grids based on the OECD-KAERI CFD benchmark exercise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Kim, Jungwoo; Song, Chul-Hwa, E-mail: chsong@kaeri.re.kr

    2014-11-15

    Highlights: • OECD/KAERI international CFD benchmark exercise was operated by KAERI. • The purpose is to validate relevant CFD codes based on the MATiS-H experiments. • Blind calculation results were synthesized in terms of mean velocity and RMS. • Quality of control volume rather than the number of it was emphasized. • Major findings were followed OECD/NEA CSNI report. - Abstract: The second international CFD benchmark exercise on turbulent mixing in a rod bundle has been launched by OECD/NEA, to validate relevant CFD (Computational Fluid Dynamics) codes and develop problem-specific Best Practice Guidelines (BPG) based on the KAERI (Korea Atomic Energy Research Institute) MATiS-H experiments on the turbulent mixing in a 5 × 5 rod array having two different types of vaned spacer grids: split and swirl types. For this 2nd international benchmark exercise (IBE-2), the MATiS-H testing provided a unique set of experimental data such as axial and lateral velocity components, turbulent intensity, and vorticity information. Blind CFD calculation results were submitted by twenty-five (25) participants to KAERI, who is the host organization of the IBE-2, and then analyzed and synthesized by comparing them with the MATiS-H data. Based on the synthesis of the results from both the experiments and blind CFD calculations for the IBE-2, and also by comparing with the IBE-1 benchmark exercise on the mixing in a T-junction, useful information for simulating this kind of complicated physical problem in a rod bundle was obtained. And some additional Best Practice Guidelines (BPG) are newly proposed. A summary of the synthesis results obtained in the IBE-2 is presented in this paper.

  17. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  18. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  19. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  20. EXAMINATION OF A PROPOSED VALIDATION DATA SET USING CFD CALCULATIONS

    International Nuclear Information System (INIS)

    Johnson, Richard W.

    2009-01-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for such for future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present article presents new results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made

  1. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  2. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  3. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  4. Research on verification and validation strategy of detonation fluid dynamics code of LAD2D

    Science.gov (United States)

    Wang, R. L.; Liang, X.; Liu, X. Z.

    2017-07-01

    The verification and validation (V&V) is an important approach in the software quality assurance of code in complex engineering application. Reasonable and efficient V&V strategy can achieve twice the result with half the effort. This article introduces the software-Lagrangian adaptive hydrodynamics code in 2D space (LAD2D), which is self-developed software in detonation CFD with plastic-elastic structure. The V&V strategy of this detonation CFD code is presented based on the foundation of V&V methodology for scientific software. The basic framework of the module verification and the function validation is proposed, composing the detonation fluid dynamics model V&V strategy of LAD2D.

  5. Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.

    2004-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.

  6. Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2005-01-01

    New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in

  7. CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection

    Science.gov (United States)

    Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.

    2016-09-01

    An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.

  8. Pressure loss coefficient evaluation based on CFD analysis for simple geometries and PWR reactor vessel without geometry simplification

    International Nuclear Information System (INIS)

    Ko II, B.; Park, J. P.; Jeong, J. H.

    2008-01-01

    Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. These thermal-hydraulic system analysis codes require user input for pressure loss coefficient, k-factor; since they numerically solve Euler-equation. In spite of its high impact on the safety analysis results, there has not been good validation method for the selection of loss coefficient. During the past decade, however; computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPP5. The present work aims to validate pressure loss coefficient evaluation for simple geometries and k-factor calculation for PWR based on CFD. The performances of standard k-ε model, RNG k-ε model, Reynolds stress model (RSM) on the simulation of pressure drop for simple geometry such as, or sudden-expansion, and sudden-contraction are evaluated. The calculated value was compared with pressure loss coefficient in handbook of hydraulic resistance. Then the present work carried out analysis for flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement

  9. Twelfth annual conference of the CFD Society of Canada (CFD 2004). Proceedings

    International Nuclear Information System (INIS)

    Khalid, M.; Chen, S.; McIlwain, S.

    2004-01-01

    The Twelfth Annual Conference of the CFD Society of Canada, CFD 2004, was held in Ottawa, Ontario from May 9-11, 2004. The proceedings consists of 24 sessions covering the following topics: fluid structure interactions; multiphase and multi-species flows; mesh methods; turbulence; DNS/LES; supersonic and hypersonic flows; heat transfer; combustion and detonation; flow physics; aerodynamics; applications; algorithms; environmental flows; magnetohydrodynamics and electrohydrodynamics; biofluids; and, combustion and smoke management

  10. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  11. 火星突入カプセルの設計における CFD の適用事例 その1: 極超音速領域での熱空力解析

    OpenAIRE

    松山, 新吾; 藤田, 和央; Matsuyama, Shingo; Fujita, Kazuhisa

    2017-01-01

    This paper describes CFD application examples to predict hypersonic aerothermodynamics in design studies of a Mars entry capsule for future Japan’s Mars exploration mission. Firstly, two examples of the validation studies for the JAXA’s in-house CFD code against experimental measurements are briefly presented. CFD predictions of aeroheating are conducted for the T5 shock tunnel experiment at California Institute of Technology. The CFD results are generally in good agreement with the experimen...

  12. Detailed disc assembly temperature prediction: comparison between CFD and simplified engineering methods

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available Institute of Aeronautics and Astronautics Inc. All rights reserved. DETAILED DISC ASSEMBLY TEMPERATURE PREDICTION: COMPARISON BETWEEN CFD AND SIMPLIFIED ENGINEERING METHODS ISABE-2005-1130 Glen Snedden, Thomas Roos and Kavendra Naidoo CSIR, Defencetek... transfer and conduction code (Gaugler, 1978) Taw Adiabatic Wall Temperature y+ Near wall Reynolds number Introduction In order to calculate life degradation of gas turbine disc assemblies, it is necessary to model the transient thermal and mechanical...

  13. Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model

    International Nuclear Information System (INIS)

    Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.

    2011-01-01

    Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.

  14. An Assessment of CFD/CSD Prediction State-of-the-Art by Using the HART II International Workshop Data

    Science.gov (United States)

    Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young

    2012-01-01

    Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.

  15. Transient CFD simulation of a Francis turbine startup

    International Nuclear Information System (INIS)

    Nicolle, J; Morissette, J F; Giroux, A M

    2012-01-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  16. A novel domain overlapping strategy for the multiscale coupling of CFD with 1D system codes with applications to transient flows

    International Nuclear Information System (INIS)

    Grunloh, T.P.; Manera, A.

    2016-01-01

    Highlights: • A novel domain overlapping coupling method is presented. • Method calculates closure coefficients for system codes based on CFD results. • Convergence and stability are compared with a domain decomposition implementation. • Proposed method is tested in several 1D cases. • Proposed method found to exhibit more favorable convergence and stability behavior. - Abstract: A novel multiscale coupling methodology based on a domain overlapping approach has been developed to couple a computational fluid dynamics code with a best-estimate thermal hydraulic code. The methodology has been implemented in the coupling infrastructure code Janus, developed at the University of Michigan, providing methods for the online data transfer between the commercial computational fluid dynamics code STAR-CCM+ and the US NRC best-estimate thermal hydraulic system code TRACE. Coupling between these two software packages is motivated by the desire to extend the range of applicability of TRACE to scenarios in which local momentum and energy transfer are important, such as three-dimensional mixing. These types of flows are relevant, for example, in the simulation of passive safety systems including large containment pools, or for flow mixing in the reactor pressure vessel downcomer of current light water reactors and integral small modular reactors. The intrafluid shear forces neglected by TRACE equations of motion are readily calculated from computational fluid dynamics solutions. Consequently, the coupling methods used in this study are built around correcting TRACE solutions with data from a corresponding STAR-CCM+ solution. Two coupling strategies are discussed in the paper: one based on a novel domain overlapping approach specifically designed for transient operation, and a second based on the well-known domain decomposition approach. In the present paper, we discuss the application of the two coupling methods to the simulation of open and closed loops in both steady

  17. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  18. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  19. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    Science.gov (United States)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  20. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  1. Comparison of CFD and Test Techniques for Cavitation Inception

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Park, Sung Keun; Lee, Sun Ki; Kim, Byung Kon

    2009-01-01

    Cavitation erosion on centrifugal pump impellers is a one of the fundamental factors that cause performance degradation and life shortening of the pumps. One approach to estimate the expected life of an impeller is to use sheet cavity length on the blade surface. While observing the cavity length is more suitable to accurately predict the impeller damage, it is not readily available in the field or on the test stand. Recently, the prediction of the cavity length by using commercial CFD codes has been tried by several authors. As an alternative to direct measure the cavity length of an impeller, a means of estimating cavity length of an impeller based on the relation of operating NPSH to that of 3% NPSH and inception NPSH was developed by Cooper. Although this method seems to be attractive, it is not easy to accurately estimate the inception NPSH without flow visualization. Some recent researchers has been paid attention to apply the high frequency Acoustic Emission(AE) technique to detect cavitation inception of pumps. As an effort to better estimate the cavity length without relying on flow visualization, CFD calculations and experiments were performed and then the results are compared in this study

  2. Development, validation and application of NAFA 2D-CFD code

    International Nuclear Information System (INIS)

    Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.; Saha, D.

    2010-01-01

    A 2D axi-symmetric code named NAFA (Version 1.0) is developed for studying the pipe flow under various conditions. It can handle laminar/ turbulent flows, with or without heat transfer, under sub-critical/super-critical conditions. The code solves for momentum, energy equations with standard k-ε turbulence model (with standard wall functions). It solves pipe flow subjected to 'velocity inlet', 'wall', 'axis' and 'pressure outlet' boundary conditions. It is validated for several cases by comparing its results with experimental data/analytical solutions/correlations. The code has excellent convergence characteristics as verified from fall of equation residual in each case. It has proven capability of generating mesh independent results for laminar as well as turbulent flows. The code is applied to supercritical flows. For supercritical flows, the effect of mesh size on prediction of heat transfer coefficient is studied. With grid refinement, the Y + reduces and reaches the limiting value of 11.63. Hence the accuracy is found to increase with grid refinement. NAFA is able to qualitatively predict the effect of heat flux and operating pressure on heat transfer coefficient. The heat transfer coefficient matches well with experimental values under various conditions. (author)

  3. Status and outlook of CFD technology at Mitsubishi Heavy Industries Nagoya. Mitsubishi Meiko ni okeru CFD gijutsu no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Tanioka, T [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1990-09-01

    The present and future were reviewed of CFD (computational fluid dynamics) technology in Nagoya Works, Mitsubishi Heavy Industries, Ltd., Japan. The progress of the role of CFD in aerodynamic design and progress of CFD technology were reviewed. The followings were illustrated as examples of CFD analysis: design of a main wing for transonic private aircrafts by backward analysis, analysis of an airframe shape for the MU300 jet airplane with a panel method, Navier-stokes (NS) analysis of a transonic wing section, NS analysis of pressure distributions on the surfaces of the YXX airplane and space shuttle HOPE, and NS analysis of an aerodynamic heating distribution for spaceplanes. CFD tools were outlined for every developmental item such as a main wing, and requirements and subjects in practical use were discussed of several CFD tools for a rough check, precise performance check and parametric study. Such computer performance as a main memory capacity and processing speed required for the future practical use of advanced CFD was also discussed. 20 figs.

