WorldWideScience

Sample records for tomography spect imaging

  1. Single photon emission computerized tomography (SPECT)

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as 123 I and 99 Tc m that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  2. Single photon emission computerized tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as {sup 123}I and {sup 99}Tc{sup m} that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  3. SPECT and PET imaging in epilepsy

    International Nuclear Information System (INIS)

    Semah, F.

    2007-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  4. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  5. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  6. Transmission computed tomography data acquisition with a SPECT system

    International Nuclear Information System (INIS)

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  7. Quantification in single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2005-01-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena; 2 - quantification in SPECT, problems and correction methods: Attenuation, scattering, un-stationary spatial resolution, partial volume effect, movement, tomographic reconstruction, calibration; 3 - Synthesis: actual quantification accuracy; 4 - Beyond the activity concentration measurement

  8. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer.

    Science.gov (United States)

    Tomiguchi, Mai; Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fujisue, Mamiko; Shiraishi, Shinya; Inao, Touko; Murakami, Kei-ichi; Honda, Yumi; Yamashita, Yasuyuki; Iyama, Ken-ichi; Iwase, Hirotaka

    2016-02-01

    Single-photon emission computed tomography (SPECT)/computed tomography (CT) improves the anatomical identification of sentinel lymph nodes (SNs). We aimed to evaluate the possibility of predicting the SN status using SPECT/CT. SN mapping using a SPECT/CT system was performed in 381 cases of clinically node-negative, operable invasive breast cancer. We evaluated and compared the values of SN mapping on SPECT/CT, the findings of other modalities and clinicopathological factors in predicting the SN status. Patients with SNs located in the Level I area were evaluated. Of the 355 lesions (94.8 %) assessed, six cases (1.6 %) were not detected using any imaging method. According to the final histological diagnosis, 298 lesions (78.2 %) were node negative and 83 lesions (21.7 %) were node positive. The univariate analysis showed that SN status was significantly correlated with the number of SNs detected on SPECT/CT in the Level I area (P = 0.0048), total number of SNs detected on SPECT/CT (P = 0.011), findings of planar lymphoscintigraphy (P = 0.011) and findings of a handheld gamma probe during surgery (P = 0.012). According to the multivariate analysis, the detection of multiple SNs on SPECT/CT imaging helped to predict SN metastasis. The number of SNs located in the Level I area detected using the SPECT/CT system may be a predictive factor for SN metastasis.

  9. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  10. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  11. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  12. [The value of multimodal imaging by single photon emission computed tomography associated to X ray computed tomography (SPECT-CT) in the management of differentiated thyroid carcinoma: about 156 cases].

    Science.gov (United States)

    Mhiri, Aida; El Bez, Intidhar; Slim, Ihsen; Meddeb, Imène; Yeddes, Imene; Ghezaiel, Mohamed; Gritli, Saïd; Ben Slimène, Mohamed Faouzi

    2013-10-01

    Single photon emission computed tomography combined with a low dose computed tomography (SPECT-CT), is a hybrid imaging integrating functional and anatomical data. The purpose of our study was to evaluate the contribution of the SPECTCT over traditional planar imaging of patients with differentiated thyroid carcinoma (DTC). Post therapy 131IWhole body scan followed by SPECTCT of the neck and thorax, were performed in 156 patients with DTC. Among these 156 patients followed for a predominantly papillary, the use of fusion imaging SPECT-CT compared to conventional planar imaging allowed us to correct our therapeutic approach in 26.9 % (42/156 patients), according to the protocols of therapeutic management of our institute. SPECT-CT is a multimodal imaging providing better identification and more accurate anatomic localization of the foci of radioiodine uptake with impact on therapeutic management.

  13. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  14. 123I-IMP single photon emission computed tomography (SPECT) study in childhood epilepsy

    International Nuclear Information System (INIS)

    Hara, Masafumi; Shimomura, Osamu; Kojima, Akihiro; Izunaga, Hiroshi; Tomiguchi, Seiji; Hirota, Yoshihisa; Taku, Keiichi; Miike, Teruhisa; Takahashi, Mutsumasa

    1990-01-01

    N-isopropyl-p[ 123 I]-iodoamphetamine (IMP) single photon emission computed tomography (SPECT), X-ray computed tomography (X-CT) and magnetic resonance imaging (MRI) were performed in 18 children with idiopathic seizures. In children with idiopathic seizures SPECT identified abnormal lesions in the highest rate (50%) compared with X-CT (11%) and MRI (13%), but the findings of SPECT poorly correlated with the foci on electroencephalography (EEG). Idiopathic epilepsy with abnormal uptake on SPECT was refractory to medical treatments and frequently associated with mental and/or developmental retardation. Perfusion defects identified on SPECT probably influenced the development of the brains in children. IMP SPECT is useful in the diagnosis and medical treatment in children with seizures. (author)

  15. SPECT imaging with resolution recovery

    International Nuclear Information System (INIS)

    Bronnikov, A. V.

    2011-01-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  16. Single-Photon Emission Computerized Tomography (SPECT in Neuropsychiatry: A Review

    Directory of Open Access Journals (Sweden)

    B. K. Puri

    1992-01-01

    Full Text Available Cranial single-photon emission computerized tomography (SPECT or SPET can now give regional cerebral blood flow images with a resolution approaching that of positron emission tomography (PET. In this paper, the use of high resolution SPECT neuroimaging in neuropsychiatric disorders, including Alzheimer's disease, multi-infarct dementia, Pick's disease, progressive supranuclear palsy, Korsakoff's psychosis, Creutzfeld-Jakob disease, Parkinson's disease, Huntington's disease, schizophrenia, mood disorders, obsessive–compulsive disorder, HIV infection and AIDS is reviewed. Finally, further potential research and clinical uses, based on ligand studies, are outlined.

  17. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  18. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  19. SPECT/CT imaging in general orthopedic practice.

    Science.gov (United States)

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  20. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Science.gov (United States)

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  1. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  2. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    International Nuclear Information System (INIS)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  3. High-resolution tomography of positron emitters with clustered pinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Goorden, Marlies C; Beekman, Freek J [Section of Radiation Detection and Medical Imaging, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: m.c.goorden@tudelft.nl

    2010-03-07

    State-of-the-art small-animal single photon emission computed tomography (SPECT) enables sub-half-mm resolution imaging of radio-labelled molecules. Due to severe photon penetration through pinhole edges, current multi-pinhole SPECT is not suitable for high-resolution imaging of photons with high energies, such as the annihilation photons emitted by positron emitting tracers (511 keV). To deal with this edge penetration, we introduce here clustered multi-pinhole SPECT (CMP): each pinhole in a cluster has a narrow opening angle to reduce photon penetration. Using simulations, CMP is compared with (i) a collimator with traditional pinholes that is currently used for sub-half-mm imaging of SPECT isotopes (U-SPECT-II), and (ii), like (i) but with collimator thickness adapted to image high-energy photons (traditional multi-pinhole SPECT, TMP). At 511 keV, U-SPECT-II is able to resolve the 0.9 mm rods of an iteratively reconstructed Jaszczak-like capillary hot rod phantom, and while TMP only leads to small improvements, CMP can resolve rods as small as 0.7 mm. Using a digital tumour phantom, we show that CMP resolves many details not assessable with standard USPECT-II and TMP collimators. Furthermore, CMP makes it possible to visualize uptake of positron emitting tracers in sub-compartments of a digital mouse striatal brain phantom. This may open up unique possibilities for analysing processes such as those underlying the function of neurotransmitter systems. Additional potential of CMP may include (i) the imaging of other high-energy single-photon emitters (e.g. I-131) and (ii) localized imaging of positron emitting tracers simultaneously with single photon emitters, with an even better resolution than coincidence PET.

  4. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Directory of Open Access Journals (Sweden)

    Barbara Palumbo

    2014-06-01

    Full Text Available Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI is discussed.

  5. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  6. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  7. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  8. Simultaneous thallium-201/technetium-99m pyrophosphate tomography in patients with acute myocardial infarction: comparison of rotational SPECT and seven pinhole tomography

    International Nuclear Information System (INIS)

    Krause, T.; Schuemichen, C.; Beck, A.; Moser, E.; Zeiher, A.

    1992-01-01

    Simultaneous Tl-201/Tc-99m pyrophosphate (PPi) tomography was compared to Tc-99m PPi tomography and rotational SPECT (SPECT) was compared to seven pinhole tomography (9-PHT), respectively, in 19 patients with acute myocardial infarction (AMI). The results were correlated to electrocardiographic and angiographic findings. With Tl-201/Tc-99, PPi, all infarctions were detected and site of infarction was determined, independent of the tomographic technique used. There was no significant difference between the two acquisition techniques 7-PHT and SPECT concerning spatial extent of Tc-99m PPi accumulation and the uptake ratio. However, using only Tc-99m PPi without Tl-201 as anatomical marker, SPECT detected 15/19 infarctions. In 7 of these 15 cases infarction site was correctly determined. 7-PHT detected 11/19 and site was correctly determined in 9/11 infarctions. Myocardial infarctions which failed diagnosis using Tc-99m PPi alone showed significantly smaller spatial extent of Tc-99m PPi accumulation and necrosis to blood pool ratio was lower as assessed by Tl201/Tc-99m PPi tomography. In conclusions, tomography using simultaneous Tl-201/Tc-99m PPi imaging is a reliable technique for diagnosis and localization of AMI. For this reason, results obtained with SPECT and 7-PHT are comparable. Independent of the tomographic technique used, combined imaging is superior to Tc-99m PPi alone without Tl-201 as additional anatomical marker (orig./MG) [de

  9. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  10. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  11. Single photon emission computed tomography (SPECT) in seizure disorders in childhood

    International Nuclear Information System (INIS)

    Vles, J.S.H.; Demandt, E.; Ceulemans, B.; de Roo, M.; Casaer, P.J.M.

    1990-01-01

    In 38 children with partial seizures, the EEG, CT and NMR findings were compared to the results obtained with Tc99m HMPAO single photon emission computed tomography (SPECT) in order to determine whether SPECT is a useful adjunct to EEG, CT and NMR in this age group. In 3 out of 7 patients with a normal EEG, SPECT showed focal abnormalities. Nine patients whose EEGs did not show adequate lateralization had an abnormal SPECT which revealed a focus. In 14 out of 21 patients with a normal CT, SPECT showed focal changes in 13 patients and diffuse changes in the other one. In 7 out of 12 patients with a normal NMR, SPECT showed focal abnormalities. Although clinical history and a careful description of the seizures are the most valuable information in partial seizure disorders, SPECT imaging gives valuable additional information, which might target treatment. SPECT was superior to CT and NMR with respect to the depiction of some kind of abnormality. (author)

  12. Initial Investigation of preclinical integrated SPECT and MR imaging.

    Science.gov (United States)

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  13. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    2008-08-01

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  14. Interest of hybrid SPECT-CT imaging for diagnosis of infection

    International Nuclear Information System (INIS)

    Riviere, A.; Farid, K.; Guyot, M.; Jeandot, R.; Allard, M.; Fernandez, P.; Clermont, H. de; Dauchy, F.; Dupon, M.; Fernandez, P.

    2008-01-01

    Single-Photon Emission Computed Tomography-Computerized Tomography (SPECT-CT) is a new hybrid technique which offers new diagnostic capabilities in daily nuclear medicine practice. This technique not only allows to acquire merged anatomic and functional images in the same time, but also, it increases sensitivity and accuracy of SPECT thanks to attenuation and scattering corrections got from transmission data. Until now, SPECT-CT data have been mainly obtained in oncology and cardiology, but now, many authors use it in many scan studies and particularly for infectious diseases. In inflammatory bowel diseases, SPECT-CT seems to increase diagnostic performances and to modify management of many patients. In suspected vascular sepsis, SPECT-CT could increase sensitivity of white blood cell scintigraphy but also its specificity thanks to spatial resolution of CT. In osteo-articular sepsis, SPECT-CT has the advantage to distinguish osteomyelitis from soft tissue infection and to guide biopsies. Nevertheless, in the light of PET-CT works, SPECT-CT development will probably modify nuclear medicine practice and many studies have to be conducted to highlight consensual procedure guidelines. (authors)

  15. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  16. Simultaneous CT and SPECT tomography using CZT detectors

    Science.gov (United States)

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  17. SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro

    2014-01-01

    Osteoma is a benign bone-forming tumor that usually arises in the craniofacial bones and rarely in the long bones. Clavicular involvement is extremely rare. We report a 51-year-old woman with osteoma of the left clavicle. Radiograph of the left shoulder showed a well-defined lobulated blastic mass in the proximal and mid-portion of the left clavicle. Bone scintigraphy was performed 4 hours after an intravenous injection of Tc-99m hydroxymethylene diphosphonate (HMDP). Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography / computed tomography (SPECT/CT) images were also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis

  18. Physical factors affecting single photon emission computed tomography (SPECT) applied in nuclear medicine

    International Nuclear Information System (INIS)

    Farag, H.I.; Khalil, W.A.; Hassan, R.A.

    2003-01-01

    many physical factors degrade single photon emission computed tomography (SPECT) images both qualitatively and quantitatively. Physical properties important for the assessment of the potential of emission computed tomography implemented by collimated detector systems include sensitivity, statistical and angular sampling requirements, attenuation compensation, resolution, uniformity, and multisection design constraints. SPECT has highlighted the used to improve gamma camera performance. Flood field nonuniformity is translated into tomographic the need to improve gamma camera performance. Flood field nonuniformity is translated into tomographic images as major artifacts because it distorts the data obtained at each projection. Also, poor energy resolution translates directly into degraded spatial resolution through reduced ability to reject scattered photons on the basic of pluses height analysis. The aim of this work is study the different and most important acquisition and processing parameters, which affect the quality of the SPECT images. The present study investigates the various parameters effecting SPECT images and experimental results demonstrate that: daily uniformity checks and evaluation are essential to ensure that the SPECT system is working properly. The Core used in the reconstruction process could be correct to avoid data misalignment. 60 mumblers of views gave the best image quality, rather than 20 or 30 views. Time per view (TPV) 30 or 20 sec gave a good image quality, rather than high-resolution collimator, is recommended in order to provide good spatial resolution. On the other hand patient motion could cause serious reconstruction artifacts. A cine display is recommended to identify movement artifacts. In the case of matrix size, matrix 128x128 give the best resolution than matrix 64x64. Energy window width, 15% compared with the standard 20% improved the resolution. Butter worth filter (cut off 0.57 cyc/cm with order 6 ) give the best resolution

  19. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  20. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  1. Physiological imaging with PET and SPECT in Dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs

  2. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  3. Computed tomography and three-dimensional imaging

    International Nuclear Information System (INIS)

    Harris, L.D.; Ritman, E.L.; Robb, R.A.

    1987-01-01

    Presented here is a brief introduction to two-, three-, and four-dimensional computed tomography. More detailed descriptions of the mathematics of reconstruction and of CT scanner operation are presented elsewhere. The complementary tomographic imaging methods of single-photon-emission tomography (SPECT) positron-emission tomography (PET), nuclear magnetic resonance (NMR) imaging, ulltrasound sector scanning, and ulltrasound computer-assisted tomography [UCAT] are only named here. Each imaging modality ''probes'' the body with a different energy form, yielding unique and useful information about tomographic sections through the body

  4. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  5. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  6. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  7. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  8. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    Science.gov (United States)

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  9. SPECT/CT image fusion with 99mTc-HYNIC-TOC in the oncological diagnostic

    International Nuclear Information System (INIS)

    Haeusler, F.

    2006-07-01

    Neuroendocrine tumours displaying somatostatin receptors have been successfully visualized with somatostatin receptor imaging. The aim of this retrospective study was to evaluate the value of anatomical-functional image fusion. Image fusion means the combined transmission and emission tomography (computed tomography (CT)) and single-photon emission computed tomography (SPECT) ) and was analyzed in comparison with SPECT and CT alone. Fifty-three patients (30 men and 23 women; mean age 55,9 years; range: 20-82 years) with suspected or known endocrine tumours were studied. The patients were referred to image fusion because of staging of newly diagnosed tumours (14) or biochemically/clinically suspected neuroendocrine tumour (20) or follow-up studies after therapy (19). The patients were studied with SPECT at 2 and 4 hours after injection of 400 MBq of 99mTc-EDDA-HYNIC-Tyr3-octreotide using a dual-detector scintillation camera. The CT was performed on one of the following two days. For both investigations the patients were fixed in an individualized vacuum mattress to guarantee exactly the same position. SPECT and SPECT/CT showed an equivalent scan result in 35 patients (66 %), discrepancies were found in 18 cases (34 %). After image fusion the scan result was true-positive in 27 patients ( 50.9 %) and true-negative in 25 patients (47.2 %). One patient with multiple small liver metastases escaped SPECT as well as image fusion and was so false-negative. The frequency of equivocal and probable lesion characterization was reduced by 11.6% (12 to 0) with PET/CT in comparison with PET or CT alone. The frequency of definite lesion characterization was increased by 11.6% (91 to 103). SPECT/CT affected the clinical management in 21 patients (40 %). The results of this study indicate that SPECT/CT is a valuable tool for the assessment of neuroendocrine tumours. SPECT/CT is better than SPECT or CT alone and it allows a more precise staging and determination of prognosis and

  10. Comparison between high-resolution computed tomography and 99mTc-technegas SPECT pulmonary emphysema

    International Nuclear Information System (INIS)

    Nakano, Satoru; Satoh, Katashi; Takahashi, Kazue

    1996-01-01

    Scintigraphy with 99m Tc-technegas was recently introduced for clinical imaging of lung ventilation. This method has been found to be useful in emergencies, to be more suitable for single photon emission computed tomography (SPECT) than other agents used in ventilation scintigraphy, and could reveal abnormalities in ventilation more easily than high resolution computed tomography (HRCT) in pulmonary emphysema. We compared 99m Tc-technegas SPECT with HRCT in six regions: the right upper, middle, and lower lobes, the left upper lobe, the lingula, and the left lower lobe, in 15 patients with pulmonary emphysema. Patients with centrilobular emphysema tended to show stronger changes in upper lobes than in lower lobes on both 99m Tc-technegas SPECT and HRCT. Some regions showed no change on HRCT but various changes on 99m Tc-SPECT. Patients with panlobular emphysema showed severe changes on 99m Tc-SPECT in lower lung fields in which well-demarcated areas of low attenuation were not seen on HRCT. We conclude that 99m Tc-SPECT is useful for detecting early changes and panlobular changes in pulmonary emphysema. (author)

  11. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  12. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  13. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    International Nuclear Information System (INIS)

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-01-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits

  14. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    International Nuclear Information System (INIS)

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J.

    1989-01-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain

  15. Thoracic and abdominal SPECT imaging in systemic amyloidosis in identifying multiorgan involvement

    International Nuclear Information System (INIS)

    Wellman, H.N.; Benson, M.D.; Park, H.M.; Siddiqui, A.R.; Krepshaw, J.D.

    1988-01-01

    Thirty-three patients with systemic amyloidosis have been studied. Thoracic single photon emission computed tomography (SPECT) for myocardial involvement and skeletal imaging were performed with Tc-99m PYP, and abdominal SPECT with TcS colloid. Myocardial wall involvement was easily discernible with SPECT in 17 cases, and in many with normal ultrasonography. PYP uptake was also observed in liver (five patients), kidneys (four patients), and soft tissues (two patients). Most patients had widespread degenerative joint disease. With TcS colloid, intrinsic liver abnormalities were found in four patients, hepatomegaly in seven, and splenic infiltration in two. Nuclear SPECT and planar imaging characterize the distribution of systemic amyloidosis in organs, distribution not readily identified with other diagnostic modalities

  16. Fusion of SPECT/TC images: Usefulness and benefits in degenerative spinal cord pathology

    International Nuclear Information System (INIS)

    Ocampo, Monica; Ucros, Gonzalo; Bermudez, Sonia; Morillo, Anibal; Rodriguez, Andres

    2005-01-01

    The objectives are to compare CT and SPECT bone scintigraphy evaluated independently with SPECT-CT fusion images in patients with known degenerative spinal pathology. To demonstrate the clinical usefulness of CT and SPECT fusion images. Materials and methods: Thirty-one patients with suspected degenerative spinal disease were evaluated with thin-slice, non-angled helical CT and bone scintigrams with single photon emission computed tomography (SPECT), both with multiplanar reconstructions within a 24-hour period After independent evaluation by a nuclear medicine specialist and a radiologist, multimodality image fusion software was used to merge the CT and SPECT studies and a final consensus interpretation of the combined images was obtained. Results: Thirty-two SPECT bone scintigraphy images, helical CT studies and SPECT-CT fusion images were obtained for 31 patients with degenerative spinal disease. The results of the bone scintigraphy and CT scans were in agreement in 17 pairs of studies (53.12%). In these studies image fusion did not provide additional information on the location or extension of the lesions. In 11 of the study pairs (34.2%), the information obtained was not in agreement between scintigraphy and CT studies: CT images demonstrated several abnormalities, whereas the SPECT images showed only one dominant lesion, or the SPECT images did not provide enough information for anatomical localization. In these cases image fusion helped establish the precise localization of the most clinically significant lesion, which matched the lesion with the greatest uptake. In 4 studies (12.5%) the CT and SPECT images were not in agreement: CT and SPECT images showed different information (normal scintigraphy, abnormal CT), thus leading to inconclusive fusion images. Conclusion: The use of CT-SPECT fusion images in degenerative spinal disease allows for the integration of anatomic detail with physiologic and functional information. CT-SPECT fusion improves the

  17. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer

    International Nuclear Information System (INIS)

    Zhao, Zhen; Li, Lin; Li, Fanglan; Zhao, Lixia

    2010-01-01

    To evaluate single photon emission computed tomography (SPECT)/spiral computed tomography (CT) fusion imaging for the diagnosis of bone metastasis in patients with known cancer and to compare the diagnostic efficacy of SPECT/CT fusion imaging with that of SPECT alone and with SPECT + CT. One hundred forty-one bone lesions of 125 cancer patients (with nonspecific bone findings on bone scintigraphy) were investigated in the study. SPECT, CT, and SPECT/CT fusion images were acquired simultaneously. All images were interpreted independently by two experienced nuclear medicine physicians. In cases of discrepancy, consensus was obtained by a joint reading. The final diagnosis was based on biopsy proof and radiologic follow-up over at least 1 year. The final diagnosis revealed 63 malignant bone lesions and 78 benign lesions. The diagnostic sensitivity of SPECT, SPECT + CT, and SPECT/CT fusion imaging for malignant lesions was 82.5%, 93.7%, and 98.4%, respectively. Specificity was 66.7%, 80.8%, and 93.6%, respectively. Accuracy was 73.8%, 86.5%, and 95.7%, respectively. The specificity and accuracy of SPECT/CT fusion imaging for the diagnosis malignant bone lesions were significantly higher than those of SPECT alone and of SPECT + CT (P 2 = 9.855, P = 0.002). The numbers of equivocal lesions were 37, 18, and 5 for SPECT, SPECT + CT, and SPECT/CT fusion imaging, respectively, and 29.7% (11/37), 27.8% (5/18), and 20.0% (1/5) of lesions were confirmed to be malignant by radiologic follow-up over at least 1 year. SPECT/spiral CT is particularly valuable for the diagnosis of bone metastasis in patients with known cancer by providing precise anatomic localization and detailed morphologic characteristics. (orig.)

  18. Application of SPECT/CT imaging in the diagnosis of benign diseases

    International Nuclear Information System (INIS)

    Garcheva, M.; Demirev, A.

    2014-01-01

    The application of recently introduced hybrid nuclear medicine methods gains importance in a variety of clinical fields, mainly because of the unique combination between functional and anatomical data provided by those methods and their capability for a precise localization of pathological processes. Single photon emission computed tomography, combined with computed tomography (SPECT/CT) is one of those methods. Its role in nuclear cardiology is important, because it provides quick attenuation correction and calculates the calcium score. In nuclear endocrinology SPECT/CT participates in thyroid and parathyroid examinations, especially in cases, where there is a need for localization of ectopic parathyroid or thyroid tissue. In nuclear pulmonology, one of the best ways to attribute certain changes seen on the SPECT, to the zone of interest on the CT, is to study the fused images obtained from the SPECT/ CT scanner. In cases of suspected infection and inflammation, fused images are indispensable for accurate localization of the involved tissue (structure) and for discrimination between normal/abnormal uptake. Careful reading of the CT component (even low-dose) is related (in 10% of cases) to clinically important incidental findings: effusions, tumors, metastases or lymph node pathology. SPECT/CT increases the specificity of the examinations and improves significantly the localization of pathological processes. It provides additional information, shortens the diagnostic algorithm and influences the extent of surgical procedures. In many hybrid examinations the preferred CT component is a low-dose one, without considerable radiation exposure. The opportunity to combine nuclear medicine techniques and contrast CT images, aiming at better diagnosis needs further development. SPECT/CT provides important additional information and more accurate diagnostics in patients with benign diseases. (authors) Key words: SPECT/CT. BENIGN DISEASES

  19. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    Science.gov (United States)

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  20. Role of SPECT imaging in symptomatic posterior element lumbar stress injuries

    Directory of Open Access Journals (Sweden)

    Debnath U

    2005-01-01

    Full Text Available Background : Diagnosis of stress injuries of spine is very difficult with conventional radiography. Methods : In a observational study, 132 subjects were recruited (between 8 and 38 years of age, who had lumbar spondylolysis or posterior element stress injuries. All these patients underwent clinical examination followed by plain X-rays, planar bone scintigraphy and SPECT (single photon emission computerised tomography. SPECT scans can identify the posterior element lumbar stress injuries earlier than other imaging modalities. As the lesions evolve and the completed spondylolysis becomes chronic, the SPECT scans tend to revert to normal even though healing of the defect has not occurred. The aim of the study was to determine the time lag after which SPECT imaging tends to be negative. We divided the patients into two groups, one SPECT positive group and the other SPECT negative group. Pre treatment background variables such as age, gender, back pain in extension or flexion, sporting activities, time of onset of symptoms, Oswestry Disability Index (ODI were used in a univariate logistic regression model to find the strong predictors of positive SPECT imaging results. Determinants of positivity versus negativity of SPECT were identified by discriminant analysis using multivariate logistic regression. Results : Seventy nine patients had positive SPECT scans whereas 53 patients had negative SPECT scans. Bilateral increased uptake was more common than unilateral uptake. Increased uptake at the L5 lumbar spine was more common (70% in SPECT positive group. Low back pain in extension was significantly more common in SPECT positive subjects. Active sporting individuals had higher probability of having a positive SPECT scan. The mean time lag from the onset of low back pain to SPECT imaging was 7 months in SPECT positive group and 25 months in the SPECT negative group. Multivariate analysis predicted that there is a significant difference in positivity of

  1. Improvements in SPECT technology for cerebral imaging

    International Nuclear Information System (INIS)

    Esser, P.D.

    1985-01-01

    Advancement in three major areas of SPECT (single photon emission computed tomography) technology have resulted in improved image quality for cerebral studies. In the first area, single-crystal camera electronics, extensive use of microprocessors, custom digital circuitry, an data bus architecture have allowed precise external control of all gantry motions and improved signal processing. The new digital circuitry permits energy, uniformity, and linearity corrections to be an integral part of the processing electronics. Calibration of these correlations is controlled by algorithms stored in the camera's memory. The second area of improved SPECT technology is camera collimation and related imaging techniques. In this area, system resolution has been improved without loss of sensitivity by decreasing the air gap between patient and collimator surface. Since cerebral studies characteristically image high-contrast regions less than 1 cm in size, image quality has been improved by increasing collimator resolution even at the expense of sensitivity. Increased resolution also improved image contrast for studies using 123 I-labeled pharmaceuticals with 3% to 4% 124 I contamination. 65 references

  2. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  3. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    International Nuclear Information System (INIS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  4. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  5. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Bowsher, James; Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  6. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  7. The current status of SPECT or SPECT/CT in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  8. Radiotracers for SPECT imaging. Current scenario and future prospects

    International Nuclear Information System (INIS)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S.

    2012-01-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [ 123 I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [ 123 I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also makes them more

  9. Radiotracers for SPECT imaging. Current scenario and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S. [GE Healthcare Medical Diagnostics, John F. Welch Technology Center, Bangalore (India).; Bhalla, R.; Pickett, R.; Luthra, S.K. [GE Healthcare Medical Diagnostics, The Grove Centre, Amersham (United Kingdom)

    2012-07-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [{sup 123}I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [{sup 123}I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also

  10. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  11. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    %, respectively, for SPECT. CONCLUSION: The overall performance of myocardial CT perfusion imaging in the diagnosis of anatomic CAD (stenosis ≥50%), as demonstrated with the Az, was higher than that of SPECT and was driven in part by the higher sensitivity for left main and multivessel disease.......PURPOSE: To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography....... MATERIALS AND METHODS: This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise...

  12. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Meikle, Steven R; Kench, Peter; Kassiou, Michael; Banati, Richard B

    2005-01-01

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute ( -10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  13. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  14. SPECT/CT Fusion in the Diagnosis of Hyperparathyroidism

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Tamura, Akihisa; Okazaki, Hajime; Kurose, Taichi; Kobayashi, Masayuki; Kuraoka, Masatsugu

    2015-01-01

    In this study, we aimed to analyze the relationship between the diagnostic ability of fused single photon emission computed tomography/ computed tomography (SPECT/CT) images in localization of parathyroid lesions and the size of adenomas or hyperplastic glands. Five patients with primary hyperparathyroidism (PHPT) and 4 patients with secondary hyperparathyroidism (SHPT) were imaged 15 and 120 minutes after the intravenous injection of technetium99m-methoxyisobutylisonitrile ( 99m Tc-MIBI). All patients underwent surgery and 5 parathyroid adenomas and 10 hyperplastic glands were detected. Pathologic findings were correlated with imaging results. The SPECT/CT fusion images were able to detect all parathyroid adenomas even with the greatest axial diameter of 0.6 cm. Planar scintigraphy and SPECT imaging could not detect parathyroid adenomas with an axial diameter of 1.0 to 1.2 cm. Four out of 10 (40%) hyperplastic parathyroid glands were diagnosed, using planar and SPECT imaging and 5 out of 10 (50%) hyperplastic parathyroid glands were localized, using SPECT/CT fusion images. SPECT/CT fusion imaging is a more useful tool for localization of parathyroid lesions, particularly parathyroid adenomas, in comparison with planar and or SPECT imaging

  15. Multimodal imaging analysis of single-photon emission computed tomography and magnetic resonance tomography for improving diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Barthel, H.; Georgi, P.; Slomka, P.; Dannenberg, C.; Kahn, T.

    2000-01-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriated dopaminergic neurons, which can be imaged with 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl) tropane ([ 123 I]β-CIT) and single-photon emission computed tomography (SPECT). However, the quality of the region of interest (ROI) technique used for quantitative analysis of SPECT data is compromised by limited anatomical information in the images. We investigated whether the diagnosis of PD can be improved by combining the use of SPECT images with morphological image data from magnetic resonance imaging (MRI)/computed tomography (CT). We examined 27 patients (8 men, 19 women; aged 55±13 years) with PD (Hoehn and Yahr stage 2.1±0.8) by high-resolution [ 123 I]β-CIT SPECT (185-200 MBq, Ceraspect camera). SPECT images were analyzed both by a unimodal technique (ROIs defined directly within the SPECT studies) and a multimodal technique (ROIs defined within individual MRI/CT studies and transferred to the corresponding interactively coregistered SPECT studies). [ 123 I]β-CIT binding ratios (cerebellum as reference), which were obtained for heads of caudate nuclei (CA), putamina (PU), and global striatal structures were compared with clinical parameters. Differences between contra- and ipsilateral (related to symptom dominance) striatal [ 123 I]β-CIT binding ratios proved to be larger in the multimodal ROI technique than in the unimodal approach (e.g., for PU: 1.2*** vs. 0.7**). Binding ratios obtained by the unimodal ROI technique were significantly correlated with those of the multimodal technique (e.g., for CA: y=0.97x+2.8; r=0.70; P com subscore (r=-0.49* vs. -0.32). These results show that the impact of [ 123 I]β-CIT SPECT for diagnosing PD is affected by the method used to analyze the SPECT images. The described multimodal approach, which is based on coregistration of SPECT and morphological imaging data, leads to improved determination of the degree of this dopaminergic disorder

  16. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    Science.gov (United States)

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  17. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  18. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    Science.gov (United States)

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR

  19. Bull's-eye map of myocardial perfusion MR imaging. Comparison with SPECT

    International Nuclear Information System (INIS)

    Nomura, Yukihiro; Nanjo, Shuji; Yamazaki, Junichi; Yoshikawa, Kohki; Inoue, Yusuke

    2003-01-01

    When diagnosing heart disease, chest roentgenograms, ultrasonography, single-photon emission computed tomography (SPECT), and coronary arteriography are usually performed. Magnetic resonance (MR) imaging is not widely used for evaluating heart disease. Recent technological progress has allowed high quality images of the heart to be reliably obtained. A routine MR study taking about 30-40 minutes can provide a large amount of diagnostic information, such as cardiac structure, function, perfusion, and myocardial viability. The analysis software that can offer Bull's-eye maps from myocardial perfusion images has recently become commercially available. In this study, the characteristics of Bull's-eye mapping of MR imaging is compared with that of Bull's-eye mapping of SPECT using the same heart phantom. The difference in the image quality of the Bull's-eye maps was evaluated among the receiver coils of MR imaging. On Bull's-eye maps from both MR imaging and SPECT, decreased signal intensity was noted in the posterolateral wall. The degree of decrease in the signal of the MR imaging was more prominent than of SPECT. The decrease was severe for the general-purpose receive-only flexible (GPFLEX) coil, moderate for the cardiac and TORSO coil, and slight for the body coil. In the selection of a coil, it is necessary to take into consideration the trade-off between the distribution of signal intensity and the signal-to-noise ratio (SNR). (author)

  20. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  1. Design and evaluation of a mobile bedside PET/SPECT imaging system

    Science.gov (United States)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  2. Usefulness of isoproterenol stress thallium-201 myocardial single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Watanabe, Shigeyuki; Ajisaka, Ryuichi; Masuoka, Takeshi

    1990-01-01

    Twenty patients complaining of chest pain were referred for isoproterenol stress thallium-201 myocardial single photon emission computed tomography (ISO-SPECT). The findings were compared with those obtained from isoproterenol stress ECG testing (ISO-ECG) and exercise SPECT (EX-SPECT). Isoproterenol was iv injected in a dose of 0.02 μg/kg/min. The amount was continuously increased until limited by chest pain, ST depression, and/or determined heart rate criteria. The patients were scanned immediately and three hours after giving isoproterenol. Transient hypoperfusion was regarded as myocardial ischemia. Washout rate, obtained from circumferential profile analysis on the short axis SPECT images, was expressed by Bull's eye display. Fifteen patients with angiographically significant stenosis of 75% or greater were diagnosed as having coronary artery disease (CAD). The other five patients had normal coronary artery (NC). In diagnosing CAD, ISO-ECG and ISO-SPECT had a sensitivity of 80% and 92%, respectively. Because the NC group had negative findings for redistribution on ISO-SPECT, the specificy of ISO-SPECT seemed to be high. For multi-vessel disease, redistribution on ISO-SPECT tended to underestimate coronary lesions. The underestimation was, however, corrected by calculating washout rate. For evaluable 11 patients undergoing concurrent EX-SPECT, ISP-SPECT was equivalent or superior to EX-SPECT in diagnostic sensitivity. None of the patients had severe side effects of isoproterenol, except for some having arrhythmia. The results indicated that ISO-SPECT is a safe, high sensitive diagnostic approach that is comparable to Ex-SPECT. (N.K.)