  4. A CFD analysis of blade row interactions within a high-speed axial compressor

    Science.gov (United States)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  5. Estudo comparativo do tono muscular na paralisia cerebral tetraparética em crianças com lesões predominantemente corticais ou subcorticais na tomografia computadorizada de crânio Comparative study of muscular tonus in spastic tetraparetic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull

    Directory of Open Access Journals (Sweden)

    Cristina Iwabe

    2003-09-01

    Full Text Available OBJETIVO: Comparar a distribuição e intensidade do tono muscular na paralisia cerebral tetraparética espástica (PC-T, correlacionando os dados clínicos com a localização da lesão no sistema nervoso central. MÉTODO: Foram incluídas 12 crianças de dois a quatro anos de idade com lesões predominantemente corticais (seis crianças e subcorticais (seis crianças. O tono foi analisado nos membros superiores (MMSS e inferiores (MMII baseado no protocolo de Durigon e Piemonte. RESULTADOS: Não houve diferença significante quanto à intensidade e distribuição de tono em MMSS e MMII nos dois grupos. Comparando os MMSS e MMII de sujeitos do mesmo grupo, os MMII apresentaram mais assimetrias e maior intensidade do tono do que os MMSS. CONCLUSÃO: Neste estudo, crianças com PC devido a lesões predominantemente corticais ou subcorticais apresentam déficit semelhante na modulação de tono, ocasionando distribuição simétrica e homogênea de hipertonia que predomina em MMII.OBJECTIVE: To compare distribution and intensity of muscular tonus in spastic tetraparetic cerebral palsy (CP, correlating the clinical data with lesion location in the central nervous system. METHOD: Twelve children aged two to four years old with predominantly cortical lesions (six children and subcortical lesions (six children were included. The tonus was analyzed in the upper (UULL and lower limbs (LLLL based on Durigon and Piemonte protocol. RESULT: There was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. CONCLUSION: In this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL.

  6. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  7. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    International Nuclear Information System (INIS)

    Rivetti, A; Lucino, C; Liscia, S; Muguerza, D; Avellan, F

    2012-01-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  8. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Science.gov (United States)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  9. CFD Simulations of Pb-Bi Two-Phase Flow

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel

    2008-01-01

    In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)

  10. CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes

    KAUST Repository

    Salama, Amgad

    2012-01-01

    In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which is usually obtained by embossing a smooth tube. A tube of diameter of 15 mm, 1.5 mm groove depth and a single helix with pitch of 64 mm is chosen for simulation. This geometry has been chosen for simulation because it has been investigated experimentally for pure fluids and would, therefore, provide a verification framework with our CFD model. The result of our CFD investigation compares very well with the experimental work conducted on this tube geometry. Interesting patterns are highlighted and investigated including the existence of flow swirl as a result of the existence of the spirally enhanced ridges. This swirl flow enhances heat transfer characteristics of this system as reported in the literatures. This study also shows that further enhancement is achieved if small amount of nanoparticles are introduced to the fluid. These nanoparticles (metallic-based nanoparticles) when introduced to the fluid enhances its heat transfer characteristics.

  11. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  12. CFD analysis of the HYPER spallation target

    International Nuclear Information System (INIS)

    Cho, Chungho; Tak, Nam-il; Choi, Jae-Hyuk; Lee, Yong-Bum

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15-25 MW. The paper focuses on a thermal-hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the k-ε model predicts the lowest window temperature among the five investigated turbulence models

  13. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  14. Integral large scale experiments on hydrogen combustion for severe accident code validation-HYCOM

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.; Kotchourko, A.; Redlinger, R.; Scholtyssek, W.; Bentaib, A.; L'Heriteau, J.-P.; Pailhories, P.; Eyink, J.; Movahed, M.; Petzold, K.-G.; Heitsch, M.; Alekseev, V.; Denkevits, A.; Kuznetsov, M.; Efimenko, A.; Okun, M.V.; Huld, T.; Baraldi, D.

    2005-01-01

    A joint research project was carried out in the EU Fifth Framework Programme, concerning hydrogen risk in a nuclear power plant. The goals were: Firstly, to create a new data base of results on hydrogen combustion experiments in the slow to turbulent combustion regimes. Secondly, to validate the partners CFD and lumped parameter codes on the experimental data, and to evaluate suitable parameter sets for application calculations. Thirdly, to conduct a benchmark exercise by applying the codes to the full scale analysis of a postulated hydrogen combustion scenario in a light water reactor containment after a core melt accident. The paper describes the work programme of the project and the partners activities. Significant progress has been made in the experimental area, where test series in medium and large scale facilities have been carried out with the focus on specific effects of scale, multi-compartent geometry, heat losses and venting. The data were used for the validation of the partners CFD and lumped parameter codes, which included blind predictive calculations and pre- and post-test intercomparison exercises. Finally, a benchmark exercise was conducted by applying the codes to the full scale analysis of a hydrogen combustion scenario. The comparison and assessment of the results of the validation phase and of the challenging containment calculation exercise allows a deep insight in the quality, capabilities and limits of the CFD and the lumped parameter tools which are currently in use at various research laboratories

  15. Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow Problems in Civil and Environmental Engineering

    Directory of Open Access Journals (Sweden)

    Christian F. Janßen

    2015-07-01

    Full Text Available This contribution is dedicated to demonstrating the high potential and manifold applications of state-of-the-art computational fluid dynamics (CFD tools for free-surface flows in civil and environmental engineering. All simulations were performed with the academic research code ELBE (efficient lattice boltzmann environment, http://www.tuhh.de/elbe. The ELBE code follows the supercomputing-on-the-desktop paradigm and is especially designed for local supercomputing, without tedious accesses to supercomputers. ELBE uses graphics processing units (GPU to accelerate the computations and can be used in a single GPU-equipped workstation of, e.g., a design engineer. The code has been successfully validated in very different fields, mostly related to naval architecture and mechanical engineering. In this contribution, we give an overview of past and present applications with practical relevance for civil engineers. The presented applications are grouped into three major categories: (i tsunami simulations, considering wave propagation, wave runup, inundation and debris flows; (ii dam break simulations; and (iii numerical wave tanks for the calculation of hydrodynamic loads on fixed and moving bodies. This broad range of applications in combination with accurate numerical results and very competitive times to solution demonstrates that modern CFD tools in general, and the ELBE code in particular, can be a helpful design tool for civil and environmental engineers.

  16. Standard Problems for CFD Validation for NGNP - Status Report

    International Nuclear Information System (INIS)

    Johnson, Richard W.; Schultz, Richard R.

    2010-01-01

    The U.S. Department of Energy (DOE) is conducting research and development to support the resurgence of nuclear power in the United States for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The project is called the Next Generation Nuclear Plant (NGNP) Project, which is based on a Generation IV reactor concept called the very high temperature reactor (VHTR). The VHTR will be of the prismatic or pebble bed type; the former is considered herein. The VHTR will use helium as the coolant at temperatures ranging from 250 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not previously been used for the safety analysis of nuclear reactors in the United States, it is being considered for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal operational and accident situations. The ''Standard Problem'' is an experimental data set that represents an important physical phenomenon or phenomena, whose selection is based on a phenomena identification and ranking table (PIRT) for the reactor in question. It will be necessary to build a database that contains a number of standard problems for use to validate CFD and systems analysis codes for the many physical problems that will need to be analyzed. The first two standard problems that have been developed for CFD validation consider flow in the lower plenum of the VHTR and bypass flow in the prismatic core. Both involve scaled models built from quartz and designed to be installed in the INL's matched index of refraction (MIR) test facility. The MIR facility employs mineral oil as the working fluid at a constant temperature. At this temperature, the index of refraction of the mineral oil is the same as that of the quartz. This provides an advantage to the

  17. Aerodynamics of ski jumping: experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)

    2006-12-15

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)

  18. Aerodynamics of ski jumping: experiments and CFD simulations

    Science.gov (United States)

    Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.

    2006-12-01

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

  19. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  20. CFD-calculations to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-04-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN. For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-ε-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes. (orig.)

  1. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Science.gov (United States)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  2. Supercritical water: On a road from CFD to NPP simulations

    International Nuclear Information System (INIS)

    Rintala, Lauri; Danielyan, Davit; Salomaa, Rainer

    2010-01-01

    The Fission and Radiation Physics Group at the Aalto University is contributing to the Finnish SCWR activities within the GEN4FIN-network. Our research involves reactor core thermal hydraulics, and in particular, heat transfer phenomena in supercritical water including both theoretical studies and simulations with APROS and OpenFOAM. APROS is a software applicable to full-scale power plant simulations and OpenFOAM an open source CFD code. The complicated heat transfer in the supercritical region is a very challenging problem for the design of SCWRs and their safety assessment. The steam tables of APROS have been extended to the supercritical region and their functionality has been tested with, e.g. blowdown simulations where the transient is rapid, hence mainly challenging for numerical stability whereas heat transfer has negligible effects. Numerous different heat correlations for supercritical water have been suggested , but simulations of benchmark experiments have shown that for instance fuel clad temperatures generally cannot be described sufficiently accurately. This discrepancy has been encountered in several process simulation codes. The largest errors occur near the pseudo critical line, during the heat transfer deterioration. It turns out that the physics in supercritical water is clearly more intricate than in ordinary boiling heat transfer where rather satisfactory heat transfer correlations are available. Full 3D CFD calculations allow a better description of various aspects of heat transfer in the supercritical region, i.e., effects arising from turbulence , buoyancy , varying material properties etc. On the other hand, CFD calculations are not feasible for plant-scale simulations. We have selected some simplified geometries and parameter ranges to study SCW heat transfer in a reactor. Old experiments have been calculated with satisfactory results with OpenFOAM to check its validity. A steady state case of heat transfer in a circular pipe with upward

  3. Impact of CGNS on CFD Workflow

    Science.gov (United States)

    Poinot, M.; Rumsey, C. L.; Mani, M.

    2004-01-01

    CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.

  4. Recent advances in modeling and validation of nuclear thermal-hydraulics applications with NEPTUNE CFD - 15471

    International Nuclear Information System (INIS)

    Guingo, M.; Baudry, C.; Hassanaly, M.; Lavieville, J.; Mechitouna, N.; Merigoux, N.; Mimouni, S.; Bestion, D.; Coste, P.; Morel, C.

    2015-01-01

    NEPTUNE CFD is a Computational Multi-(Fluid) Dynamics code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermo-hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase Pressurized Thermal Shock (PTS). It is co-developed within the joint research/development project NEPTUNE (AREVA, CEA, EDF, IRSN) since 2001. Over the years, to address the aforementioned applications, dedicated physical models and numerical methods have been developed and implemented in the code, including specific sets of models for turbulent boiling flows and two-phase non-adiabatic stratified flows. This paper aims at summarizing the current main modeling capabilities of the code, and gives an overview of the associated validation database. A brief summary of emerging applications of the code, such as containment simulation during a potential severe accident or in-vessel retention, is also provided. (authors)

  5. Requirements for effective use of CFD in aerospace design

    Science.gov (United States)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  6. Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, including containment. Summary report of a technical meeting

    International Nuclear Information System (INIS)

    2003-11-01

    Safety analysis is an important tool for justifying the safety of nuclear power plants. Typically, this type of analysis is performed by means of system computer codes with one dimensional approximation for modelling real plant systems. However, in the nuclear area there are issues for which traditional treatment using one dimensional system codes is considered inadequate for modelling local flow and heat transfer phenomena. There is therefore increasing interest in the application of three dimensional computational fluid dynamics (CFD) codes as a supplement to or in combination with system codes. There are a number of both commercial (general purpose) CFD codes as well as special codes for nuclear safety applications available. With further progress in safety analysis techniques, the increasing use of CFD codes for nuclear applications is expected. At present, the main objective with respect to CFD codes is generally to improve confidence in the available analysis tools and to achieve a more reliable approach to safety relevant issues. An exchange of views and experience can facilitate and speed up progress in the implementation of this objective. Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) believed that it would be advantageous to provide a forum for such an exchange. Therefore, within the framework of the Working Group on the Analysis and Management of Accidents of the NEA's Committee on the Safety of Nuclear Installations, the IAEA and the NEA agreed to jointly organize the Technical Meeting on the Use of Computational Fluid Dynamics Codes for Safety Analysis of Reactor Systems, including Containment. The meeting was held in Pisa, Italy, from 11 to 14 November 2002. The publication constitutes the report of the Technical Meeting. It includes short summaries of the presentations that were made and of the discussions as well as conclusions and

  7. Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments

    International Nuclear Information System (INIS)

    Churl Yoon; Bo Wook Rhee; Byung-Joo Min

    2002-01-01

    A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)

  8. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  9. Inverse problems using ANN in long range atmospheric dispersion with signature analysis picked scattered numerical sensors from CFD

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.; Ghosh, A.K.; Kushwaha, H.S.

    2010-01-01

    Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)

  10. Calculations of hydrogen transport for the simulation of a Sbo in the NPP-L V using the code CFD GASFLOW; Calculos de transporte de hidrogeno para la simulacion de un SBO en la CNLV usando el codigo CFD GASFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C.; Mugica R, C. A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Consultor, Hermann-von-Helmholtz-Platz, D-76344 Eggenstein -Leopoldshafen, Karlsruhe (Germany)

    2013-10-15

    The scenario of electric power total loss in the nuclear power plant of Laguna Verde (NPP-L V) has been analyzed using the code MELCOR previously, until reaching fault conditions of the primary container. A mitigation measure to avoid the loss of the primary contention is the realization of a venting toward the secondary contention (reactor building), however this measure bears the potential explosions occurrence risk when the hydrogen accumulated in the primary container with the oxygen of the reactor building atmosphere reacting. In this work a scenario has been supposed that considers the mentioned venting when the pressure of 4.5 kg/cm{sup 2} is reached in the primary container. The information for the hydrogen like an entrance fact is obtained of the MELCOR results and the hydrogen transport in both contentions is analyzed with the code CFD GASFLOW that allows predicting the detailed distribution of the hydrogen volumetric concentration and the possible detonation of flammability conditions in the reactor building. The results show that the venting will produce detonation conditions in the venting level (level 33) and flammability in the level of the recharge floor. The methodology here described constitutes the base of a detailed calculation system of this type of phenomena that can use to make safety evaluations in the NPP-L V on scenarios that include gases transport. (Author)

  11. Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2017-01-01

    Full Text Available The flashing phenomenon is relevant to nuclear safety analysis, for example by a loss of coolant accident and safety release scenarios. It has been studied intensively by means of experiments and simulations with system codes, but computational fluid dynamics (CFD simulation is still at the embryonic stage. Rapid increasing computer speed makes it possible to apply the CFD technology in such complex flow situations. Nevertheless, a thorough evaluation on the limitations and restrictions is still missing, which is however indispensable for reliable application, as well as further development. In the present work, the commonly-used two-fluid model with different mono-disperse assumptions is used to simulate various flashing scenarios. With the help of available experimental data, the results are evaluated, and the limitations are discussed. A poly-disperse method is found necessary for a reliable prediction of mean bubble size and phase distribution. The first attempts to trace the evolution of the bubble size distribution by means of poly-disperse simulations are made.

  12. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows

    International Nuclear Information System (INIS)

    Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.

    2017-01-01

    Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.

  13. Development and validation of the 3-D CFD model for CANDU-6 moderator temperature predictions

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2003-03-01

    A computational fluid dynamics model for predicting the moderator circulation inside the CANada Deuterium Uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard κ-ε turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which an-isotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA technology. The CFD model has been successfully verified and validated against experimental data obtained in the Stern Laboratories Inc. (SLI) in Hamilton, Ontario

  14. Comprehensive Approach to Verification and Validation of CFD Simulations Applied to Backward Facing Step-Application of CFD Uncertainty Analysis

    Science.gov (United States)

    Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.

    2012-01-01

    There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.

  15. Flow analysis and port optimization of geRotor pump using commercial CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Jo; Seong, Seung Hak; Yoon, Soon Hyun [Pusan National Univ., Pusan (Korea, Republic of)

    2005-07-01

    GeRotor pump is widely used in the automotive industry for fuel lift, injection, engine oil lubrication, and also in transmission systems. The CFD study of the pump, which is characterized by transient flow with moving rotor boundaries, has been performed to obtain the most optimum shape of the inlet/outlet port of the pump. Various shapes of the port have been tested to investigate how they affect flow rates and fluctuations. Based on the parametric study, an optimum shape has been determined for the maximum flow rate and minimum fluctuations. The result has been confirmed by experiments. For the optimization, Taguchi method has been adapted. The groove shape has been found to be the most important factor among the selected several parameters related to flow rate and fluctuations.

  16. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Directory of Open Access Journals (Sweden)

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  17. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  18. Computational System For Rapid CFD Analysis In Engineering

    Science.gov (United States)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  19. CFD Analysis of Passive Autocatalytic Recombiner

    Directory of Open Access Journals (Sweden)

    B. Gera

    2011-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of hydrogen could be produced following a postulated loss-of-coolant accident (LOCA along with nonavailability of emergency core cooling system (ECCS. Passive autocatalytic recombiners (PAR are implemented in the containment of water-cooled power reactors to mitigate the risk of hydrogen combustion. In the presence of hydrogen with available oxygen, a catalytic reaction occurs spontaneously at the catalyst surfaces below conventional ignition concentration limits and temperature and even in presence of steam. Heat of reaction produces natural convection flow through the enclosure and promotes mixing in the containment. For the assessment of the PAR performance in terms of maximum temperature of catalyst surface and outlet hydrogen concentration an in-house 3D CFD model has been developed. The code has been used to study the mechanism of catalytic recombination and has been tested for two literature-quoted experiments.

  20. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    Science.gov (United States)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  1. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  2. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  3. CFD Model Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data associated with the development of the CFD model for spore deposition in respiratory systems of rabbits and humans. This dataset is associated with the...

  4. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    Science.gov (United States)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  5. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  6. Some Aspects of Nonlinear Dynamics and CFD

    Science.gov (United States)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  7. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  8. Modelación CFD de casos básicos de convección en ambientes cerrados: Necesidades de principiantes en CFD para adquirir habilidades y confianza en la modelación CFD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortés

    2014-01-01

    Full Text Available La predicción de patrones de flujo de aire, velocidad, temperatura, humedad y concentración de contaminantes son requeridos para el diseño de ambientes interiores saludables y confortables. La Dinámica de Fluidos Computacional (CFD es la técnica más avanzada para modelar y predecir los flujos de aire en ambientes cerrados. Sin embargo, los principales errores en los modelos CFD y en sus resultados están relacionados con el factor humano. Los principiantes en modelación CFD no cuentan con las habilidades, experiencia y juicio ingenieril para generar modelos robustos y confiables. Este proceso no es intuitivo y los nuevos usuarios necesitan orientación. Este artículo busca proveer información más completa sobre la modelación CFD de casos básicos de convección natural, forzados y mixtos que permitirán a los nuevos usuarios adquirir las habilidades y confianza. La modelación CFD incluye la generación de malla, definición de criterios de convergencia y factores de relajación, y la evaluación de modelos de turbulencia para cada caso. Los resultados muestran que es necesaria la experiencia de los usuarios en cada paso de la modelación CFD, incluso para casos simples de convección.

  9. The IEA Annex 20 Two-Dimensional Benchmark Test for CFD Predictions

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Rong, Li; Cortes, Ines Olmedo

    2010-01-01

    predictions both for isothermal flow and for nonisothermal flow. The benchmark is defined on a web page, which also shows about 50 different benchmark tests with studies of e.g. grid dependence, numerical schemes, different source codes, different turbulence models, RANS or LES, different turbulence levels...... in a supply opening, study of local emission and study of airborne chemical reactions. Therefore the web page is also a collection of information which describes the importance of the different elements of a CFD procedure. The benchmark is originally developed for test of two-dimensional flow, but the paper...

  10. Application of Chimera Navier-Stokes Code for High Speed Flows

    Science.gov (United States)

    Ajmani, Kumud

    1997-01-01

    The primary task for this year was performed in support of the "Trailblazer" project. The purpose of the task was to perform an extensive CFD study of the shock boundary-layer interaction between the engine-diverters and the primary body surfaces of the Trailblazer vehicle. Information gathered from this study would be used to determine the effectiveness of the diverters in preventing the boundary-layer coming off of the vehicle forebody from entering the main engines. The PEGSUS code was used to define the "holes" and "boundaries" for each grid. Two sets of CFD calculations were performed.Extensive post-processing of the results was performed.

  11. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    International Nuclear Information System (INIS)

    Cho, Y J; Zullah, M A; Faizal, M; Lee, Y H; Choi, Y D

    2012-01-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  12. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    Science.gov (United States)

    Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.