  3. Applications of cerebral SPECT

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  4. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Energy Technology Data Exchange (ETDEWEB)

    Golestani, Reza; Dierckx, Rudi A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Wu, Chao [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Tio, Rene A. [University Medical Center Groningen, Thorax Center, Department of Cardiology, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Petrov, Artiom D. [University of California, Irvine, Division of Cardiology, School of Medicine, Irvine, California (United States); Beekman, Freek J. [University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs, Utrecht (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Department of Clinical and Hospital Pharmacy, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands)

    2010-09-15

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  5. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Golestani, Reza; Dierckx, Rudi A.J.O.; Wu, Chao; Tio, Rene A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Boersma, Hendrikus H.; Slart, Riemer H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  6. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, Orazio; Danieli, Roberta; Manni, Carlo; Capoccetti, Francesca; Simonetti, Giovanni [Department of Biopathology and Diagnostic Imaging, University ' ' Tor Vergata' ' , Rome (Italy)

    2004-07-01

    Delayed liver single-photon emission computed tomography (SPECT) after {sup 99m}Tc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  7. Imaging in hematology. Part 2: Computed tomography, magnetic resonance imaging and nuclear imaging

    International Nuclear Information System (INIS)

    Zhechev, Y.

    2003-01-01

    A dramatic increase of the role of imaging in diagnosis of blood diseases occurred with the development of computed tomography (CT) and magnetic resonance imaging (MRI). At present CT of the chest, abdomen, and pelvis is routinely employed in diagnostic and staging evaluation. The bone marrow may be imaged by one of several methods, including scintigraphy, CT and MRI. Nuclear imaging at diagnosis can clarify findings of uncertain significance on conventional staging and may be very useful in the setting of large masses to follow responses to therapy nad to evaluate the residual tumor in a large mass that has responded to treatment. Recent developments such as helical CT, single proton emission computed tomography (SPECT) and positron-emission tomography (PET) have continued to advance diagnosis and therapy

  8. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification. An IAEA phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Brian E. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grosev, Darko [Univ. Hospital Centre Zagreb (Croatia); Buvat, Irene [Service Hospitalier Frederic Joliot, Paris (France); and others

    2017-08-01

    Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing {sup 133}Ba, which was chosen as a surrogate for {sup 131}I. The sources, with nominal volumes of 2, 4, 6 and 23 mL, were calibrated for {sup 133}Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to

  9. Benign versus malignant osseous lesions in spine: differentiation by means of bone SPECT/CT fused image

    International Nuclear Information System (INIS)

    Yao Zhiming; Qu Wanying

    2004-01-01

    This study compared the efficiency of SPECT-CT fused image with planar bone scan, bone SPECT and CT in differentiating malignant from benign lesions and detecting metastases to the spine. Methods. Total 144 patients with spinal lesions underwent planar bone scan (WB), single photon tomography (SPECT), CT and SPECT-CT fused image by a SPECT/CT system. The malignant or benign nature of lesions was proved by radiological Methods, histological findings, 6-24 month follow-up, or all of these. The diagnostic results was divided into 4 types, i.e., normal, benign, doubtful malignant and malignant. Results. There were 137 malignant and 252 benign lesions in 144 patients, respectively. The percentages of doubtful malignant diagnosed by WB, SPECT, CT and fused image are 22.6%, 5.1%, 9.5% and 0%, respectively, p < 0.01-0.001, except for the comparison between the percentages of SPECT and CT. Sensitivities in detection of malignant lesions by WB, SPECT, CT and fused image are 75.2%, 94.2%, 96.6% and 99.3%, respectively, P < 0.001, excepting for the comparisons between those of SPECT and CT, and between those of CT and fused image. The sensitivities m detection of benign lesions by WB, SPECT, CT and fused image are, 56.7%, 86.5%, 90.1% and 96.8%, respectively, P < 0.005 - 0.001, excepting for the comparison between those of SPECT and CT. The specificities in detection of maliganant lesions by WB, SPECT, CT and fused image are 70.6%, 88.9%, 97.2% and 97.6%, respectively, P < 0.001, excepting for the comparison between those of CT and fused image. Conclusion. Bone SPECT-CT fused image has highest diagnostic and differentiating diagnostic values in detection of spinal abnormalities over the planar bone scanning and SPECT. The CT by present SPECT/CT system can complement planar bone scanning and SPECT and is clinically valuable in detection of spinal abnormalities. (authors)

  10. The future of SPECT in a time of PET

    International Nuclear Information System (INIS)

    Jansen, Floris P.; Vanderheyden, Jean-Luc

    2007-01-01

    As positron emission tomography (PET) imaging is becoming more prevalent in clinical practice, it is reasonable to ask if there will be a role for single photon emission computed tomography (SPECT) in the future. This article considers that question, focusing on areas where SPECT can differentiate itself from PET for fundamental reasons: breadth of available radionuclides, simultaneous imaging of multiple agents, cost-effectiveness and adaptability to specific imaging situations. The conclusion is that SPECT will continue to evolve and exist alongside PET and will grow the field of molecular imaging with improved efficiency and patient workflow

  11. Advances in SPECT Instrumentation (Including Small Animal Scanners). Chapter 4

    International Nuclear Information System (INIS)

    Di Domenico, G.; Zavattini, G.

    2009-01-01

    Fundamental major efforts have been devoted to the development of positron emission tomography (PET) imaging modality over the last few decades. Recently, a novel surge of interest in single photon emission computed tomography (SPECT) technology has occurred, particularly after the introduction of the hybrid SPECT-CT imaging system. This has led to a flourishing of investigations in new types of detectors and collimators, and to more accurate refinement of reconstruction algorithms. Along with SPECT-CT, new, fast gamma cameras have been developed for dedicated cardiac imaging. The existing gap between PET and SPECT in sensitivity and spatial resolution is progressively decreasing, and this trend is particularly apparent in the field of small animal imaging where the most important advances have been reported in SPECT tomographs. An outline of the basic features of SPECT technology, and of recent developments in SPECT instrumentation for both clinical applications and basic biological research on animal models is described. (author)

  12. SP-ECT imaging and its physical study

    International Nuclear Information System (INIS)

    Kinoshita, Fujimi

    1983-01-01

    Recently, more than a hundred hospitals are provided with SPECT system for clinical examination in Japan. However, a standardization of measuring method and performance test of the systems is ont yet made. We have been studying some basic problems of SPECT system with special phantoms originaly designed by ourselves. We got a conclusion that a standardized phantom is necessary for comparing performances between SPECT systems. In clinical experiences with 3,332 cases, we think that SPECT image combined with conventional image presents much more informations for accurate diagnosis, especially in brain, bone and tumor imagings. Synthesized image of SPECT and XCT, double tracer image and transmission image are useful to visualize the body contour and the clinical diagnosis. (author)

  13. Evaluation of image reconstruction methods for 123I-MIBG-SPECT. A rank-order study

    International Nuclear Information System (INIS)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid; Valind, Sven; Thorsson, Ola; Garpered, Sabine; Prautzsch, Tilmann; Tischenko, Oleg

    2012-01-01

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on 123 I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq 123 I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D 32 > ReSPECT > Flash 3D 64 > OPED, and after 24 h: Flash 3D 16 > ReSPECT > Flash 3D 32 > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D 32 (4 h) and Flash 3D 16 (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of 123 I-MIBG images

  14. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  15. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    Science.gov (United States)

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p IQ-SPECT with and without SCAC was also good (r = 0.907 and p IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT

  16. Clinical Utility of SPECT/CT Imaging Post-Radioiodine Therapy: Does It Enhance Patient Management in Thyroid Cancer?

    Science.gov (United States)

    Hassan, Fahim U; Mohan, Hosahalli K

    2015-12-01

    The aim of this study was to evaluate post-therapy iodine-131 single-photon emission computed tomography/computed tomography ((131)I-SPECT/CT) imaging in comparison to conventional planar (131)I whole-body imaging, and to assess its clinical impact on the management of patients. We retrospectively reviewed planar (131)I whole-body and (131)I-SPECT/CT imaging findings in 67 patients who underwent (131)I therapy for thyroid cancer. Two nuclear medicine physicians reviewed the scans independently. The foci of increased tracer uptake were identified in the neck, thorax and elsewhere. Within the neck, the foci of (131)I-increased uptake were graded qualitatively as probable or definite uptake in thyroid remnants and probable or definite uptake in the lymph nodes. Serum thyroglobulin level, histopathology and other imaging findings served as the reference standard. Of the 67 patients, 57 (85%) had radioiodine avid disease and 10 (15%) demonstrated non-radioiodine avid disease. Overall, post-therapy (131)I-SPECT/CT downstaged lymph node staging in 10 patients and upstaged it in 4 patients. This translated into a change of management for 9/57 (16%) patients with radioiodine avid disease. A change of management was observed in 5/10 patients with non-radioiodine avid disease confirmed in the post-(131)I-SPECT/CT study. Additionally, clinically significant findings such as incidental lung cancer, symptomatic pleural effusion and consolidation were also diagnosed in both groups of patients. In patients with thyroid cancer, (131)I-SPECT/CT is a valuable addition to standard post-therapy planar imaging. SPECT/CT also improved diagnostic confidence and provided crucial clinical information leading to change of management for a significant number of these patients.

  17. Quantitative assessment of 201TlCl myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa

    1987-01-01

    Clinical evaluation of the quantitative analysis of Tl-201 myocardial tomography by SPECT (Single Photon Emission Computed Tomography) was performed in comparison with visual evaluation. The method of quantitative analysis has been already reported in our previous paper. In this study, the program of re-standardization in the case of lateral myocardial infarction was added. This program was useful mainly for the evaluation of lesions in the left circumflex coronary artery. Regarding the degree of diagnostic accuracy of myocardial infarction in general, quantitative evaluation of myocardial SPECT images was highest followed by visual evaluation of myocardial SPECT images, and visual evaluation of myocardial planar images. However, in the case of anterior myocardial infarction, visual evaluation of myocardial SPECT images has almost the same detectability as quantitative evaluation of myocardial SPECT images. In the case of infero-posterior myocardial infarction, quantitative evaluation was superior to visual evaluation. As for specificity, quantitative evaluation of SPECT images was slightly inferior to visual evaluation of SPECT images. An infarction map was made by quantitative analysis and this enabled us to determine the infarction site, extent and degree according to easily recognizable patterns. As a result, the responsible coronary artery lesion could be inferred correctly and the calculated infarction score could be correlated with the residual left ventricular function after myocardial infarction. (author)

  18. SPECT in psychiatry

    International Nuclear Information System (INIS)

    Barocka, A.; Feistel, H.; Ebert, D.; Lungershausen, E.

    1993-01-01

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D 2 and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.) [de

  19. Improvement of image quality using interpolated projection data estimation method in SPECT

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Kojima, Akihiro; Asao, Kimie; Kamada, Shinya; Matsumoto, Masanori

    2009-01-01

    General data acquisition for single photon emission computed tomography (SPECT) is performed in 90 or 60 directions, with a coarse pitch of approximately 4-6 deg for a rotation of 360 deg or 180 deg, using a gamma camera. No data between adjacent projections will be sampled under these circumstances. The aim of the study was to develop a method to improve SPECT image quality by generating lacking projection data through interpolation of data obtained with a coarse pitch such as 6 deg. The projection data set at each individual degree in 360 directions was generated by a weighted average interpolation method from the projection data acquired with a coarse sampling angle (interpolated projection data estimation processing method, IPDE method). The IPDE method was applied to the numerical digital phantom data, actual phantom data and clinical brain data with Tc-99m ethyle cysteinate dimer (ECD). All SPECT images were reconstructed by the filtered back-projection method and compared with the original SPECT images. The results confirmed that streak artifacts decreased by apparently increasing a sampling number in SPECT after interpolation and also improved signal-to-noise (S/N) ratio of the root mean square uncertainty value. Furthermore, the normalized mean square error values, compared with standard images, had similar ones after interpolation. Moreover, the contrast and concentration ratios increased their effects after interpolation. These results indicate that effective improvement of image quality can be expected with interpolation. Thus, image quality and the ability to depict images can be improved while maintaining the present acquisition time and image quality. In addition, this can be achieved more effectively than at present even if the acquisition time is reduced. (author)

  20. Single-photon emission tomography (SPECT) with 123I-amphetamine in cerebral ischemia

    International Nuclear Information System (INIS)

    Koenig, B.; Donis, J.; Mostbeck, A.; Koehn, H.

    1987-01-01

    The uptake of 123 I-amphetamine (IMP) in brain mainly corresponds to regional perfusion. Distribution of IMP can be visualized in tomographic slices by single-photon emission computed tomography (SPECT). For better evaluation and comparison in follow-up studies, right/left ratios were computed and an asymmetry index calculated. The most sensitive asymmetry index was achieved by 120 average circumferential profiles. In 52 patients with stroke and 16 controls the respective sensitivities of IMP-SPECT, computed tomography (CT), static and dynamic brain scanning and angiography were evaluated. In patients with TIA and PRIND the IMP-SPECT had the highest sensitivity of all non-invasive methods. In patients with completed stroke, the sensitivity of IMP-SPECT was comparable with that of CT (90 vs. 93%). There was a significant correlation between the IMP asymmetry index and the clinical and social score (p [de

  1. The synthesis of radioiodinated carbohydrates and butyrothenones as potential imaging agents for computed tomography

    International Nuclear Information System (INIS)

    Waterhouse, R.N.

    1993-01-01

    Positron Emission tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are two relatively new imaging techniques which allow for the non-invasive evaluation of biochemical processes in living subjects. Currently, SPECT is more widely accessible than PET, however, only a limited number of radiotracers have been successfully developed for imaging by SPECT. Two classes of radioiodinated compounds were developed as potential imaging agents for SPECT: (1) Radioiodinated carbohydrates for the assessment of glucose metabolism and (2) Radioiodinated butyrothienones for the evaluation of dopamine D 2 receptors in the brain. In both classes of compounds, the radioiodine was attached to an sp 2 hybridized carbon atom to provide radiotracers that were chemically and metabolically stable. Radioiodine incorporation was easily accomplished by radioiododestannylation of vinyl- and aryl-trialkylstannanes in the presence of an oxidizing agent. The incorporation of radioiodine into small molecules can have a significant effect on the biological activity of the resulting radiotracer because of the relatively large size and lipophilicity of the iodine atom. Preliminary evaluations of the effectiveness of the radioiodinated carbohydrates and butyrothienones as imaging agents are presented

  2. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  3. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    International Nuclear Information System (INIS)

    Sharma, Punit; Kumar, Rakesh; Singh, Harmandeep; Bal, Chandrasekhar; Malhotra, Arun; Julka, Pramod Kumar; Thulkar, Sanjay

    2012-01-01

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS). The data of 50 lung cancer patients (53 ± 10.3 years; range 30-75; male/female 38/12) with 65 indeterminate lesions on planar BS (January 2010 to November 2010) were retrospectively evaluated. All of them underwent SPECT-CT of a selected volume. SPECT, CT and SPECT-CT images were independently evaluated by two experienced readers (experience in musculoskeletal imaging, including CT: 5 and 7 years) in separate sessions. A scoring scale of 1 to 5 was used, in which 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each modality, taking a score ≤2 as metastatic. With receiver operating characteristic (ROC) curve analysis, areas under the curve (AUC) were calculated for each modality and compared. Clinical and imaging follow-up and/or histopathology were taken as reference standard. For both readers SPECT was inferior to CT (P = 0.004, P = 0.022) and SPECT-CT (P = 0.003, P = 0.037). However, no significant difference was found between CT and SPECT-CT for reader 1 (P = 0.847) and reader 2 (P = 0.592). The findings were similar for lytic as well as sclerotic lesions. Moderate inter-observer agreement was seen for SPECT images (κ = 0.426), while almost perfect agreement was seen for CT (κ = 0.834) and SPECT-CT (κ = 0.971). CT alone and SPECT-CT are better than SPECT for accurate characterisation of indeterminate lesions on planar BS in lung cancer patients. CT alone is not inferior to SPECT-CT for this purpose and might be preferred because of shorter acquisition time and wider availability. (orig.)

  4. Present and future of the hybrid imaging method SPECT/CT

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2013-01-01

    Full text: Introduction: Based on the data in the literature and on our 4 year clinical experience applied for the first time in our country hybrid imaging - single photon emission tomography combined with computed tomography (SPECT / CT) it is clear that to obtain comprehensive information about the function and structure of the studied organ; the time for the diagnosis and thus the start of adequate treatment become shorter. The resulting scintigraphic image is with better quality due to CT correction of ‘diffusion’ gamma radiation, which leads to greater diagnostic accuracy. What you will learn: complex imaging method is used mainly in the field of endocrinology, cardiology, oncology, orthopedics, pulmology, neurology, and neurosurgery. It can be prove a given disease by visualization and localization of the organ lesions and determine the stage of the tumor process, to plan the type of subsequent treatment, to follow the effects of the therapy, and to predict the effect of an interventional or miniinvasive surgical procedure. Discussion: The result of the application of the hybrid imaging method is a change in the interpretation of more than half of the studied patients and in the treatment in more than a quarter of them. Conclusion: The clinical indications for SPECT/CT, and evidence of increased diagnostic accuracy compared with self- administered scintigraphic or CT methods are continuous expanded

  5. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  6. Comparison of Single-Photon Emission Computed Tomography-Computed Tomography (SPECT/CT) and Conventional Planar Lymphoscintigraphy for Sentinel Node Localization in Patients with Cutaneous Malignancies.

    Science.gov (United States)

    Doepker, Matthew P; Yamamoto, Maki; Applebaum, Matthew A; Patel, Nupur U; Jaime Montilla-Soler, M; Sarnaik, Amod A; Wayne Cruse, C; Sondak, Vernon K; Zager, Jonathan S

    2017-02-01

    Accurate preoperative lymphoscintigraphy is vital to performing sentinel lymph node biopsy (SLNB) for cutaneous malignancies. Potential advantages of single-photon emission computed tomography with integrated computed tomography (SPECT/CT) include the ability to readily identify aberrant drainage patterns as well as provide the surgeon with three-dimensional anatomic landmarks not seen on conventional planar lymphoscintigraphy (PLS). Patients with cutaneous malignancies who underwent SLNB with preoperative imaging using both SPECT/CT and PLS from 2011 to 2014 were identified. Both SPECT/CT and PLS were obtained in 351 patients (median age, 69 years; range, 5-94 years) with cutaneous malignancies (melanoma = 300, Merkel cell carcinoma = 33, squamous cell carcinoma = 8, other = 10) after intradermal injection of 99m technetium sulfur colloid (median dose 300 µCi). A mean of 4.3 hot spots were identified on SPECT/CT compared to 3.0 on PLS (p CT and PLS, while 172 (49 %) had additional hot spots identified on SPECT/CT compared to only 24 (6.8 %) additional on PLS. SPECT/CT demonstrated additional nodal basins in 103 patients (29.4 %), compared to only 11 patients (3.1 %) with additional basins on PLS. SPECT/CT is a useful adjunct that can help with sentinel node localization in challenging cases. It identified additional hot spots not seen on PLS in almost 50 % of patients. Because PLS identified hot spots not seen on SPECT/CT in 6.8 % of patients, we recommend using both modalities jointly. Long-term follow-up will be required to validate the clinical significance of the additional hot spots identified by SPECT/CT.

  7. What is the difference in the hybrid imaging techniques - SPECT/CT and PET-CT and is there any advantage of their application?

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2012-01-01

    The hybrid imaging methods - Single Photon Emission Tomography-Computer Tomography /SPECT-CT / and Positron Emission Tomography-Computer Tomography / PET-CT/ allow receiving of combined image of two different techniques. In such a way it is possible to superimpose detailed anatomical image of the multislice spiral computer tomography with specific and sensitive molecular images of the SPECT and PET in a single study, allowing utilization of the full possibilities of the both techniques. They have advantages and disadvantages, which basically stem from the differences in the used radiopharmaceuticals and their physical properties. In PET- CT - positron emitters are applied, most often 18F and 11C, while in SPECT-CT - single photon emitters, most often 99m Tc and 131 I. A disadvantage of PET is a high cost, which is produced in cyclotron and its logistics is complicated. The great advantage of PET is its better spatial resolution, compared to SPECT, because of the possibility for simultaneous detection of pared photons and better registration. These techniques, especially PET-CT are nowadays the most increasing imaging methods in the world in making diagnosis, staging and following the effect of treatment in patients with oncological, neurological, cardiological, orthopedic diseases and infections. Recently, they are applied for the purposes of radiotherapy planning on the basis of the metabolically active tumor. As a final result, compared to the conventional techniques - roentgenography, CT and MRI, it is possible in many cases to make an early and more precise diagnosis, saving patients' time and using most appropriate treatment. As a conclusion it is clear, that the hybrid imaging has future and its application will increase. (author)

  8. Towards adapting a normal patient database for SPECT brain perfusion imaging

    International Nuclear Information System (INIS)

    Smith, N D; Soleimani, M; Mitchell, C N; Holmes, R B; Evans, M J; Cade, S C

    2012-01-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements

  9. Imaging neurochemistry of cerebrovascular disease with PET and SPECT

    International Nuclear Information System (INIS)

    Hatazawa, J.; Shimosegawa, E.

    1998-01-01

    Pathophysiology od cerebrovascular disease has been studied by measuring cerebral blood flow and energy metabolism using single photon emission computed tomography (SPECT) and positron emission tomography (PET). These parameters are measures for brain tissue consisting of heterogeneous components such as neurons, glial cells, and blood vessels. It is still difficult to evaluate brain damages specifically involving either neurons or other components. Several trials were recently conducted to visualize neuron-specific injury in cerebrovascular disease by means of 11 C flumazenil for PET and 123 I-iomazenil for SPECT. These tracers selectively bind to central benzodiazepine receptor which is purely neuronal. A reduced accumulation of these ligands was found in the area surrounding the complete infarction and in the cortex remote from putaminal hemorrhage, indicating the existence of neuron specific injury not visualized by CT and MR. Neurological deficits were well correlated with the loss of cortical accumulation of these ligands. These preliminary studies indicated a potential of neurochemical imaging in cerebrovascular disease. Vulnerability to ischemia which may differ among brain tissue components, among subpopulations of neurons, and among pre-synaptic and post-synaptic functions can be more precisely examined. Neurochemical imaging can be also applied to reveal releases and re-organization of each neurotransmitter-acceptor system after stroke

  10. Imaging neurochemistry of cerebrovascular disease with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Hatazawa, J.; Shimosegawa, E. [Akita Research Institute of Brain and Blood Vessels, Akita (Japan). Dept. of Radiology and Nuclear Medicine

    1998-09-01

    Pathophysiology od cerebrovascular disease has been studied by measuring cerebral blood flow and energy metabolism using single photon emission computed tomography (SPECT) and positron emission tomography (PET). These parameters are measures for brain tissue consisting of heterogeneous components such as neurons, glial cells, and blood vessels. It is still difficult to evaluate brain damages specifically involving either neurons or other components. Several trials were recently conducted to visualize neuron-specific injury in cerebrovascular disease by means of {sup 11}C flumazenil for PET and {sup 123}I-iomazenil for SPECT. These tracers selectively bind to central benzodiazepine receptor which is purely neuronal. A reduced accumulation of these ligands was found in the area surrounding the complete infarction and in the cortex remote from putaminal hemorrhage, indicating the existence of neuron specific injury not visualized by CT and MR. Neurological deficits were well correlated with the loss of cortical accumulation of these ligands. These preliminary studies indicated a potential of neurochemical imaging in cerebrovascular disease. Vulnerability to ischemia which may differ among brain tissue components, among subpopulations of neurons, and among pre-synaptic and post-synaptic functions can be more precisely examined. Neurochemical imaging can be also applied to reveal releases and re-organization of each neurotransmitter-acceptor system after stroke.

  11. Evaluation of image reconstruction methods for {sup 123}I-MIBG-SPECT. A rank-order study

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid [Medical Radiation Physics, Dept. of Clinical Sciences Malmoe, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)], e-mail: marcus.soderberg@med.lu.se; Valind, Sven; Thorsson, Ola; Garpered, Sabine [Dept. of Clinical Physiology, Skaane Univ. Hospital, Malmoe (Sweden); Prautzsch, Tilmann [Scivis wissenschaftlice Bildverarbeitung GmbH, Goettingen (Germany); Tischenko, Oleg [Research Unit Medical Radiation Physics and Diagnostics (AMSD), Helmholtz Zentrum Muenchen (Germany); German Research Center for Environmental Health, Neuherberg (Germany)

    2012-09-15

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on {sup 123}I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq {sup 123}I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D{sub 32} > ReSPECT > Flash 3D{sub 64} > OPED, and after 24 h: Flash 3D{sub 16} > ReSPECT > Flash 3D{sub 32} > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D{sub 32} (4 h) and Flash 3D{sub 16} (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of {sup 123}I-MIBG images.

  12. I-123 Iofetamine SPECT scan in children with neurological disorders

    International Nuclear Information System (INIS)

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R.

    1990-01-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging

  13. Advantages of hybrid SPECT-CT imaging in preoperative localization of parathyroid glands in a patient with secondary hyperparathyroidism. A case report

    International Nuclear Information System (INIS)

    Cytawa, Wojciech; Teodorczyk, Jacek; Lass, Piotr

    2013-01-01

    Secondary hyperparathyroidism is a frequent complication of chronic renal failure. Patients resistant to pharmacotherapy are candidates for parathyroidectomy. Invasiveness of surgical treatment can be minimized by precise preoperative localization of parathyroid glands. Imaging modalities routinely used for this purpose are ultrasonography and MIBI-Tc99m scintigraphy. Our case report shows advantages of co-registered computer tomography and conventional SPECT imaging (SPECT/CT) in a patient with advanced secondary hyperparathyroidism successfully treated with surgery. Hybrid SPECT/CT parathyroid imaging enables better surgical planning and is superior to conventional scintigraphy

  14. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    Science.gov (United States)

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  15. Diagnosis of Alzheimer's disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?

    International Nuclear Information System (INIS)

    Kubota, Takao; Ushijima, Yo; Yamada, Kei; Okuyama, Chio; Kizu, Osamu; Nishimura, Tsunehiko

    2005-01-01

    The purpose of this study was to compare the accuracy of MR imaging and brain perfusion single-photon emission tomography (SPECT) in diagnosing Alzheimer's disease (AD). The transaxial section display of brain perfusion SPECT, three-dimensional stereotactic surface projection (3D-SSP) SPECT image sets, thin-section MR imaging of the hippocampus and perfusion MR imaging were evaluated in 66 subjects comprising 35 AD patients and 31 subjects without AD. SPECT and MR imaging were visually interpreted by two experts and two novices, and the diagnostic ability of each modality was evaluated by receiver operating characteristic (ROC) analysis. In the experts' interpretations, there was no significant difference in the area under the ROC curve (A z ) between 3D-SSP and thin-section MR imaging, whereas the A z of transaxial SPECT display was significantly lower than that of 3D-SSP (3D-SSP: 0.97, thin-section MR imaging: 0.96, transaxial SPECT: 0.91), and the A z of perfusion MR imaging was lowest (0.63). The sensitivity and specificity of each modality were, respectively, 80.0% and 96.8% for 3D-SSP, 77.1% and 96.8% for thin-section MR imaging, 60.0% and 93.5% for transaxial SPECT display and 34.3% and 100% for perfusion MR imaging. In the novices' interpretations, the A z , sensitivity and specificity of 3D-SSP were superior to those of thin-section MR imaging. Thin-section hippocampal MR imaging and 3D-SSP image sets had potentially equivalent value for the diagnosis of AD, and they were superior to transaxial SPECT display and perfusion MR imaging. For avoidance of the effect of interpreters' experience on image evaluation, 3D-SSP appears to be optimal. (orig.)

  16. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne's progressive muscular dystrophy. A histopathologic correlation study

    International Nuclear Information System (INIS)

    Nishimura, Toru; Yanagisawa, Atsuo; Sakata, Konomi; Shimoyama, Katsuya; Yoshino, Hideaki; Ishikawa, Kyozo; Sakata, Hitomi; Ishihara, Tadayuki

    2001-01-01

    The pathomorphologic mechanism responsible for abnormal perfusion imaging during thallium-201 myocardial single photon emission computed tomography ( 201 Tl-SPECT) in patients with Duchenne's progressive muscular dystrophy (DMD) was investigated. Hearts from 7 patients with DMD were evaluated histopathologically at autopsy and the results correlated with findings on initial and delayed resting 201 Tl-SPECT images. The location of segments with perfusion defects correlated with the histopathologically abnormal segments in the hearts. Both the extent and degree of myocardial fibrosis were severe, especially in the posterolateral segment of the left ventricle. Severe transmural fibrosis and severe fatty infiltration were common in segments with perfusion defects. In areas of redistribution, the degree of fibrosis appeared to be greater than in areas of normal perfusion; and intermuscular edema was prominent. Thus, the degree and extent of perfusion defects detected by 201 Tl-SPECT were compatible with the histopathology. The presence of the redistribution phenomenon may indicate ongoing fibrosis. Initial and delayed resting 201 Tl-SPECT images can predict the site and progress of myocardial degeneration in patients with DMD. (author)

  17. Software-based hybrid perfusion SPECT/CT provides diagnostic accuracy when other pulmonary embolism imaging is indeterminate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nishant; Xie, Karen; Mar, Winnie; Anderson, Thomas M.; Carney, Benjamin; Mehta, Nikhil; Machado, Roberto; Blend, Michael J.; Lu, Yang [University of Illinois Hospital and Health Sciences System, Chicago (Korea, Republic of)

    2015-12-15

    To investigate the diagnostic performance of perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) in patients suspected to have pulmonary embolism (PE) but with indeterminate computed tomographic pulmonary angiography (CTPA) or planar ventilation/perfusion (V/Q) scans. This retrospective study included two groups of patients. Group I consisted of 49 patients with nondiagnostic CTPA. These 49 patients underwent subsequent V/Q scans. Further Q-SPECTs were obtained in patients with indeterminate planar images and fused with existing CTPA. Group II consisted of 182 non-CTPA patients with indeterminate V/Q scans. These 182 patients underwent further Q-SPECT and separate noncontrast low-dose CT chest. Fusion Q-SPECT/CT scans were obtained through FDA-approved software and interpreted according to published criteria as positive, negative, or indeterminate for PE. Upon retrospective analyses, the final diagnosis was made using composite reference standards including all available clinical and imaging information for at least 6-month follow-up. In group I patients, 1 was positive, 24 were negative, and another 24 (49 %, 24/49) were indeterminate. In the subsequent 24 Q-SPECT/CTPAs, 4 were positive, 19 were negative, and 1 was indeterminate (4.2 %, 1/24). In group II patients, 9 (4.9 %, 9/182) were indeterminate, 33 were positive, and 140 were negative. The combined nondiagnostic rate for Q-SPECT/CT was only 4.9 % (10/206). There was six false-negative and one false-positive Q-SPECT/CT examinations. The sensitivity, specificity, and positive and negative predictive value of Q-SPECT/CT were 85.7 % (36/42), 99.4 % (153/154), 97.3 % (36/37) and 96.2 % (153/159), respectively. Q-SPECT/CT improves the diagnostic rate with promising accuracy in diagnosing PE that yields a satisfactory clinical verdict, especially when the CTPA and planar V/Q scan are indeterminate.

  18. Examination of attenuation correction method for cerebral blood Flow SPECT Using MR imaging

    International Nuclear Information System (INIS)

    Mizuno, Takashi; Takahashi, Masaaki

    2009-01-01

    Authors developed a software for attenuation correction using MR imaging (MRAC) (Toshiba Med. System Engineer.) based on the idea that precision of AC could be improved by the head contour in MRI T2-weighted images (T2WI) obtained before 123 I-iofetamine (IMP) single photon emission computed tomography (SPECT) for cerebral blood flow (CBF) measurement. In the present study, this MRAC was retrospectively evaluated by comparison with the previous standard AC methods derived from transmission CT (TCT) and X-CT which overcoming the problem of sinogram threshold Chang method but still having cost and patient exposure issues. MRAC was essentially performed in the Toshiba GMS5500/PI processor where 3D registration was conducted with images of SPECT and MRI of the same patient. The gamma camera for 123 I-IMP SPECT and 99m TcO 4 - TCT was Toshiba 3-detector GCA9300A equipped with the above processor for MRAC and with low energy high resolution (LEHR) fan beam collimator. Machines for MRI and CT were Siemens-Asahi Meditech. MAGNETOM Symphony 1.5T and SOMATOM plus4, respectively. MRAC was examined in 8 patients with images of T1WI, TCT and SPECT, and in 18 of T2WI, CT and SPECT. Evaluation was made by comparison of attenuation coefficients (μ) by the 4 methods. As a result, the present MRAC was found to be closer to AC by TCT and CT than by the Chang method since MRAC, due to exact imaging of the head contour, was independent on radiation count, and was thought to be useful for improving the precision of CBF SPECT. (K.T.)