    2012-11-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  13. Investigation of Navier-Stokes Code Verification and Design Optimization

    Science.gov (United States)

    Vaidyanathan, Rajkumar

    2004-01-01

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization

  14. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  15. Development of flow network analysis code for block type VHTR core by linear theory method

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-01-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  16. Results from a CFD reference study into the modelling of heat and smoke transport by different CFD-practitioners

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.

    2009-01-01

    The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different

  17. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  18. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  19. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  20. CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoonhan; Lee, Jekyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa Univ. of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2013-05-15

    The research team is conducting a S-CO{sub 2} pump experiment to obtain fundamental data for the advanced pump design and measure the overall performance of the pump near the critical point. The S-CO{sub 2} pump testing loop configuration is similar to SNL and JAEA testing loop while the operating conditions and focus of experiment are different from other test facilities. This paper presents the methodology of a 3-dimensional flow analysis for the S-CO{sub 2} pump by using the commercial CFD code. In Figure 2, the results at the 1.5kg/s mass flow rate seems to be close agreement between the CFD efficiency and S-CO{sub 2} test results. In the low mass flow rate of 1.0kg/s, CFD predicted 17∼25% higher efficiency than the test result. In the real test facility, the steel structure of pump is not an adiabatic wall and also the mechanical losses such as suction, blade loading and leakage exist in the pump. The reason why CFD analysis showed higher pump efficiency at the low mass flow is the above mentioned losses were excluded from the model. However, as the mass flow rate increases these have less effect on the efficiency. If the heat transfer through the structure and pump losses are applied in the analysis, other losses can be estimated. From the S-CO{sub 2} pump experiment, more data will be obtained and compared to the CFD analyses under the methodology presented in this paper. After the fluid behavior in the pump are well understood, these analysis results will be used for optimizing impeller for advanced S-CO{sub 2} compressor design in the future. However, it is very encouraging that even at very small mass flow rate the efficiency of S-CO{sub 2} pump near the critical point operation is very high compared to the manufacturer water test. The reason behind such phenomenon will be more carefully studied in the future.

  1. CFD modeling of the IRIS pressurizer dynamic

    International Nuclear Information System (INIS)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  2. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  3. CFD Study of Turbo-Ramjet Interactions in Hypersonic Airbreathing Propulsion System

    Science.gov (United States)

    Chang, Ing; Hunter, Louis G.

    1996-01-01

    Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually involve turbo-ramjet configurations. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. In the first phase of our study, an over/under nozzle configuration was analyzed. The two plumes from the turbojet and ramjet interact at the end of a common 2-D cowl, where they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. For the problem analyzed, the turbojet engine operates at a higher nozzle pressure ratio than the ramjet, causes the turbojet plume overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data were used to compare with a computational fluid dynamics (CFD) study using the PARC2D code. The CFD results were in good agreement with both static pressure distributions on the cowl separator and on nozzle walls. The thrust coefficients were also in reasonable agreement. In addition, inviscid relationships were developed around the confluence point, where the two exhaust jets meet, and these results compared favorably with the CFD results. In the second phase of our study, a 3-D CFD solution was generated to compare with the 2-D solution. The major difference between the 2-D and 3-D solutions was the interaction of the shock waves, generated by the plume interactions, on the sidewall. When a shock wave interacts with a sidewall and sidewall boundary layer, it is called a glancing shock sidewall interaction. These interactions entrain boundary layer flow down the shockline into a vortical flow pattern. The 3-D plots show the streamlines being entrained down the shockline. The pressure of the flow

  4. CFD investigations of natural circulation between the RPV and the cooling pond of VVER-440 type reactors in incidental conditions during maintenance performed with the code CFX-4.3

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.

    2002-01-01

    During the annual maintenance of the VVER-440 type reactors, the RPV, the cooling pond and the transfer pond form a connected flow domain. The reactor is cooled by the natural circulation, which develops in one or two main loops. The cooling pond has its own cooling loops. CFD calculations have been performed with the CFX-4.3 code to investigate whether it is possible to cool the reactor core in case the main loops are lost and other emergency systems are not available. The results point out that the cooling system of the cooling pond is not capable of cooling the reactor core with the present connection. Therefore, modifications of the cooling system are investigated which would make it suitable for removing the remanent heat from the core.(author)

  5. Validation of CFD-methods to predict heat transfer and temperatures during the transport and storage of casks under a cover

    International Nuclear Information System (INIS)

    Leber, A.; Graf, W.; Hueggenberg, R.

    2004-01-01

    With respect to the transport of casks for radioactive material, the proof of the safe heat removal can be accomplished by validated calculation methods. The boundary conditions for thermal tests for type B packages are specified in the ADR based on the regulations defined by the International Atomic Energy Agency. The varying boundary conditions under transport or storage conditions are based on the varying thermal conditions true for different cask types. In most cases the cask will be transported in lying position under a cover (e.g. canopy or tarpaulin) and stored in standing position in an array with other casks. The main heat transport mechanisms are natural convection and thermal radiation. The cover or the storage building are furnished with vents that create an air flow, which will improve the natural convection. Depending on the thermal boundary conditions, the cask design and the heat power, about 50 - 95% of the heat power will be removed from the finned cask surface by natural convection. Consequently the convection by air flow is the main heat transport mechanism. The air flow can be approximated with analytical methods by solving the integral heat and flow balances for the domain. In a stationary state the overpressure due the buoyancy and the pressure loss in the flow resistances are equal. Based on the air flow, the relevant temperatures of the cask can be calculated in an iterative process. Due to the fast development of numerical calculation methods and computer hardware, the use of Computational- Fluid-Dynamics(CFD) calculations plays an important role. CFD-calculations are based on solving the equations of conservation (Navier-Stokes equations) using a finite element mesh or a finite volume mesh of the model. For a finned cask lying under a cover, where the main contributing element for heat removal is natural convection in combination with the thermal radiation, a CFD-calculation can be the most appropriate method. Common CFD-Codes are FLUENT

  6. CFD simulation of two-sail interaction about a sailing yacht; Sailing Yacht no niyoku kansho no CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Miyata, H.; Sato, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-06-01

    Numerical analysis of sail characteristics was done by the finite volume method for an IACC class racing yacht, in compliance to the WISDAM-7 method for analyzing flow fields around the hull. The simulation code makes discrete the Navier-Stokes equation for non-compressive fluid in a conserved system by the finite volume method, and tries to find the solutions following the algorithm of the MAC method in a time-dependent manner. The H-H grids generated by an interface boundary technique for each sail are integrated for the two-sail configuration. It is found that combination of the finite volume method and grid integration is an adequate CFD procedure for simulation of interactions between the two sails. Performance of two-sail configuration, involving complex mechanisms such as interactions and separation of flows, is found by the method in which viscosity is taken into consideration. 5 refs., 20 figs., 3 tabs.

  7. Benchmark and parametric study of a passive flow controller (fluidic device) for the development of optimal designs using a CFD code

    International Nuclear Information System (INIS)

    Lim, Sang-Gyu; Lee, Seok-Ho; Kim, Han-Gon

    2010-01-01

    A passive flow controller or a fluidic device (FD) is used for a safety injection system (SIS) for efficient use of nuclear reactor emergency cooling water since it can control the injection flow rate in a passive and optimal way. The performance of the FD is represented by pressure loss coefficient (K-factor) which is further affected by the configuration of the components such as a control port direction and a nozzle angle. The flow control mechanism that is varied according to the water level inside a vortex chamber determines the duration of the safety injection. This paper deals with a computational fluid dynamics (CFD) analysis for simulating the flow characteristics of the FD using the ANSYS CFX 11.0. The CFD analysis is benchmarked against existing experimental data to obtain applicability to the prediction of the FD performance in terms of K-factor. The CFD calculation is implemented with Shear Stress Transport (SST) model for a swirling flow and a strong streamline curvature in the vortex chamber of the FD, considering a numerical efficiency. Based on the benchmark results, parametric analyses are performed for an optimal design of the FD by varying the control port direction and the nozzle angle. Consequently, the FD performance is enhanced according to the angle of the control port nozzle.

  8. Application of computational fluid dynamics (CFD) to nuclear applications

    International Nuclear Information System (INIS)

    Brewster, R. A.; Jonnavithula, S.; Rizwan-Uddin; Rock, D. T.; Weber, D. P.; Wei, T. Y. C.

    1999-01-01

    Detailed analysis of a quarter channel was performed using VIPRE and CFX. Results show that VIPRE and CFX agree closely in both cross-sectionally averaged axial temperature and cross-sectionally averaged axial velocity profiles. Detailed temperature distributions in the radial direction over 1mm from the clad surface towards the center of the channel were calculated using CFX, showing significant local variation. This information can be used for example, to determine if this temperature will lead to bubble nucleation. Quarter subassembly calculations were made with both VIPRE and STAR-CD. Comparison between the solutions show that the two codes yield very similar solutions under comparable conditions. However, the STAR-CD CFD calculation provides the analyst with much more detailed flow and temperature distributions than can be predicted by a one-dimensional code such as VIPRE. In addition, a 60 million cell one-eighth reactor core calculation was made using STAR-CD. This analysis showed the importance of accurately predicting the flow and temperature fields in all assemblies simultaneously with modern parallel processing technology, practical turnaround for these types of calculation can be obtained

  9. Prediction of fire growth on furniture using CFD

    Science.gov (United States)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  10. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the phenomena by steam flow experiment and CFD calculation

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2006-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop improvements by Computational Fluid Dynamics (CFD) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the way to prevent the pressure fluctuations by experiments and CFD calculations. But, as we used air as a working fluid in our previous research instead of steam that is used in the power plant, we couldn't consider effects of condensation and difference of change of the quantity of state between air and steam. In this report, we have conducted steam flow experiments by multi-purpose steam experiment apparatus 'WISSH' and CFD calculations by steam flow code 'MATIS-SC' to clarify those effects. As a result, in the middle opening condition, we have observed rotating pressure fluctuations in the experiment and valve-attached flow and local high-pressure region in the CFD result. These results show the pressure fluctuations in steam experiments and CFD is same kind of the fluctuations found in air experiment and CFD. (author)

  11. The Dalles Dam, Columbia River: Spillway Improvement CFD Study

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.

    2006-06-01

    This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model

  12. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    International Nuclear Information System (INIS)

    Puragliesi, R.; Zhou, L.; Zerkak, O.; Pautz, A.