  19. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  20. Comparison of positron emission tomography/CT and bremsstrahlung imaging following Y-90 radiation synovectomy

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Yap, Kenneth S.K.; Cherk, Martin H.; Kalff, Victor; Powell, Anne

    2013-01-01

    The aim of this study is to compare the results of positron emission tomography (PET)/CT with bremsstrahlung imaging following Y-90 radiation synovectomy. All patients referred to our institution for Y-90 radiation synovectomy between July 2011 and February 2012 underwent both PET/CT and bremsstrahlung planar (±single photon emission computed tomography (SPECT) or SPECT/CT) imaging at 4 or 24 h following administration of Y-90 silicate colloid. PET image acquisition was performed for between 15 and 20min. In patients who underwent SPECT, side-by-side comparison with PET was performed and image quality/resolution scored using a five-point scale. The distribution pattern of Y-90 on PET and bremsstrahlung imaging was compared with the intra- or extra-articular location of Y-90 activity on fused PET/CT. Thirteen joints (11 knees and two ankles) were imaged with both PET/CT and planar bremsstrahlung imaging with 12 joints also imaged with bremsstrahlung SPECT. Of the 12 joints imaged with SPECT, PET image quality/resolution was superior in 11 and inferior in one. PET demonstrated a concordant distribution pattern compared with bremsstrahlung imaging in all scans, with the pattern classified as diffuse in 12 and predominantly focal in one. In all 12 diffuse scans, PET/CT confirmed the Y-90 activity to be located intra-articularly. In the one predominantly focal scan, the fused PET/CT images localised the Y-90 activity to mostly lie in the extra-articular space of the knee. PET/CT can provide superior image quality compared with bremsstrahlung imaging and may enable reliable detection of extra-articular Y-90 activity when there are focal patterns on planar bremsstrahlung imaging.

  1. Quantification in emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-11-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena 2 - Main problems impacting quantification in PET and SPECT: problems, consequences, correction methods, results (Attenuation, scattering, partial volume effect, movement, un-stationary spatial resolution in SPECT, fortuitous coincidences in PET, standardisation in PET); 3 - Synthesis: accessible efficiency, know-how, Precautions, beyond the activity measurement

  2. Importance of SPECT/CT for knee and hip joint prostheses; Stellenwert der SPECT/CT bei Knie- und Hueftgelenkprothesen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, K.; Steurer-Dober, I.; Huellner, M.W.; Veit-Haibach, P.; Allgayer, B. [Luzerner Kantonsspital (Switzerland). Institut fuer Nuklearmedizin und Roentgendiagnostik

    2012-07-15

    Complications, such as loosening or infections are common problems after hip or knee arthroplasty. If conventional X-rays are equivocal bone scintigraphy is the classical second-line imaging modality. Single photon emission computed tomography/computed tomography (SPECT/CT) offers metabolic and morphologic information in one imaging step and is becoming increasingly more available in larger hospitals. The SPECT/CT procedure is a promising method and is increasingly being used in daily routine to evaluate joint arthroplasty. The additional benefit compared with classical conventional bone scintigraphy has to be evaluated in further prospective studies. In our hospital SPECT/CT regularly gives important additional information regarding prosthetic joint complications. SPECT/CT is increasingly being used as the second step imaging standard modality if conventional X-rays are equivocal. (orig.) [German] Komplikationen wie Lockerung und Infekt stellen ein haeufiges Problem nach Hueft- und Kniegelenkprothesen dar. Wenn die konventionelle Roentgenaufnahme nicht zum Ziel fuehrt, ist die klassische konventionelle Skelettszintigraphie die am haeufigsten verwendete ''Second-line''-Bildgebung. Die ''single photon emission computed tomography''/CT (SPECT/CT) bietet metabolische und morphologische Informationen bzgl. Prothesenkomplikationen in einem Untersuchungsgang und ist zunehmend in groesseren Kliniken verfuegbar. Die SPECT/CT ist eine viel versprechende Methode und wird im klinischen Alltag bei der Evaluation von Gelenkprothesen zunehmend eingesetzt. Es sind noch mehr prospektive Studien noetig, um die Leistungsfaehigkeit und den Zusatznutzen gegenueber der klassischen Szintigraphie zu evaluieren. In unserer Klinik wird die Knochenszintigraphie bei der Abklaerung von Prothesenkomplikationen zumeist mit einer SPECT/CT kombiniert und liefert regelmaessig wichtige Zusatzinformationen. Die SPECT/CT entwickelt sich zunehmend zum Standard

  3. Single-Photon Emission Computed Tomography (SPECT) in childhood epilepsy

    International Nuclear Information System (INIS)

    Gulati, Sheffali; Kalra, Veena; Bal, C.S.

    2000-01-01

    The success of epilepsy surgery is determined strongly by the precise location of the epileptogenic focus. The information from clinical electrophysiological data needs to be strengthened by functional neuroimaging techniques. Single photon emission computed tomography (SPECT) available locally has proved useful as a localising investigation. It evaluates the regional cerebral blood flow and the comparison between ictal and interictal blood flow on SPECT has proved to be a sensitive nuclear marker for the site of seizure onset. Many studies justify the utility of SPECT in localising lesions to possess greater precision than interictal scalp EEG or anatomic neuroimaging. SPECT is of definitive value in temporal lobe epilepsy. Its role in extratemporal lobe epilepsy is less clearly defined. It is useful in various other generalized and partial seizure disorders including epileptic syndromes and helps in differentiating pseudoseizures from true seizures. The need for newer radiopharmaceutical agents with specific neurochemical properties and longer shelf life are under investigation. Subtraction ictal SPECT co-registered to MRI is a promising new modality. (author)

  4. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  5. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  6. Ictal and interictal SPECT imaging of 8 patients with symptomatic partial epilepsy

    International Nuclear Information System (INIS)

    Motooka, Hiromichi

    1993-01-01

    Although epileptic discharges such as spike, spike and wave complex, sharp wave, and sharp and wave complex can be recorded by interictal scalp electroencephalography (EEG) in many patients with epilepsy, recent studies have demonstrated that no epileptic discharges can be recorded by interictal and ictal scalp EEGs in some patients who clinically exhibit epileptic seizures. Accordingly scalp EEG is not always helpful for diagnosing epilepsy or identifying the epileptic foci in the brain in these patients. Recently, studies using single photon emission computed tomography (SPECT) have been performed for patients with epilepsy and evidence that epileptic foci can be identified by changes in the regional cerebral blood flow (rCBF) seen on SPECT scanning have been accumulated. In the present study, therefore, 8 patients with medically intractable partial seizures were simultaneously or independently investigated by the recordings of scalp EEG and SPECT scanning during the interictal and ictal period. N-isopropyl-p[ 123 I]-iodoamphetamine ( 123 I-IMP) was used for SPECT scanning for 7 patients and 99m Tc-d,l-hexamethyl-propyleneamineoxime ( 99m Tc-HMPAO) for 1 patient. An increase in rCBF (hyperperfusion) or decrease in rCBF (hypoperfusion) were found in 4 patients by interictal SPECT imaging and in all patients by ictal SPECT imaging although epileptic discharges were observed in 3 patients by interictal scalp EEG and 5 patients by ictal scalp EEG. The findings of the present study indicate that ictal SPECT scanning is more useful for diagnosing epilepsy and identifying the epileptic foci in the brain than ictal scalp EEG. (author)

  7. Investigation of Collimator Influential Parameter on SPECT Image Quality: a Monte Carlo Study

    Directory of Open Access Journals (Sweden)

    Banari Bahnamiri Sh

    2015-03-01

    Full Text Available Background: Obtaining high quality images in Single Photon Emission Tomography (SPECT device is the most important goal in nuclear medicine. Because if image quality is low, the possibility of making a mistake in diagnosing and treating the patient will rise. Studying effective factors in spatial resolution of imaging systems is thus deemed to be vital. One of the most important factors in SPECT imaging in nuclear medicine is the use of an appropriate collimator for a certain radiopharmaceutical feature in order to create the best image as it can be effective in the quantity of Full Width at Half Maximum (FWHM which is the main parameter in spatial resolution. Method: In this research, the simulation of the detector and collimator of SPECT imaging device, Model HD3 made by Philips Co. and the investigation of important factors on the collimator were carried out using MCNP-4c code. Results: The results of the experimental measurments and simulation calculations revealed a relative difference of less than 5% leading to the confirmation of the accuracy of conducted simulation MCNP code calculation. Conclusion: This is the first essential step in the design and modelling of new collimators used for creating high quality images in nuclear medicine

  8. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  9. Evaluation of left ventricular ejection fraction from radial long-axis tomography. A new reconstruction algorithm for ECG-gated technetium-99m Sestamibi SPECT

    International Nuclear Information System (INIS)

    Tsujimura, Eiichiro; Kusuoka, Hideo; Uehara, Toshiisa

    1997-01-01

    Radial long-axis tomography can provide views similar to contrast left ventriculography (LVG) including the basal and apical areas of the left ventricle, not possible in routine short-axis tomography. We applied this method to ECG-gated Tc-99m Sestamibi (MIBI) myocardial SPECT images to estimate the left ventricular ejection fraction (LVEF). ECG-gated Tc-99m MIBI SPECT was performed with a temporal resolution of 10 frames per R-R interval. LVEF was calculated on the basis of left ventricular volume estimates at end diastole (ED) and end systole (ES) with using an ellipsoid body model. To validate this method, LVEF's derived from ECG-gated Tc-99m MIBI SPECT were compared with those from LVG in 11 patients with coronary artery disease. There was a close linear correlation between LVEF values calculated from Tc-99m MIBI SPECT and those from LVG (r=0.89, p<0.001), although the gated SPECT underestimated LVEF compared to LVG. The technique showed excellent reproducibility (intra-observer variability, r=0.96, p<0.001; inter-observer variability, r=0.71, p<0.005). The radial long-axis tomography technique gives a good estimate of LVEF, in agreement with estimates based on LVG. ECG-gated Tc-99m MIBI SPECT can, therefore, be applicable to assess myocardial perfusion and ventricular function at the same time. (author)

  10. Evaluation of left ventricular ejection fraction from radial long-axis tomography. A new reconstruction algorithm for ECG-gated technetium-99m Sestamibi SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Eiichiro; Kusuoka, Hideo; Uehara, Toshiisa [Osaka Univ. (Japan). Faculty of Medicine] [and others

    1997-08-01

    Radial long-axis tomography can provide views similar to contrast left ventriculography (LVG) including the basal and apical areas of the left ventricle, not possible in routine short-axis tomography. We applied this method to ECG-gated Tc-99m Sestamibi (MIBI) myocardial SPECT images to estimate the left ventricular ejection fraction (LVEF). ECG-gated Tc-99m MIBI SPECT was performed with a temporal resolution of 10 frames per R-R interval. LVEF was calculated on the basis of left ventricular volume estimates at end diastole (ED) and end systole (ES) with using an ellipsoid body model. To validate this method, LVEF`s derived from ECG-gated Tc-99m MIBI SPECT were compared with those from LVG in 11 patients with coronary artery disease. There was a close linear correlation between LVEF values calculated from Tc-99m MIBI SPECT and those from LVG (r=0.89, p<0.001), although the gated SPECT underestimated LVEF compared to LVG. The technique showed excellent reproducibility (intra-observer variability, r=0.96, p<0.001; inter-observer variability, r=0.71, p<0.005). The radial long-axis tomography technique gives a good estimate of LVEF, in agreement with estimates based on LVG. ECG-gated Tc-99m MIBI SPECT can, therefore, be applicable to assess myocardial perfusion and ventricular function at the same time. (author)

  11. Geometric Calibration and Image Reconstruction for a Segmented Slant-Hole Stationary Cardiac SPECT System.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-06-01

    A dedicated stationary cardiac single-photon emission computed tomography (SPECT) system with a novel segmented slant-hole collimator has been developed. The goal of this paper is to calibrate this new imaging geometry with a point source. Unlike the commercially available dedicated cardiac SPECT systems, which are specialized and can be used only to image the heart, our proposed cardiac system is based on a conventional SPECT system but with a segmented slant-hole collimator replacing the collimator. For a dual-head SPECT system, 2 segmented collimators, each with 7 sections, are arranged in an L-shaped configuration such that they can produce a complete cardiac SPECT image with only one gantry position. A calibration method was developed to estimate the geometric parameters of each collimator section as well as the detector rotation radius, under the assumption that the point source location is calculated using the central-section data. With a point source located off the rotation axis, geometric parameters for each collimator section can be estimated independently. The parameters estimated individually are further improved by a joint objective function that uses all collimator sections simultaneously and incorporates the collimator symmetry information. Estimation results and images reconstructed from estimated parameters are presented for both simulated and real data acquired from a prototype collimator. The calibration accuracy was validated by computer simulations with an error of about 0.1° for the slant angles and about 1 mm for the rotation radius. Reconstructions of a heart-insert phantom did not show any image artifacts of inaccurate geometric parameters. Compared with the detector's intrinsic resolution, the estimation error is small and can be ignored. Therefore, the accuracy of the calibration is sufficient for cardiac SPECT imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer

    International Nuclear Information System (INIS)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung; Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong; Kim, Dong-Yeon; Min, Jung-Joon

    2011-01-01

    The aim of this study was to compare 131 I whole-body scintigraphy (WBS), WBS with 131 I single photon emission computed tomography/computed tomography (SPECT/CT), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. 131 I WBS, 131 I SPECT/CT, and 18 F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for 131 I WBS; 65, 95, and 85% for 131 I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for 18 F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p 18 F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  13. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    International Nuclear Information System (INIS)

    Suga, K.; Yasuhiko, K.; Iwanaga, H.; Tokuda, O.; Matsunaga, N.

    2009-01-01

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  14. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  15. Functional mechanism of lung mosaic CT attenuation: assessment with deep-inspiration breath-hold perfusion SPECT-CT fusion imaging and non-breath-hold Technegas SPECT.

    Science.gov (United States)

    Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N

    2009-01-01

    The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial

  16. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  17. Tomography methods for diagnostic examination of cerebrovascular disease: a comparative evaluation of SPECT, PET and MR/CT findings

    International Nuclear Information System (INIS)

    Reiche, W.; Kaiser, H.J.; Weiller, C.; Altehoefer, C.; Buell, U.; Isensee, C.

    1991-01-01

    Single Photon Emissions Computerized Tomography (SPECT), Positron Emissions Tomography (PET), Magnetic Resonance Tomography (MR), and Transmission Computerized Tomography (CT) complement each other and lead to a consideration of the cerebrovascular disease under patho-physiological aspects. Indications for the combined application of functionally oriented (SPECT/PET) and morphologically oriented (CT/MR) examination methods with cerebrovascular disease are presented. (orig./MG) [de

  18. Tomographic imaging

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Tomography is used to image anatomy of organs as in the case of CT and MRI or image body functions as in the case of SPECT and PET. The theory of reconstruction applies equally well to CT, SPECT and PET with a minor differences. The main difference between SPECT and PET is that SPECT images single photon emitters (radionuclides) which emit normal gamma rays (like Tc-99m), whereas PET images positron emitting radionuclides such as O 15 or F 18 . The word tomography means drawing of the body. Every tomography results in an image of the inside of the body and is represented as a slice. (author)

  19. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications

    International Nuclear Information System (INIS)

    Chowdhury, F.U.; Scarsbrook, A.F.

    2008-01-01

    Single photon emission computed tomography - computed tomography (SPECT-CT) is an emerging dual-modality imaging technique with many established and potential clinical applications in the field of oncology. To date, there has been a considerable emphasis on the benefits of integrated positron emission tomography - computed tomography (PET-CT) in oncology, but relatively little focus on the clinical utility of SPECT-CT. As with PET-CT, accurate co-registration of anatomical and functional data from a combined SPECT-CT camera often provides complementary diagnostic information. Both sensitivity (superior disease localization) and specificity (exclusion of false-positives due to physiological tracer uptake) are improved, and the functional significance of indeterminate lesions detected on cross-sectional imaging can be defined. This article will review the scope of hybrid SPECT-CT in oncology and illustrate both current and emerging clinical applications

  20. Diagnostic impact of SPECT-CT in the assessment of endocrine tumors

    International Nuclear Information System (INIS)

    El Badaoui, A.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Allard, M.

    2008-01-01

    Image fusion using single photon emission computed tomography - computed tomography (SPECT - CT) associates functional and morphological images. This study evaluates the added value of SPECT- CT, obtained with a hybrid SPECT- CT gamma camera, on anatomic localization and diagnostic impact in assessment of endocrine tumours and pheochromocytomas. Method: Six months prospective study was undertaken including 33 consecutive exams encompassing 20 Somatostatin Receptor Scintigraphies (S.R.S.) and 13 123 I-meta-iodo-benzyl-guanidine (Mibg) scans. Two experienced nuclear medicine physicians independently analysed independently planar and SPECT images in a first time, then, SPECT- CT fused images in a second time. They evaluated two parameters: SPECT- CT impact on anatomic localization (L.A.) and its diagnostic impact (I.D.). Each parameter was scored according three levels of evaluation. Results: An added value of SPECT- CT images was evidenced in 55% of cases on the anatomic localization and in 41% of the patients on the diagnostic impact. Therefore, a more important benefit was noted when SPECT was positive (L.A.: 90%; I.D.: 70%) than when it was negative (L.A.: 15%; I.D.: 8%). Furthermore, the added value proved higher for the S;R.S. compared to Mibg scans. Conclusion: SPECT- CT fusion images obtained by a hybrid system is more relevant to determine anatomic localization and more accurate than SPECT alone, particularly in the assessment of endocrine tumours. The added value of SPECT- CT seems to be lower for Mibg scans in the assessment of pheochromocytomas. (authors)

  1. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  2. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  3. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Iwanaga, Hideyuki; Hayashi, Noriko; Seto, Akiko; Matsunaga, Naofumi

    2008-01-01

    Anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema was assessed on deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images. Subjects were 38 patients with pulmonary emphysema and 11 non-smoker controls, who successfully underwent DIBrH and non-BrH perfusion SPECT using a dual-headed SPECT system during the period between January 2004 and June 2006. DIBrH SPECT was three-dimensionally co-registered with DIBrH CT to comprehend the relationship between lung perfusion defects and CT low attenuation areas (LAA). By comparing the appearance of lung perfusion on DIBrH with non-BrH SPECT, the correlation with the rate constant for the alveolar-capillary transfer of carbon monoxide (DLCO/VA) was compared between perfusion abnormalities on these SPECTs and LAA on CT. DIBrH SPECT provided fairly uniform perfusion in controls, but significantly enhanced perfusion heterogeneity when compared with non-BrH SPECT in pulmonary emphysema patients (P<0.001). The reliable DIBrH SPECT-CT fusion images confirmed more extended perfusion defects than LAA on CT in majority (73%) of patients. Perfusion abnormalities on DIBrH SPECT were more closely correlated with DLCO/VA than LAA on CT (P<0.05). DIBrH SPECT identifies affected lungs with perfusion abnormality better than does non-BrH SPECT in pulmonary emphysema. DIBrH SPECT-CT fusion images are useful for more accurately localizing affected lungs than morphologic CT alone in this disease. (author)

  4. Value of image fusion using single photon emission computed tomography with integrated low dose computed tomography in comparison with a retrospective voxel-based method in neuroendocrine tumours

    International Nuclear Information System (INIS)

    Amthauer, H.; Denecke, T.; Ruf, J.; Gutberlet, M.; Felix, R.; Lemke, A.J.; Rohlfing, T.; Boehmig, M.; Ploeckinger, U.

    2005-01-01

    The objective was the evaluation of single photon emission computed tomography (SPECT) with integrated low dose computed tomography (CT) in comparison with a retrospective fusion of SPECT and high-resolution CT and a side-by-side analysis for lesion localisation in patients with neuroendocrine tumours. Twenty-seven patients were examined by multidetector CT. Additionally, as part of somatostatin receptor scintigraphy (SRS), an integrated SPECT-CT was performed. SPECT and CT data were fused using software with a registration algorithm based on normalised mutual information. The reliability of the topographic assignment of lesions in SPECT-CT, retrospective fusion and side-by-side analysis was evaluated by two blinded readers. Two patients were not enrolled in the final analysis because of misregistrations in the retrospective fusion. Eighty-seven foci were included in the analysis. For the anatomical assignment of foci, SPECT-CT and retrospective fusion revealed overall accuracies of 91 and 94% (side-by-side analysis 86%). The correct identification of foci as lymph node manifestations (n=25) was more accurate by retrospective fusion (88%) than from SPECT-CT images (76%) or by side-by-side analysis (60%). Both modalities of image fusion appear to be well suited for the localisation of SRS foci and are superior to side-by-side analysis of non-fused images especially concerning lymph node manifestations. (orig.)

  5. Practical reconstruction protocol for quantitative 90Y bremsstrahlung SPECT/CT

    International Nuclear Information System (INIS)

    Siman, W.; Mikell, J. K.; Kappadath, S. C.

    2016-01-01

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative 90 Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a 90 Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar 90 Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical 90 Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for 90 Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity

  6. Response analysis for an approximate 3-D image reconstruction in cone-beam SPECT

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa

    1991-01-01

    Cone-beam single photon emission computed tomography (SPECT) offers the potential for a large increase in sensitivity as compared with parallel hole or fan-beam collimation. Three-dimensional image reconstruction was approximately accomplished by backprojecting filtered projections using a two-dimensional fan-beam algorithm. The cone-beam projection data were formed from mathematical phantoms as analytically derived line integrals of the density. In order to reduce the processing time, the filtered projections were backprojected into each plane parallel to the circle on which the focal point moved. Discrepancy of source position and degradation of resolution were investigated by computer simulation in three-dimensional image space. The results obtained suggest that, the nearer to the central plane or the axis of rotation, the less image degradation is performed. By introducing a parameter of angular difference between the focal point and a fixed point in the image space during rotation, degradation of the reconstructed image can be estimated for any cone-beam SPECT system. (author)

  7. Evaluation of usefulness of thallium-201-SPECT and CT images in differential diagnosis between organizing pneumonia and primary lung cancer

    International Nuclear Information System (INIS)

    Nakamura, Kazuhiko; Fujiwara, Yoshio; Ogawa, Hirofumi; Nakano, Kenji; Ogawa, Toshihide

    2007-01-01

    We tried differential diagnosis between organizing pneumonia and primary lung cancer using CT and 201 Tl single photon emission computed tomography (SPECT) images. CT images were estimated margin, air space consolidation, air bronchogram, ground-glass attenuation, spicula and indentation of the lesions. 201 Tl SPECT images were evaluated early and delayed lesion-to-normal contralateral lung uptake ratio (ER and DR) and retention index (RI). Clearness of margin and ground-glass attenuation of CT images of organizing pneumonia were significant different from those of primary lung cancer. On the other hand, DR and RI of organizing pneumonia were significant lower than those of primary lung cancer. We emphasized that 201 Tl SPECT was useful to evaluate differential diagnosis between organizing pneumonia and primary lung cancer. (author)

  8. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine

    2000-02-01

    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)

  9. Image reconstruction from projections and its application in emission computer tomography

    International Nuclear Information System (INIS)

    Kuba, Attila; Csernay, Laszlo

    1989-01-01

    Computer tomography is an imaging technique for producing cross sectional images by reconstruction from projections. Its two main branches are called transmission and emission computer tomography, TCT and ECT, resp. After an overview of the theory and practice of TCT and ECT, the first Hungarian ECT type MB 9300 SPECT consisting of a gamma camera and Ketronic Medax N computer is described, and its applications to radiological patient observations are discussed briefly. (R.P.) 28 refs.; 4 figs

  10. Technetium-99m-HMPAO labeled leukocyte single photon emission computerized tomography (SPECT) for assessing Crohn's disease extent and intestinal infiltration.

    Science.gov (United States)

    Biancone, L; Schillaci, O; Capoccetti, F; Bozzi, R M; Fina, D; Petruzziello, C; Geremia, A; Simonetti, G; Pallone, F

    2005-02-01

    Scintigraphy using radiolabeled leukocytes is a useful technique for assessing intestinal infiltration in Crohn's disease (CD). However, limits of planar images include overlapping activity in other organs and low specificity. To investigate the usefulness of (99m)Tc-HMPAO (hexametyl propylene amine oxime) labeled leukocyte single photon emission computerized tomography (SPECT) for assessing CD lesions, in comparison with planar images. Twenty-two inflammatory bowel disease patients (19 CD; 2 ulcerative colitis, UC; 1 ileal pouch) assessed by conventional endoscopy or radiology were enrolled. Leukocytes were labeled with (99m)Tc-HMPAO. SPECT images were acquired at 2 h and planar images at 30 min and 2 h. Bowel uptake was quantitated in nine regions (score 0-3). Both SPECT and planar images detected a negative scintigraphy (score 0) in the UC patient with no pouchitis and a positive scintigraphy (score 1-3) in the 21 patients showing active inflammation by conventional techniques. SPECT showed a higher global score than planar images (0.71 +/- 0.09 vs 0.30 +/- 0.05; p < 0.001), and in particular in the right iliac fossa (p= 0.003), right and left flank (p < 0.001; p= 0.02), hypogastrium (p= 0.002), and mesogastrium (p < 0.001). SPECT provided a better visualization and a higher uptake than planar images in patients with ileal and ileocolonic CD (6.45 +/- 0.82 vs 2.8 +/- 0.55, p < 0.001; 5.5 +/- 1.6 vs 2.6 +/- 0.7, p= 0.03), and with perianal CD (6.6 +/- 1.6 vs 3.4 +/- 1.2; p= 0.03). (99m)Tc-HMPAO labeled leukocyte SPECT provides a more detailed visualization of CD lesions than planar images. This technique may better discriminate between intestinal and bone marrow uptake, thus being useful for assessing CD lesions within the pelvis, including perianal disease.

  11. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  12. 111In-Pentetreotide SPECT/CT in Pulmonary Carcinoid.

    Science.gov (United States)

    Chiaravalloti, Agostino; Spanu, Angela; Danieli, Roberta; Dore, Francesca; Piras, Bastiana; Falchi, Antonio; Tavolozza, Mario; Madeddu, Giuseppe; Schillaci, Orazio

    2015-07-01

    We evaluated somatostatin receptor scintigraphy (SRS) with (111)In-pentetreotide incremental value in pulmonary carcinoid (PC) diagnosis compared to contrast enhanced Computed Tomography (ceCT). We enrolled 81 patients with ascertained PC, 39 at initial staging and 42 in follow-up; the primary tumor had already been excised in 68 cases. Single Photon emission Computed Tomography (SPECT) images were reconstructed with the iterative method and fused with non-enhanced Computed tomography (CT) images. Primary PC or metastatic lesions were ascertained in 55/81 patients and SPECT/CT was positive in 50/55 cases, while ceCT was positive in 44/55. Comparing SPECT/CT with ceCT results, we found a sensitivity of 96 vs. 87.5%, and specificity of 92% vs. 97% for the detection of primary lesion or recurrent disease. A total of 198 lesions were ascertained at SPECT/CT, while 161 at ceCT, with values of sensitivity and specificity of 85.5% and 84.6% for SRS and 75.2% and 90.5% respectively. (111)In-Pentetreotide SPECT/CT proved to be more sensitive and accurate than ceCT, thus enhancing its role in evaluating patients with PC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. C-Arm computed tomography adds diagnostic information in patients with chronic thromboembolic pulmonary hypertension and a positive V/Q SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Jan B.; Werncke, Thomas; Kaireit, Till [Hannover Medical School (Germany). Dept. for Diagnostic and Interventional Radiology; and others

    2017-01-15

    To determine if C-Arm computed tomography (CACT) has added diagnostic value in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) with a positive mismatch pattern in ventilation/perfusion single photon emission computed tomography (V/Q SPECT). 28 patients (23 men, 5 women, 62±18 years) with CTEPH who had undergone SPECT, followed by CACT and right heart catheterization (RHC) were included. Two independent readers reviewed SPECT and CACT. Findings indicating CTEPH and their location (segmental or sub-segmental) were identified (V/Q mismatch in SPECT and vascular pathologies in CACT). Inter-modality agreement was calculated (Cohen's Kappa). Findings were scored on a 3-point-scale. The sum of the score (pulmonary artery CTEPH severity score (PACSS)) was calculated for each patient and imaging modality, correlated to RHC (spearman's correlation) and compared to the final therapeutic decision of the CTEPH board (including the consensus of SPECT, selective pulmonary DSA and CACT). Overall, 504 pulmonary artery segments were assessed in SPECT and CACT. SPECT had identified 266/504 (53%) arterial segments without and 238/504 (47%) segments with a V/Q mismatch indicating CTEPH. CACT detected 131/504 (26%) segments without abnormal findings and 373/504 (74%) segments with findings indicating CTEPH. Inter-modality agreement was fair (k=0.38). PACSS of CACT correlated mildly significantly with the mean pulmonary artery pressure (PAPmean; rho=0.48, p=0.01), while SPECT missed significance (rho=0.32, p=0.1). Discrepant findings were mostly attributed to a higher frequency of sub-segmental pulmonary arterial pathologies on CACT (145 sub-segmental findings indicating CTEPH) rated as normal on SPECT. In patients with CTEPH, contrast-enhanced CACT detects additional findings with a better correlation to the severity of PAPmean than V/Q SPECT. CACT indicates abnormalities even in segments without V/Q abnormalities.

  14. Correlation of uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT)and treatment response in patients with knee pain

    International Nuclear Information System (INIS)

    Koh, Geon; Hwang, Kyung Hoon; Lee, Hae Jin; Kim, Seog Gyun; Lee, Beom Koo

    2016-01-01

    To determine whether treatment response in patients with knee pain could be predicted using uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT) images. Ninety-five patients with knee pain who had undergone SPECT/CT were included in this retrospective study. Subjects were divided into three groups: increased focal uptake (FTU), increased irregular tracer uptake (ITU), and no tracer uptake (NTU). A numeric rating scale (NRS-11) assessed pain intensity. We analyzed the association between uptake patterns and treatment response using Pearson's chi-square test and Fisher's exact test. Uptake was quantified from SPECT/CT with region of interest (ROI) counting, and an intraclass correlation coefficient (ICC) calculated agreement. We used Student' t-test to calculate statistically significant differences of counts between groups and the Pearson correlation to measure the relationship between counts and initial NRS-1k1. Multivariate logistic regression analysis determined which variables were significantly associated with uptake. The FTU group included 32 patients; ITU, 39; and NTU, 24. With conservative management, 64 % of patients with increased tracer uptake (TU, both focal and irregular) and 36 % with NTU showed positive response. Conservative treatment response of FTU was better than NTU, but did not differ from that of ITU. Conservative treatment response of TU was significantly different from that of NTU (OR 3.1; p 0.036). Moderate positive correlation was observed between ITU and initial NRS-11. Age and initial NRS-11 significantly predicted uptake. Patients with uptake in their knee(s) on SPECT/CT showed positive treatment response under conservative treatment

  15. Correlation of uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT)and treatment response in patients with knee pain

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Geon; Hwang, Kyung Hoon; Lee, Hae Jin; Kim, Seog Gyun; Lee, Beom Koo [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2016-06-15

    To determine whether treatment response in patients with knee pain could be predicted using uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT) images. Ninety-five patients with knee pain who had undergone SPECT/CT were included in this retrospective study. Subjects were divided into three groups: increased focal uptake (FTU), increased irregular tracer uptake (ITU), and no tracer uptake (NTU). A numeric rating scale (NRS-11) assessed pain intensity. We analyzed the association between uptake patterns and treatment response using Pearson's chi-square test and Fisher's exact test. Uptake was quantified from SPECT/CT with region of interest (ROI) counting, and an intraclass correlation coefficient (ICC) calculated agreement. We used Student' t-test to calculate statistically significant differences of counts between groups and the Pearson correlation to measure the relationship between counts and initial NRS-1k1. Multivariate logistic regression analysis determined which variables were significantly associated with uptake. The FTU group included 32 patients; ITU, 39; and NTU, 24. With conservative management, 64 % of patients with increased tracer uptake (TU, both focal and irregular) and 36 % with NTU showed positive response. Conservative treatment response of FTU was better than NTU, but did not differ from that of ITU. Conservative treatment response of TU was significantly different from that of NTU (OR 3.1; p 0.036). Moderate positive correlation was observed between ITU and initial NRS-11. Age and initial NRS-11 significantly predicted uptake. Patients with uptake in their knee(s) on SPECT/CT showed positive treatment response under conservative treatment.

  16. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    Science.gov (United States)

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  17. Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors

    International Nuclear Information System (INIS)

    Bushnell, D.L.; Kahn, D.; Huston, B.; Bevering, C.G.

    1995-01-01

    Determining the etiology of a focal lesion seen on bone scan in patients with primary tumors usually requires the use of other imaging procedures or biopsy. Single positron emission computed tomography (SPECT) with high resolution multidetector systems can localize the specific site of a vertebral lesion and in this way potentially differentiate between benign and metastatic disease. SPECT images of the lower thoracic and lumbar spine were reviewed for lesion location and intensity by two experienced interpreters. Follow-up data were adequate to ascertain the cause of 71 lesions seen on SPECT in 29 patients. Twenty-six of these lesions were not seen on planar images. Of the 71 lesions, 44 were benign and 27 metastatic. Of the 15 lesions where the pedicle was involved, 11 were found to metastatic. There were a total of 14 facet lesions, 9 of which were present in vertebra with no lesions at sites other than the facets. All 9 of these isolated facet lesions turned out to be benign. Lesion intensity did not distinguish benign from malignant disease. We conclude that SPECT imaging is useful in determining the etiology of focal lesions seen on bone scan in patients with a known primary tumor referred for evaluation of metastatic disease. (orig.)

  18. Effect of maintenance oral theophylline on dipyridamole-thallium-201 myocardial imaging using SPECT and dipyridamole-induced hemodynamic changes

    International Nuclear Information System (INIS)

    Daley, P.J.; Mahn, T.H.; Zielonka, J.S.; Krubsack, A.J.; Akhtar, R.; Bamrah, V.S.

    1988-01-01

    To evaluate the effect of maintenance oral theophylline therapy on the diagnostic efficacy of dipyridamole-thallium-201 single photon emission computed tomography (SPECT) imaging for coronary artery disease, dipyridamole-thallium-201 SPECT imaging was performed in eight men with documented coronary artery disease before initiation of theophylline treatment and repeated while these patients were receiving therapeutic doses of oral theophylline. Before theophylline treatment, intravenous dipyridamole caused a significant increase in heart rate, decrease in blood pressure, angina in seven of eight patients, and ST segment depression in four of eight patients. While they were being treated with theophylline, none of the patients had angina or ST segment depression, and there were no hemodynamic changes with intravenous dipyridamole. Before theophylline treatment, dipyridamole-thallium-201 SPECT imaging showed reversible perfusion defects in myocardial segments supplied by stenotic coronary arteries. With theophylline treatment, dipyridamole-thallium-201 SPECT showed total absence of reversible perfusion defects. Treatment with theophylline markedly reduced the diagnostic accuracy of dipyridamole-thallium-201 imaging for coronary artery disease

  19. Accuracy evaluation of fusion of CT, MR, and SPECT images using commercially available software packages (SRS PLATO and IFS)

    International Nuclear Information System (INIS)

    Mongioj, Valeria; Brusa, Anna; Loi, Gianfranco; Pignoli, Emanuele; Gramaglia, Alberto; Scorsetti, Marta; Bombardieri, Emilio; Marchesini, Renato

    1999-01-01

    Purpose: A problem for clinicians is to mentally integrate information from multiple diagnostic sources, such as computed tomography (CT), magnetic resonance (MR), and single photon emission computed tomography (SPECT), whose images give anatomic and metabolic information. Methods and Materials: To combine this different imaging procedure information, and to overlay correspondent slices, we used commercially available software packages (SRS PLATO and IFS). The algorithms utilize a fiducial-based coordinate system (or frame) with 3 N-shaped markers, which allows coordinate transformation of a clinical examination data set (9 spots for each transaxial section) to a stereotactic coordinate system. The N-shaped markers were filled with fluids visible in each modality (gadolinium for MR, calcium chloride for CT, and 99m Tc for SPECT). The frame is relocatable, in the different acquisition modalities, by means of a head holder to which a face mask is fixed so as to immobilize the patient. Position errors due to the algorithms were obtained by evaluating the stereotactic coordinates of five sources detectable in each modality. Results: SPECT and MR position errors due to the algorithms were evaluated with respect to CT: Δx was ≤ 0.9 mm for MR and ≤ 1.4 mm for SPECT, Δy was ≤ 1 mm and ≤ 3 mm for MR and SPECT, respectively. Maximal differences in distance between estimated and actual fiducial centers (geometric mismatch) were in the order of the pixel size (0.8 mm for CT, 1.4 mm for MR, and 1.8 mm for SPECT). In an attempt to distinguish necrosis from residual disease, the image fusion protocol was studied in 35 primary or metastatic brain tumor patients. Conclusions: The image fusion technique has a good degree of accuracy as well as the potential to improve the specificity of tissue identification and the precision of the subsequent treatment planning

  20. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  1. Liver function assessment using 99mTc-GSA single-photon emission computed tomography (SPECT)/CT fusion imaging in hilar bile duct cancer: A retrospective study.

    Science.gov (United States)

    Sumiyoshi, Tatsuaki; Shima, Yasuo; Okabayashi, Takehiro; Kozuki, Akihito; Hata, Yasuhiro; Noda, Yoshihiro; Kouno, Michihiko; Miyagawa, Kazuyuki; Tokorodani, Ryotaro; Saisaka, Yuichi; Tokumaru, Teppei; Nakamura, Toshio; Morita, Sojiro

    2016-07-01

    The objective of this study was to determine the utility of Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl human serum albumin ((99m)Tc-GSA) single-photon emission computed tomography (SPECT)/CT fusion imaging for posthepatectomy remnant liver function assessment in hilar bile duct cancer patients. Thirty hilar bile duct cancer patients who underwent major hepatectomy with extrahepatic bile duct resection were retrospectively analyzed. Indocyanine green plasma clearance rate (KICG) value and estimated KICG by (99m)Tc-GSA scintigraphy (KGSA) and volumetric and functional rates of future remnant liver by (99m)Tc-GSA SPECT/CT fusion imaging were used to evaluate preoperative whole liver function and posthepatectomy remnant liver function, respectively. Remnant (rem) KICG (= KICG × volumetric rate) and remKGSA (= KGSA × functional rate) were used to predict future remnant liver function; major hepatectomy was considered unsafe for values liver were significantly higher than volumetric rates (median: 0.54 vs 0.46; P liver failure and mortality did not occur in the patients for whom hepatectomy was considered unsafe based on remKICG. remKGSA showed a stronger correlation with postoperative prothrombin time activity than remKICG. (99m)Tc-GSA SPECT/CT fusion imaging enables accurate assessment of future remnant liver function and suitability for hepatectomy in hilar bile duct cancer patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Utility of single photon emission computed tomography/computed tomography imaging in evaluation of chronic low back pain

    International Nuclear Information System (INIS)

    Harisankar, Chidambaram Natrajan Balasubramanian; Mittal, Bhagwant Rai; Bhattacharya, Anish; Singh, Paramjeet; Sen, Ramesh

    2012-01-01

    Abnormal morphologic findings in imaging were thought to explain the etiology of low back pain (LBP). However, it is now known that variety of morphologic abnormalities is noted even in asymptomatic individuals. Single photon emission computed tomography/computed tomography (SPECT/CT) could be used to differentiate incidental findings from clinically significant findings. This study was performed to define the SPECT/CT patterns in patients with LBP and to correlate these with clinical and magnetic resonance imaging (MRI) findings. Thirty adult patients with LBP of duration 3 months or more were prospectively evaluated in this study. Patients with known or suspected malignancy, trauma or infectious processes were excluded. A detailed history of sensory and motor symptoms and neurologic examination was performed. All the patients were subjected to MRI and bone scintigraphy with hybrid SPECT/CT of the lumbo-sacral spine within 1 month of each other. The patients were classified into those with and without neurologic symptoms, activity limitation. The findings of clinical examination and imaging were compared. MRI and SPECT/CT findings were also compared. Thirty patients (18 men and 12 women; mean age 38 years; range 17-64 years) were eligible for the study. Clinically, 14 of 30 (46%) had neurologic signs and or symptoms. Six of the 30 patients (20%) had positive straight leg raising test (SLRT). Twenty-two of the 30 patients (73%) had SPECT abnormality. Most frequent SPECT/CT abnormality was tracer uptake in the anterior part of vertebral body with osteophytes/sclerotic changes. Significant positive agreement was noted between this finding and MRI evidence of degenerative disc disease. Only 13% of patients had more than one abnormality in SPECT. All 30 patients had MRI abnormalities. The most frequent abnormality was degenerative disc disease and facet joint arthropathy. MRI showed single intervertebral disc abnormality in 36% of the patients and more than one

  3. Practical reconstruction protocol for quantitative {sup 90}Y bremsstrahlung SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion

  4. Technical approach to improvement of SPECT images

    International Nuclear Information System (INIS)

    Fukukita, Hiroyoshi

    1985-01-01

    At present, a large number of SPECT systems are being widely used in Japan, hence, it is reasonable for us to know the physical and imaging characteristics of these SPECT devices, and also to recommend the optimum utility of SPECT systems. For this reason, a survey respect of characteristics of the commercialy available SPECT devices was carried out. In addition to this, various factors which have significant influence over SPECT image quality, such as, data acquisition matrix, reconstruction filter, γ-ray attenuation correction and daily quality control procedure, were also investigated. The materials used for this study are PET/SPECT phantom, Alderson liver phantom filled with Tc-99m solution, and either LFOV-E or ZLC-7500 interfaced to Scintipac 2400 minicomputer with 256 K byte of memory. Following are the results of this study. 1) The suitable data acquisition procedure was 128 x 128 matrix for linear sampling and approximately 64 views for angular sampling. 2) Reconstructed image using pre-processing filter with Wiener and Butterworth filters provided high quality image as compared with the Ramp filter. 3) Weighted backprojection method (WBP) proposed by Tanaka was superior to other methods, such as Sorenson method and Chang method in the object with non-uniform distribution of radionuclide. 4) It was found that uniformity correction of gamma camera and precise adjustment of the center of rotation are most important to maintain the images with a high quality. (author)

  5. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study

    International Nuclear Information System (INIS)

    Nasis, Arthur; Ko, Brian S.; Leung, Michael C.; Antonis, Paul R.; Wong, Dennis T.; Kyi, Leo; Cameron, James D.; Meredith, Ian T.; Seneviratne, Sujith K.; Nandurkar, Dee; Troupis, John M.

    2013-01-01

    To determine the diagnostic accuracy of combined 320-detector row computed tomography coronary angiography (CTA) and adenosine stress CT myocardial perfusion imaging (CTP) in detecting perfusion abnormalities caused by obstructive coronary artery disease (CAD). Twenty patients with suspected CAD who underwent initial investigation with single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI) were recruited and underwent prospectively-gated 320-detector CTA/CTP and invasive angiography. Two blinded cardiologists evaluated invasive angiography images quantitatively (QCA). A blinded nuclear physician analysed SPECT-MPI images for fixed and reversible perfusion defects. Two blinded cardiologists assessed CTA/CTP studies qualitatively. Vessels/territories with both >50 % stenosis on QCA and corresponding perfusion defect on SPECT-MPI were defined as ischaemic and formed the reference standard. All patients completed the CTA/CTP protocol with diagnostic image quality. Of 60 vessels/territories, 17 (28 %) were ischaemic according to QCA/SPECT-MPI criteria. Sensitivity, specificity, PPV, NPV and area under the ROC curve for CTA/CTP was 94 %, 98 %, 94 %, 98 % and 0.96 (P < 0.001) on a per-vessel/territory basis. Mean CTA/CTP radiation dose was 9.2 ± 7.4 mSv compared with 13.2 ± 2.2 mSv for SPECT-MPI (P < 0.001). Combined 320-detector CTA/CTP is accurate in identifying obstructive CAD causing perfusion abnormalities compared with combined QCA/SPECT-MPI, achieved with lower radiation dose than SPECT-MPI. (orig.)

  6. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Nasis, Arthur; Ko, Brian S.; Leung, Michael C.; Antonis, Paul R.; Wong, Dennis T.; Kyi, Leo; Cameron, James D.; Meredith, Ian T.; Seneviratne, Sujith K. [Southern Health and Monash University, Monash Cardiovascular Research Centre, Monash Heart, Department of Medicine Monash Medical Centre (MMC), Melbourne (Australia); Nandurkar, Dee; Troupis, John M. [MMC, Southern Health, Department of Diagnostic Imaging, Melbourne (Australia)

    2013-07-15

    To determine the diagnostic accuracy of combined 320-detector row computed tomography coronary angiography (CTA) and adenosine stress CT myocardial perfusion imaging (CTP) in detecting perfusion abnormalities caused by obstructive coronary artery disease (CAD). Twenty patients with suspected CAD who underwent initial investigation with single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI) were recruited and underwent prospectively-gated 320-detector CTA/CTP and invasive angiography. Two blinded cardiologists evaluated invasive angiography images quantitatively (QCA). A blinded nuclear physician analysed SPECT-MPI images for fixed and reversible perfusion defects. Two blinded cardiologists assessed CTA/CTP studies qualitatively. Vessels/territories with both >50 % stenosis on QCA and corresponding perfusion defect on SPECT-MPI were defined as ischaemic and formed the reference standard. All patients completed the CTA/CTP protocol with diagnostic image quality. Of 60 vessels/territories, 17 (28 %) were ischaemic according to QCA/SPECT-MPI criteria. Sensitivity, specificity, PPV, NPV and area under the ROC curve for CTA/CTP was 94 %, 98 %, 94 %, 98 % and 0.96 (P < 0.001) on a per-vessel/territory basis. Mean CTA/CTP radiation dose was 9.2 {+-} 7.4 mSv compared with 13.2 {+-} 2.2 mSv for SPECT-MPI (P < 0.001). Combined 320-detector CTA/CTP is accurate in identifying obstructive CAD causing perfusion abnormalities compared with combined QCA/SPECT-MPI, achieved with lower radiation dose than SPECT-MPI. (orig.)

  7. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  8. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    Science.gov (United States)

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  9. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; McNair, Helen A.; Cronin, Bernadette; Courbon, Frederic; Bedford, James L.; Brada, Michael

    2005-01-01

    Background and purpose: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. Patients and methods: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. Results: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm 3 (range 596.2-1581.1 cm 3 ). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV 2 (the percentage volume of functioning lung receiving ≥20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. Conclusion: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits

  10. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    Amen, Daniel G; Wu, Joseph C; Carmichael, Blake

    2003-01-01

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  11. Occult primary tumors of the head and neck: accuracy of thallium 201 single-photon emission computed tomography and computed tomography and/or magnetic resonance imaging

    NARCIS (Netherlands)

    van Veen, S. A.; Balm, A. J.; Valdés Olmos, R. A.; Hoefnagel, C. A.; Hilgers, F. J.; Tan, I. B.; Pameijer, F. A.

    2001-01-01

    To determine the accuracy of thallium 201 single-photon emission computed tomography (thallium SPECT) and computed tomography and/or magnetic resonance imaging (CT/MRI) in the detection of occult primary tumors of the head and neck. Study of diagnostic tests. National Cancer Institute, Amsterdam,

  12. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne's progressive muscular dystrophy. A histopathologic correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toru; Yanagisawa, Atsuo; Sakata, Konomi; Shimoyama, Katsuya; Yoshino, Hideaki; Ishikawa, Kyozo [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Sakata, Hitomi; Ishihara, Tadayuki

    2001-02-01

    The pathomorphologic mechanism responsible for abnormal perfusion imaging during thallium-201 myocardial single photon emission computed tomography ({sup 201}Tl-SPECT) in patients with Duchenne's progressive muscular dystrophy (DMD) was investigated. Hearts from 7 patients with DMD were evaluated histopathologically at autopsy and the results correlated with findings on initial and delayed resting {sup 201}Tl-SPECT images. The location of segments with perfusion defects correlated with the histopathologically abnormal segments in the hearts. Both the extent and degree of myocardial fibrosis were severe, especially in the posterolateral segment of the left ventricle. Severe transmural fibrosis and severe fatty infiltration were common in segments with perfusion defects. In areas of redistribution, the degree of fibrosis appeared to be greater than in areas of normal perfusion; and intermuscular edema was prominent. Thus, the degree and extent of perfusion defects detected by {sup 201}Tl-SPECT were compatible with the histopathology. The presence of the redistribution phenomenon may indicate ongoing fibrosis. Initial and delayed resting {sup 201}Tl-SPECT images can predict the site and progress of myocardial degeneration in patients with DMD. (author)

  13. SPECT/CT for imaging of the spine and pelvis in clinical routine: a physician's perspective of the adoption of SPECT/CT in a clinical setting with a focus on trauma surgery

    Energy Technology Data Exchange (ETDEWEB)

    Scheyerer, Max J.; Zimmermann, Stefan M.; Osterhoff, Georg; Simmen, Hans-Peter; Werner, Clement M.L. [University Hospital Zurich, Department of Surgery, Division of Trauma Surgery, Zuerich (Switzerland); Pietsch, Carsten [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland)

    2014-05-15

    Injuries of the axial skeleton are an important field of work within orthopaedic surgery and traumatology. Most lesions following trauma may be diagnosed by means of conventional plain radiography, computed tomography or magnetic resonance imaging. However, for some aspects SPECT/ CT can be helpful even in a trauma setting. In particular, the combination of highly sensitive but nonspecific scintigraphy with nonsensitive but highly specific computed tomography makes it particularly useful in anatomically complex regions such as the pelvis and spine. From a trauma surgeon's point of view, the four main indications for nuclear medicine imaging are the detection of (occult) fractures, and the imaging of inflammatory bone and joint diseases, chronic diseases and postoperative complications such as instability of instrumentation or implants. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical setting. (orig.)

  14. Sensitivity and Specificity of Dual-Isotope 99mTc-Tetrofosmin and 123I Sodium Iodide Single Photon Emission Computed Tomography (SPECT) in Hyperparathyroidism.

    Science.gov (United States)

    Sommerauer, Michael; Graf, Carmen; Schäfer, Niklaus; Huber, Gerhard; Schneider, Paul; Wüthrich, Rudolf; Schmid, Christoph; Steinert, Hans

    2015-01-01

    Despite recommendations for 99mTc-tetrofosmin dual tracer imaging for hyperparathyroidism in current guidelines, no report was published on dual-isotope 99mTc-tetrofosmin and 123I sodium iodide single-photon-emission-computed-tomography (SPECT). We evaluated diagnostic accuracy and the impact of preoperative SPECT on the surgical procedures and disease outcomes. Analysis of 70 consecutive patients with primary hyperparathyroidism and 20 consecutive patients with tertiary hyperparathyroidism. Imaging findings were correlated with surgical results. Concomitant thyroid disease, pre- and postoperative laboratory measurements, histopathological results, type and duration of surgery were assessed. In primary hyperparathyroidism, SPECT had a sensitivity of 80% and a positive predictive value of 93% in patient-based analysis. Specificity was 99% in lesion-based analysis. Patients with positive SPECT elicit higher levels of parathyroid hormone and higher weight of resected parathyroids than SPECT-negative patients. Duration of parathyroid surgery was on average, approximately 40 minutes shorter in SPECT-positive than in SPECT-negative patients (89 ± 46 vs. 129 ± 41 minutes, p = 0.006); 86% of SPECT-positive and 50% of SPECT-negative patients had minimal invasive surgery (p = 0.021). SPECT had lower sensitivity (60%) in patients with tertiary hyperparathyroidism; however, 90% of these patients had multiple lesions and all of these patients had bilateral lesions. Dual-isotope SPECT with 99mTc-tetrofosmin and 123I sodium iodide has a high diagnostic value in patients with primary hyperparathyroidism and allows for saving of operation time. Higher levels of parathyroid hormone and higher glandular weight facilitated detection of parathyroid lesion. Diagnostic accuracy of preoperative imaging was lower in patients with tertiary hyperparathyroidism.

  15. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    International Nuclear Information System (INIS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-01-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback–Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data. (paper)

  16. Stereotactic radiosurgery planning with ictal SPECT images

    International Nuclear Information System (INIS)

    Ackerly, T.; RMIT University, Bundoora, VIC; Geso, M.; O'Keefe, G.; Smith, R.

    2004-01-01

    This paper is motivated by a clinical requirement to utilise ictal SPECT images for target localisation in stereotactic radiosurgery treatment planning using the xknife system which only supports CT and MRI images. To achieve this, the SPECT images were converted from raw (pixel data only) format into a part 10 compliant DICOM CT fileset. The minimum requirements for the recasting of a raw format image as DICOM CT or MRI data set are described in detail. The method can be applied to the importation of raw format images into any radiotherapy treatment planning system that supports CT or MRI import. It is demonstrated that the combination of the low spatial resolution SPECT images, depicting functional information, with high spatial resolution MRI images, which show the structural information, is suitable for stereotactic radiosurgery treatment planning. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  17. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding......Imaging of the dopamine transporter (DAT) with Single Photon Emission Computer Tomography (SPECT) has increasingly been used as a biomarker for the integrity of presynaptic dopaminergic nerve cells in patients with movement disorders. 123-I-labelled N-(3-iodoprop-2E-enyl)-2-β-carbomethoxy-3β-(4...... potential of DAT. Finally the in vivo SERT binding in DAT images obtained with [123I]FP-CIT was significant as compared to the [123I]PE2I image. [123I]PE2I is a super selective SPECT DAT radioligand with optimal kinetic properties for accurate quantification of the DAT availability in striatum. Apart from...

  18. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    2011-01-01

    a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding......Imaging of the dopamine transporter (DAT) with Single Photon Emission Computer Tomography (SPECT) has increasingly been used as a biomarker for the integrity of presynaptic dopaminergic nerve cells in patients with movement disorders. 123-I-labelled N-(3-iodoprop-2E-enyl)-2-ß-carbomethoxy-3ß-(4...... potential of DAT. Finally the in vivo SERT binding in DAT images obtained with [123I]FP-CIT was significant as compared to the [123I]PE2I image. [123I]PE2I is a super selective SPECT DAT radioligand with optimal kinetic properties for accurate quantification of the DAT availability in striatum. Apart from...

  19. Study on SPECT image for children with cerebral infarction

    International Nuclear Information System (INIS)

    Xie Wenhuang; Xie Zhichun; Chen Yucai; Lin Haoxue; Zheng Aidong; Xie Hui

    1998-01-01

    To explore the diagnostic value of SPECT image for children with cerebral infarction (CCI), comparative research was made on 26 cases undergoing regional cerebral perfusion (rCP) image between SPECT imaging and CT scanning. The results showed that the rCP in the infarct and its distant area was decreased. The positive rate of SPECT and CT were 92.3% (24/26) and 84.5% (22/26) respectively. The difference was not significant (P = 0.67, P>0.05). But, the positive rate of SPECT image 2 days after onset in 9 CCI was 100% (9/9), significantly higher than 55.6% (5/9) in CT scanning (P = 0.04, P<0.05). These findings suggested that the SPECT imaging is a sensitive method for the early diagnosis of CCI, and also helpful for observation of the therapeutic effect and evaluation of the prognosis

  20. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  1. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  2. Fusion imaging of computed tomographic pulmonary angiography and SPECT ventilation/perfusion scintigraphy: initial experience and potential benefit

    International Nuclear Information System (INIS)

    Harris, Benjamin; Bailey, Dale; Roach, Paul; Bailey, Elizabeth; King, Gregory

    2007-01-01

    The objective of this study was to examine the feasibility of fusing ventilation and perfusion data from single-photon emission computed tomography (SPECT) ventilation perfusion (V/Q) scintigraphy together with computed tomographic pulmonary angiography (CTPA) data. We sought to determine the accuracy of this fusion process. In addition, we correlated the findings of this technique with the final clinical diagnosis. Thirty consecutive patients (17 female, 13 male) who had undergone both CTPA and SPECT V/Q scintigraphy during their admission for investigation of potential pulmonary embolism were identified retrospectively. Image datasets from these two modalities were co-registered and fused using commercial software. Accuracy of the fusion process was determined subjectively by correlation between modalities of the anatomical boundaries and co-existent pleuro-parenchymal abnormalities. In all 30 cases, SPECT V/Q images were accurately fused with CTPA images. An automated registration algorithm was sufficient alone in 23 cases (77%). Additional linear z-axis scaling was applied in seven cases. There was accurate topographical co-localisation of vascular, parenchymal and pleural disease on the fused images. Nine patients who had positive CTPA performed as an initial investigation had co-localised perfusion defects on the subsequent fused CTPA/SPECT images. Three of the 11 V/Q scans initially reported as intermediate could be reinterpreted as low probability owing to co-localisation of defects with parenchymal or pleural pathology. Accurate fusion of SPECT V/Q scintigraphy to CTPA images is possible. This technique may be clinically useful in patients who have non-diagnostic initial investigations or in whom corroborative imaging is sought. (orig.)

  3. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  4. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  5. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    Science.gov (United States)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  6. Analysis of CT and PET/SPECT images for dosimetry calculation

    International Nuclear Information System (INIS)

    Massicano, Felipe; Massicano, Adriana V.F.; Silva, Natanael Gomes da; Cintra, Felipe Belonsi; Yoriyaz, Helio; Carvalho, Rodrigo Mueller de

    2009-01-01

    Computer images are routinely used in diagnostic centers and hospitals. In particular in the field of Nuclear Medicine they help in the diagnosis and planning therapy against cancer. In the case of the planning therapy the quantifying the distribution of dose in patients is very important, because it provides an estimate of the dose in the tumor and healthy tissues, allowing a greater understanding on the response and toxicity caused by this dose. The aim of this study is to analyze both kinds of images: CT and PET/SPECT and their potential utilization for dosimetry calculation. PET or SPECT images were analyzed using a Gamma Camera, brand Medis, model Nuclide-TH/22 through image acquisition of scanned phantoms containing a known activity inside their volume so that a relationship between the number of counts for each voxel in the image and the real activity will be constructed. The heterogeneous organism patient's is specified from the computed tomography (CT) through number of Hounsfield. However, there is not a simple correlation to convert Hounsfield numbers into material tissues, therefore, in this work we developed a software in Java to convert Hounsfield numbers in mass density. Moreover, the software provides a map of tissues and a text file containing the elemental weights to be used by the Monte Carlo transport code MCNP5 to perform dose calculations. (author)

  7. Comparison of {sup 131}I whole-body imaging, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT in the detection of metastatic thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung [Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Kim, Dong-Yeon [Dongguk University, Department of Chemistry, Seoul (Korea, Republic of); Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Min, Jung-Joon [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Center for Biomedical Human Resources at Chonnam National University, Brain Korea 21 Project, Gwangju (Korea, Republic of)

    2011-08-15

    The aim of this study was to compare {sup 131}I whole-body scintigraphy (WBS), WBS with {sup 131}I single photon emission computed tomography/computed tomography (SPECT/CT), and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. {sup 131}I WBS, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for {sup 131}I WBS; 65, 95, and 85% for {sup 131}I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for {sup 18}F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p<0.001) in all patient groups. SPECT/CT was superior to WBS and PET/CT (p<0.001) in patients who received a single challenge of radioiodine therapy, whereas PET/CT was superior to WBS (p=0.005) and SPECT/CT (p=0.013) in patients who received multiple challenges. Both SPECT/CT and PET/CT demonstrated high diagnostic performance in detecting metastatic thyroid cancer. SPECT/CT was highly accurate in patients who underwent a single challenge of radioiodine therapy. In contrast, {sup 18}F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  8. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    Science.gov (United States)

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  9. Bone SPECT-CT: An additional diagnostic tool for undiagnosed wrist pain.

    Science.gov (United States)

    Shirley, R A; Dhawan, R T; Rodrigues, J N; Evans, D M

    2016-10-01

    Diagnosis of wrist pain can be difficult to determine with clinical examination and conventional imaging techniques alone. Bone SPECT-CT (single-photon emission tomography with computerized tomography) is a hybrid imaging technique that overlays functional bone scintigraphy in tomographic/3D mode with conventional CT. Data from the two modalities are complementary; areas of abnormal bone metabolism can be localized with anatomical precision, hitherto lacking in conventional bone scans, while structural information from the CT scan further embellishes the diagnostic information. Over the last 6 years, one surgeon (David Evans) has used bone SPECT and later bone SPECT-CT as an additional line of investigation. This is a series of 21 consecutive patients with wrist pain that could not be diagnostically resolved with the usual combination of history, examination, and conventional imaging, and therefore underwent bone SPECT-CT. Clinical and imaging findings, management, and outcomes of these cases are discussed to explore the potential role of this hybrid functional modality in hand and wrist surgical practice. Copyright © 2016. Published by Elsevier Ltd.

  10. Characteristics of images of angiographically proven normal coronary arteries acquired by adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT with CT attenuation correction changed stepwise.

    Science.gov (United States)

    Takahashi, Teruyuki; Tanaka, Haruki; Kozono, Nami; Tanakamaru, Yoshiki; Idei, Naomi; Ohashi, Norihiko; Ohtsubo, Hideki; Okada, Takenori; Yasunobu, Yuji; Kaseda, Shunichi

    2015-04-01

    Although several studies have shown the diagnostic and prognostic value of CT-based attenuation correction (AC) of single photon emission computed tomography (SPECT) images for diagnosing coronary artery disease (CAD), this issue remains a matter of debate. To clarify the characteristics of CT-AC SPECT images that might potentially improve diagnostic performance, we analyzed images acquired using adenosine-stress thallium-201 myocardial perfusion SPECT/CT equipped with IQ[Symbol: see text]SPECT (SPECT/CT-IQ[Symbol: see text]SPECT) from patients with angiographically proven normal coronary arteries after changing the CT attenuation correction (CT-AC) in a stepwise manner. We enrolled 72 patients (Male 36, Female 36) with normal coronary arteries according to findings of invasive coronary angiography or CT-angiography within three months after a SPECT/CT study. Projection images were reconstructed at CT-AC values of (-), 40, 60, 80 and 100 % using a CT number conversion program according to our definition and analyzed using polar maps according to sex. CT attenuation corrected segments were located from the mid- and apical-inferior spread through the mid- and apical-septal regions and finally to the basal-anterior and basal- and mid-lateral regions in males, and from the mid-inferior region through the mid-septal and mid-anterior, and mid-lateral regions in females as the CT-AC values increased. Segments with maximal mean counts shifted from the apical-anterior to mid-anterolateral region under both stress and rest conditions in males, whereas such segments shifted from the apical-septal to the mid-anteroseptal region under both stress and rest conditions in females. We clarified which part of the myocardium and to which degree CT-AC affects it in adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT images by changing the CT-AC value stepwise. We also identified sex-specific shifts of segments with maximal mean counts that changed as

  11. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  12. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  13. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  14. Image fusion analysis of 99mTc-HYNIC-Tyr3-octreotide SPECT and diagnostic CT using an immobilisation device with external markers in patients with endocrine tumours

    International Nuclear Information System (INIS)

    Gabriel, Michael; Hausler, Florian; Moncayo, Roy; Decristoforo, Clemens; Virgolini, Irene; Bale, Reto; Kovacs, Peter

    2005-01-01

    The aim of this study was to assess the value of multimodality imaging using a novel repositioning device with external markers for fusion of single-photon emission computed tomography (SPECT) and computed tomography (CT) images. The additional benefit derived from this methodological approach was analysed in comparison with SPECT and diagnostic CT alone in terms of detection rate, reliability and anatomical assignment of abnormal findings with SPECT. Fifty-three patients (30 males, 23 females) with known or suspected endocrine tumours were studied. Clinical indications for somatostatin receptor (SSTR) scintigraphy (SPECT/CT image fusion) included staging of newly diagnosed tumours (n=14) and detection of unknown primary tumour in the presence of clinical and/or biochemical suspicion of neuroendocrine malignancy (n=20). Follow-up studies after therapy were performed in 19 patients. A mean activity of 400 MBq of 99m Tc-EDDA/HYNIC-Tyr 3 -octreotide was given intravenously. SPECT using a dual-detector scintillation camera and diagnostic multi-detector CT were sequentially performed. To ensure reproducible positioning, patients were fixed in an individualised vacuum mattress with modality-specific external markers for co-registration. SPECT and CT data were initially interpreted separately and the fused images were interpreted jointly in consensus by nuclear medicine and diagnostic radiology physicians. SPECT was true-positive (TP) in 18 patients, true-negative (TN) in 16, false-negative (FN) in ten and false-positive (FP) in nine; CT was TP in 18 patients, TN in 21, FP in ten and FN in four. With image fusion (SPECT and CT), the scan result was TP in 27 patients (50.9%), TN in 25 patients (47.2%) and FN in one patient, this FN result being caused by multiple small liver metastases; sensitivity was 95% and specificity, 100%. The difference between SPECT and SPECT/CT was statistically as significant as the difference between CT and SPECT/CT image fusion (P<0

  15. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    International Nuclear Information System (INIS)

    Jaszczak, Ronald Jack

    2006-01-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s. (review)

  16. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, Ronald Jack [Duke University Medical Center, Durham, NC 27710 (United States)

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s. (review)

  17. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences.

    Science.gov (United States)

    Jaszczak, Ronald Jack

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  18. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  19. Brain Perfusion SPECT Imaging in Sturge - Weber Syndrome : Comparison with MR Imaging

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Choi, Yun Young; Moon, Dae Hyuk; Yang, Seoung Oh; Ko, Tae Sung; Yoo, Shi Joon; Lee, Hee Kyung

    1996-01-01

    The purpose of this study was evaluate the characteristic perfusion changes in patients with Sturge-Weber syndrome by comparison of the findings of brain MR images and perfusion SPECT images. 99m Tc-HMPAO or 99m Tc-ECD interictal brain SPECTs were performed on 5 pediatric patients with Struge-Weber syndrome within 2 weeks after MR imaging. Brain SPECTs of three patients without calcification showed diminished perfusion in the affected area on MR image. A 3 month-old patient without brain atrophy or calcification demonstrated paradoxical hyperperfusion in the affected hemisphere, and follow-up perfusion SPECT revealed decreased perfusion in the same area. The other patient with advanced calcified lesion and atrophy on MR image showed diffusely decreased perfusion in the affected hemisphere, but a focal area of increased perfusion was also noted in the ipsilateral temporal lobe on SPECT. In conclusion, brain perfusion of the affected area of Sturge-Weber syndrome patients was usually diminished, but early or advanced patients may show paradoxical diffuse or focal hyperperfusion in the affected hemisphere. Further studies are needed for better understanding of these perfusion changes and pathophysiology of Struge-Weber syndrome.

  20. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    Science.gov (United States)

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy.

  1. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  2. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  3. Myocardial perfusion SPECT imaging in patients with myocardial bridging

    International Nuclear Information System (INIS)

    Fang Wei; Qiu Hong; Yang Weixian; Wang Feng; He Zuoxiang

    2008-01-01

    Objective: Stress myocardial perfusion SPECT imaging was used to assess myocardial ischemia in patients with myocardial bridging. Methods: Ninety-six patients with myocardial bridging of the left anterior descending artery documented by coronary angiography were included in this study. All under- went exercise or pharmacological stress myocardial perfusion SPECT assessing myocardial ischemia. None had prior myocardial infarction. One year follow-up by telephone interview was performed in all patients. Results The mean stenotic severity of systolic phase on angiography was (65 ± 19)%. In the SPECT study, 20 of 96 (20.8%) patients showed abnormal perfusion. This percentage was significantly higher than that of stress electrocardiogram (ECG). The higher positive rate of SPECT perfusion images was showed in the group of patients with severe systolic narrowing (≥75%) than that with mild-to-moderate systolic narrowing (50% vs 6.3%, P<0.001). The prevalence of abnormal image was significantly higher in ELDERLY PEOPLE; patients with STT change on rest ECG than in those with normal rest ECG (54.2% vs 9.7%, P<0.001). During follow-up, one patient with abnormal SPECT perfusion image sustained angina and accepted percutaneous coronary intervention, and no cardiac event occurred in patients with normal images. Conclusions: Stress myocardial perfusion SPECT imaging can be used effectively for assessing myocardial ischemia and has potential prognostic value for patients with myocardial bridging. (authors)

  4. Two-dimensional restoration of single photon emission computed tomography images using the Kalman filter

    International Nuclear Information System (INIS)

    Boulfelfel, D.; Rangayyan, R.M.; Kuduvalli, G.R.; Hahn, L.J.; Kloiber, R.