    2016-01-01

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  13. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland); Zhou, L. [Science and Technology on Reactor System Design Technology Laboratory, NPIC, Chengdu (China); Zerkak, O.; Pautz, A. [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland)

    2016-04-15

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  14. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  15. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  16. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  17. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  18. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    Science.gov (United States)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  19. CFD simulation of subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2001-01-01

    An increased interest to numerically simulate the subcooled flow boiling at low pressures (1 to 10 bar) has been aroused in recent years, pursued by the need to perform safety analyses of research nuclear reactors and to investigate the sump cooling concept for future light water reactors. In this paper the subcooled flow boiling has been simulated with a multidimensional two-fluid model used in a CFX-4.3 computational fluid dynamics (CFD) code. The existing model was adequately modified for low pressure conditions. It was shown that interfacial forces, which are usually used for adiabatic flows, need to be modeled to simulate subcooled boiling at low pressure conditions. Simulation results are compared against published experimental data [1] and agree well with experiments.(author)

  20. Validation process of ISIS CFD software for fire simulation

    International Nuclear Information System (INIS)

    Lapuerta, C.; Suard, S.; Babik, F.; Rigollet, L.

    2012-01-01

    Fire propagation constitutes a major safety concern in nuclear facilities. In this context, IRSN is developing a CFD code, named ISIS, dedicated to fire simulations. This software is based on a coherent set of models that can be used to describe a fire in large, mechanically ventilated compartments. The system of balance equations obtained by combining these models is discretized in time using fractional step methods, including a pressure correction technique for solving hydrodynamic equations. Discretization in space combines two techniques, each proven in the relevant context: mixed finite elements for hydrodynamic equations and finite volumes for transport equations. ISIS is currently in an advanced stage of verification and validation. The results obtained for a full-scale fire test performed at IRSN are presented.

  1. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  2. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  3. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  4. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    Science.gov (United States)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  5. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    Directory of Open Access Journals (Sweden)

    Naeimi Hessamedin

    2011-01-01

    Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.

  6. The Role of CFD Simulation in Rocket Propulsion Support Activities

    Science.gov (United States)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  7. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  8. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias

    2008-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow

  9. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias

    2007-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)

  10. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2008-03-15

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.

  11. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.

    Science.gov (United States)

    Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P Worth

    2015-10-01

    CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.

  12. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  13. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  14. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  15. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation

    International Nuclear Information System (INIS)

    Besagni, Giorgio; Mereu, Riccardo; Chiesa, Paolo; Inzoli, Fabio

    2015-01-01

    Highlights: • We validate a CFD approach for a convergent nozzle ejector using global and local measurement. • We evaluate seven RANS turbulence models for convergent nozzle ejector. • We introduce a lumped parameter model for on-design and off-design ejector performance evaluation. • We analyze the relationship between local flow behavior and lumped parameters of the model. • We discuss how to improve predicting capabilities of the model by variable parameters calibrated on CFD simulations. - Abstract: This paper presents an Integrated Lumped Parameter Model-Computational Fluid-Dynamics approach for off-design ejector performance evaluation. The purpose of this approach is to evaluate the entrainment ratio, for a fixed geometry, in both on-design and off-design operating conditions. The proposed model is based on a Lumped Parameter Model (LPM) with variable ejector component efficiencies provided by CFD simulations. The CFD results are used for developing maps for ejector component efficiencies in a broad range of operating conditions. The ejector component efficiency maps couple the CFD and the LPM techniques for building an Integrated LPM-CFD approach. The proposed approach is demonstrated for a convergent nozzle ejector and the paper is structured in four parts. At first, the CFD approach is validated by global and local data and seven Reynolds Averaged Navier Stokes (RANS) turbulence models are compared: the k–ω SST showed good performance and was selected for the rest of the analysis. At second, a Lumped Parameter Model (LPM) for subsonic ejector is developed and the ejector component efficiencies have been defined. At third, the CFD approach is used to investigate the flow field, to analyze its influence on ejector component efficiencies and to propose efficiency correlations and maps linking ejector component efficiencies and local flow quantities. In the last part, the efficiency maps are embedded into the lumped parameter model, thus creating

  16. Steady-state CFD modelling and experimental analysis of the local microclimate in Dubai (UAE

    Directory of Open Access Journals (Sweden)

    Fatima Syeda Firdaus

    2017-01-01

    Full Text Available Rapid urban growth and development over the past few years in Dubai has increased the rate at which the mean maximum temperatures are rising. Progressive soaring temperatures have greater effect of heat islands that add on to the high cooling demands. This work numerically explicated the effect of HIs in a tropical desert climate by adopting Heriot-Watt University Dubai Campus (HWUDC as a case study. The study analysed thermal flow behaviour around the campus by using Computational Fluid Dynamics (CFD as a numerical tool. The three dimensional Reynolds-Averaged Navier–Stokes (RANS equations were solved under FLUENT commercial code to simulate temperature and wind flow parameters at each discretised locations. Field measurements were carried out to validate the results produced by CFD for closer approximation in the representation of the actual phenomenon. Results established that the air temperature is inversely proportional to wind velocity. Hotspots were formed in the zone 1 and 3 region with a temperature rise of 9.1% that caused a temperature increase of 2.7 °C. Observations illustrated that the building configuration altered the wind flow pattern where the wind velocity was higher in the zone 2 region. Findings determined increase in the sensible cooling load by 19.61% due to 1.22 °C temperature rise. This paper highlighted the application of CFD in modelling an urban micro-climate and also shed light into future research development to quantify the HIs.

  17. Development of a GUI Based Front End for Open Source CFD Program, OpenFOAM

    International Nuclear Information System (INIS)

    Han, Samhee; Lee, Youngjin; Kim, Hyongchol; Park, Sunbyung; Kim, Hyunjik

    2013-01-01

    OpenFOAM is sorely lacking in user friendliness as it runs in console mode under Li nux. Run F OAM was developed to greatly simplify the task of running an OpenFOAM calculation under Windows OS. Run F OAM was written using Delphi object pascal language, and GLScene package was used for the 3D graphics. Verification of Run F OAM was carried out by performing some OpenFOAM CFD calculations provided in OpenFOAM package, and these showed that the use of Run F OAM is simple whilst providing sufficient allowances in user modifications. Run F oam, a GUI based front end program to simplify running Open Foam CFD cases, has been developed. By incorporating numerous GUI in the program, Run F oam has demonstrated that running an Open Foam case can be easily accomplished. There is a potential for further development as the Open Foam has the great advantage of being free to develop and to use. There is also a potential to couple or interface the Open Foam with the systems analysis code such as Relap5

  18. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  19. CFD-supported development of small-scale biomass furnaces; CFD-gestuetzte Entwicklung von Biomassefeuerungen im kleinen Leistungsbereich

    Energy Technology Data Exchange (ETDEWEB)

    Scharler, R. [Bios Bioenergiesystem GmbH, Graz (Austria); Obernberger, I. [Technische Univ. Eindhoven (Netherlands). Thermochemische Biomassekonversion; Weissinger, A. [Oesterreichische Kraft und Waerme aus Biomasse GmbH (KWB), St. Margarethen/Raab (Austria). Bereich Forschung und Entwicklung; Schmidt, W. [Oesterreichische Kraft und Waerme aus Biomasse GmbH (KWB), St. Margarethen/Raab (Austria). Bereich Produktentwicklung, Umwelt- und Informationsmanagement

    2005-07-01

    Despite the complexity of solid biomass combustion, the Bios Bioenergiesysteme GmbH, Graz, Austria, has successfully developed and optimised several biomass furnaces in the range of 500 kW to 30 MW based on CFD (Computational Fluid Dynamics). A project carried out in co-operation with the KWB Kraft und Waerme aus Biomasse GmbH, St. Margarethen, Austria, demonstrates the application of CFD for the efficient and improved design of small-scale furnaces for solid biofuels like pellets and wood chips as basis for a series production. (orig.)

  20. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.

    2004-06-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)

  1. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  2. CFD investigation of nucleate boiling in non-circular geometries at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Thakrar, R., E-mail: rkt08@imperial.ac.uk; Murallidharan, J.; Walker, S.P.

    2017-02-15

    Highlights: • Blind CFD benchmark of high-pressure boiling test case in rectangular geometry. • Influence of turbulence, wall boiling, interfacial area transport and lift force modelling examined. • Good agreement of the area-averaged void with the most mechanistic approaches. • Transition from wall to core void peaking due to regime transition captured only in part. - Abstract: Boiling flows are commonplace in the nuclear industry. Computational Fluid Dynamics (CFD) is slowly beginning to be used to deliver the relevant two-phase thermal hydraulic analyses required for nuclear applications. This paper presents a blind assessment of the capabilities of the commercial CFD code STAR-CCM+ against measurements for a vertically upward mildly subcooled boiling flow approaching saturation in a rectangular channel at a pressure of 41 bar. The available measurements comprised transverse distributions and cross-sectional area averages of void fraction at numerous axial positions along the channel. The predictive ability of several combinations of turbulence, wall heat flux partitioning, interfacial area transport and lift force models was tested. In general, good agreement was obtained for the area-averaged void, with the most mechanistic modelling combination reproducing the measurements accurately. Reasonable agreement was also observed for the distributions of transverse void, however this agreement could not be maintained beyond the channel entrance. The transition from near-wall to core void peaking exhibited in the experiments, attributable presumably to a bubbly to churn-turbulent flow regime transition, could not be reproduced accurately with any of the modelling combinations used, and the basic qualitative trend was captured only in part. Suggestions for future investigation are outlined subsequently.

  3. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    International Nuclear Information System (INIS)

    Varela, J.; Bercebal, D.

    1999-01-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs

  4. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)

    2000-07-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.

  5. Progress of IRSN R&D on ITER Safety Assessment

    Science.gov (United States)

    Van Dorsselaere, J. P.; Perrault, D.; Barrachin, M.; Bentaib, A.; Gensdarmes, F.; Haeck, W.; Pouvreau, S.; Salat, E.; Seropian, C.; Vendel, J.

    2012-08-01

    The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the French "Autorité de Sûreté Nucléaire", is analysing the safety of ITER fusion installation on the basis of the ITER operator's safety file. IRSN set up a multi-year R&D program in 2007 to support this safety assessment process. Priority has been given to four technical issues and the main outcomes of the work done in 2010 and 2011 are summarized in this paper: for simulation of accident scenarios in the vacuum vessel, adaptation of the ASTEC system code; for risk of explosion of gas-dust mixtures in the vacuum vessel, adaptation of the TONUS-CFD code for gas distribution, development of DUST code for dust transport, and preparation of IRSN experiments on gas inerting, dust mobilization, and hydrogen-dust mixtures explosion; for evaluation of the efficiency of the detritiation systems, thermo-chemical calculations of tritium speciation during transport in the gas phase and preparation of future experiments to evaluate the most influent factors on detritiation; for material neutron activation, adaptation of the VESTA Monte Carlo depletion code. The first results of these tasks have been used in 2011 for the analysis of the ITER safety file. In the near future, this R&D global programme may be reoriented to account for the feedback of the latter analysis or for new knowledge.