    1994-01-01

    The discrete filtered backprojection (DFBP) algorithm used for the reconstruction of single photon emission computed tomography (SPECT) images affects image quality because of the operations of filtering and discretization. The discretization of the filtered backprojection process can cause the modulation transfer function (MTF) of the SPECT imaging system to be anisotropic and nonstationary, especially near the edges of the camera's field of view. The use of shift-invariant restoration techniques fails to restore large images because these techniques do not account for such variations in the MTF. This study presents the application of a two-dimensional (2-D) shift-variant Kalman filter for post-reconstruction restoration of SPECT slices. This filter was applied to SPECT images of a hollow cylinder phantom; a resolution phantom; and a large, truncated cone phantom containing two types of cold spots, a sphere, and a triangular prism. The images were acquired on an ADAC GENESYS camera. A comparison was performed between results obtained by the Kalman filter and those obtained by shift-invariant filters. Quantitative analysis of the restored images performed through measurement of root mean squared errors shows a considerable reduction in error of Kalman-filtered images over images restored using shift-invariant methods

  5. Evaluation of Tl-201 SPECT imaging findings in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sinem Ozyurt

    2015-07-01

    Full Text Available Objectives: To compare with histopathological findings the findings of prostate cancer imaging by SPECT method using Tl-201 as a tumor seeking agent. Methods: The study comprised 59 patients (age range 51-79 years, mean age 65.3 ± 6.8 years who were planned to have transrectal ultrasonography (TRUS-guided biopsies due to suspicion of prostate cancer between April 2011 and September 2011. Early planar, late planar and SPECT images were obtained for all patients. Scintigraphic evaluation was made in relation to uptake presence and patterns in the visual assessment and to Tumor/Background (T/Bg ratios for both planar and SPECT images in the quantitative assessment. Histopathological findings were compatible with benign etiology in 36 (61% patients and malign etiology in 23 (39% patients. Additionally, comparisons were made to evaluate the relationships between uptake patterns,total PSA values and Gleason scores. Results: A statistically significant difference was found between the benign and malignant groups in terms of uptake in planar and SPECT images and T/Bg ratios and PSA values. No statistically significant difference was found between uptake patterns of planar and SPECT images and Gleason scores in the malignant group. Conclusions: SPECT images were superior to planar images in the comparative assessment. Tl-201 SPECT imaging can provide an additional contribution to clinical practice in the diagnosis of prostate cancer and it can be used in selected patients.

  6. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  7. Preclinical imaging characteristics and quantification of Platinum-195m SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Aalbersberg, E.A.; Wit-van der Veen, B.J. de; Vegt, E.; Vogel, Wouter V. [The Netherlands Cancer Institute (NKI-AVL), Department of Nuclear Medicine, Amsterdam (Netherlands); Zwaagstra, O.; Codee-van der Schilden, K. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ({sup 195m}Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of {sup 195m}Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) {sup 194}Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl {sup 195m}Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT{sup +}/CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq {sup 195m}Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq {sup 195m}Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify {sup 195m}Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT{sup +}. The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0

  8. Motor activation SPECT for the neurosurgical diseases. Clinical application

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  9. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  10. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  11. Comparison of the prognostic value of SPECT after nitrate administration and metabolic imaging by PET in patients with ischaemic left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, Anna R.; Acampa, Wanda; Mainolfi, Ciro; Salvatore, Marco; Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy); Petretta, Mario [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy)

    2007-04-15

    We compared the prognostic value of {sup 99m}Tc-tetrofosmin single-photon emission computed tomography (SPECT) after nitrate administration and positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) in patients with ischaemic left ventricular (LV) dysfunction. Eighty-nine patients with previous myocardial infarction and LV dysfunction (LV ejection fraction 33 {+-} 10%) underwent {sup 99m}Tc-tetrofosmin SPECT under control conditions (baseline) and after sublingual administration of 10 mg of isosorbide dinitrate (nitrate). Within 1 week, all patients underwent PET imaging with {sup 18}F-FDG. Four patients were excluded because of inadequate FDG uptake caused by severe diabetes. Follow-up data were obtained by phone contact with patients and by review of hospital or physicians' records. Cardiac death, myocardial infarction and late revascularisation for unstable angina were considered as events. Follow-up data were not available in three patients. Follow-up was 96% complete at a mean period of 29 {+-} 19 months. At baseline SPECT, 59 (72%) patients had evidence of viable myocardium, while 23 did not. Of these latter patients, 12 (52%) demonstrated viable myocardium after nitrate and 13 (56%) had preserved metabolic activity. Cardiac events (cardiac death, myocardial infarction and late revascularisation for unstable angina) occurred in 24 (29%) patients. Event-free survival was similar in patients with and patients without viable myocardium at baseline SPECT (p = 0.8). In contrast, event-free survival was lower in patients with viable myocardium at nitrate SPECT and PET compared to those without viable myocardium (both p<0.05). In patients with ischaemic LV dysfunction, the prognostic value of SPECT imaging after nitrate is comparable to that of PET metabolic imaging. (orig.)

  12. [Myocardial single photon emission tomography imaging of reporter gene expression in rabbits].

    Science.gov (United States)

    Liu, Ying; Lan, Xiao-li; Zhang, Liang; Wu, Tao; Jiang, Ri-feng; Zhang, Yong-xue

    2009-06-01

    To explore the feasibility of single photon emission computed tomography (SPECT) detection of heart reporter gene expression and observed the optimal transfecting titer and imaging time by using herpes simplex virus 1-thymidine kinase (HSV1-tk) as reporter gene and 131I-2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (131I-FIAU) as reporter probe in rabbit myocardium. The recombinant Ad-tk carrying HSV1-tk gene and adenovirus (Ad) as vector was constructed and intramyocardially injected to rabbits at various concentrations (1 x 10(9) pfu, 5 x 10(8) pfu, 1 x 10(8) pfu, 5 x 10(7) pfu, 1 x 10(7) pfu). Two days later, rabbits were injected with 600 microCi 131I-FIAU in ear-margin vein and then underwent SPECT myocardium imaging for detection of HSV1-tk expression at 6 h, 24 h, 48 h and 72 h after injection, rabbits with 1 x 10(9) pfu Ad-tk injection were imaged at 96 h and 120 h. Rabbits were sacrificed after imaging and the total myocardial 131I-FIAU accumulation was quantified in percent of injected dose per gram myocardium (% ID/g). The myocardial Ad-tk expression was determined with RT-PCR. Reporter gene was detected by SPECT imaging in the injection site while not detected in the control myocardium and site remote from injection. RT-PCR results also evidenced HSV1-tk express in the injection site. The SPECT target/nontarget ratio was correlated with ex vivo gamma-counting (r2 = 0.933, Ppfu by SPECT imaging. The cardiac SPECT reporter gene imaging with HSV1-tk as reporter gene and 131I-FIAU as reporter probe is feasible.

  13. An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, J.-D.; Huang, C.-H.; Weng, Y.-H.; Lin, K.-J.; Chen, C.-T.

    2007-01-01

    Single-photon emission computed tomography (SPECT) of dopamine transporters with 99m Tc-TRODAT-1 has recently been proposed to offer valuable information in assessing the functionality of dopaminergic systems. Magnetic resonance imaging (MRI) and SPECT imaging are important in the noninvasive examination of dopamine concentration in vivo. Therefore, this investigation presents an automated MRI/SPECT image registration algorithm based on a new similarity metric. This similarity metric combines anatomical features that are characterized by specific binding, the mean count per voxel in putamens and caudate nuclei, and the distribution of image intensity that is characterized by normalized mutual information (NMI). A preprocess, a novel two-cluster SPECT normalization algorithm, is also presented for MRI/SPECT registration. Clinical MRI/SPECT data from 18 healthy subjects and 13 Parkinson's disease (PD) patients are involved to validate the performance of the proposed algorithms. An appropriate color map, such as 'rainbow,' for image display enables the two-cluster SPECT normalization algorithm to provide clinically meaningful visual contrast. The proposed registration scheme reduces target registration error from >7 mm for conventional registration algorithm based on NMI to approximately 4 mm. The error in the specific/nonspecific 99m Tc-TRODAT-1 binding ratio, which is employed as a quantitative measure of TRODAT receptor binding, is also reduced from 0.45±0.22 to 0.08±0.06 among healthy subjects and from 0.28±0.18 to 0.12±0.09 among PD patients

  14. Multimodality imaging: transfer and fusion of SPECT and MRI data

    International Nuclear Information System (INIS)

    Knesaurek, K.

    1994-01-01

    Image fusion is a technique which offers the best of both worlds. It unites the two basic types of medical images: functional body images(PET or SPECT scans), which provide physiological information, and structural images (CT or MRI), which provide an anatomic map of the body. Control-point based registration technique was developed and used. Tc-99m point sources were used as external markers in SPECT studies while, for MRI and CT imaging only anatomic landmarks were used as a control points. The MRI images were acquired on GE Signa 1.2 system and CT data on a GE 9800 scanner. SPECT studies were performed 1h after intravenous injection of the 740 MBq of the Tc-99m-HMPAO on the triple-headed TRIONIX gamma camera. B-spline and bilinear interpolation were used for the rotation, scaling and translation of the images. In the process of creation of a single composite image, in order to retain information from the individual images, MRI (or CT) image was scaled to one color range and a SPECT image to another. In some situations the MRI image was kept black-and-white while the SPECT image was pasted on top of it in 'opaque' mode. Most errors which propagate through the matching process are due to sample size, imperfection of the acquisition system, noise and interpolations used. Accuracy of the registration was investigated by SPECT-CT study performed on a phantom study. The results has shown that accuracy of the matching process is better, or at worse, equal to 2 mm. (author)

  15. Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

    Directory of Open Access Journals (Sweden)

    Hedén Bo

    2009-08-01

    Full Text Available Abstract Background It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem. Methods In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR with delayed-enhancement technique to confirm or exclude myocardial infarction. Results There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR. Conclusion Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.

  16. REVIEW: The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    Science.gov (United States)

    Jaszczak, Ronald Jack

    2006-07-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  17. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  18. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  19. Validation and the limits of SPECT for patients suffering from cerebrovascular accidents. Evaluations based on simultaneous PET and SPECT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Mizukawa, Norihiko; Yano, Ichiro; Tenjin, Hiroshi (Kyoto Prefectural Univ. of Medicine (Japan)) (and others)

    1989-02-01

    Contemporaneous single photon emission computed tomography (SPECT) and positron emission tomography (PET) were performed in 10 patients with cerebrovascular accidents (CVA), whose ages ranged from 11 to 67 years. I-123-isopropyl-iodoamphetamine (IMP) and/or Tc-99m hexamethylpropyleneamine oxime (HM-PAO) were used for SPECT. Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate for oxygen (CMRO{sub 2}) were measured by an O-15 labelled gas continuous-inhalation method. SPECT images were quite similar to CBF and CMRO{sub 2} during the chronic stage of CVA. Two patietns with vasospasm during the subacute stage had apparently low CBF and CMRO{sub 2} on PET, but did not have low perfusion on SPECT. Luxury perfusion areas were detected in 4 subacute stage patients and one chronic stage patient. A redistribution of IMP was detected in two patients with infarction during subacute stage. CMRO{sub 2} value in such an area was 2.0 ml/100 g/min. Low CBF and/or CMRO{sub 2} areas were well visualized by IMP rather than by HM-PAO SPECT. (N.K.).

  20. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  1. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  2. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve

    Science.gov (United States)

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-01-01

    Abstract The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD). We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC. FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = −0.584 and r = −0.568, respectively, both P system can predict FFR at an optimal cut-off of <0.80, and we propose a novel application of CT-AC to MPI-IQ-SPECT for predicting clinically significant and insignificant FFR even in nonobese patients. PMID:29390486

  3. A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: current state and future research opportunities.

    Science.gov (United States)

    Zürcher, Nicole R; Bhanot, Anisha; McDougle, Christopher J; Hooker, Jacob M

    2015-05-01

    Non-invasive positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are techniques used to quantify molecular interactions, biological processes and protein concentration and distribution. In the central nervous system, these molecular imaging techniques can provide critical insights into neurotransmitter receptors and their occupancy by neurotransmitters or drugs. In recent years, there has been an increase in the number of studies that have investigated neurotransmitters in autism spectrum disorder (ASD), while earlier studies mostly focused on cerebral blood flow and glucose metabolism. The underlying and contributing mechanisms of ASD are largely undetermined and ASD diagnosis relies on the behavioral phenotype. Discovery of biochemical endophenotypes would represent a milestone in autism research that could potentially lead to ASD subtype stratification and the development of novel therapeutic drugs. This review characterizes the prior use of molecular imaging by PET and SPECT in ASD, addresses methodological challenges and highlights areas of future opportunity for contributions from molecular imaging to understand ASD pathophysiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Impact of additional SPECT in bone scanning in tumor patients with suspected metastatic bone disease

    International Nuclear Information System (INIS)

    Apostolova, I.; Goelcuek, E.; Buchert, R.; Brenner, W.; Bohuslavizki, K.H.

    2009-01-01

    The aim of this study was to investigate the additional value of single-photon emission computed tomography (SPECT) for patient staging compared to planar bone scanning in an unselected cohort of cancer patients. The study included 271 consecutive tumor patients in whom planar imaging and two-bed position SPECT of the spine and the pelvis had been performed. Retrospective image interpretation was performed independently for planar and SPECT scans. Findings were categorized as 'benign', 'equivocal', or malignant' on a lesion base, and as 'no metastatic disease', 'equivocal', or metastatic disease' on a patient base. Four hundred and forty seven lesions were detected by SPECT. Missing of lesions in planar images was rare (4.3% of all SPECT lesions). Planar findings differed from SPECT findings in 149 lesions (33.3%). Most of these 'inconsistent' lesions were rated as equivocal in the planar images but benign (14.5% of all lesions) or malignant (11.0%) by SPECT. On a patient base, 81.6% of patients with planar equivocal staging were classified as either benign (55.3%) or malignant (26.3%) by SPECT. Patients definitively staged as 'no metastatic disease' or 'metastatic disease' in planar images were staged differently by SPECT in only 3.7% of cases (up-staging in 2.6% and down-staging in 1.1%). Single-photon emission computed tomography changed a definite staging as based on planar images in less than 4% of the patients. In patients with planar equivocal staging, however, SPECT allowed a definite diagnosis in more than 80% of these cases, and, thus, should be performed routinely in patients with equivocal findings. (author)

  5. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

    1995-01-01

    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  6. Study of regional cerebral blood flow SPECT imaging for sudden sensorineural deafness

    International Nuclear Information System (INIS)

    Xie Changhui; Kui Xixiao; Xiong Qibin; Wen Hui; Xie Jiabiao

    1998-01-01

    Purpose: To study the clinical value of regional cerebral blood flow (rCBF) SPECT imaging for sudden sensorineural deafness (SSD). Methods: 10 normal persons, 19 conductive deafness and 31 SSD patients were examined by rCBF SPECT imaging, and compared with X CT at the same time. All SSD patients were followed up for 6∼12 months with repeated rCBF SPECT imaging. Results: 1) The radioactivity of diseased and normal horizontal temporal gyrus ratio (T/NT) in SSD patients was the lowest among three groups (P < 0.01). 2) The sensitivity (80.6%) and accurate rate (88.3%) of rCBF SPECT imaging in SSD patients were much higher than those of CT (3.2% and 50%, P < 0.01). 3) There was a significant correlation between degree of deafness and T/NT in SSD patients. 4) Good prognosis of SSD patients with normal rCBF SPECT was found. 5) The rCBF SPECT had close concordance between rCBF SPECT imaging and clinical prognosis (84.6%). Conclusions: rCBF SPECT imaging was superior to X CT in diagnosis of SSD and played an important clinical role

  7. Behaviors of cost functions in image registration between 201Tl brain tumor single-photon emission computed tomography and magnetic resonance images

    International Nuclear Information System (INIS)

    Soma, Tsutomu; Takaki, Akihiro; Teraoka, Satomi; Ishikawa, Yasushi; Murase, Kenya; Koizumi, Kiyoshi

    2008-01-01

    We studied the behaviors of cost functions in the registration of thallium-201 ( 201 Tl) brain tumor single-photon emission computed tomography (SPECT) and magnetic resonance (MR) images, as the similarity index of image positioning. A marker for image registration [technetium-99m ( 99m Tc) point source] was attached at three sites on the heads of 13 patients with brain tumor, from whom 42 sets of 99m Tc- 201 Tl SPECT (the dual-isotope acquisition) and MR images were obtained. The 201 Tl SPECT and MR images were manually registered according to the markers. From the positions where the two images were registered, the position of the 201 Tl SPECT was moved to examine the behaviors of the three cost functions, i.e., ratio image uniformity (RIU), mutual information (MI), and normalized MI (NMI). The cost functions MI and NMI reached the maximum at positions adjacent to those where the SPECT and MR images were manually registered. As for the accuracy of image registration in terms of the cost functions MI and NMI, on average, the images were accurately registered within 3 deg of rotation around the X-, Y-, and Z-axes, and within 1.5 mm (within 2 pixels), 3 mm (within 3 pixels), and 4 mm (within 1 slice) of translation to the X-, Y-, and Z-axes, respectively. In terms of rotation around the Z-axis, the cost function RIU reached the minimum at positions where the manual registration of the two images was substantially inadequate. The MI and NMI were suitable cost functions in the registration of 201 Tl SPECT and MR images. The behavior of the RIU, in contrast, was unstable, being unsuitable as an index of image registration. (author)

  8. Neurotransmitter receptor imaging

    International Nuclear Information System (INIS)

    Cordes, M.; Hierholzer, J.; Nikolai-Beyer, K.

    1993-01-01

    The importance of neuroreceptor imaging in vivo using single photon emission tomography (SPECT) and positron emission tomography (PET) has increased enormously. The principal neurotransmitters, such as dopamine, GABA/benzodiazepine, acetylcholine, and serotonin, are presented with reference to anatomical, biochemical, and physiological features. The main radioligands for SPECT and PET are introduced, and methodological characteristics of both PET and SPECT presented. Finally, the results of neurotransmitter receptor imaging obtained so far will be discussed. (orig.) [de

  9. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  10. The additive prognostic value of perfusion and functional data assessed by quantitative gated SPECT in women

    NARCIS (Netherlands)

    Y.G.C.J. America (Yves); J.J. Bax (Jeroen); H. Boersma (Eric); M. Stokkel (Marcel); E.E. van der Wall (Ernst)

    2009-01-01

    textabstractBackground: The aim of this study was to assess the prognostic value of technetium-99m tetrofosmin gated SPECT imaging in women using quantitative gated single photon emission computed tomography (SPECT) imaging. Methods: We followed 453 consecutive female patients. Average follow-up was

  11. Problems in the optimum display of SPECT images

    International Nuclear Information System (INIS)

    Fielding, S.L.

    1988-01-01

    The instrumentation, computer hardware and software, and the image display system are all very important in the production of diagnostically useful SPECT images. Acquisition and processing parameters are discussed which can affect the quality of SPECT images. Regular quality control of the gamma camera and computer is important to keep the artifacts due to instrumentation to a minimum. The choice of reconstruction method will depend on the statistics in the study. The paper has shown that for high count rate studies, a high pass filter can be used to enhance the reconstructions. For lower count rate studies, pre-filtering is useful and the data can be reconstructed into thicker slices to reduce the effect of image noise. Finally, the optimum display for the images must be chosen, so that the information contained in the SPECT data can be easily perceived by the clinician. (orig.) [de

  12. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  13. single photon emission tomography and positron emission tomography - Part 1 (October 2012), Part 2 (October 2010)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2010-10-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) and the positron emission tomography (PET) imaging techniques. Part 1 Content: 1 - Introduction: anatomic, functional and molecular imaging; 2 - Radiotracers: chemical and physical constraints, gamma photon emitters, positon emitters, radioisotopes production, emitters type and imaging techniques; 3 - Gamma cameras; 4 - Quantification in emission tomography: attenuation, scattering, un-stationary spatial resolution; 5 - Synthesis and conclusion. Part 2 content: 1 - Positon emitters; 2 - Positons detection: Coincidence detection (electronic collimation, PET detectors with gamma cameras, dedicated PET detectors, spectrometry); PET detectors type; time-of-flight PET; 2D PET; 3D PET; 3 - Quantification in emission tomography: detected events, attenuation, scattering, fortuitous coincidences, standardisation; 4 - Common SPECT and PET problems: partial volume effect, movement, tomographic reconstruction, calibration, dead time; 5 - Synthesis and conclusion

  14. Physics and instrumentation of emission computed tomography

    International Nuclear Information System (INIS)

    Links, J.M.

    1986-01-01

    Transverse emission computed tomography can be divided into two distinct classes: single photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT is usually accomplished with specially-adapted scintillation cameras, although dedicated SPECT scanners are available. The special SPECT cameras are standard cameras which are mounted on gantries that allow 360 degree rotation around the long axis of the head or body. The camera stops at a number of angles around the body (usually 64-128), acquiring a ''projection'' image at each stop. The data from these projections are used to reconstruct transverse images with a standard ''filtered back-projection'' algorithm, identical to that used in transmission CT. Because the scintillation camera acquires two-dimensional images, a simple 360 degree rotation around the patient results in the acquisition of data for a number of contiguous transverse slices. These slices, once reconstructed, can be ''stacked'' in computer memory, and orthogonal coronal and sagittal slices produced. Additionally, reorienting algorithms allow the generation of slices that are oblique to the long axis of the body

  15. Brain SPECT with Tl-201 DDC

    International Nuclear Information System (INIS)

    Bruine, J.F. de.

    1988-01-01

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  16. Single photon emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  17. Development of a new statistical evaluation method for brain SPECT images

    International Nuclear Information System (INIS)

    Kawashima, Ryuta; Sato, Kazunori; Ito, Hiroshi; Koyama, Masamichi; Goto, Ryoui; Yoshioka, Seiro; Ono, Shuichi; Sato, Tachio; Fukuda, Hiroshi

    1996-01-01

    The purpose of this study was to develop a new statistical evaluation method for brain SPECT images. First, we made normal brain image databases using 99m Tc-ECD and SPECT in 10 normal subjects as described previously. Each SPECT images were globally normalized and anatomically standardized to the standard brain shape using Human Brain Atlas (HBA) of Roland et al. and each subject's X-CT. Then, mean and SD images were calculated voxel by voxel. For the next step, 99m Tc-ECD SPECT images of a patient were obtained, and global normalization and anatomical standardization were performed as the same way. Then, a statistical map was calculated as following voxel by voxel; (P-Mean)/SDx10+50, where P, mean and SD indicate voxel value of patient, mean and SD images of normal databases, respectively. We found this statistical map was helpful for clinical diagnosis of brain SPECT studies. (author)

  18. Pre-evaluation study in SPECT images using a phantom

    International Nuclear Information System (INIS)

    Rebelo, Marina de Sa; Furuie, Sergio Shiguemi; Abe, Rubens; Moura, Lincoln

    1996-01-01

    An alternative solution for the reconstruction of SPECT images using a Poisson Noise Model is presented. The proposed algorithm was applied on a real phantom and compared to the standard clinical procedures. Results have shown that the proposed method improves the quality of the SPECT images

  19. Evaluation of the diagnostic performance of SPECT coupled to tomodensitometry (SPECT-CT) in the daily practice of bone scintigraphy at the Nuclear Medical station of Nancy

    International Nuclear Information System (INIS)

    Netter, F.; Journo, A.; Mayer, J.C.; Grandpierre, S.; Daragon, N.; Karcher, G.; Olivier, P.; Scigliano, S.

    2008-01-01

    Objective: The purpose of our study was to evaluate the diagnostic performance of SPECT coupled to computed axial tomography (SPECT- CT) in our daily practice of bone scintigraphy. Subjects and methods: SPECT- CT obtained as a complement to the planar bone scintigraphy in 39 patients were studied. Each type of image was retrospectively read by two different observers: a nuclear medicine physician who was unaware of SPECT- CT results analysed planar bone scintigraphy, a second one who was unaware of planar bone scintigraphy results analysed SPECT- CT images. In this population of patients, 17 patients were addressed in an oncologic setting. The 22 other patients were addressed for pain of indeterminate origin without neoplastic context. Results: In 13% of the cases, SPECT- CT specified the precise location of increased uptake foci seen on planar bone scintigraphy. In 38% of cases, SPECT- CT confirmed a diagnosis suspected by the planar bone scintigraphy. In 10% of cases, SPECT- CT established a diagnosis that was uncertain with planar bone scintigraphy. In 26% of cases, SPECT- CT brought no additional information. Finally in 3% of cases, SPECT- CT proved to be more sensitive than planar images. Conclusion: Our study demonstrates the utility of SPECT- CT in the daily practice of bone scintigraphy, this complementary imaging study benefited to 74% of our patients. (authors)

  20. Initial clinical experiences with dopamine D2 receptor imaging by means of 2'-iodospiperone and single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Saji, Hideo; Iwasaki, Yasushi

    1995-01-01

    Dopamine D 2 receptor imaging was performed with 123 I labeled 2'-iodospiperone (2'-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson's disease, 2 with parkinsonism, 1 with Wilson's disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of 123 I-2'-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson's disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson's disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2'-ISP can be used for SPECT imaging of D 2 dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author)

  1. SPECT versus planar bone radionuclide imaging in the detection of spondylolysis

    International Nuclear Information System (INIS)

    Whitten, C.G.; El-Khoury, G.Y.; Chang, P.J.; Seabold, J.E.; Found, E.M.; Renfrew, D.L.

    1991-01-01

    This paper evaluates the relative performance and ease of interpretation of SPECT versus planar radionuclide bone imaging in the detection of spondylolysis. The authors studied all patients presenting with back pain suggestive of spondylolysis from November 1989 to January 1991 who underwent bone scanning; patients underwent both planar and SPECT imaging. The planar and SPECT images were randomly mixed and independently interpreted by four observers for presence or absence of spondylolysis and ease of interpretation for each scan. Receiver operating characteristic (ROC) and analysis of variance (ANOVA) were used. Of 72 patients, 19 had confirmed spondylolysis, and 53 did not. While ROC analysis showed that SPECT performed slightly better than planar imaging for all four observers, the difference was not statistically significant. ANOVA results suggest that planar imaging was significantly easier to use than SPECT and that ease of use was strongly correlated with the observer's confidence in the diagnosis

  2. A new reconstruction strategy for image improvement in pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Kim, Kyeong Min; Teramoto, Noboru; Hayashi, Takuya; Iida, Hidehiro; Aoi, Toshiyuki; Sohlberg, Antti; Kudo, Hiroyuki

    2004-01-01

    Pinhole single-photon emission computed tomography (SPECT) is able to provide information on the biodistribution of several radioligands in small laboratory animals, but has limitations associated with non-uniform spatial resolution or axial blurring. We have hypothesised that this blurring is due to incompleteness of the projection data acquired by a single circular pinhole orbit, and have evaluated a new strategy for accurate image reconstruction with better spatial resolution uniformity. A pinhole SPECT system using two circular orbits and a dedicated three-dimensional ordered subsets expectation maximisation (3D-OSEM) reconstruction method were developed. In this system, not the camera but the object rotates, and the two orbits are at 90 and 45 relative to the object's axis. This system satisfies Tuy's condition, and is thus able to provide complete data for 3D pinhole SPECT reconstruction within the whole field of view (FOV). To evaluate this system, a series of experiments was carried out using a multiple-disk phantom filled with 99m Tc solution. The feasibility of the proposed method for small animal imaging was tested with a mouse bone study using 99m Tc-hydroxymethylene diphosphonate. Feldkamp's filtered back-projection (FBP) method and the 3D-OSEM method were applied to these data sets, and the visual and statistical properties were examined. Axial blurring, which was still visible at the edge of the FOV even after applying the conventional 3D-OSEM instead of FBP for single-orbit data, was not visible after application of 3D-OSEM using two-orbit data. 3D-OSEM using two-orbit data dramatically reduced the resolution non-uniformity and statistical noise, and also demonstrated considerably better image quality in the mouse scan. This system may be of use in quantitative assessment of bio-physiological functions in small animals. (orig.)

  3. A circular multifocal collimator for 3D SPECT imaging

    International Nuclear Information System (INIS)

    Guillemaud, R.; Grangeat, P.

    1993-01-01

    In order to improve sensitivity of 3D Single Photon Emission Tomography (SPECT) image, a cone-beam collimator can be used. A new circular multifocal collimator is proposed. The multiple focal points are distributed on a transaxial circle which is the trajectory of the focal points during the circular acquisition. This distribution provides a strong focusing at the center of the detector like a cone-beam collimator, with a good sensitivity, and a weak transaxial focusing at the periphery. A solution for an analytical multifocal reconstruction algorithm has been derived. Grangeat algorithm is proposed to use for this purpose in order to reconstruct with a good sensitivity the region of interest. (R.P.) 3 refs

  4. The GABA-A benzodiazepine receptor complex: Role of pet and spect in neurology and psychiatry

    International Nuclear Information System (INIS)

    Juengling, F.D.; Schaefer, M.; Heinz, A.

    2002-01-01

    Nuclear medicine imaging techniques such as positron emission tomography (PET) and single photon emission tomography (SPECT) for selective depiction of GABA-A-benzodiazepine receptor (GBZR) binding are complementary investigations in the diagnostic process of neurological and psychiatric disorders. This review summarizes the current knowledge about options and limitations of PET and SPECT for in vivo diagnostics in neurology and psychiatry. The growing importance of GBZR-imaging for the understanding of pathophysiology and pharmacological treatment in different psychiatric syndromes is discussed. (orig.) [de

  5. Global and regional left ventricular function: a comparison between gated SPECT, 2D echocardiography and multi-slice computed tomography

    International Nuclear Information System (INIS)

    Henneman, Maureen M.; Bax, Jeroen J.; Holman, Eduard R.; Schuijf, Joanne D.; Jukema, J.W.; Wall, Ernst E. van der; Stokkel, Marcel P.M.; Lamb, Hildo J.; Roos, Albert de

    2006-01-01

    Global and regional left ventricular (LV) function are important indicators of the cardiac status in patients with coronary artery disease (CAD). Therapy and prognosis are to a large extent dependent on LV function. Multi-slice computed tomography (MSCT) has already earned its place as an imaging modality for non-invasive assessment of the coronary arteries, but since retrospective gating to the patient's ECG is performed, information on LV function can be derived. In 49 patients with known or suspected CAD, coronary angiography with MSCT imaging was performed, in addition to gated SPECT and 2D echocardiography. LV end-diastolic and LV end-systolic volumes and LV ejection fraction were analysed with dedicated software (CMR Analytical Software System, Medis, Leiden, The Netherlands for MSCT; gated SPECT by QGS, Cedars-Sinai Medical Center, Los Angeles, CA, USA), and by the biplane Simpson's rule for 2D echocardiography. Regional wall motion was evaluated according to a 17-segment model and a three-point score system. Correlations were fairly good between gated SPECT and MSCT (LVEDV: r=0.65; LVESV: r=0.63; LVEF: r=0.60), and excellent between 2D echocardiography and MSCT (LVEDV: r=0.92; LVESV: r=0.93; LVEF: r=0.80). Agreement for regional wall motion was 95% (κ=0.66) between gated SPECT and MSCT, and 96% (κ=0.73) between 2D echocardiography and MSCT. Global and regional LV function and LV volumes can be adequately assessed with MSCT. Correlations with 2D echocardiography are stronger than with gated SPECT. (orig.)

  6. SPECT imaging of cardiac reporter gene expression in living rabbits

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Liang; Wu Tao; Jiang Rifeng; Zhang Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine kinase (HSVI-tk) reporter gene in rabbits myocardium by using the reporter probe 131 I-2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-5-iodouracil ( 131 I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131 I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1xl0 9 , 5x10 8 , 1x10 8 , 5x10 7 and 1x10 7 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1x10 9 , 5x10 8 , 1x10 8 , 5x10 7 , 1x10 7 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131 I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSVI-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131 I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images quality was obtained at 24-48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5x10 7 pfu of virus titer. The result could be set better in 1-5x10 8 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSVI-tk/ 131 I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter

  7. Clinical application of SPECT and PET in cerebrovascular disease

    International Nuclear Information System (INIS)

    Ra, Young Shin

    2003-01-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures

  8. Clinical application of SPECT and PET in cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Ra, Young Shin [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures.

  9. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.

    Science.gov (United States)

    Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W

    1992-01-01

    The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.

  10. Prognostic value of normal stress-only myocardial perfusion imaging: a comparison between conventional and CZT-based SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shu; Ottervanger, Jan Paul; Timmer, Jorik R. [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Mouden, Mohamed; Engbers, Elsemiek [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands)

    2016-02-15

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has proven to have prognostic importance in patients with suspected stable coronary artery disease (CAD). The recently introduced ultrafast cadmium zinc telluride (CZT)-based gamma cameras have been associated with less equivocal findings and more normal interpretations, allowing stress-only imaging to be performed more often. However, it is yet unclear whether normal stress-only CZT SPECT has comparable prognostic value as normally interpreted stress-only conventional SPECT. The study population consisted of 1,650 consecutive patients without known CAD with normal stress-only myocardial perfusion results with either conventional (n = 362) or CZT SPECT (n = 1,288). The incidence of major adverse cardiac events (MACE, all-cause death, non-fatal myocardial infarction and/or coronary revascularization) was compared between the conventional SPECT and CZT SPECT groups. Multivariable analyses using the Cox model were used to adjust for differences in baseline variables. Patients scanned with CZT were less often male (33 vs 39 %), had less often hypercholesterolaemia (41 vs 50 %) and had more often a family history of CAD (57 vs 49 %). At a median follow-up time of 37 months (interquartile range 28-45 months) MACE occurred in 68 patients. The incidence of MACE was 1.5 %/year in the CZT group, compared to 2.0 %/year in the conventional group (p = 0.08). After multivariate analyses, there was a trend to a lower incidence of MACE in the CZT SPECT group (hazard ratio 0.61, 95 % confidence interval 0.35-1.04, p = 0.07). The prognostic value of normal stress-only CZT SPECT is at least comparable and may be even better than that of normal conventional stress SPECT. (orig.)

  11. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  12. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    OpenAIRE

    Rempel, Brian P.; Price, Eric W.; Phenix, Christopher P.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled sub...

  13. Tc-99m-MDP/Ga-67 SPECT in the evaluation of otitis externa

    International Nuclear Information System (INIS)

    Tumeh, S.S.; Hamdan, U.; Desisto, W.; English, R.J.

    1988-01-01

    Four patients with otitis externa were studied with Tc-99m MDP and Ga-67 single photon emission computed tomography (SPECT). In addition to the abnormal uptake in the external ear seen with planar imaging, SPECT demonstrated mastoid uptake (proved clinically) that was not appreciated with planar imaging in three patients, one of whom had negative x-ray computed tomographic (CT) findings. In one patient, SPECT demonstrated midline uptake in the skull base that was not depicted by x-ray CF.No false-positive results were seen. The authors conclude that Tc-99m MDP/Ga-67 SPECT is superior to planar imaging and should be used in the evaluation of otitis externa

  14. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  15. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  16. Initial clinical experiences with dopamine D{sub 2} receptor imaging by means of 2`-iodospiperone and single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Schoool, Matsuoka (Japan). Biomedical Imaging Research Center; Saji, Hideo; Iwasaki, Yasushi [and others

    1995-08-01

    Dopamine D{sub 2} receptor imaging was performed with {sup 123}I labeled 2`-iodospiperone (2`-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson`s disease, 2 with parkinsonism, 1 with Wilson`s disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of {sup 123}I-2`-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson`s disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson`s disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2`-ISP can be used for SPECT imaging of D{sub 2} dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author).

  17. SPECT of the brain: Present and future

    International Nuclear Information System (INIS)

    Fazio, F.; Lenzi, G.L.

    1986-01-01

    In both PET and SPECT, most of the studies and the models have been addressed to two organs: brain and heart. So far, brain has certainly been investigated more. The several comparisons between planar scintigraphy and SPECT, between X-ray TCT and SPECT, and also between PET and SPECT, have tended to consider SPECT a cheap but scarcely useful tool for a nuclear medicine section. Again the authors feel that this is due to the fact that SPECT is really a ''physiological tomography'', with little known about its physiology or how it is measured. Thus the present state of the art of SPECT of the brain is characterized by a collection of data and reports on brain imaging and by a slowly growing basic understanding of the utilized modes. The introduction of a new brain-imaging radiopharmaceutical is immediately signaled by its ''first clinical application'' without parallel studies on the kinetics, the metabolic degradation, and the real suitability of the molecule as a tracer for measurement of regional CBF. Only a few attempts seek to narrow this discussion between clinic and biology, and the authors like to emphasize the need for nuclear medicine people to dedicate more time and effort

  18. Does supplementation of contrast MR imaging with thallium-201 brain SPECT improve differentiation between benign and malignant ring-like contrast-enhanced cerebral lesions?

    International Nuclear Information System (INIS)

    Kita, Tamotsu; Hayashi, Katsumi; Yamamoto, Masayoshi; Kawauchi, Toshio; Sakata, Ikuko; Iwasaki, Yoshie; Kosuda, Shigeru

    2007-01-01

    The objective of this study was to determine whether thallium-201 ( 201 Tl) brain single photon emission computed tomography (SPECT) could supplement magnetic resonance (MR) imaging diagnostic information by visual comparison of two separate data sets from patients with ring-like contrast-enhanced cerebral lesions. A combination of MR imaging and 201 Tl brain SPECT sets obtained from 13 patients (10 men, 3 women) ranging in age from 26 years to 86 years (mean 61.0 years) were retrospectively reviewed. A total of 12 patients had a solitary lesion, and the others had multiple lesions. All but two intracranial foci were pathologically confirmed. The final diagnoses were six glioblastomas, two cerebral metastases from lung cancer, and one each of abscess, resolving hematoma, primary central nervous system lymphoma, toxoplasmosis, and radiation necrosis. The two separate image formats (MR images and SPECT) were shown to ten readers with practical experience. All of the MR images for each patient were shown to each reader first. After interpreting them, the readers were shown the SPECT images. Images were scored in terms of how benign or malignant the foci were on a 5-point scale from ''definitely benign'' to ''definitely malignant.'' The improvement in the performance of all ten readers was from 67.7% to 93.8% in mean accuracy (P=0.0028) and from 0.730 to 0.971 in mean Az value (P=0.0069) after they were shown the 201 Tl brain SPECT images. 201 Tl brain SPECT should substantially increase confidence in the diagnosis of intracranial lesions with ring-like contrast enhancement when MR imaging does not permit differentiation between benign and malignant disease. (author)

  19. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Park, S-J; Yu, A R; Lee, Y-J; Kim, Y-S; Kim, H-J

    2014-01-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  20. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Umeda, Izumi O.; Tani, Kotaro; Tsuda, Keisuke

    2012-01-01

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111 In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111 In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111 In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  1. SPECT with [99mTc]-d,l-hexamethyl-propylene amine oxime (HM-PAO) compared with regional cerebral blood flow measured by PET

    DEFF Research Database (Denmark)

    Yonekura, Y; Nishizawa, S; Mukai, Thomas Søgaard

    1988-01-01

    In order to validate the use of technetium-99m-d,l-hexamethylpropyleneamine oxime (HM-PAO) as a flow tracer, a total of 21 cases were studied with single photon emission computerized tomography (SPECT), and compared to regional cerebral blood flow (rCBF) measured by position emission tomography...... (PET) using the oxygen-15 CO2 inhalation technique. Although HM-PAO SPECT and rCBF PET images showed a similar distribution pattern the HM-PAO SPECT image showed less contrast between high and low activity flow regions than the rCBF image and a nonlinear relationship between HM-PAO activity and r......CBF was shown. Based on the assumption of flow-dependent backdiffusion of HM-PAO from the brain, we applied a "linearization algorithm" to correct the HM-PAO SPECT images. The corrected HM-PAO SPECT images revealed a good linear correlation with rCBF (r = 0.901, p less than 0.001). The results indicated HM-PAO...

  2. Automatic construction of 3D-ASM intensity models by simulating image acquisition: application to myocardial gated SPECT studies.

    Science.gov (United States)

    Tobon-Gomez, Catalina; Butakoff, Constantine; Aguade, Santiago; Sukno, Federico; Moragas, Gloria; Frangi, Alejandro F

    2008-11-01

    Active shape models bear a great promise for model-based medical image analysis. Their practical use, though, is undermined due to the need to train such models on large image databases. Automatic building of point distribution models (PDMs) has been successfully addressed and a number of autolandmarking techniques are currently available. However, the need for strategies to automatically build intensity models around each landmark has been largely overlooked in the literature. This work demonstrates the potential of creating intensity models automatically by simulating image generation. We show that it is possible to reuse a 3D PDM built from computed tomography (CT) to segment gated single photon emission computed tomography (gSPECT) studies. Training is performed on a realistic virtual population where image acquisition and formation have been modeled using the SIMIND Monte Carlo simulator and ASPIRE image reconstruction software, respectively. The dataset comprised 208 digital phantoms (4D-NCAT) and 20 clinical studies. The evaluation is accomplished by comparing point-to-surface and volume errors against a proper gold standard. Results show that gSPECT studies can be successfully segmented by models trained under this scheme with subvoxel accuracy. The accuracy in estimated LV function parameters, such as end diastolic volume, end systolic volume, and ejection fraction, ranged from 90.0% to 94.5% for the virtual population and from 87.0% to 89.5% for the clinical population.

  3. Usefulness of Ga-67 citrate whole body imaging, chest spot imaging, and chest SPECT in sarcoidosis

    International Nuclear Information System (INIS)

    Ueno, Kyoichi; Nishi, Koichi; Namura, Masanobu; Kawashima, Yoshio; Kurumaya, Hiroshi

    1999-01-01

    To assess the sensitivity, and the relative role of Ga-67 whole body, chest spot imaging, and chest SPECT, we retrospectively studied 34 cases of sarcoidosis (24 biopsy proven, 10 clinically diagnosed) with Ga-67 (111 MBq), and compared the results of lung (25 cases), muscle (25 cases), skin (3 cases), and myocardial (2 cases) biopsies. Ga-67 chest SPECT (single photon emission CT) were done in 17 cases with Siemens MultiSPECT3. Ga-67 planar imaging visualized only 2 of 12 (16.7%) lung biopsy-positive cases, 5 of 12 (41.6%) muscle biopsy-positive cases, 2 of 3 (66.7%) skin biopsy-positive cases. However, Ga-67 imaging revealed the lesions in 1 of 9 (11.1%) of muscle biopsy-negative cases, in 2 of 3 (66.7%) of skin biopsy-negative cases, and in 1 of 2 myocardial biopsy-negative cases. Ga-67 chest SPECT visualized 14 hilar lymphadenopathy (LN), 3 supraclavicular LN, and 1 myocardial sarcoidosis. Although both SPECT, and planar spot imaging detected the lesions equally, the former showed them more clearly. Compared with various biopsies, the sensitivity of Ga-67 imaging was not so high. However, Ga-67 imaging is non-invasive, easy to perform the whole body imaging, and can detect the activity of the lesions. Ga-67 SPECT showed clear imaging of the hilar, mediastinal LN, and potentially fatal myocardial sarcoidosis. (author)

  4. Contrast-enhanced computed tomography does not improve the diagnostic value of parathyroid dual-phase MIBI SPECT/CT

    DEFF Research Database (Denmark)

    Andersen, Trine B; Aleksyniene, Ramune; Boldsen, Søren K

    2018-01-01

    OBJECTIVE: The aim of this study was to investigate the contribution of contrast-enhanced computed tomography (CE-CT) to the localization of parathyroid adenomas compared with the dual-phase Tc-99m MIBI SPECT with low-dose CT (LD-CT). PATIENTS AND METHODS: This retrospective study included...... consecutive patients with primary hyperparathyroidism who underwent a preoperative dual-phase MIBI SPECT/CT followed by surgical resection. The standard of care was dual-phase MIBI SPECT/CT, acquired with LD-CT in the early phase and CE-CT in the late phase (SPECT/CE-CT). The presence and localization...... of positive sites were extracted from study reports. To examine the role of CE-CT, patient cases were independently re-reviewed, with the early LD-CT fused with early and late SPECT (SPECT/LD-CT). The two SPECT/CT methods were compared for sensitivity, and the positive predictive value and histopathology were...

  5. The origins of SPECT and SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Brian F. [University College London, Institute of Nuclear Medicine, London (United Kingdom); University of Wollongong, Centre for Medical Radiation Physics, Wollongong, NSW (Australia)

    2014-05-15

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility. (orig.)

  6. First results of genetic algorithm application in ML image reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Smolik, W.

    1999-01-01

    This paper concerns application of genetic algorithm in maximum likelihood image reconstruction in emission tomography. The example of genetic algorithm for image reconstruction is presented. The genetic algorithm was based on the typical genetic scheme modified due to the nature of solved problem. The convergence of algorithm was examined. The different adaption functions, selection and crossover methods were verified. The algorithm was tested on simulated SPECT data. The obtained results of image reconstruction are discussed. (author)

  7. Specificity of the tomography implementation in electric arc domain - Validity in medical imaging

    International Nuclear Information System (INIS)

    Benech, Julie

    2008-01-01

    The aim of these works was to implement a new experimental method to characterize 3D thermal plasmas by emission spectroscopy. The method used is based on tomographic technique which is widely used in medical imaging nowadays. However, tomography that we have developed and applied to electric arc is specific as the number of accessible projections angles is strongly limited: 4 projections our case against basically 64 in medical imaging. The particularity of our experimental tomographic system is that measurements are resolved both spectrally and spatially. The spectral resolution is necessary to determine the temperature values from method based on atomic line intensity. The spatial resolution is needed to simultaneously acquire the whole width of the plasma and so to reconstruct a whole cross-section in only one acquisition. One of the principal objective was to realize the experimental system of four-view tomography for thermal plasmas. Thanks to this device, we showed that the characterization of non-axisymmetric plasma is possible and that it enables to reconstruct 3D temperature maps. Finally, our tomographic method is applied with medical imaging data acquired in SPECT (Single Photon Emission Computed Tomography). These tests allowed validating the use of our tomographic reconstruction technique in SPECT, particularly the used iterative algebraic algorithm and the limited-view configuration. (author) [fr

  8. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  9. Diagnostic medical imaging systems. X-ray radiography and angiography, computerized tomography, nuclear medicine, NMR imaging, sonography, integrated image information systems. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Morneburg, H.

    1995-01-01

    This third edition is based on major review and updating work. Many recent developments have been included, as for instance novel systems for fluoroscopy and mammography, spiral CT and electron beam CT, nuclear medical tomography ( SPECT and PET), novel techniques for fast NMR imaging, spectral and colour coded duplex sonography, as well as a new chapter on integrated image information systems, including network installations. (orig.) [de

  10. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    Science.gov (United States)

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  11. Tc-99m Ciprofloxacin SPECT of Pulmonary Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of); Yoon, Min Ki [Good Samaritan Hospital, Pohang (Korea, Republic of); Choe, Won Sick [Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2010-06-15

    Tc-99m ciprofloxacin is available for imaging infection. However, there has been no study on employing single photon emission computed tomography (SPECT) with using Tc-99m ciprofloxacin to image active pulmonary tuberculosis. Therefore, we conducted this study to assess the efficacy of Tc-99m ciprofloxacin SPECT for imaging active pulmonary tuberculosis. Twenty-one participants were enrolled in this prospective study. They were divided into two groups according to the clinical and radiological assessment. Group one (Gr. 1) consisted of five normal volunteers and six patients with inactive pulmonary tuberculosis. Group two (Gr. 2) consisted of ten patients with active pulmonary tuberculosis. SPECT was performed 3 h after injecting 555 MBq (15 mCi) of Tc-99m ciprofloxacin. The findings of Tc-99m ciprofloxacin SPECT were interpreted by a nuclear medicine specialist and then the results were analyzed according to the patients' clinical and radiological classifications. The results of Tc-99m ciprofloxacin SPECT were as follows: eight true-positive cases, ten true-negative cases, one false-positive case and two false-negative cases. The sensitivity and specificity was 80.0% and 90.0%, respectively. The positive predictive value was 88.9% and the negative predictive value was 83.3%. Conclusions Tc-99m ciprofloxacin SPECT is feasible for imaging active pulmonary tuberculosis. It is a useful nuclear-imaging method for discriminating between the active and inactive tuberculosis states in patients with a past medical history of pulmonary tuberculosis.

  12. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    Science.gov (United States)

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  13. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  14. Is SPECT useful in imaging of abdominal inflammatory processes using 99mTc-HMPAO-WBCs?

    International Nuclear Information System (INIS)

    Smole, M.S.; Stantic, T.S.; Fettich, J.F.

    2002-01-01

    Aim: The aim of the study is to determine whether SPECT gives additional information in the assessment of inflammation of the abdominal region with labelled white blood cells as compared with usual planar imaging. Patients And Methods: SPECT and planar imaging was performed in 26 patients with suspected inflammatory process in the abdomen, within three hours after injection of autologous white blood cells labelled with 99m Tc HMPAO. Planar images where acquired as static spot images using high resolution low energy collimator on 256 x 256 matrix. SPECT was performed using the same collimator on 128 x 128 matrix in 128 projections. Filtered back projection was used for reconstruction and volume rendering was performed. Results: The lesions in the abdomen were classified as jejunum, colon ascendents, colon transversum, colon descendents, sigmoid, and lesions outside GIT. All lesions, which were seen on planar images, except one, were also seen on SPECT. Five equivocal lesions seen on planar images were reconfirmed as pathological on SPECT. Additionally SPECT revealed three lesions not seen on planar images. Fourteen lesions were seen by both imaging techniques. All together SPECT improved diagnostic accuracy of 99m Tc - HMPAO - WBC scintigraphy in 7/28 patients. Conclusion: more inflammatory lesions in the abdomen are revealed by SPECT and volume rendering, than by planar imaging equivocal lesions seen on planar images can be characterised as positive or negative by SPECT. SPECT artefacts can cause possible false positive results; therefore usual planar imaging cannot be omitted if SPECT is performed

  15. Myocardial multilayer strain does not provide additional value for detection of myocardial viability assessed by SPECT imaging over and beyond standard strain.

    Science.gov (United States)

    Orloff, Elisabeth; Fournier, Pauline; Bouisset, Frédéric; Moine, Thomas; Cournot, Maxime; Elbaz, Meyer; Carrié, Didier; Galinier, Michel; Lairez, Olivier; Cognet, Thomas

    2018-05-14

    The aim of this study was to evaluate the value of multilayer strain analysis to the assessment of myocardial viability (MV) through the comparison of both speckle tracking echocardiography and single-photon emission computed tomography (SPECT) imaging. We also intended to determine which segmental longitudinal strain (LS) cutoff value would be optimal to discriminate viable myocardium. We included 47 patients (average age: 61 ± 11 years) referred to our cardiac imaging center for MV evaluation. All patients underwent transthoracic echocardiography with measures of LS, SPECT, and coronary angiography. In all, 799 segments were analyzed. We correlated myocardial tracer uptake by SPECT with sub-endocardial, sub-epicardial, and mid-segmental LS values with r = .514 P Multilayer strain analysis does not evaluate MV with more accuracy than standard segmental LS analysis. © 2018 Wiley Periodicals, Inc.

  16. SPECT versus planar scintigraphy for quantification of splenic sequestration of 111In-labelled platelets

    International Nuclear Information System (INIS)

    Savolainen, S.; Helsinki Univ. Central Hospital

    1992-01-01

    The splenic uptake of thrombocytes and spleen size were studied in 25 patients with idiopathic thrombocytopenic purpura (ITP) using two methods: anterior/posterior scintigraphy and single photon emission computed tomography (SPECT). Various factors (acquisition and reconstruction protocols) influencing the quality of 111 In SPECT were studied. The splenic uptake, measured by SPECT, was found to be significantly higher in patients with a high level of autoantibodies in the blood than in patients without such antibodies. The correlation between the spleen SPECT volume and the geometric mean size calculated as geometric mean of anterior and posterior images differed by more than 50% from the SPECT volume in some patients. Based on these observations and on the results of phantom studies, it is concluded that a reasonable estimate of the spleen:liver uptake ratio may be obtained using planar imaging, but to estimate the spleen volume and the absolute splenic uptake of platelets SPECT imaging is needed, in spite of the present technical limitations of SPECT. (Author)

  17. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  18. Dopamine transporter imaging with [123I]FP-CIT SPECT: potential effects of drugs

    International Nuclear Information System (INIS)

    Booij, Jan; Kemp, Paul

    2008-01-01

    [ 123 I]N-ω-fluoropropyl-2β-carbomethoxy-3β-{4-iodophenyl}nortropane ([ 123 I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [ 123 I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  19. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  20. Application of 99mTc-MIBI myocardial tomography imaging for the diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Chen Jinshui

    1992-01-01

    99m Tc-MIBI myocardial tomography imaging was obtained from 119 cases with Sopha Medical SPECT system. 38 cases of coronary heart diseases, 33 cases of coronary heart diseases combined with hypertension and 48 cases of myocardial infarction were diagnosed according to clinical symptoms and signs, ECG, exercise ECG (treadmill test) and other laboratory studies. The results showed that positive rate of myocardial thermography imaging for detecting coronary heart disease was 70.21% at rest, and the positivity can be further increased by myocardial tomography imaging with exercise test. On the contrary the positivity of exercise ECG was only 63.8%. It was concluded that radionuclide myocardial tomography imaging was noninvasive and more sensitive and specific than the exercise ECG in detecting coronary heart disease

  1. Use of the geometric mean of opposing planar projections in pre-reconstruction restoration of SPECT images

    International Nuclear Information System (INIS)

    Boulfelfel, D.; Rangayyan, R.M.; Hahn, L.J.; Kloiber, R.

    1992-01-01

    This paper presents a restoration scheme for single photon emission computed tomography (SPECT) images that performs restoration before reconstruction (pre-reconstruction restoration) from planar (projection) images. In this scheme, the pixel-by-pixel geometric mean of each pair of opposing (conjugate) planar projections is computed prior to the reconstruction process. The averaging process is shown to help in making the degradation phenomenon less dependent on the distance of each point of the object from the camera. The restoration filters investigated are the Wiener and power spectrum equalization filters. (author)

  2. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  3. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  4. Advance prediction of mild cognitive impairment (MCI) using 99mTc-ECD SPECT brain blood flow imaging

    International Nuclear Information System (INIS)

    Kawasaki, Yohsuke

    2008-01-01

    Mild Cognitive Impairment (MCI) is considered as a precursor state of Alzheimer disease (AD). Single photon emission computed tomography (SPECT) brain blood flow imaging was investigated in MCI and it's relevance to the prognosis of MCI was evaluated in an attempt define the characteristics of brain blood flow imaging of MCI (amnestic MCI; aMCI) converting to AD. Ninety-two patients over 60 years old with amnesia were studied. 99m Tc-ethyl cysteinate dimer (ECD) SPECT brain blood flow examinations of the subject under drug-free conditions were conducted and imaging was analyzed according to the first clinical diagnosis. Patients given a diagnosis of MCI on the first clinical diagnosis, were examined again after 2 years and the SPECT imaging before 2 years previously was classified and analyzed. Of them, there were 35 MCI patients, converting of 13 AD patients (37.1%; aMCI), 10 MCI patients (28.6%; non-converter), 4 depression patients (11.4%; Depression type MCI (dMCI)), 1 Geriatric psychosis patient, but 7 patients dropped out. In the aMCI group, relative hypoperfusion was recognized in the posterior cingulate and the precuneus. In the dMCI group, relative hypoperfusion was recognized in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate. In the non-converter group, relative hypoperfusion was recognized in the basal forebrain. The hypoperfusion of the precuneus in aMCI, and the hypoperfusion of the right frontal lobe (DLPFC, dorsal-anterior cingulate) in dMCI were characteristic brain blood-flow abnormalities. We believe 99m Tc-ECD SPECT brain blood flow imaging to be useful in the diagnosis of aMCI and in the early detection of depression. (author)

  5. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2005-01-01

    The study was performed to evaluate the incremental value of single photon emission computed tomography/computed tomography (SPECT/CT) over planar radioiodine imaging before radioiodine ablation in the staging, management and stratification of risk of recurrence (ROR) in differentiated thyroid cancer (DTC) patients. Totally, 83 patients (21 male, 62 female) aged 17–75 (mean 39.9) years with DTC were included consecutively in this prospective study. They underwent postthyroidectomy planar and SPECT/CT scans after oral administration of 37–114 MBq iodine-131 (I-131). The scans were interpreted as positive, negative or suspicious for tracer uptake in the thyroid bed, cervical lymph nodes and sites outside the neck. In each case, the findings on planar images were recorded first, without knowledge of SPECT/CT findings. Operative and pathological findings were used for postsurgical tumor–node–metastasis staging. The tumor staging was reassessed after each of these two scans. Single photon emission computed tomography/computed tomography localized radioiodine uptake in the thyroid bed in 9/83 (10.8%) patients, neck nodes in 24/83 (28.9%) patients and distant metastases in 8/83 (9.6%) patients in addition to the planar study. Staging was changed in 8/83 (9.6%), ROR in 11/83 (13.2%) and management in 26/83 (31.3%) patients by the pretherapy SPECT/CT in comparison to planar imaging. SPECT/CT had incremental value in 32/83 patients (38.5%) over the planar scan. Single photon emission computed tomography/computed tomography is feasible during a diagnostic I-131 scan with a low amount of radiotracer. It improved the interpretation of pretherapy I-131 scintigraphy and changed the staging and subsequent patient management

  6. Comparison of SPECT and whole-body planar imaging in radioimmunoscintigraphy with Tc-labeled antibodies

    International Nuclear Information System (INIS)

    Lacic, K.; Bokulic, T.; Lukac, J.; Dakovic, N.; Kusic, Z.

    1994-01-01

    The authors of some recent clinical studies suggested 20-24 hours SPECT imaging as a mandatory procedure in radioimmunoscintigraphy with Tc-labeled antibodies. The aim of our study was to compare whole-body (WB) planar imaging versus SPECT as well as 4-6 hours SPECT to 20-24 hours one. For this purpose we analyzed 33 lesions in 12 postsurgical patients with colorectal carcinoma. Each patient received intravenously 0.5-1.0 mg anti-CEA BW 431/26 murine monoclonal IgG-antibodies labeled with Tc-99m (814-1110 MBq). WB and SPECT imaging were performed at 4-6 and 20-24 hours post infusion. 20-24 hours WB scan imaged more 'hot' and less 'cold' lesions than 4-6 hours one. SPECT scan showed significantly more lesions than WB scan. 20-24 hours SPECT scan detected more 'hot' lesions than 4-6 hours SPECT. At the same time the number of 'cold' lesions decreased in 20-24 hours SPECT in comparison to 4-6 hours one. As a conclusion we can say that our results suggest a superiority of SPECT imaging in comparison to WB scan. Except that, in our opinion performing of a 20-24 hours SPECT scan in radioimmunoscintigraphy with Tc-labeled antibodies should be mandatory. (author)

  7. Comparison of SPECT and whole-body planar imaging in radioimmunoscintigraphy with Tc-labeled antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Lacic, K; Bokulic, T; Lukac, J; Dakovic, N; Kusic, Z [Clinical Hospital Sestre Milosrdnice, Zagreb (Croatia). Dept. of Oncology and Nuclear Medicine

    1994-10-01

    The authors of some recent clinical studies suggested 20-24 hours SPECT imaging as a mandatory procedure in radioimmunoscintigraphy with Tc-labeled antibodies. The aim of our study was to compare whole-body (WB) planar imaging versus SPECT as well as 4-6 hours SPECT to 20-24 hours one. For this purpose we analyzed 33 lesions in 12 postsurgical patients with colorectal carcinoma. Each patient received intravenously 0.5-1.0 mg anti-CEA BW 431/26 murine monoclonal IgG-antibodies labeled with Tc-99m (814-1110 MBq). WB and SPECT imaging were performed at 4-6 and 20-24 hours post infusion. 20-24 hours WB scan imaged more `hot` and less `cold` lesions than 4-6 hours one. SPECT scan showed significantly more lesions than WB scan. 20-24 hours SPECT scan detected more `hot` lesions than 4-6 hours SPECT. At the same time the number of `cold` lesions decreased in 20-24 hours SPECT in comparison to 4-6 hours one. As a conclusion we can say that our results suggest a superiority of SPECT imaging in comparison to WB scan. Except that, in our opinion performing of a 20-24 hours SPECT scan in radioimmunoscintigraphy with Tc-labeled antibodies should be mandatory. (author).

  8. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    International Nuclear Information System (INIS)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-01-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake

  9. Development of advanced industrial SPECT system with 12-gonal diverging-collimator

    International Nuclear Information System (INIS)

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Han, Min Cheol; Kim, Chan Hyeong

    2014-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising diagnosis technique to investigate the dynamic behavior of process media. In the present study, a 12-gonal industrial SPECT system was developed using diverging collimators, and its performance was compared with those of hexagonal and 24-gonal systems. Of all of the systems, the 12-gonal type showed the best performance, providing (1) a detection-efficiency map without edge artifacts, (2) the best image resolution, and (3) reconstruction images that correctly furnish multi-source information. Based on the performance of the three different types of configurations, a SPECT system with 12-gonal type configuration was found most suitable for investigating and visualization of flow dynamics in industrial process systems. - highlights: • Industrial SPECT provides the dynamic behavior of multiphase industrial processes. • The present study compared performance of various industrial SPECT systems. • The 12-gonal SPECT system with diverging-collimator provides the best performance

  10. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve: A single-center prospective study.

    Science.gov (United States)

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-12-01

    The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD).We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC.FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = -0.584 and r = -0.568, respectively, both P system can predict FFR at an optimal cut-off of reserved.

  11. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Science.gov (United States)

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  12. The characteristics of SPECT images in childhood benign partial epilepsy

    International Nuclear Information System (INIS)

    Jia Shaowei; Liao Jianxiang; Liu Xiaoyan; Zheng Xiyuan; Qin Jiong; Pan Zhongyun; Zuo Qihua

    1998-01-01

    Purpose: To investigate childhood benign partial epilepsy (BPE) with SPECT. Methods: Double SPECT imaging was performed on 21 cases of BPE at the stage of wake (interval spike discharge) and sleep (spike discharge), under EEG monitoring. The transverse images were reconstructed after digital image subtraction. The quantitative analysis was conducted with brain flow change rate (BFCR) % mathematical model. Results: EEG monitoring demonstrated approximately normal background of 21 cases of BPE during the stage of wake, and spike discharge frequency markedly increased during the stage of sleep, 117 foci were showed by SPeCT in cases of BPE, and the average was 5.6 +- 1.6 foci/case. The characteristics of SPECT transverse images were 1) multiple foci of mirror, 2) mostly seen in Rolandic region, 3) circular symbol, 4) the radioactivity in foci decreased during the stage of wake (interval spike discharge) and increased during the stage of sleep (spike discharge). The concordance of SPECT and EEG was 93.1% (109/117 foci). The BFCR% of all epileptogenic foci exceeded normal limit (99% confidence interval). There was no correlation between the spike discharge frequency and BFCR% (r = 0.45, P>0.05). Conclusions: Regional cerebral blood flow and function were abnormal during the epileptogenic foci were discharging abnormally in BPE

  13. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  14. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may be u...

  15. Accelerated 3D-OSEM image reconstruction using a Beowulf PC cluster for pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Sohlberg, Antti; Iida, Hidehiro

    2007-01-01

    A conventional pinhole single-photon emission computed tomography (SPECT) with a single circular orbit has limitations associated with non-uniform spatial resolution or axial blurring. Recently, we demonstrated that three-dimensional (3D) images with uniform spatial resolution and no blurring can be obtained by complete data acquired using two-circular orbit, combined with the 3D ordered subsets expectation maximization (OSEM) reconstruction method. However, a long computation time is required to obtain the reconstruction image, because of the fact that 3D-OSEM is an iterative method and two-orbit acquisition doubles the size of the projection data. To reduce the long reconstruction time, we parallelized the two-orbit pinhole 3D-OSEM reconstruction process by using a Beowulf personal computer (PC) cluster. The Beowulf PC cluster consists of seven PCs connected to Gbit Ethernet switches. Message passing interface protocol was utilized for parallelizing the reconstruction process. The projection data in a subset are distributed to each PC. The partial image forward-and back-projected in each PC is transferred to all PCs. The current image estimate on each PC is updated after summing the partial images. The performance of parallelization on the PC cluster was evaluated using two independent projection data sets acquired by a pinhole SPECT system with two different circular orbits. Parallelization using the PC cluster improved the reconstruction time with increasing number of PCs. The reconstruction time of 54 min by the single PC was decreased to 10 min when six or seven PCs were used. The speed-up factor was 5.4. The reconstruction image by the PC cluster was virtually identical with that by the single PC. Parallelization of 3D-OSEM reconstruction for pinhole SPECT using the PC cluster can significantly reduce the computation time, whereas its implementation is simple and inexpensive. (author)

  16. Usefulness of additional SPECT/CT identifying lymphatico-renal shunt in a patient with chyluria

    International Nuclear Information System (INIS)

    Suh, Min Seok; Cheon, Gi Jeong; Seo, Hyo Jung; KIm, Hyeon Hoe; Lee, Dong Soo

    2015-01-01

    Lymphoscintigraphy is known to be a useful and non-invasive modality for the evaluation of lymphatic abnormality. However, lymphoscintigraphy has limitations in evaluating chyluria because of its lack of anatomical information. Additional single-photon emission computed tomography (SPECT) combined with computed tomography (CT) was considered to be potentially helpful in detecting the abnormal lymphatico-renal communication. A 20-year-old male patient was referred to our hospital for evaluation of recurrent chyluria. During the third recurrence of chyluria, additional SPECT/CT along with lymphoscintigraphy was performed for evaluation. From the combined SPECT/CT images, lymphatic drainage of radiotracers to the kidney was well visualized, helping diagnosis of a patient with chyluria

  17. Usefulness of additional SPECT/CT identifying lymphatico-renal shunt in a patient with chyluria

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Cheon, Gi Jeong; Seo, Hyo Jung; KIm, Hyeon Hoe; Lee, Dong Soo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-03-15

    Lymphoscintigraphy is known to be a useful and non-invasive modality for the evaluation of lymphatic abnormality. However, lymphoscintigraphy has limitations in evaluating chyluria because of its lack of anatomical information. Additional single-photon emission computed tomography (SPECT) combined with computed tomography (CT) was considered to be potentially helpful in detecting the abnormal lymphatico-renal communication. A 20-year-old male patient was referred to our hospital for evaluation of recurrent chyluria. During the third recurrence of chyluria, additional SPECT/CT along with lymphoscintigraphy was performed for evaluation. From the combined SPECT/CT images, lymphatic drainage of radiotracers to the kidney was well visualized, helping diagnosis of a patient with chyluria.

  18. Individual patient dosimetry using quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Gonzalez, J.; Oliva, J.; Baum, R.; Fisher, S.

    2002-01-01

    An approach is described to provide individual patient dosimetry for routine clinical use. Accurate quantitative SPECT imaging was achieved using appropriate methods. The volume of interest (VOI) was defined semi-automatically using a fixed threshold value obtained from phantom studies. The calibration factor to convert the voxel counts from SPECT images into activity values was determine from calibrated point source using the same threshold value as in phantom studies. From selected radionuclide the dose within and outside a sphere of voxel dimension at different distances was computed through dose point-kernels to obtain a discrete absorbed dose kernel representation around the volume source with uniform activity distribution. The spatial activity distribution from SPECT imaging was convolved with this kernel representation using the discrete Fourier transform method to yield three-dimensional absorbed dose rate distribution. The accuracy of dose rates calculation was validated by software phantoms. The absorbed dose was determined by integration of the dose rate distribution for each volume of interest (VOI). Parameters for treatment optimization such as dose rate volume histograms and dose rate statistic are provided. A patient example was used to illustrate our dosimetric calculations

  19. Single photon emission computed tomography in children with idiopathic seizures

    International Nuclear Information System (INIS)

    Hara, Masafumi; Takahashi, Mutsumasa; Kojima, Akihiro; Shimomura, Osamu; Kinoshita, Rumi; Tomiguchi, Seiji; Taku, Keiichi; Miike, Teruhisa

    1991-01-01

    Single photon emission computed tomography (SPECT) with N-isoprophyl-p [ 123 I]-iodoamphetamine (IMP), X-ray computed tomography (X-CT), and magnetic resonance imaging (MRI) were performed in 20 children with idiopathic seizures. In children with idiopathic seizures, SPECT could detect the abnormal sites at the highest rate (45%) compared with CT (10%) and MRI (12%), but the abnormal sites on SPECT correlated poorly with the foci on electroencephalograph (EEG). Idiopathic epilepsy with hypoperfusion on SPECT was refractory to treatment and was frequently associated with mental and/or developmental retardation. Perfusion defects on SPECT scans probably affect the development and maturation of the brain in children. (author)

  20. The group study of diagnostic efficacy of cerebro-vascular disease by I-123 IMP SPECT images obtained with ring type SPECT scanner

    International Nuclear Information System (INIS)

    Machida, Kikuo; Honda, Norinari; Matsumoto, Toru

    1991-01-01

    We performed two image reading experiments in order to investigate the diagnostic capability of I-123 IMP SPECT obtained by the ring type SPECT scanner in cerebro-vascular disease. Fourteen physicians diagnosed SPECT images of 55 cases with reference to clinical neurological information, first without brain XCT images and second with XCT images. Each physician detected perfusion defects and redistributions of I-123 IMP and assigned a confidence level of abnormality for these SPECT findings by means of five rating method. From results obtained by ROC analysis, we concluded as follows. (1) Generally, I-123 IMP SPECT is a stable diagnostic modality in the diagnosis of cerebro-vascular disease and the image reading of XCT had no effects on the diagnosis of SPECT on the whole of physician. (2) However, there were unnegligible differences among individuals in the detectability of findings and the effect of XCT image reading. (3) Detectability of redistribution of I-123 IMP was lower than that of perfusion defect and inter-observer variation in the diagnostic performance for redistribution was larger than that of perfusion defect. The results suggest that it is necessary to standardize diagnostic criteria among physicians for redistribution of I-123 IMP. (author)

  1. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  2. MRI and SPECT findings in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Ukada, F.; Sawada, H.; Seriu, N.; Shindou, K.; Nishitani, N.; Kameyama, M.