  6. A CFD Case Study of a Fan Stage with Split Flow Path Subject to Total Pressure Distortion Inflow

    Science.gov (United States)

    To, Wai-Ming

    2017-01-01

    This report is the documentation of the work performed under the Hypersonic Project of the NASA's Fundamental Aeronautics Program. It was funded through Task Number NNC10E444T under GESS-2 Contract NNC06BA07B. The objective of the task is to develop advanced computational tools for the simulation of multi-stage turbomachinery in support of aeropropulsion. This includes work elements in extending the TURBO code and validating the multi-stage URANS (Unsteady Reynolds Averaged Navier Stokes) simulation results with the experimental data. The unsteady CFD (Computation Fluid Dynamics) calculations were performed in full wheel mode with and without screen generated total pressure distortion at the computational inflow boundary, as well as in single passage phase lag mode for uniform inflow. The experimental data were provided by NASA from the single stage RTA (Revolutionary Turbine Accelerator) fan test program.Significant non-uniform flow condition at the fan-face of the aeropropulsion system is frequentlyencountered in many of the advanced aerospace vehicles. These propulsion systems can be eithera podded or an embedded design employed in HWB (Hybrid Wing Body) airframe concept. It isalso a topic of interest in military applications, in which advanced air vehicles have already deployedsome form of embedded propulsion systems in their design because of the requirementsof compact and low observable inlets. Even in the conventional airframe/engine design, the fancould operate under such condition when the air vehicle is undergoing rapid maneuvering action.It is believed that a better understanding of the fan’s aerodynamic and aeromechanical responseto this type of operating condition or off design operation would be beneficial to designing distortiontolerant blades for improved engine operability.The objective for this research is to assess the capability of turbomachinery code as an analysistool in understanding the effects and evaluating the impact of flow distortion

  7. CFD Calculation of Internal Natural Convection in the Annulus between Horizontal Concentric Cylinders

    International Nuclear Information System (INIS)

    Francis, N.D. Jr.; Itamura, M.T.; Webb, S.W.; James, D.L.

    2002-01-01

    The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10 5 to 10 8 (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10 8 , both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations

  8. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers

    Science.gov (United States)

    Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi

    2017-10-01

    Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.

  9. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...

  10. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  11. Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement

    Directory of Open Access Journals (Sweden)

    Esmail Mahmoodi

    2015-10-01

    Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.

  12. CFD Analyses of Air-Ingress Accident for VHTRs

    Science.gov (United States)

    Ham, Tae Kyu

    -ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental

  13. CFD and thermal analysis applications at General Motors

    International Nuclear Information System (INIS)

    Johnson, J.P.

    2002-01-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  14. Validation of a CFD analysis model for the calculation of CANDU6 moderator temperature distribution

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2001-01-01

    A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada is used for the validation. Also a comparison is made between previous DFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard κ-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 .deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well

  15. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  16. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  17. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2003-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  18. CFD modelling and PIV experimental validation of flow fields in urban environments

    Directory of Open Access Journals (Sweden)

    Gnatowska Renata

    2017-01-01

    Full Text Available The problem of flow field in the urban boundary-layer (UBL in aspects of wind comfort around buildings and pollutant dispersion has grown in importance since human activity has become so intense that it started to have considerable impact on environment. The issue of wind comfort in urban areas is the result of complex interactions of many flow phenomena and for a long time it arouses a great interest of the research centres. The aim of article is to study urban atmospheric flow at the local scale, which allows for both a detailed reproduction of the flow phenomena and the development of wind comfort criteria. The proposed methodology involves the use of PIV wind tunnel experiments as well as numerical simulations (Computational Fluid Dynamics, CFD in order to enhance understanding of the flow phenomena at this particular scale in urban environments. The analysis has been performed for the 3D case of two surface-mounted buildings arranged in tandem, which were placed with one face normal to the oncoming flow. The local characteristics of flow were obtained by the use of commercial CFD code (ANSYS Fluent. The validation was carried out with reference to the PIV results.

  19. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  20. CFD simulation of air discharge tests in the PPOOLEX facility

    International Nuclear Information System (INIS)

    Tanskanen, V.; Puustinen, M.

    2008-07-01

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k ε-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  1. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  2. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  3. Depletion methodology in the 3-D whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun

    2005-02-01

    Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.

  4. A 3-D CFD approach to the mechanistic prediction of forced convective critical heat flux at low quality

    International Nuclear Information System (INIS)

    Jean-Marie Le Corre; Cristina H Amon; Shi-Chune Yao

    2005-01-01

    Full text of publication follows: The prediction of the Critical Heat Flux (CHF) in a heat flux controlled boiling heat exchanger is important to assess the maximal thermal capability of the system. In the case of a nuclear reactor, CHF margin gain (using improved mixing vane grid design, for instance) can allow power up-rate and enhanced operating flexibility. In general, current nuclear core design procedures use quasi-1D approach to model the coolant thermal-hydraulic conditions within the fuel bundles coupled with fully empirical CHF prediction methods. In addition, several CHF mechanistic models have been developed in the past and coupled with 1D and quasi-1D thermal-hydraulic codes. These mechanistic models have demonstrated reasonable CHF prediction characteristics and, more remarkably, correct parametric trends over wide range of fluid conditions. However, since the phenomena leading to CHF are localized near the heater, models are needed to relate local quantities of interest to area-averaged quantities. As a consequence, large CHF prediction uncertainties may be introduced and 3D fluid characteristics (such as swirling flow) cannot be accounted properly. Therefore, a fully mechanistic approach to CHF prediction is, in general, not possible using the current approach. The development of CHF-enhanced fuel assembly designs requires the use of more advanced 3D coolant properties computations coupled with a CHF mechanistic modeling. In the present work, the commercial CFD code CFX-5 is used to compute 3D coolant conditions in a vertical heated tube with upward flow. Several CHF mechanistic models at low quality available in the literature are coupled with the CFD code by developing adequate models between local coolant properties and local parameters of interest to predict CHF. The prediction performances of these models are assessed using CHF databases available in the open literature and the 1995 CHF look-up table. Since CFD can reasonably capture 3D fluid

  5. Experimental investigation and CFD validation of Horizontal Air/Water slug flow

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas

    2007-01-01

    For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)

  6. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  7. Development of CFD model for augmented core tripropellant rocket engine

    Science.gov (United States)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  8. CFD Analysis of the Active Part of the HYPER Spallation Target

    International Nuclear Information System (INIS)

    Nam-il Tak; Chungho Cho; Tae-Yung Song

    2006-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target having a beam power of 15∼25 MW. The present paper focuses on the thermal-hydraulic performance of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results show the significant impact of the turbulence model on the window temperature. It is concluded that experimental verifications are very important for the design of the HYPER target. (authors)

  9. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Energy Technology Data Exchange (ETDEWEB)

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  10. Development of a GUI Based Front End for Open Source CFD Program, OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Han, Samhee; Lee, Youngjin; Kim, Hyongchol; Park, Sunbyung; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of)

    2013-05-15

    OpenFOAM is sorely lacking in user friendliness as it runs in console mode under Li nux. Run{sub F}OAM was developed to greatly simplify the task of running an OpenFOAM calculation under Windows OS. Run{sub F}OAM was written using Delphi object pascal language, and GLScene package was used for the 3D graphics. Verification of Run{sub F}OAM was carried out by performing some OpenFOAM CFD calculations provided in OpenFOAM package, and these showed that the use of Run{sub F}OAM is simple whilst providing sufficient allowances in user modifications. Run{sub F}oam, a GUI based front end program to simplify running Open Foam CFD cases, has been developed. By incorporating numerous GUI in the program, Run{sub F}oam has demonstrated that running an Open Foam case can be easily accomplished. There is a potential for further development as the Open Foam has the great advantage of being free to develop and to use. There is also a potential to couple or interface the Open Foam with the systems analysis code such as Relap5.

  11. Case studies from the REHVA CFD guide book

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building.......This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building....

  12. Investigation of piston bowl geometry and speed effects in a motored HSDI diesel engine using a CFD against a quasi-dimensional model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Kosmadakis, G.M.; Pariotis, E.G.

    2010-01-01

    The present work investigates the effect of varying the combustion chamber geometry and engine rotational speed on the gas flow and temperature field, using a new quasi-dimensional engine simulation model in conjunction with an in-house developed computational fluid dynamics (CFD) code served to validate the predicted in-cylinder flow field and gas temperature distribution calculated by the quasi-dimensional model, for three alternative piston bowl geometries and three rotational speeds. This CFD code can simulate three-dimensional curvilinear domains using the finite volume method in a collocated grid; it solves the generalized transport equation for the conservation of mass, momentum and energy, and incorporates the standard k-ε turbulence model with some slight modifications to introduce the compressibility of a fluid in generalized coordinates. On the other hand, the quasi-dimensional model solves the general transport equation for the conservation of mass and energy by a finite volume method throughout the entire in-cylinder volume, while for the estimation of the flow field a new simplified three dimensional air motion model is used. To compare these two models the in-cylinder spatial and temporal temperature distribution, the mean cylinder pressure diagram, as well as the mean in-cylinder radial and axial velocity are examined, for the three piston bowl geometries and the three speeds, for a high speed direct injection (HSDI) diesel engine operating under motoring conditions. From the comparison of calculated results, it becomes apparent that the two models predict similar in-cylinder temperature distributions and mean air velocity fields at each crank angle, for all cases examined. Thus, it is shown that the quasi-dimensional model with the proposed simplified air motion model is capable of capturing the physical effect of combustion chamber geometry and speed on the in-cylinder velocity and temperature field, while needing significantly lower computing

  13. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  14. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  15. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  16. Calibration of the CAFE-3D fire code with controlled indoor fire data

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Khalil, I.; Suo-Anttila, A.