    1992-01-01

    MRI was performed in 21 patients and single photon emission computed tomography (SPECT) with N-isopropyl-p- 123 I iodoamphetamine in 16 patients, to visualize upper motor neurone lesions in amyotrophic lateral sclerosis. T2-weighted MRI revealed high signal along the course of the pyramidal tract in the internal capsule and cerebral peduncle in 4 of 21 patients. SPECT images were normal in 4 patients, but uptake was reduced in the cerebral cortex that includes the motor area in 11. (orig.)

  3. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons.

  4. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons

  5. The GABA-A benzodiazepine receptor complex: Role of pet and spect in neurology and psychiatry; Der GABA-A-benzodiazepinrezeptorkomplex: Rolle von PET und SPECT in Neurologie und Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Juengling, F.D. [Abt. fuer Nuklearmedizin, Radiologie III, Universitaetsklinik Ulm (Germany); Schaefer, M.; Heinz, A. [Klinik fuer Psychiatrie und Psychotherapie, Charite, Humboldt-Univ. zu Berlin (Germany)

    2002-09-01

    Nuclear medicine imaging techniques such as positron emission tomography (PET) and single photon emission tomography (SPECT) for selective depiction of GABA-A-benzodiazepine receptor (GBZR) binding are complementary investigations in the diagnostic process of neurological and psychiatric disorders. This review summarizes the current knowledge about options and limitations of PET and SPECT for in vivo diagnostics in neurology and psychiatry. The growing importance of GBZR-imaging for the understanding of pathophysiology and pharmacological treatment in different psychiatric syndromes is discussed. (orig.) [German] Mit der Entwicklung selektiver Liganden fuer den GABA-A-Benzodiazepinrezeptorkomplex (GBZR) hat die nuklearmedizinische Bildgebung mittels positronen-emissionstomographie (PET) und single-photon-emissionscomputertomographie (SPECT) einen festen Stellenwert fuer Klinik und Forschung in der Neurologie und Psychiatrie erlangt. Die vorliegende Ueberblicksarbeit fasst den aktuellen Wissensstand von Anwendungsmoeglichkeiten und -grenzen der nuklearmedizinischen Bildgebung der GBZR in vivo zusammen und beleuchtet ihren klinischen Nutzen. Die wachsende Bedeutung fuer das Verstaendnis der Pathophysiologie und pharmakotherapeutischer Konzepte unterschiedlicher psychiatrischer Erkrankungen wird herausgestellt. (orig.)

  6. Optimization of imaging parameters for SPECT scans of [99mTc]TRODAT-1 using Taguchi analysis.

    Directory of Open Access Journals (Sweden)

    Cheng-Kai Huang

    Full Text Available Parkinson's disease (PD is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38% and 25.933 (53%, respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications.

  7. Retention index of thallium-201 single photon emission computerised tomography (SPECT) as an indicator of metastasis in adenocarcinoma of the lung.

    Science.gov (United States)

    Takekawa, H.; Itoh, K.; Abe, S.; Ogura, S.; Isobe, H.; Sukou, N.; Furudate, M.; Kawakami, Y.

    1994-01-01

    We examined the relationship between the retention of thallium-201 (201Tl) on a delayed scan and the metastatic potential of adenocarcinomas of the lung. We studied 43 patients with adenocarcinoma of the lung and divided them into two groups according to the presence or absence of lymph node metastasis. 201Tl single photon emission computerised tomography (SPECT) was conducted twice: 15 min (early scan) and 120 min (delayed scan) after intravenous injection of 3 mCi of 201Tl chloride. We calculated the retention index in order to evaluate the degree of 201Tl retention in the primary tumour. The retention indices were significantly higher in the group that was positive for lymph node metastasis than in the negative group. In adenocarcinomas with high metastatic potential, 201Tl SPECT demonstrated slow washout or increased retention on the delayed scan. The retention index of 201Tl SPECT is a useful indicator of metastatic potential, thereby facilitating the prediction of prognosis, and provides insight into the relationship between 201Tl uptake and malignancy. This is the first report demonstrating a significant relationship between the retention of 201Tl SPECT and lymph node metastasis. Images Figure 1 PMID:8054281

  8. CT-SPECT fusion to correlate radiolabeled monoclonal antibody uptake with abdominal CT findings

    International Nuclear Information System (INIS)

    Kramer, E.L.; Noz, M.E.; Sanger, J.J.; Megibow, A.J.; Maguire, G.Q.

    1989-01-01

    To enhance the information provided by computed tomography (CT) and single photon emission computed tomography (SPECT) performed with radiolabeled, anti-carcinoembryonic antigen monoclonal antibody (MoAb), the authors performed fusion of these types of images from eight subjects with suspected colorectal adenocarcinoma. Section thickness and pixel size of the two studies were matched, coordinates of corresponding points from each study were identified, and CT sections were translated, rotated, and reprojected to match the corresponding SPECT scans. The CT-SPECT fusion enabled identification of anatomic sites of tumor-specific MoAb accumulation in four cases, showed non-specific MoAb accumulation in two, and helped confirm information only suggested by the two studies separately in one

  9. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may......, whereas in 1 case loose pedicle screws were detected at a wrong vertebral level. CONCLUSION: SPECT/CT may be useful to detect a lack of fixation of the metallic implants, and hence instability of the spondylodesis by evaluating the focal bone mineralization activity in relation to the pedicle screws....

  10. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  11. Hyperpolarized 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Stavngaard, Trine; Søgaard, Lise; Mortensen, J

    2005-01-01

    visual defect score (r=0.80, pemphysema (pulmonary function test and HRCT). The defect scores were largest on 81mKr SPECT (the score on HP 3He MRI...... was to compare ventilation imaging methods in 26 patients with chronic obstructive pulmonary disease (COPD) and nine lung healthy volunteers. METHODS: HP 3He MRI, 81mKr single-photon emission computed tomography (SPECT), high-resolution computed tomography (HRCT) and pulmonary function tests were performed....... The three scans were scored visually as percentage of non-ventilated/diseased lung, and a computer-based objective measure of the ventilated volume in HP 3He MRI and 81mKr SPECT and an emphysema index in HRCT were calculated. RESULTS: We found a good correlation between HP 3He MRI and 81mKr SPECT for both...

  12. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    Science.gov (United States)

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  13. Comparison of single photon emission computed tomography-computed tomography, computed tomography, single photon emission computed tomography and planar scintigraphy for characterization of isolated skull lesions seen on bone scintigraphy in cancer patients

    International Nuclear Information System (INIS)

    Sharma, Punit; Jain, Tarun Kumar; Reddy, Rama Mohan; Faizi, Nauroze Ashgar; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh

    2014-01-01

    The purpose of this study is to evaluate the added value of single photon emission computed tomography-computed tomography (SPECT-CT) over planar scintigraphy, SPECT and CT alone for characterization of isolated skull lesions in bone scintigraphy (BS) in cancer patients. A total of 32 cancer patients (age: 39.5 ± 21.9; male: female - 1:1) with 36 isolated skull lesions on planar BS, underwent SPECT-CT of skull. Planar BS, SPECT, CT and SPECT-CT images were evaluated in separate sessions to minimize recall bias. A scoring scale of 1-5 was used, where 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. With receiver operating characteristic analysis area under the curves (AUC) was calculated for each modality. For calculation of sensitivity, specificity and predictive values a Score ≤3 was taken as metastatic. Clinical/imaging follow-up and/or histopathology were taken as reference standard. Of 36 skull lesions 11 lesions each were on frontal, parietal and occipital bone while three lesions were in the temporal bone. Of these 36 lesions, 16 were indeterminate (Score-3) on planar and SPECT, five on CT and none on SPECT-CT. The AUC was largest for SPECT-CT followed by CT, SPECT and planar scintigraphy, respectively. Planar scintigraphy was inferior to SPECT-CT (P = 0.006) and CT (P = 0.012) but not SPECT (P = 0.975). SPECT was also inferior to SPECT-CT (P = 0.007) and CT (P = 0.015). Although no significant difference was found between SPECT-CT and CT (P = 0.469), the former was more specific (100% vs. 94%). SPECT-CT is better than planar scintigraphy and SPECT alone for correctly characterizing isolated skull lesions on BS in cancer patients. It is more specific than CT, but provides no significant advantage over CT alone for this purpose

  14. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  15. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  16. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    International Nuclear Information System (INIS)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D'Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo; Cannizzaro, Giorgio; Giubbini, Raffaele; Bertagna, Francesco; Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina; Bertolaccini, Pietro; Bonini, Rita

    2011-01-01

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  17. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    Energy Technology Data Exchange (ETDEWEB)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D' Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo [Fondazione CNR-Regione Toscana ' ' G. Monasterio' ' , Nuclear Medicine, Pisa (Italy); Cannizzaro, Giorgio [A.O.V. Cervello, Nuclear Medicine, Palermo (Italy); Giubbini, Raffaele; Bertagna, Francesco [Spedali Civili, Nuclear Medicine, Brescia (Italy); Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina [Ospedale Maggiore, Nuclear Medicine, Bologna (Italy); Bertolaccini, Pietro; Bonini, Rita [Ospedale SS Giacomo e Cristoforo, Nuclear Medicine, Massa (Italy)

    2011-10-15

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  18. The impact of exercise myocardial perfusion SPECT imaging on the selection of patients for coronary angiography

    International Nuclear Information System (INIS)

    Song Liping; He Zuoxiang; Liu Xiujie; Shi Rongfang; Liu Yunzhong; Tian Yueqin; Zhang Xiaoli; Qin Xuewen; Chen Jilin; Gao Runlin

    2001-01-01

    Objective: Exercise 99 Tc m -MIBI myocardial perfusion SPECT is accurate for the diagnosis of coronary artery disease (CAD). This study assessed the impact of exercise myocardial perfusion imaging on the selection of patients for coronary angiography. Methods: 2188 consecutive patients who underwent exercise myocardial perfusion SPECT in authors' department in 1999 were retrospectively analyzed. Among them, 1807 were men, 381 women (average age: 53.5 +- 7.2 years). Overall, exercise myocardial SPECT was normal in 1731 patients, abnormal in 359 cases, and equivocal in 98 patients. There were 141 patients who underwent CAG within 60 days after myocardial SPECT. Results: Overall, 12% of the patients with abnormal SPECT imaging underwent coronary angiography, but only 5% of the patients with a normal SPECT imaging did (P < 0.001). Among these 141 patients who underwent coronary angiography, significant coronary stenosis was present in 91% of the patients who had had an abnormal SPECT imaging, but only 8% of those who had had a normal SPECT imaging (P < 0.001). In those patients who underwent coronary angiography, revascularization rate was 25% for the patients with abnormal SPECT imaging, but only 1% for the patients with a normal SPECT imaging. Conclusion: The results of exercise myocardial perfusion SPECT have a significant impact on the selection of patients for coronary angiography and revascularization

  19. Evaluation of left ventricular function and volume in patients with dilated cardiomyopathy: Gated myocardial single-photon emission tomography (SPECT) versus echocardiography

    International Nuclear Information System (INIS)

    Berk, Fatma; Isgoren, S.; Demir, H.; Kozdag, G.; Ural, D.; Komsuoglu, B.

    2005-01-01

    Left ventricular function, volumes and regional wall motion provide valuable diagnostic information and are of long-term prognostic importance in patients with dilated cardiomyopathy (DCM). This study was designed to compare the effectiveness of 2D-echocardiography and gated single-photon emission tomography (SPECT) for evaluation of these parameters in patients with DCM. Gated SPECT and 2D-echocardiography were performed in 33 patients having DCM. Gated SPECT data, including left ventricular ejection fraction (LVEF), were processed using an automated algorithm. Standard technique was used for 2D-echocardiography. Regional wall motion was evaluated using both modalities and was scored by two independent observers using a 16-sement model with a 5-point scoring system. The overall agreement between the two imaging modalities for the assessment of regional wall motion was 56% (298/528 segments). With gated SPECT, LEVF, end-diastolic volume (EDV), and end-diastolic volume (EDV), and end-systolic volume (ESV) were 27+-9%, 217+-73mL, respectively, and 30.8%, 195+-58mL and, 137+-48 mL with echocardiography. The correlation between gated SPECT and 2-D-echocardiography was good (r=0.76, P<0.01) for the assessment of LVEF. The correlation for EDV and ESV were also good, but with wider limits of agreement (r=0.72, P<0.01 and r=0.73, P<0.01, respectively) and significantly higher values were obtained with gated SPECT (P<0.01). Gated SPECT and 2D-echocardiography correlate well for the assessment of LV function and LV volumes. Like 2D-echocardiography, gated SPECT provides reliable information about LV function and dimension with the additional advantage of perfusion data. (author)

  20. SPECT perfusion brain scintigraphy in dementia: early diagnostic and differential diagnostic

    International Nuclear Information System (INIS)

    Klisarova, A.

    2003-01-01

    The present review discusses the role of Single Photon Emission Computer Tomography (SPECT) and Positron Emission Tomography (PET) for the early detection and the differential diagnosis of the different types of dementia. The usefulness of the functional imaging is particularly emphasized in the detection of the early changes occurring in Alzheimer's diseases. The early diagnosis is a crucial factor for the treatment in the phase of reversible changes. The correlation between the severity of the diseases and the degree of hypoperfusion of the functional neuroimaging is also subject to review. SPECT and PET are of particular importance for the differential diagnosis of the various kinds of dementia. The imaging models are defined for the different stages of diseases. The functional imaging together with the clinical tests increase the diagnostic accuracy in Alzheimer's disease. The review presents the relation between the development of Alzheimer's disease and some risk factors. The review confirms the usefulness of SPECT and PET in the early diagnosis of Alzheimer's disease and the differential diagnosis of the different types of dementia which proves the SPECT appropriateness in the routine clinical practice. The brain structures are more advantageous than the other methods of visualisation (CT and MRI) for the detection of the functional disorders in the brain cortex in a number of diseases of the central nervous system. (author)

  1. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    Science.gov (United States)

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  3. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-10-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.

  4. Added Value of 3D Cardiac SPECT/CTA Fusion Imaging in Patients with Reversible Perfusion Defect on Myocardial Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eun Jung; Cho, Ihn Ho [Yeungnam University Hospital, Daegu (Korea, Republic of); Kang, Won Jun [Yonsei University Hospital, Seoul (Korea, Republic of); Kim, Seong Min [Chungnam National University Medical School and Hospital, Daejeon (Korea, Republic of); Won, Kyoung Sook [Keomyung University Dongsan Hospital, Daegu (Korea, Republic of); Lim, Seok Tae [Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of); Lee, Byeong Il; Bom, Hee Seung [Chonnam National University Medical School and Hospital, Gwangju (Korea, Republic of)

    2009-12-15

    Integration of the functional information of myocardial perfusion SPECT (MPS) and the morphoanatomical information of coronary CT angiography (CTA) may provide useful additional diagnostic information of the spatial relationship between perfusion defects and coronary stenosis. We studied to know the added value of three dimensional cardiac SPECT/CTA fusion imaging (fusion image) by comparing between fusion image and MPS. Forty-eight patients (M:F=26:22, Age: 63.3{+-}10.4 years) with a reversible perfusion defect on MPS (adenosine stress/rest SPECT with Tc-99m sestamibi or tetrofosmin) and CTA were included. Fusion images were molded and compared with the findings from the MPS. Invasive coronary angiography served as a reference standard for fusion image and MPS. Total 144 coronary arteries in 48 patients were analyzed; Fusion image yielded the sensitivity, specificity, negative and positive predictive value for the detection of hemodynamically significant stenosis per coronary artery 82.5%, 79.3%, 76.7% and 84.6%, respectively. Respective values for the MPS were 68.8%, 70.7%, 62.1% and 76.4%. And fusion image also could detect more multi-vessel disease. Fused three dimensional volume-rendered SPECT/CTA imaging provides intuitive convincing information about hemodynamic relevant lesion and could improved diagnostic accuracy.

  5. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  6. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  7. SPECT imaging in evaluating extent of malignant external otitis: case report

    International Nuclear Information System (INIS)

    English, R.J.; Tu'Meh, S.S.; Piwnica-Worms, D.; Holman, B.L.

    1987-01-01

    Otitis externa, a benign inflammatory process of the external auditory canal, is general responsive to local therapy. Some patients however, develop a less controllable disease leading to chondritis and osteomyelitis of the base of the skull. The direct invasive characteristic of the disease has led to the descriptive term malignant external otitis (MEO), more appropriately called necrotizing or invasive external otitis. Malignant external otitis is caused by an aggressive pseudomonas or proteus infection that almost exclusively occurs in elderly diabetic patients. The primary imaging modalities previously used in the diagnosis and evaluation of MEO were standard planar scintigraphic techniques with technetium-99M (/sup 99m/Tc) bone agents and gallium-67 ( 67 Ga), and pluridirectional tomography. The advent of high resolution computed tomography (CT) effectively allowed demonstration of the soft tissue extension and bone destruction associated with MEO, but still suffered from the low sensitivity constraints of all radiographic techniques in determining early inflammatory bone involvement. Recent work suggests that scintigraphic detection of MEO with /sup 99m/Tc-MDP and 67 Ga, combined with the cross-sectional resolution of single photon emission computed tomography (SPECT) may be of value in planning treatment of this inflammatory condition

  8. State-of-the-art of small animal imaging with high-resolution SPECT

    International Nuclear Information System (INIS)

    Nikolaus, S.; Wirrwar, A.; Antke, C.; Kley, K.; Mueller, H.W.

    2005-01-01

    During the recent years, in vivo imaging of small animals using SPECT has become of growing relevance. Along with the development of dedicated high-resolution small animal SPECT cameras, an increasing number of conventional clinical scanners has been equipped with single or multipinhole collimators. This paper reviews the small animal tomographs, which are operating at present and compares their performance characteristics. Furthermore, we describe the in vivo imaging studies, which have been performed so far with the individual scanners and survey current approaches to optimize molecular imaging with small animal SPECT. (orig.)

  9. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    Science.gov (United States)

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  10. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bang-Hung [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Tsai, Sung-Yi [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Imaging Medical, St.Martin De Porres Hospital, Chia-Yi, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Su, Tung-Ping; Chou, Yuan-Hwa [Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taiwan (China); Chen, Jyh-Cheng, E-mail: jcchen@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China)

    2011-08-21

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images. Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of {sup 123}I-ADAM. The image matrix size was 128x128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans. The average of specific uptake ratio (SUR: target/cerebellum-1) of {sup 123}I-ADAM binding to SERT in midbrain was 1.78{+-}0.27, pons was 1.21{+-}0.53, and striatum was 0.79{+-}0.13. The cronbach's {alpha} of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2

  11. An incidentally found inflamed uterine myoma Causing low abdominal pain, using TC-99m-tektrotyd single photon emission computed tomography-CT hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zandieh, Shahin; Schuetz, Matthias; Bernt, Reinhard; Zwerina, Jochen; Haller, Joerg [Hanusch-Hospital, Teaching Hospital of Medical University of Vienna, Vienna (Australia)

    2013-10-15

    We report the case of a 50-year-old woman presented with a history of right hemicolectomy due to an ileocecal neuroendocrine tumor and left breast metastasis. Owing to a slightly elevated chromogranin A-level and lower abdominal pain, single photon emission computed tomography-computer tomography (SPECT-CT) was performed. There were no signs of recurrence on the SPECT-CT scan, but the patient was incidentally found to have an inflamed intramural myoma. We believe that the slightly elevated chromogranin A-level was caused by the hypertension that the patient presented. In the clinical context, this is a report of an inflamed uterine myoma seen as a false positive result detected by TC-99m-Tc-EDDA/HYNIC-Tyr3-Octreotide (Tektrotyd) SPECT-CT hybrid imaging.

  12. Gallium SPECT detection of neoplastic intravascular obstruction of the superior vena cava

    International Nuclear Information System (INIS)

    Swayne, L.C.; Kaplan, I.L.

    1989-01-01

    A rare case of an intravascular neoplastic obstruction of the superior vena cava is discussed. The lesion was detected with gallium single photon emission computed tomography (SPECT) despite a normal appearance on a concurrent radiographic CT study. A computer-generated composite SPECT-CT image confirmed the intravascular localization of the radioisotope, and a subsequent CT-guided transthoracic needle biopsy revealed a poorly differentiated adenocarcinoma

  13. Small hepatocellular carcinomas in chronic liver disease: Detection with SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, M.; Hirasa, M.; Takakuwa, H.; Ibuki, Y.; Fujimi, K.; Miyamura, M.; Tomita, S.; Komori, H.; Todo, A.; Kitaura, Y.

    1986-06-01

    Single-photon emission computed tomography (SPECT) performed using a rotating gamma camera was compared with ..cap alpha../sub 1/-fetoprotein (AFP) assay, conventional liver scintigraphy, ultrasound (US) imaging, computed tomography (CT), and selective celiac angiography in 40 patients with a total of 50 small hepatocellular carcinomas (HCCs;<5 cm). The detection rates of US and CT were determined on an initial screening study and on a second, more precisely focused study. The detection rate of small HCCs by the various modalities was as follows: AFP, 13%; liver scintigraphy, 36%; SPECT, 72%; initial screening US, 80%; second, more precise US studies, 94%; initial screening CT, 64%; second, more precise CT study, 82%; angiography, 88%. Although SPECT was inferior to the initial screening US examination in detecting HCCs less than 2 cm in size, its sensitivity was identical to that of the initial screening US study for detecting HCCs of 2-5 cm. The combination of SPECT and US was an excellent method for the early detection of HCCs, yielding a detection rate of 94%.

  14. DMSA SPECT imaging using oblique reconstruction in a paediatric population - benefits and technical considerations

    International Nuclear Information System (INIS)

    Parsons, G.; Ford, M.; Crisp, J.; Bernard, E.; Howman-Giles, R.

    1997-01-01

    Full text: DMSA renal scans are frequently requested for the diagnosis and follow-up of acute pyelonephritis and cortical scarring. This study was designed to:- 1. evaluate oblique reconstruction of DMSA SPECT over standard plane reconstruction and planar imaging; and 2. report on the technical aspects important in obtaining high quality DMSA SPECT, particularly in neonates. Over seven months, 210/231 (91 %) of DMSA scans were performed with SPECT on children from age nine days to 16 years, the median age being 2.5 years. 65 patients (31 %) were under one year and 39 (18%) were under six months. Planar and SPECT imaging with standard plane reconstruction and oblique reorientation was performed on the Siemens triple-headed gamma camera. High quality SPECT images were obtained on the smallest babies using a paediatric palette, and were of comparable quality to those of older children. At the time of reporting, the nuclear medicine physician assessed the diagnostic value of the three types of date presented: (1) planar images; (2) standard plane SPECT reconstruction; and (3) oblique SPECT reconstruction. Cortical defects were identified separately for upper, middle and lower poles. Three physicians concluded that high quality SPECT is superior to planar images when assessing the renal cortex. In addition, oblique reorientation is superior to standard reconstruction, particularly at the upper and lower poles. SPECT is now performed routinely on patients of all ages, and the oblique sagittal and coronal reorientation is now used in place of the standard reconstruction

  15. Bone single photon emission computed tomography (SPECT in a patient with Pancoast tumor: a case report

    Directory of Open Access Journals (Sweden)

    Hamid Javadi

    Full Text Available CONTEXT: Non-small cell lung carcinomas (NSCLCs of the superior sulcus are considered to be the most challenging type of malignant thoracic disease. In this disease, neoplasms originating mostly from the extreme apex of the lung expand to the chest wall and thoracic inlet structures. Multiple imaging procedures have been applied to identify tumors and to stage and predict tumor resectability in surgical operations. Clinical examinations to localize pain complaints in shoulders and down the arms, and to screen for Horner's syndrome and abnormalities seen in paraclinical assessments, have been applied extensively for differential diagnosis of superior sulcus tumors. Although several types of imaging have been utilized for diagnosing and staging Pancoast tumors, there have been almost no reports on the efficiency of whole-body bone scans (WBBS for detecting the level of abnormality in cases of superior sulcus tumors. CASE REPORT: We describe a case of Pancoast tumor in which technetium-99m methylene diphosphonate (Tc-99m MDP bone single-photon emission-computed tomography (SPECT was able to accurately detect multiple areas of abnormality in the vertebrae and ribs. In describing this case, we stress the clinical and diagnostic points, in the hope of stimulating a higher degree of suspicion and thereby facilitating appropriate diagnosis and treatment. From the results of this study, further clinical trials to evaluate the potential of SPECT as an efficient imaging tool for the work-up on cases of Pancoast tumor are recommended.

  16. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  17. Correction for patient and organ movement in SPECT: application to exercise thallium-201 cardiac imaging

    International Nuclear Information System (INIS)

    Geckle, W.J.; Frank, T.L.; Links, J.M.; Becker, L.C.

    1988-01-01

    We describe a technique for correction of artifacts in exercise 201 Tl single photon emission computed tomography (SPECT) images arising from abrupt or gradual translational movement of the heart during acquisition. The procedure involves the tracking of the center of the heart in serial projection images using an algorithm which we call diverging squares. Each projection image is then realigned in the x-y plane so that the heart center conforms to the projected position of a fixed point in space. The shifted projections are reconstructed using the normal filtered backprojection algorithm. In validation studies, the motion correction procedure successfully eliminated movement artifacts in a heart phantom. Image quality was also improved in over one-half of 36 exercise thallium patient studies. The corrected images had smoother and more continuous left ventricular walls, greater clarity of the left ventricular cavity, and reduced streak artifacts. Rest injected or redistribution images, however, were often made worse, due to reduced heart to liver activity ratios and poor tracking of the heart center. Analysis of curves of heart position versus projection angle suggests that translation of the heart is common during imaging after exercise, and results from both abrupt patient movements, and a gradual upward shift of the heart. Our motion correction technique appears to represent a promising new approach for elimination of movement artifacts and enhancement of resolution in exercise 201 Tl cardiac SPECT images

  18. Evaluation of left ventricular function and volume with multidetector-row computed tomography. Comparison with electrocardiogram-gated single photon emission computed tomography

    International Nuclear Information System (INIS)

    Suzuki, Takeya; Yamashina, Shohei; Nanjou, Shuji; Yamazaki, Junichi

    2007-01-01

    This study compared left ventricular systolic function and volume determined by multidetector-row computed tomography (MDCT) and electrocardiogram-gated single photon emission computed tomography (G-SPECT) Thirty-seven patients with coronary artery disease and non-cardiovascular disease underwent MDCT. In this study, left ventricular ejection fraction (EF), left ventricular end-diastolic volume (EDV) and left ventricular end-systolic volume (ESV) were calculated using only two-phase imaging with MDCT. Left ventricular function and volume were compared using measurements from G-SPECT. We conducted MDCT and G-SPECT virtually simultaneously. Both the EF and ESV evaluated by MDCT closely correlated with G-SPECT (r=0.763, P 65 bpm) during MDCT significantly influenced the difference in EF calculated from MDCT and G-SPECT (P<0.05). Left ventricular function can be measured with MDCT as well as G-SPECT. However, a heart rate over 65 bpm during MDCT negatively affects the EF correlation between MDCT and G-SPECT. (author)

  19. The clinical application of SPECT myocardial perfusion imaging with 99mTc-MIBI

    International Nuclear Information System (INIS)

    Dong Weiyu

    1992-01-01

    This paper reported 182 SPECT myocardial perfusion images with China made 99m Tc-MIBI and were compared with ECG and UCG. The sensitivity of SPECT in ischemic were 91.2% and was higher than ECG (74.9%)and UCG (61.8%) (P < 0.01). And its specificity, accuracy and positive predictive rate were 78.3%, 90% and 97% respectively. Besides 9 cases have reverse distribution after exercise and rest images. In some ICD patients had shown their SPECT images, the perfusion defects in exercise as well as in rest image

  20. SPECT/CT imaging in children with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  1. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    Science.gov (United States)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  2. Design and preliminary assessment of 99mTc-labeled ultrasmall superparamagnetic iron oxide-conjugated bevacizumab for single photon emission computed tomography/magnetic resonance imaging of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yanzhao Zhao; Hui Tan; Bing Wu; Pengcheng Hu; Pengyue Wu; Yushen Gu; Dengfeng Cheng; Hongcheng Shi; Qi Yao; Chunfu Zhang

    2014-01-01

    Hepatocellular carcinoma (HCC) has a very high incidence and mortality. Early diagnosis and timely treatments are therefore required to improve the quality of life and survival rate of HCC patients. Here, we developed a vascular endothelial growth factor (VEGF)-based multimodality imaging agent for single photon emission computed tomography (SPECT), computed tomography (CT) and magnetic resonance imaging (MRI) and used it to assess HCC mice and explore the combinative value of CT/MRI-based morphological imaging and SPECT functional imaging. HCC targeting with 125 I-labeled bevacizumab monoclonal antibody (mAb) was examined using SPECT/CT in HepG2 tumor-bearing mice after intravenous mAb injection. Based on this, an integrated, bimodal, VEGF-targeted, ultrasmall superparamagnetic iron oxide (USPIO)-conjugated 99m Tc-labeled bevacizumab mAb was synthesized to increase tumor penetration and accumulations. The in vivo pharmacokinetics and HepG2 tumor targeting were explored through in vivo planar imaging and SPECT/CT using a mouse model of HepG2 liver cancer. The specificity of the radiolabeled nanoparticles for HepG2 HCC was verified using in vitro immunohistochemistry and Prussian blue staining. With diethylenetriamine pentaacetic acid as a bifunctional chelating agent, USPIO-bevacizumab achieved a 99m Tc labeling efficiency of >90 %. The in vivo imaging results also exhibited the targeting of USPIO on HepG2 HCC. The specificity of these results was confirmed using in vitro immunohistochemistry and Prussian blue staining. Our preliminary findings showed the potential of USPIO as an imaging agent for the SPECT/MRI of HepG2 HCC. (author)

  3. Dopamine transporter imaging with [{sup 123}I]FP-CIT SPECT: potential effects of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Kemp, Paul [Southampton University Hospitals Trust, Department of Nuclear Medicine, Southampton (United Kingdom)

    2008-02-15

    [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-{l_brace}4-iodophenyl{r_brace}nortropane ([{sup 123}I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [{sup 123}I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  4. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  5. Metabolic imaging using SPECT

    International Nuclear Information System (INIS)

    Taki, Junichi; Matsunari, Ichiro

    2007-01-01

    In normal condition, the heart obtains more than two-thirds of its energy from the oxidative metabolism of long chain fatty acids, although a wide variety of substrates such as glucose, lactate, ketone bodies and amino acids are also utilised. In ischaemic myocardium, on the other hand, oxidative metabolism of free fatty acid is suppressed and anaerobic glucose metabolism plays a major role in residual oxidative metabolism. Therefore, metabolic imaging can be an important technique for the assessment of various cardiac diseases and conditions. In SPECT, several iodinated fatty acid traces have been introduced and studied. Of these, 123 I-labelled 15-(p-iodophenyl)3-R, S-methylpentadecanoic acid (BMIPP) has been the most commonly used tracer in clinical studies, especially in some of the European countries and Japan. In this review article, several fatty acid tracers for SPECT are characterised, and the mechanism of uptake and clinical utility of BMIPP are discussed in detail. (orig.)

  6. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    Science.gov (United States)

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors

  7. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    DEFF Research Database (Denmark)

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  8. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  9. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently

  10. Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    McQuaid, Sarah J; Hutton, Brian F

    2008-06-01

    Respiratory motion during myocardial perfusion imaging can cause artefacts in both positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images when mismatches between emission and transmission datasets arise. In this study, artefacts from different breathing motions were quantified in both modalities to assess key factors in attenuation-correction accuracy. Activity maps were generated using the NURBS-based cardiac-torso phantom for different respiratory cycles, which were projected, attenuation-corrected and reconstructed to form PET and SPECT images. Attenuation-correction was performed with maps at mismatched respiratory phases to observe the effect on the left-ventricular myocardium. Myocardial non-uniformity was assessed in terms of the standard deviation in scores obtained from the 17-segment model and changes in uniformity were compared for each mismatch and modality. Certain types of mismatch led to artefacts and corresponding increases in the myocardial non-uniformity. For each mismatch in PET, the increases in non-uniformity relative to an artefact-free image were as follows: (a) cardiac translation mismatch, 84% +/- 11%; (b) liver mismatch, 59% +/- 10%, (c) lung mismatch from diaphragm contraction, 28% +/- 8%; and (d) lung mismatch from chest-wall motion, 6% +/- 7%. The corresponding factors for SPECT were (a) 61% +/- 8%, (b) 34% +/- 8%, (c) -2% +/- 7)% and (d) -4% +/- 6%. Attenuation-correction artefacts were seen in PET and SPECT images, with PET being more severely affected. The most severe artefacts were produced from mismatches in cardiac and liver position, whereas lung mismatches were less critical. Both cardiac and liver positions must, therefore, be correctly matched during attenuation correction.

  11. Semi-quantitative analysis of post-transarterial radioembolization 90Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with 99mTc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol; Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub

    2016-01-01

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ( 99 mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ( 90 Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent 90 Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone 99 mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of 90 Y microspheres, the patients underwent posttreatment 90 Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in 90 Y PET/CT (TNR-yp) and 99 mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with 90 Y PET/CT in TNR values, suggesting that 99 mTc MAA can be used as an adequate pretreatment evaluation method. However, the 99 mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using 99 mTc MAA SPECT. Considering that 99 mTc MAA is the only clinically available surrogate marker

  12. SPECT in patients with cortical visual loss.

    Science.gov (United States)

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  13. Noninvasive evaluation of ischemic stroke with SPECT

    International Nuclear Information System (INIS)

    Gomez, C.R.; Malik, M.M.; Gomez, S.M.; Wingkun, E.C.