    2004-01-01

    The Container Analysis Fire Environment (CAFE) code contains a computational fluid dynamics (CFD) based fire model that has been successfully coupled to standard finite element computer codes. This coupling of CFD and finite element codes allows for a more realistic modeling of the thermal performance of objects engulfed in fire, which aids in the design and risk analysis of radioactive material packages. The CAFE fire model is based on a three-dimensional finite volume formulation of basic fire chemistry and fluid dynamics. This fire model includes a variable-density primitive-variable formulation of mass, momentum, energy and species equations. Multiple chemical species and soot formation are included in the combustion model. Thermal radiation is modeled as diffusive radiation transport inside the flame zone and as view-factor radiation outside the flame zone. Turbulence is modeled with an eddy diffusivity model. The soot model is coupled to the diffusive radiation formulation using the Rosseland approximation and the optical properties of soot. In order to verify and improve the accuracy of computers codes, they should be benchmarked against test data. This paper describes a set of experiments that were performed at the Fire Laboratory for Accreditation of Modeling by Experiment (FLAME) fire facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The paper also describes how the data collected from the experiments was used to calibrate and benchmark the CAFE-3D fire code. Detailed description of the tests performed and comparisons between the calculated results and the collected data from the experiments are provided

  17. Enhancement of Pre-and Post-Processing Capability of the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Ik Kyu; Yoon, Hanyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    To simulate heat transfer and fluid flow in a field with a complicated geometry, an unstructured mesh is popularly used. Most commercial CFD (Computational Fluid Dynamics) solvers are based on an unstructured mesh technology. An advantage of using unstructured meshes for a field simulation is reduced man-hours by automatic mesh generation compared to a traditional structured mesh generation, which requires a huge amount of man-hours to discretized a complex geometry. Initially, unstructured meshes that can be generated automatically are limited to regular cell elements such as tetrahedron, pyramid, prism, or hexahedron. The multi-dimensional multi-phase flow solver, CUPID, has been developed in the context of an unstructured mesh finite volume method (FVM). Its numerical formulation and programming structure is independent of the number of faces surrounding the computational cells. Thus, it can be easily extended into polyhedral unstructured meshes. In this study, new tools for enhancing the pre- and post-processing capabilities of CUPID are proposed. They are based on an open-source CFD tool box OpenFOAM. A goal of this study is an extension of the applicability of the CUPID code by improving the mesh and solution treatment of the code.

  18. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  19. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  20. Evaluation of Effective thermal conductivity models on the prismatic fuel block of a Very High Temperature Reactor by CFD analysis

    International Nuclear Information System (INIS)

    Shin, Dong-Ho; Cho, Hyoung-Kyu; Tak, Nam-Il; Park, Goon-Cherl

    2014-01-01

    Effective thermal conductivity models which can be used to analyze the heat transfer phenomena of a prismatic fuel block were evaluated by CFD analysis. In the accident condition of VHTR when forced convection is lost, the heat flows in radial direction through the hexagonal fuel blocks that contain the large number of coolant holes and fuel compacts. Due to the complex geometry of fuel block and radiation heat transfer; the detail heat transfer computation on the fuel block needs excessive computation resources. Therefore, the detail computation isn’t appropriate for the lumped parameter code. The system code such as GAMMA+ adopts effective thermal conductivity model. Despite the complexity in heat transfer modes, the accurate analysis on the heat transfer in fuel block is necessary since it is directly relevant to the integrity of nuclear fuel embedded in fuel block. To satisfy the accurate analysis of complex heat transfer modes with limited computing sources, the credible effective thermal conductivity (ETC) models in which the effects of all of heat transfer modes are lumped is necessary. In this study, various ETC models were introduced and they are evaluated with CFD calculations. It is estimated that Maxwell-based model was the most pertinent one among the introduced ETC models. (author)

  1. Validation of CFD/Heat Transfer Software for Turbine Blade Analysis

    Science.gov (United States)

    Kiefer, Walter D.

    2004-01-01

    I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these

  2. Coupling of the core simulator DYN3D with the CFD solver TrioU and its application to a Main Steamline Break scenario

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Alexander; Gommlich, Andre; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    In the framework of the European project NURESAFE, the reactor dynamics code DYN3D developed at HZDR was coupled with the CFD solver TrioU from CEA France. This coupling was used to simulate the coolant mixing in the reactor pressure vessel and in the core during a Main Steamline Break (MSLB) accident and to study its effect on the reactor power.

  3. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  4. The Brent Contract for Differences (CFD)

    International Nuclear Information System (INIS)

    Barrera-Rey, F.; Seymour, A.

    1996-01-01

    The market for Brent Contracts-for-Differences (CFDs) emerged as early as 1988 but its significant development did not occur until 1992. By financial market standards, however, this span of life is fairly long. Yet the characteristics and role of this oil trading instrument have not been seriously studied. This study aims at filling a gap in research on the Brent market complex which includes spot trades, a 15-day forward and futures contracts, various derivatives and, finally, the less well documented CFD. Chapters 2 and 3 aim to describe and explain the characteristics of the CFD market, in particular the evolution in contract terms and the composition of participants. (UK)

  5. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    Science.gov (United States)

    Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno

    2018-01-01

    CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  6. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    Directory of Open Access Journals (Sweden)

    Clamens Olivier

    2018-01-01

    Full Text Available CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  7. Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications - Revision

    International Nuclear Information System (INIS)

    Mahaffy, J.; Chung, B.; Song, C.; Dubois, F.; Graffard, E.; Ducros, F.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Smith, B.L.; Watanabe, T.; Zigh, G.

    2015-01-01

    This document is intended to provide an internally complete set of guidelines for a range of single phase applications of CFD to NRS problems. However, it is not meant to be comprehensive. We recognize that for any specific application a higher level of specificity is possible on questions of nodalization, model selection, and validation. This document should provide direct guidance on the key considerations in known single phase applications, and general directions for resolving remaining details. After review of other Best Practice Guidelines, and discussion with many CFD practitioners and developers, we have assembled guidance covering a fully verified and validated NRS analysis. The document begins with a summary of NRS related CFD analysis in countries represented by the authors, to give a feeling for the existing range of experience. Some key terminology in the field is defined in the field. These definitions are not meant simply for novices, but also provide experienced users with an understanding of how some terms (e.g. verification and validation) are used within this document. Chapter 3 deals with definition of the problem and its solution approach. This includes isolation of the portion of the NRS problem most in need of CFD, and use of a classic thermal-hydraulic (TH) safety code to provide boundary conditions for the CFD based upon less detailed simulation of the balance of plant. The chapter discusses the Phenomena Identification and Ranking Table (PIRT) process, which identifies phenomena critical to the problem, provides a basis for selection of an appropriate simulation tool, and establishes the foundation for the validation process needed for confidence in final results. The chapter also discusses theory and modelling needs associated with a number of special phenomena important to NRS but not commonly modelled in the CFD community. Chapter 5 discusses selection of physical models available as user options. As is appropriate for single phase CFD

  8. The difficult challenge of a two-phase CFD modelling for all flow regimes

    International Nuclear Information System (INIS)

    Bestion, D.

    2014-01-01

    Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The

  9. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  10. Analysis CFD for the hydrogen transport in the primary containment of a BWR

    International Nuclear Information System (INIS)

    Jimenez P, D. A.; Del Valle G, E.; Gomez T, A. M.

    2014-10-01

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  11. A comparative study of MATRA-LMR/FB with CFD on a fuel assembly in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin; Chang, Won-Pyo; Jeong, Jae-Ho; Ha, Kwi-Seok; Lee, Kwi-Lim; Lee, Seung Won; Choi, Chiwoong; Ahn, Sang-Jun [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Some of its models were modified to be eligible for the analysis of the SFR sub-channel blockage with the wire-wrapped pins. The wire-forcing-function used in the MATRA-LMR, which allocates a forced flow with an empirical correlation for the flow effect of the wire-wrap, was replaced with the Distributed Resistance Model. The Distributed Resistance Model has generally been believed to represent the effect more realistically than the wire-forcing-function. A semi-implicit numerical method was applied to resolve a flow reversal problem, which could not be handled by the former fully implicit method. A code-to-code comparison study was also performed as part of an effort to supplement the qualification. Although MATRA-LMR-FB was qualified based on available experimental data including a code-to-code comparative analysis, it was still hard to say that the level of confidence was enough to apply it to the SFR design with full satisfaction. Additional studies are therefore needed to supplement the qualification of MATRA-LMR-FB. In this study, a code-to-code comparative study was conducted as part of an effort to supplement the qualification of MATRA-LMR-FB. The comparison between MATRA-LMR-FB and the CFD code, CFX, was carried out on a 91-pin fuel assembly based on a 217 pin fuel assembly in a PGSFR to assess the MATRA-LMR-FB prediction capability.

  12. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?

    Science.gov (United States)

    Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent

    2017-07-01

    Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  14. Wind Loads on Ships and Offshore Structures Estimated by CFD

    DEFF Research Database (Denmark)

    Aage, Christian; Hvid, S.L.; Hughes, P.H.

    1997-01-01

    Wind loads on ships and offshore structures could until recently be determined only by model tests, or by statistical methods based on model tests. By the development of Computational Fluid Dynamics or CFD there is now a realistic computational alternative available. In this paper, wind loads...... on a seagoing ferry and on a semisubmersible offshore platform have been estimated by CFD. The results have been compared with wind tunnel model tests and, for the ferry, a few full-scale measurements, and good agreement is obtained. The CFD method offers the possibility of a computational estimate of scale...... effects related to wind tunnel model testing. An example of such an estimate on the ferry is discussed. Due to the time involved in generating the computational mesh and in computing the solution, the CFD method is not at the moment economically competitive to routine wind tunnel model testing....

  15. Cross cutting CFD support to innovative reactor design

    International Nuclear Information System (INIS)

    Roelofs, Ferry

    2009-01-01

    Several innovative technologies are under consideration in the world for nuclear energy production. The considered reactor systems apply either gas, sodium, lead, lead-bismuth, supercritical water, or molten salt as coolant. Therefore, methods shall be developed to determine the viability of such systems, but also to support the design of these innovative reactor systems. Computational Fluid Dynamics (CFD) is becoming more and more integrated in the daily practice of thermal-hydraulics researchers and designers. Therefore, it is very important to develop modelling approaches for the application of CFD to the specific requirements for innovative reactors. As many of these innovative reactor designs under consideration are operated using other coolants than water, one has to be careful in adopting methods which are developed for water as a coolant. Cross-cutting CFD challenges, methods and applications are presented for innovative reactors. (author)

  16. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    Science.gov (United States)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  17. Enhancement of CFD validation exercise along the roof profile of a low-rise building

    Science.gov (United States)

    Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.

    2018-04-01

    The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.

  18. Development and validation of a CFD-based steam reformer model

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders

    2006-01-01

    Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process.  From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...

  19. Introduction into scientific work methods-a necessity when performance-based codes are introduced

    DEFF Research Database (Denmark)

    Dederichs, Anne; Sørensen, Lars Schiøtt

    The introduction of performance-based codes in Denmark in 2004 requires new competences from people working with different aspects of fire safety in the industry and the public sector. This abstract presents an attempt in reducing problems with handling and analysing the mathematical methods...... and CFD models when applying performance-based codes. This is done within the educational program "Master of Fire Safety Engineering" at the department of Civil Engineering at the Technical University of Denmark. It was found that the students had general problems with academic methods. Therefore, a new...

  20. New CFD tools to evaluate nasal airflow.

    Science.gov (United States)

    Burgos, M A; Sanmiguel-Rojas, E; Del Pino, C; Sevilla-García, M A; Esteban-Ortega, F

    2017-08-01

    Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. As currently CFD is not a usual tool for rhinologists, a group of engineers in collaboration with experts in Rhinology have developed a very intuitive CFD software. The program MECOMLAND ® only required snapshots from the patient's cross-sectional (tomographic) images, being the output those results originated by CFD, such as airflow distributions, velocity profiles, pressure, temperature, or wall shear stress. This is useful complementary information to cover diagnosis, prognosis, or follow-up of nasal pathologies based on quantitative magnitudes linked to airflow. In addition, the user-friendly environment NOSELAND ® helps the medical assessment significantly in the post-processing phase with dynamic reports using a 3D endoscopic view. Specialists in Rhinology have been asked for a more intuitive, simple, powerful CFD software to offer more quality and precision in their work to evaluate the nasal airflow. We present MECOMLAND ® and NOSELAND ® which have all the expected characteristics to fulfil this demand and offer a proper assessment with the maximum of quality plus safety for the patient. These programs represent a non-invasive, low-cost (as the CT scan is already performed in every patient) alternative for the functional study of the difficult rhinologic case. To validate the software, we studied two groups of patients from the Ear Nose Throat clinic, a first group with normal noses and a second group presenting septal deviations. Wall shear stresses are lower in the cases of normal noses in comparison with those for septal deviation. Besides, velocity field distributions, pressure drop between nasopharynx and the ambient, and flow rates in each nostril were different among the nasal cavities in the two groups. These software modules open up a promising future to simulate the nasal airflow behaviour in virtual surgery intervention scenarios under different pressure or

  1. CFD Modeling and Simulation in Materials Processing 2018

    OpenAIRE

    Nastac, Laurentiu; Pericleous, Koulis; Sabau, Adrian S.; Zhang, Lifeng; Thomas, Brian G.

    2018-01-01

    This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing” held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona, USA, March 11–15, 2018. This symposium dealt with computational fluid dynamics (CFD) modeling and simulation of engineering processes. The papers published in this book were requested from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The sympos...

  2. CFD Validation with a Multi-Block Experiment to Evaluate the Core Bypass Flow in VHTR

    International Nuclear Information System (INIS)

    Yoon, Su Jong; Lee, Jeong Hun; Park, Goon Cherl; Kim, Min Hwan

    2010-01-01

    Core bypass flow of Very High Temperature Reactor (VHTR) is defined as the ineffective coolant which passes through the bypass gaps between the block columns and the crossflow gaps between the stacked blocks. This flows lead to the variation of the flow distribution in the core and affect the core thermal margin and the safety of VHTR. Therefore, bypass flow should be investigated and quantified. However, it is not a simple question, because the flow path of VHTR core is very complex. In particular, since dimensions of the bypass gap and the crossflow gap are of the order of few millimeters, it is very difficult to measure and to analyze the flow field at those gaps. Seoul National University (SNU) multi-block experiment was carried out to evaluate the bypass flow distribution and the flow characteristics. The coolant flow rate through outlet of each block column was measured, but the local flow field was measured restrictively in the experiment. Instead, CFD analysis was carried out to investigate the local phenomena of the experiment. A commercial CFD code CFX-12 was validated by comparing the simulation results and the experimental data

  3. Results of a CFD benchmark for wind loads on a high-rise building

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Bentum, C.A. van; Geurts, C.P.W.

    2017-01-01

    In recent years, the use of computational fluid dynamics (CFD) to evaluate flow fields has become more popular in various branches of industry. In building design, there is a similar trend towards the increasing use of CFD. There are several guidelines for CFD analysis of flows in the urban

  4. CFD analysis of flow distribution at the core inlet of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin, E-mail: ybae@kaeri.re.kr [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Young In; Park, Cheon Tae [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2013-05-15

    Highlights: ► Core inlet flow distribution of system-integrated modular advanced reactor (SMART) is numerically investigated. ► Effects of mesh resolution, turbulence model, Reynolds number, and inflow condition are examined. ► Numerical results show that lower core support plate effectively distributes the flow at the core inlet of SMART. -- Abstract: This study numerically investigates the flow distribution at the core inlet region of the system-integrated modular advanced reactor (SMART). The single-phase turbulent flow is computed by the commercial CFD code, Fluent 12.0 on the computational domain consisting of three main parts: fuel assemblies, a lower core support plate, and a flow skirt. Simulations are carried out with different mesh resolutions, turbulence models, and upstream boundary conditions. The CFD results show that the flow distribution at the core inlet is almost identical for the two Reynolds numbers and turbulence models tested here, and the effect of mesh refinement on the flow distribution at the core inlet is negligible. It is also found that under a uniform upstream boundary condition, the maximum difference in mass flow rate between the fuel assemblies is less than 2%, while it slightly increases to 2.3% under a non-uniform condition. These results consequently indicate that the present design of the lower core support plate effectively distributes the flow at the core inlet of SMART, even when the flow discharged from the upstream has a certain degree of non-uniformity.

  5. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)

    2012-07-01

    Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)

  6. CFD applications in hypersonic flight

    Science.gov (United States)

    Edwards, T. A.

    1992-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.

  7. Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel

    International Nuclear Information System (INIS)

    Kiss, B.; Boros, I.; Aszodi, A.

    2008-01-01

    The Budapest University of Technology and Economics, Institute of Nuclear Techniques has been working since 2001 on the three-dimensional CFD model of the reactor pressure vessel of the VVER-440 type reactor. During this time period - due to the development of the available computational capacity - a very complex and detailed model of the RPV has been developed. The aim of the construction of the new model is to describe further internal structures of the RPV (e.g. correct modeling of brake tubes, or internals in the upper mixing chamber) and to perform an extensive sensitivity analysis on the different modeling and calculation parameters (e.g. porous region models vs. detailed modeling, or n different turbulence models). The new model can be applied for steady state calculation during normal operational condition and for different transient analyses as well. One interesting application is the participation in a planned benchmark exercise on the start-up of the sixth main coolant pump, which is aimed to compare the capabilities of mixing models of one-dimensional system codes with the results of CFD simulation. (authors)

  8. The difference between traditional experiments and CFD validation benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton L., E-mail: barton.smith@usu.edu

    2017-02-15

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  9. The difference between traditional experiments and CFD validation benchmark experiments

    International Nuclear Information System (INIS)

    Smith, Barton L.

    2017-01-01

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  10. Prediction of ash deposition using CFD simulation combined to thermodynamic calculation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshi Muratani; Takashi Hongo [UBE Industries, Ltd., Yamaguchi (Japan). Coal Department, Energy and Environment Division

    2007-07-01

    This study focused on the advanced ash deposition prediction using computational fluid dynamics (CFD) analysis combined to thermodynamic calculation, considering both combustion characteristics and ash fusibility. Combustion field in pulverised coal-fired boiler was calculated through the normal CFD process. As the post process of combustion calculation, ash particles were injected into the combustion field to calculate ash deposition by CFD, in which particle sticking sub-program was newly employed. In this post process, ash deposition condition for CFD calculation was defined with the ash fusibility data obtained from thermodynamic analysis. These results of ash deposition on the furnace wall showed good agreement with the plant observation. Furthermore, in order to improve the plant operation, some virtual cases were simulated, which might reduce ash deposition. 7 refs., 14 figs., 6 tabs.

  11. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  12. An interfacial shear term evaluation study for adiabatic dispersed air–water two-phase flow with the two-fluid model using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)

    2017-02-15

    Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two

  13. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  14. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  15. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  16. Development of an Aerodynamic Analysis Method and Database for the SLS Service Module Panel Jettison Event Utilizing Inviscid CFD and MATLAB

    Science.gov (United States)

    Applebaum, Michael P.; Hall, Leslie, H.; Eppard, William M.; Purinton, David C.; Campbell, John R.; Blevins, John A.

    2015-01-01

    This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event.

  17. CFD Simulations of Contaminant Transport between two Breathing Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    Experiments have shown that exhalation from one person is able to penetrate the breathing zone of another person at a distance. Computational Fluid Dynamics (CFD) is used to investigate the dependency of the personal exposure on some physical parameters, namely: Pulmonary ventilation rate......, convective heat output, exhalation temperature, and crosssectional exhalation area. Full-scale experimental results are used to calibrate/validate the CFD model....

  18. GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods.

    Directory of Open Access Journals (Sweden)

    Alejandro C Crespo

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a numerical method commonly used in Computational Fluid Dynamics (CFD to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs or Graphics Processor Units (GPUs, a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability.

  19. Comparison of two LES codes for wind turbine wake studies

    International Nuclear Information System (INIS)

    Sarlak, H; Mikkelsen, R; Sørensen, J N; Pierella, F

    2014-01-01

    For the third time a blind test comparison in Norway 2013, was conducted comparing numerical simulations for the rotor C p and C t and wake profiles with the experimental results. As the only large eddy simulation study among participants, results of the Technical University of Denmark (DTU) using their in-house CFD solver, EllipSys3D, proved to be more reliable among the other models for capturing the wake profiles and the turbulence intensities downstream the turbine. It was therefore remarked in the workshop to investigate other LES codes to compare their performance with EllipSys3D. The aim of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from the upstream rotor. From the single rotor simulations, EllipSys3D is found to predict a slower wake recovery in the case of uniform laminar flow. From the 3-rotor computations, it is seen that the difference between the codes is smaller as the disturbance created by the downstream rotors causes break down of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models

  20. CFD Analysis on the Periodic Element of a Printed Circuit Heat Exchanger

    International Nuclear Information System (INIS)

    Tak, Nam-il; Kim, Min-Hwan; Lee, Won-Jae

    2007-01-01

    A typical printed circuit heat exchanger (PCHE) is composed of a large number of flow channels with lateral corrugations. In an effort to investigate fundamental thermo-fluid characteristics of a PCHE with corrugated channels, computational fluid dynamics (CFD) analyses were previously made in. One pair of flow channels (i.e., cold and hot channels) with the entire flow path was considered for the computational domain in the previous studies. Although only one pair of flow channels with coarse meshes was used, computational loads were found to be very high to simulate the entire flow path of the PCHE. Fortunately a recent study has shown that a simplified CFD methodology with a stream wise periodic assumption (called periodic CFD analysis) is feasible for a CFD evaluation of the thermo-fluid performance of compact heat exchangers. Since the periodic CFD analysis focuses on the periodic element of a flow channel, the required computing resources are dramatically reduced. In the present paper, the periodic CFD analysis has been applied to the periodic element of the PCHE. The results are compared with those of the full elements which have an entire flow path. Based on the periodic approach the effects of the corrugation parameters on the thermo-fluid performance of the PCHE are investigated