    1988-01-01

    Technetium Tc 99m DTPA single photon emission computerized tomography (SPECT) brain scans of 20 patients with acute ischemic stroke were reviewed retrospectively and compared with clinical and radiologic (CT) data. Fourteen of the patients had abnormal SPECT studies. The abnormal findings were demonstrated by static views in eight patients, by the flow study in one patient, and by both sets of images in the other five patients. All abnormalities correlated with the clinical syndrome of presentation, and only two of the patients had no corresponding lesions on CT. Of the six patients with normal SPECT scans, two had abnormal CT studies, and in the other four, no lesions were shown at all. The ability of /sup 99m/Tc DTPA SPECT to display cerebral infarctions appears to be, at best, comparable to that of CT. SPECT also provides qualitative information regarding flow dynamics in the affected hemisphere of some patients (6/20 in our review). This, we believe, represents the objective demonstration of the preexisting insufficient collateral flow in the hemisphere at risk for ischemic stroke

  14. The validation and the limits of SPECT for patients suffering from cerebrovascular accidents

    International Nuclear Information System (INIS)

    Mizukawa, Norihiko; Yano, Ichiro; Tenjin, Hiroshi

    1989-01-01

    Contemporaneous single photon emission computed tomography (SPECT) and positron emission tomography (PET) were performed in 10 patients with cerebrovascular accidents (CVA), whose ages ranged from 11 to 67 years. I-123-isopropyl-iodoamphetamine (IMP) and/or Tc-99m hexamethylpropyleneamine oxime (HM-PAO) were used for SPECT. Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate for oxygen (CMRO 2 ) were measured by an O-15 labelled gas continuous-inhalation method. SPECT images were quite similar to CBF and CMRO 2 during the chronic stage of CVA. Two patietns with vasospasm during the subacute stage had apparently low CBF and CMRO 2 on PET, but did not have low perfusion on SPECT. Luxury perfusion areas were detected in 4 subacute stage patients and one chronic stage patient. A redistribution of IMP was detected in two patients with infarction during subacute stage. CMRO 2 value in such an area was 2.0 ml/100 g/min. Low CBF and/or CMRO 2 areas were well visualized by IMP rather than by HM-PAO SPECT. (N.K.)

  15. Evaluation of the system performance and clinical images of the single photon emission computed tomography for head using ring arranged detector

    International Nuclear Information System (INIS)

    Ejiri, Kazutaka; Toyama, Hiroshi; Kato, Yukihiko; Narita, Takae; Takeshita, Gen; Takeuchi, Akira; Koga, Sukehiko

    1988-01-01

    To evaluate the system performance, several preoperational fundamental tests of single photon emission computed tomography (SPECT) were carried out. Spatial resolutions (FWHM) measured with the point-spread functions of a 99m Tc line source were 12.5 mm with a high resolution (HR) collimator and 17.2 mm with a high sensitivity (HS) collimator respectively. Slice thicknesses (FWHM) obtained from the profile curves of slice images were 17.5 mm (HR) and 29.0 mm (HS) at the center of rotation. System sensitivities were 5.4 kcps/slice (HR) and 27.8 kcps/slice (HS). Uniformities calculated from the SPECT images of a pool phantom were 4.7 % (HR) and 2.7 % (HS) at the condition of 3000 kcounts to be acquired. SPECT images of the HEADTOME SET-031 were considered very useful to diagnose the cerebrovascular disease. (author)

  16. Clinical protocol for conducting a bone scintigraphy subsequent SPECT/CT examination

    International Nuclear Information System (INIS)

    Jovanovska, A.; Dimcheva, M.; Doldurova, M.

    2013-01-01

    Full text: Introduction: Like any nuclear medicine study, bone scintigraphy is a diagnostic procedure associated with intravenous injection of a radioactive isotope with low activity - radiopharmaceutical. But recently in clinical practice hybrid imaging methods such as SPECT/ CT (Single Photon Emission Tomography - Computed Tomography) has necessitated, as they provide comprehensive information about the function and structure of the studied organ. Materials and methods: In the Department of Nuclear Medicine in The Specialized Hospital for Active Treatment of Oncology Diseases in Sofia it is installed a two-detector SPECT/CT gamma camera Siemens Symbia T2, on which the whole range of nuclear medicine studies in oncology practice is held: bone scintigraphy, 99mTc - MIBI scintigraphy, Lymphoscintigraphy, somatostatin receptor scintigraphy, tireostsintigraphy with 131I/99mTc, dynamic nephroscintgraphy etc. The working algorithm upon choosing the clinical protocols, and setting the parameters for scanning are complied with the requirements and recommendations established by the nuclear medicine standard. The presented are results from studies of patients when after whole body bone scintigraphy, an additional SPECT/CT study was conducted for more accurate diagnostic and interpretation of the results. Results: Practical introduction of hybrid imaging methods require from technicians besides knowledge in working with radioactive sources and practical skills such as: the selection of the matrix size, number of projections, choice of trajectory - circular or elliptical, set the appropriate degree of rotation of the detector (180 or 360). Particularly important in the processing of MR images is the appropriate choice of algorithm of reconstruction: filtered backprojection or iterative reconstruction methods. In MR images processing there is no rule for the optimal filter, which is why the quality of the reconstructed image depends primarily on the experience of the operator

  17. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  18. An introduction to emission computed tomography

    International Nuclear Information System (INIS)

    Williams, E.D.

    1985-01-01

    This report includes salient features of the theory and an examination of practical considerations for someone who is using or introducing tomography, selecting equipment for it or wishing to develop a clinical application. Emphasis is on gamma camera tomography. The subject is dealt with under the following headings: emission computed and gamma camera tomography and the relationship to other medical imaging techniques, the tomographic reconstruction technique theory, rotating gamma camera tomography, attenuation correction and quantitative reconstruction, other single photon tomographic techniques, positron tomography, image display, clinical application of single photon and positron tomography, and commercial systems for SPECT. Substantial bibliography. (U.K.)

  19. Functional imaging in the Neuroscience. The role of PET, MR and SPECT

    International Nuclear Information System (INIS)

    Fulham, M.J.

    1998-01-01

    Full text: Functional imaging is commonly used to describe imaging techniques that provide data about aspects of tissue metabolism, such as glucose / protein metabolism, metabolite concentrations, neuro receptor density and blood flow / perfusion / diffusion when compared with the depiction of anatomy obtained with Computed Tomography (CT) and clinical Magnetic Resonance (MR) imaging. In the neuroscience this is a rapidly evolving area and unlike in the past where imaging of the nervous system was carried out by neuroradiologists participants in this dynamic field now come from diverse backgrounds and include basic scientists, clinicians, psychologists, physicists and chemists. PET and SPECT combine the principles of the tracer kinetic method and tomographic (as in CT) image reconstruction. A mathematical model can be derived to describe the biochemical process (in picomolar concentrations) under study and the raw counts of radioactivity that are detected by the scanner can be converted into units of physiological function in-vivo e.g. cerebral metabolic rate for glucose and receptor density. These techniques, using a variety of ligands, have been employed for evaluation of cerebral blood flow / volume, oxygen utilization / metabolism, glucose metabolism, amino acid transport / metabolism, protein synthesis, the dopaminergic, opiate, benzodiazepine, cholinergic and serotonergic systems and for brain mapping in humans. Meanwhile, the term 'functional MR imaging' encompasses MR spectroscopy, echoplanar imaging, diffusion tensor imaging and techniques that rely on the change in blood oxygenation levels to provide an indirect image of neuronal activity (referred to as fMRI). Unlike PET and SPECT, however, these data are obtained without using ionising radiation. In MRS, signals are obtained from nuclei (in mM concentrations) that are constituents of molecules other than water that provide the signal in clinical MR imaging; fibre tract directions have been depicted with

  20. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  1. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index

    International Nuclear Information System (INIS)

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure

  2. Drug development in Alzheimer’s disease: the contribution of PET and SPECT

    Directory of Open Access Journals (Sweden)

    Lieven Denis Herwig Declercq

    2016-03-01

    Full Text Available Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD, a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion- and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed tomography (PET and SPE(CT, allow visualization and quantification of a wide variety of (pathophysiological processes and allow early (differential diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.

  3. Astigmatic single photon emission computed tomography imaging with a displaced center of rotation

    International Nuclear Information System (INIS)

    Wang, H.; Smith, M.F.; Stone, C.D.; Jaszczak, R.J.

    1998-01-01

    A filtered backprojection algorithm is developed for single photon emission computed tomography (SPECT) imaging with an astigmatic collimator having a displaced center of rotation. The astigmatic collimator has two perpendicular focal lines, one that is parallel to the axis of rotation of the gamma camera and one that is perpendicular to this axis. Using SPECT simulations of projection data from a hot rod phantom and point source arrays, it is found that a lack of incorporation of the mechanical shift in the reconstruction algorithm causes errors and artifacts in reconstructed SPECT images. The collimator and acquisition parameters in the astigmatic reconstruction formula, which include focal lengths, radius of rotation, and mechanical shifts, are often partly unknown and can be determined using the projections of a point source at various projection angles. The accurate determination of these parameters by a least squares fitting technique using projection data from numerically simulated SPECT acquisitions is studied. These studies show that the accuracy of parameter determination is improved as the distance between the point source and the axis of rotation of the gamma camera is increased. The focal length to the focal line perpendicular to the axis of rotation is determined more accurately than the focal length to the focal line parallel to this axis. copyright 1998 American Association of Physicists in Medicine

  4. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  5. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  6. {sup 11}C-Methionine positron emission tomography may monitor the activity of encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Manabe, Osamu; Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan)], E-mail: khirata@med.hokudai.ac.jp; Fujima, Noriyuki [Department of Radiology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Usui, Reiko [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kuge, Yuji [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan)

    2012-12-15

    Encephalitis is generally diagnosed by clinical symptoms, cerebrospinal fluid examination, and imaging studies including CT, magnetic resonance imaging (MRI), and perfusion single photon emission tomography (SPECT). However, the role of positron emission tomography (PET) in diagnosis of encephalitis remains unclear. A 49-year-old woman presenting with coma and elevated inflammatory reaction was diagnosed as having encephalitis according to slow activity on electroencephalogram, broad cortical lesion in MR fluid attenuated inversion recovery image, and increased blood flow demonstrated by SPECT. PET revealed increased accumulation of {sup 11}C-methionine (MET) in the affected brain tissues. After the symptom had improved 2 months later, the accumulation of MET as well as the abnormal findings of MR imaging and SPECT was normalized. This case indicated that MET PET may monitor the activity of encephalitis.

  7. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  8. A comparative study of attenuation correction algorithms in single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Murase, Kenya; Itoh, Hisao; Mogami, Hiroshi; Ishine, Masashiro; Kawamura, Masashi; Iio, Atsushi; Hamamoto, Ken

    1987-01-01

    A computer based simulation method was developed to assess the relative effectiveness and availability of various attenuation compensation algorithms in single photon emission computed tomography (SPECT). The effect of the nonuniformity of attenuation coefficient distribution in the body, the errors in determining a body contour and the statistical noise on reconstruction accuracy and the computation time in using the algorithms were studied. The algorithms were classified into three groups: precorrection, post correction and iterative correction methods. Furthermore, a hybrid method was devised by combining several methods. This study will be useful for understanding the characteristics limitations and strengths of the algorithms and searching for a practical correction method for photon attenuation in SPECT. (orig.)

  9. Amplitude-based data selection for optimal retrospective reconstruction in micro-SPECT

    Science.gov (United States)

    Breuilly, M.; Malandain, G.; Guglielmi, J.; Marsault, R.; Pourcher, T.; Franken, P. R.; Darcourt, J.

    2013-04-01

    Respiratory motion can blur the tomographic reconstruction of positron emission tomography or single-photon emission computed tomography (SPECT) images, which subsequently impair quantitative measurements, e.g. in the upper abdomen area. Respiratory signal phase-based gated reconstruction addresses this problem, but deteriorates the signal-to-noise ratio (SNR) and other intensity-based quality measures. This paper proposes a 3D reconstruction method dedicated to micro-SPECT imaging of mice. From a 4D acquisition, the phase images exhibiting motion are identified and the associated list-mode data are discarded, which enables the reconstruction of a 3D image without respiratory artefacts. The proposed method allows a motion-free reconstruction exhibiting both satisfactory count statistics and accuracy of measures. With respect to standard 3D reconstruction (non-gated 3D reconstruction) without breathing motion correction, an increase of 14.6% of the mean standardized uptake value has been observed, while, with respect to a gated 4D reconstruction, up to 60% less noise and an increase of up to 124% of the SNR have been demonstrated.

  10. Design, Synthesis, and Preliminary Evaluation of SPECT Probes for Imaging β-Amyloid in Alzheimer's Disease Affected Brain.

    Science.gov (United States)

    Okumura, Yuki; Maya, Yoshifumi; Onishi, Takako; Shoyama, Yoshinari; Izawa, Akihiro; Nakamura, Daisaku; Tanifuji, Shigeyuki; Tanaka, Akihiro; Arano, Yasushi; Matsumoto, Hiroki

    2018-04-06

    In this study, we synthesized of a series of 2-phenyl- and 2-pyridyl-imidazo[1,2- a]pyridine derivatives and examine their suitability as novel probes for single-photon emission computed tomography (SPECT)-based imaging of β-amyloid (Aβ). Among the 11 evaluated compounds, 10 showed moderate affinity to Aβ(1-42) aggregates, exhibiting half-maximal inhibitory concentrations (IC 50 ) of 14.7 ± 6.07-87.6 ± 39.8 nM. In vitro autoradiography indicated that 123 I-labeled triazole-substituted derivatives displayed highly selective binding to Aβ plaques in the hippocampal region of Alzheimer's disease (AD)-affected brain. Moreover, biodistribution studies performed on normal rats demonstrated that all 123 I-labeled probes featured high initial uptake into the brain followed by a rapid washout and were thus well suited for imaging Aβ plaques, with the highest selectivity observed for a 1 H-1,2,3-triazole-substituted 2-pyridyl-imidazopyridine derivative, [ 123 I]ABC577. This compound showed good kinetics in rat brain as well as moderate in vivo stability in rats and is thus a promising SPECT imaging probe for AD in clinical settings.

  11. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    International Nuclear Information System (INIS)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M.

    2006-01-01

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice

  12. Assessment of smoking-induced impairment of pulmonary perfusion using three-dimensional SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Takashi [Toho Univ., Tokyo (Japan). School of Medicine

    1997-09-01

    The effects of smoking on ventilation-perfusion lung scintigrams were investigated. The subjects comprised 40 healthy males (28 smokers and 12 nonsmokers) without a history of cardiopulmonary disease and with normal chest radiographs. After acquisition of planar images of ventilation lung scintigrams with 370 MBq of {sup 133}Xe gas, planar images and SPECT images of pulmonary perfusion flow were obtained using 185 MBq of {sup 99m}Tc-MAA. Planar imaging showed perfusion defects in only 5 smokers. In contrast, 16 subjects were found to have perfusion defects on SPECT images (p<0.05), indicating the usefulness of SPECT images in detecting minor vascular damage of the lung. Although perfusion defects were common in the smokers (p<0.05), their relationship to the BRINKMAN index was uncertain. The perfusion defects found in the smokers were nonsegmental and commonly involved the right upper lobe. Ventilation scans revealed only delayed washout of {sup 133}Xe in 4 smokers, suggesting that smoking-induced abnormal perfusion on SPECT appears earlier than impaired ventilation on scintigrams. (author)

  13. HMPAO-SPECT during epileptic seizures: Early and late images

    International Nuclear Information System (INIS)

    Overbeck, B.; Gruenwald, F.; Bockisch, A.; Biersack, H.J.; Reinke, U.; Gratz, K.F.

    1990-01-01

    For presurgical evaluation of epilepsy a 44-year old patient with complex-partial seizures underwent HMPAO-SPECT. The morphology of the seizures, the MRI-scan, psychometry and ictal as well as interictal EEGs showed a left temporal origin of the seizures. Early images were obtained 20 min and late images 24 h following injection. On both scans a marked hyperperfusion was observed in the left temporal area. A crossed cerebellar diaschisis was also seen on both SPECTs. It could be shown that during ictal examinations there is no bloodflow-dependent wash-out from brain tissue. (orig.) [de

  14. Possibilities of the new hybrid technology single photon emission computer technology/computer tomography (SPECT/CT) and the first impressions of its application

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2010-01-01

    With the help of the new hybrid technique SPECT/ CT it is possible, using the only investigation, to acquire a combine image of the investigated organ, visualizing its function and structure. Combining the possibilities of the new multimodality method, which combines the possibilities of the Single Photon Emission Computer Tomography - SPECT and Computer Tomography - CT, it is possible to precisely localize the pathologically changed organs function. With the further combination of the tomographic gamma camera with diagnostic CT, a detailed morphological evaluation of the finding was possible. The main clinical application of the new hybrid diagnostic is in the fields of cardiology, oncology, orthopedics with more and more extension of those, not connected with oncology, such as - thyroid, parathyroid, brain (especially localization of the epileptic foci), visualization of local infection and recently for the purposes of the radiotherapy planning. According to the literature data, around 35% of SPECT-investigations have to be combined with CT in order to increase the specificity of the diagnosis, which changes the interpretation of the result in 56% of the cases. After installation of the SPECT/CT camera in the University hospital 'Alexandrovska' in January 2009, the following changes have been done: the number of the investigated patients have increased, including number of heart, thyroid (especially scintigraphy with 131I), bones and parathyroid glands. As a result of the application of the hybrid technique, a shortage of the investigated time was realized and a decrease prize in comparison with the individual application of the investigations. Summarizing the literature data and the preliminary impression of the first multimodality scanner in our country in the University hospital 'Alexandrovska' it could be said, that there is continuously increasing information for the new clinical applications of SPECT/CT. It is now accepted, that its usage will increase in

  15. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: LXL730724@hotmail.com; Liu Ying; He Yong; Wu Tao; Zhang Binqing; Gao Zairong; An Rui [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: zhyx1229@163.com

    2010-04-15

    Aim: To demonstrate the feasibility and optimal conditions of imaging herpes simplex virus 1-thymidine kinase (HSV1-tk) gene transferred into hearts with {sup 131}I-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil ({sup 131}I-FIAU) using autoradiography (ARG) and single photon emission computed tomography (SPECT) in animal models. Methods: HSV1-tk inserted into adenovirus vector (Ad5-tk) and adenovirus (Ad5-null) was prepared. Rats or rabbits were divided into a study group receiving intramyocardial injection of Ad5-tk, and a control group receiving Ad-null injection. In the study group of rats, two sets of experiments, time-course study and dose-dependence study, were performed. In time-course experiments, rats were injected with {sup 131}I-FIAU on Days 1, 2, 3, 5 and 7, after transfection of 1x10{sup 8} pfu Ad5-tk, to study the feasibility and suitable time course for reporter gene imaging. In dose-dependence study, various titers of Ad5-tk (5x10{sup 8}, 1x10{sup 8}, 5x10{sup 7} and 1x10{sup 7} pfu) were used to determine the threshold and optimal viral titer needed for detection of gene expression. The gamma counts of hearts were measured. The rat myocardium was analyzed by ARG and reverse transcriptase-polymerase chain reaction (RT-PCR). SPECT whole-body planar imaging and cardiac tomographic imaging were performed in the rabbit models. Results: From the ARG images, rats injected with Ad5-tk showed significant {sup 131}I-FIAU activity in the anterolateral wall compared with background signals seen in the control Ad5-null rats. In time-course study, the highest radioactivity in the focal myocardium could be seen on Day 1, and then progressively declined with time. In dose-dependence study, the level of {sup 131}I-FIAU accumulation in the transfected myocardium declined with the decrease of Ad viral titers. From the ARG analysis and gamma counting, the threshold viral titer was 5x10{sup 7} pfu, and the optimal Ad titer was 1x10{sup 8} pfu

  16. Pixel based statistical analysis of differences between lung SPECT images: methodological aspects

    International Nuclear Information System (INIS)

    Bendada, S.; Rocchisani, J.L.M.; Moretti, J.L.

    2002-01-01

    The statistical parametric mapping method is applied in Neurology for activation studies. We had adapted this powerful method on Lungs SPECT to help for the diagnosis and the follow-up of pulmonary embolism and other lung diseases. The SPECT slices of pairs of examination were normalized thanks to the total acquired counts, reconstruction background subtracted, smoothed and realigned. A parametric image of statistical differences was finally computed. We had thus obtained a 3D image showing regions of improved or altered region under treatment. A tuning of the various parameters could lead to more accurate image. This new approach of lung SPECT processing appears to be a promising useful tool for the physician. (author)

  17. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  18. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-01

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc-MDP, DMSA, and 18 F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, 99m Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined 99 mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and 18 F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  19. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  20. Validation of brain tumour imaging with p-[123I]iodo-l-phenylalanine and SPECT

    International Nuclear Information System (INIS)

    Hellwig, Dirk; Sell, Nadja; Schaefer, Andrea; Kirsch, Carl-Martin; Samnick, Samuel; Ketter, Ralf; Moringlane, Jean R.; Romeike, Bernd F.M.

    2005-01-01

    The aims of this prospective study were to validate single-photon emission computed tomography (SPECT) with p-[ 123 I]iodo-l-phenylalanine (IPA) in brain tumours and to evaluate its potential for the characterisation of indeterminate brain lesions. In 45 patients with indeterminate brain lesions or suspected progression of glioma, amino acid uptake was studied using IPA-SPECT and compared with the final diagnosis established by biopsy or serial imaging. After image fusion of IPA-SPECT and magnetic resonance imaging, the presence of tumour was visually determined by two independent observers. IPA uptake was quantified as the ratio between maximum uptake in the suspicious lesion and mean uptake in unaffected brain. Primary brain tumours were present in 35 cases (12 low-grade and 23 high-grade gliomas). Non-neoplastic brain lesions were confirmed in seven cases (three dysplasias, three inflammatory lesions, one lesion after effective therapy). Visual analysis showed a high concordance between the two observers (kappa=0.90, p<0.001), with sensitivity and specificity of 86% and 100% for the discrimination of primary brain tumours and non-neoplastic lesions. At 30 min p.i., IPA uptake in primary brain tumours was higher than that in non-neoplastic lesions (1.70±0.36 vs 1.14±0.18, p<0.05). Brain metastases showed no increased uptake (1.13±0.22, n=3). The persistent retention of IPA in low-grade gliomas without disruption of the blood-brain barrier was visualised up to 24 h p.i. Low-grade and high-grade gliomas showed equivalent IPA uptake (1.72±0.37 vs 1.67±0.36 at 30 min, p=0.745). IPA shows long and specific retention in gliomas. IPA is a promising and safe radiopharmaceutical for the visualisation of gliomas and the characterisation of indeterminate brain lesions. (orig.)

  1. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  2. Diagnostic value of 123I-betamethyl-p-iodophenyl-pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) in patients with chest pain. Comparison with rest-stress 99mTc-tetrofosmin SPECT and coronary angiography

    International Nuclear Information System (INIS)

    Kawai, Yuko; Nozaki, Yoichi; Ohkusa, Takanori; Sakurai, Masayuki; Morita, Koichi; Tamaki, Nagara

    2004-01-01

    Basic and clinical studies have indicated that 15-(p-[ 123 I] iodophenyl)-3-(R, S) methylpentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) can identify ischemic myocardium without evidence of myocardial infarction by the regional decline of tracer uptake. The present study compared BMIPP SPECT with rest-stress myocardial perfusion imaging (MPI) findings and coronary angiography (CAG) in 150 patients with acute chest pain. Patients with acute chest pain who underwent all of the following tests were selected: MPI at rest-stress, BMIPP SPECT at rest and CAG. Organic coronary artery stenosis (≥75%) was observed in 46 patients, 27 patients had total or subtotal coronary occlusion by spasm in the spasm provocation test on CAG and the remaining 77 patients had no significant coronary artery stenosis or spasm. The sensitivity of BMIPP at rest to detect organic stenosis was significantly higher (54%) than that of rest-MPI (33%, p<0.005), but lower than that of stress-MPI (76%, p=0.05). The sensitivity of BMIPP at rest to detect spasm was significantly higher (63%) than that of both rest-MPI (15%; p<0.001) and stress-MPI (19%; p<0.001). Overall, the sensitivity of BMIPP at rest to detect both organic stenosis and spasm was significantly higher (58%) than that of rest-MPI (26%; p<0.001), despite having no significance with that of stress-MPI (55%). The specificity was not significantly different among the three imaging techniques. Resting BMIPP SPECT is an alternative method to stress MPI for identifying patients with not only organic stenosis but also spasm without the need for a stress examination. (author)

  3. Basic study for the purpose of developing a quantitative "6"7Ga-SPECT measurement method

    International Nuclear Information System (INIS)

    Nakanishi, Kensuke; Sakata, Reiki; Takaki, Akihiro; Ito, Shigeki; Nakasone, Yutaka; Kadota, Masataka

    2017-01-01

    "6"7Ga-single photon emission computed tomography (SPECT) images vary according to the imaging time and image display methods. The calculation of an index, such as the standardized uptake value used in positron emission tomography, from "6"7Ga-SPECT images would enable the accurate evaluation of the region of accumulation. The purpose of this study was to elucidate the conversion formula, the lower detection limit (LDL), and recovery coefficient (RC) for quantifying the radiation concentration in the "6"7Ga accumulation site. After chronologically obtaining SPECT/CT images at a radiation concentration of 1.0-442.4 kBq/mL with 27 bottles (diameter: 48 mm ,100 mL), the radiation concentration conversion formula was calculated using the successive approximation reconstruction method. The conversion coefficient was then calculated from the relationship between the count rate and the radiation concentration, and the LDL was determined. To compensate for the partial volume effect, the recovery curve was calculated using the mean SPECT count for six bottles (diameter: 9 ,18 , 29, 38, 48, and 94 mm). There was a linear relationship between the radiation concentration and the count rate with a good correlation (r=0.99). The LDL was 1.0 kBq/mL. The recovery curve reached a plateau at a diameter of at least 48 mm. The calculation of the absorbed dose index was possible using the radiation concentration conversion formula and the RC. (author)

  4. Comparison of planar images and SPECT with bayesean preprocessing for the demonstration of facial anatomy and craniomandibular disorders

    International Nuclear Information System (INIS)

    Kircos, L.T.; Ortendahl, D.A.; Hattner, R.S.; Faulkner, D.; Taylor, R.L.

    1984-01-01

    Craniomandiublar disorders involving the facial anatomy may be difficult to demonstrate in planar images. Although bone scanning is generally more sensitive than radiography, facial bone anatomy is complex and focal areas of increased or decreased radiotracer may become obscured by overlapping structures in planar images. Thus SPECT appears ideally suited to examination of the facial skeleton. A series of patients with craniomandibular disorders of unknown origin were imaged using 20 mCi Tc-99m MDP. Planar and SPECT (Siemens 7500 ZLC Orbiter) images were obtained four hours after injection. The SPECT images were reconstructed with a filtered back-projection algorithm. In order to improve image contrast and resolution in SPECT images, the rotation views were pre-processed with a Bayesean deblurring algorithm which has previously been show to offer improved contrast and resolution in planar images. SPECT images using the pre-processed rotation views were obtained and compared to the SPECT images without pre-processing and the planar images. TMJ arthropathy involving either the glenoid fossa or the mandibular condyle, orthopedic changes involving the mandible or maxilla, localized dental pathosis, as well as changes in structures peripheral to the facial skeleton were identified. Bayesean pre-processed SPECT depicted the facial skeleton more clearly as well as providing a more obvious demonstration of the bony changes associated with craniomandibular disorders than either planar images or SPECT without pre-processing

  5. Effective of deep breath-hold SPECT in torso area. Examination concerning improvement of resolution

    International Nuclear Information System (INIS)

    Kawai, Takashi; Horiuchi, Shoji; Hayashi, Masuo; Sugibayashi, Keiichi

    2007-01-01

    The routine single photon emission computed tomography (SPECT) gives images with reduced resolution of internal organs like diaphragm due to breathing movements. In the present study, authors developed a breath-hold (BH) SPECT method where SPECT projection data were acquired during BH, and examined its usefulness. Equipments used were all Toshiba's dual-detector SPECT system E.CAM, image processor GMS-5500 A/PI, fusion software ART, and CT scanner Aquillion/M8. SPECT data were alternatively acquired at steps during BH and free breath (FB), for an entire step-and-shoot SPECT cycle, and acquisition time for 1 step (view) was set to be 10-15 sec depending on the subject's BH ability. Data from BH and FB views were extracted to get respective SPECT images. An evaluation was first done for a phantom simulating the breathing lung, an elliptical acrylic shell where a balloon connected with an ambu bag was placed. Two point sources of 99m Tc (14 MBq) were attached on the balloon. The phantom study revealed BH method did not give any artifacts. Clinically, 201 Tl-SPECT images of patients with lung tumors were compared for resolution between BH and FB and for their accuracy of registration by superimposing on CT images. Such results were observed as that, when FB gave two regions of Tl accumulation, BH, one region agreeing with the one lesion in the CT image, and that, when Tl accumulation was visualized in BH, but not in FB due to its overlapping with the liver area. Thus BH method could reduce respiratory motion artifacts to improve resolution, and was thought applicable to other imaging methods. (R.T.)

  6. [Application of GVF snake model in segmentation of whole body bone SPECT image].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2008-02-01

    Limited by the imaging principle of whole body bone SPECT image, the gray value of bladder area is quite high, which affects the image's brightness, contrast and readability. In the meantime, the similarity between bladder area and focus makes it difficult for some images to be segmented automatically. In this paper, an improved Snake model, GVF Snake, is adopted to automatically segment bladder area, preparing for further processing of whole body bone SPECT images.

  7. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji

    2012-07-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.

  8. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT

    International Nuclear Information System (INIS)

    Karger, Christian P; Hipp, Peter; Henze, Marcus; Echner, Gernot; Hoess, Angelika; Schad, Lothar; Hartmann, Guenther H

    2003-01-01

    CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end, the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 ± 0.2 mm. For MRI, the mean deviations ranged between 0.7 ± 0.2 mm and 1.4 ± 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 ± 0.5 mm and 2.4 ± 0.3 mm were obtained. The mean deviations for SPECT were 1.6 ± 0.5 mm and 2.0 ± 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others

  9. Diagnosis of functional loss using with PET or SPECT

    International Nuclear Information System (INIS)

    Maeda, Tetsuya; Nagata, Ken

    2009-01-01

    Described are outlines of positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, and their application to diagnosis of brain diseases accompanying functional loss. PET imaging by annihilation photons is useful to see the brain metabolic activity with use of compounds labeled by positron emitters like 11 C, 15 O, 13 N and 18 F. Cerebral blood flow (CBF), CB volume and oxygen extraction fraction correlate well with the cerebral activity and can be measured by PET with C 15 O 2 , H 2 15 O or 15 O 2 . 18 F-glucose is usable to measure the cerebral metabolic rate of glucose. SPECT imaging by γ-rays of 133 Xe, 123 I-iofetamine (IMP), 99m Tc-hexamethyl propylene amine oxime (HMPAO) and 99m Tc-ethyl cysteinate dimer (ECD) is useful also to measure CBF in different mechanisms from agent to agent, which often reflect the pathophysiology of the lesion in problem. These imaging techniques are applied to the diagnosis of regional functional loss in ischemic brain diseases like infarction, dementia (Alzheimer and multiple vascular) and Parkinsonism, of which characters and details of actual images are presented herein. Authors say that although the imaging diagnosis for brain functional loss has progressed, the integration of neurological finding, clinical process and simple morphological brain image as well is still important in the routine examination. (K.T.)

  10. Intravenous dipyridamole thallium-201 SPECT imaging in patients with left bundle branch block

    International Nuclear Information System (INIS)

    Rockett, J.F.; Wood, W.C.; Moinuddin, M.; Loveless, V.; Parrish, B.

    1990-01-01

    Tl-201 exercise imaging in patients with left bundle branch block (LBBB) has proven to be indeterminate for significant left anterior descending (LAD) coronary artery stenosis because of the presence of immediate septal perfusion defects with redistribution on delayed images in almost all cases. Tl-201 redistribution occurs regardless of the presence or absence of LAD stenosis. Nineteen patients having LBBB were evaluated with dipyridamole Tl-201 SPECT. Fourteen of these subjects had normal dipyridamole Tl-201 SPECT imaging. Three patients had normal coronary angiograms. None of the remaining 11 patients with normal dipyridamole Tl-201 SPECT images was found to have clinical coronary artery disease in a 5-11 month follow-up period. Five patients had abnormal septal perfusion. Four underwent coronary angiography. One had a significant LAD stenosis. The single patient with septal redistribution who refused to undergo coronary angiography died shortly thereafter of clinical coronary artery disease. This preliminary work suggests that dipyridamole Tl-201 SPECT may be more useful for excluding LAD stenosis in patients with LBBB than Tl-201 exercise imaging

  11. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  12. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    Science.gov (United States)

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  13. Tc-99m MAG3 SPECT on transplanted kidney

    International Nuclear Information System (INIS)

    Ryu, Jong Gul; Kim, Soon; Zeon, Seok Kil

    1999-01-01

    This study was designed to evaluate the usefulness of a technetium-99m mercaptoacetyltriglycine (Tc-99m MAG3) single photon emission computed tomography (SPECT) performed on transplanted kidney. Thirty renal transplant patients were included in this study. Planar scan was performed for 30 minutes using 555 MBq Tc-99m MAG3. A post-voiding SPECT scan was acquired on the third, seventh, fourteenth and twenty eighth day after transplantation. SPECT scan showed interpretable image quality in 26 of 30 patients (86.7%) and 84 in 120 scans (70%). Fourteen of 26 patients with interpretable SPECT image showed decreased or increased radioactivity, but only 5 had abnormal findings on the planar scan. Focal SPECT defects were seen in allografts with normal function (n=3), acute tubular necrosis (n=3), and acute rejection (n=2). The defects are thought to reflect focally underperfused renal parenchyme or, in normal allografts, an artifact from uneven radioactivity distribution. Four of 10 paints with renal arterial variation showed focally decreased radioactivity and SPECT helped guide further studies that confirmed the exact cause. Five of 10 patients with acute tubular necrosis or acute rejection showed focally decreased radioactivity, but its relation to the patients' clinical course was not clear. Focally increased radioactivity was observed in 5 allografts with normal function and 1 with double ureter in which local clearance delay was observed. Tc-99m MAG3 SPECT renal scan can detect additional focal abnormalities compared to planar scan. Further study is necessary to elucidate the exact clinical significance of the SPECT findings

  14. Development of novel emission tomography system

    Science.gov (United States)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  15. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    International Nuclear Information System (INIS)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  16. Methods of evaluating SPECT images. The usefulness of the Matsuda`s method by the Patlak plot method in children

    Energy Technology Data Exchange (ETDEWEB)

    Takaishi, Yasuko [Nippon Medical School, Tokyo (Japan); Hashimoto, Kiyoshi; Fujino, Osamu [and others

    1998-11-01

    Single photon emission computed tomography (SPECT) is a tool to study cerebral blood flow (CBF) kinetics. There are three methods of evaluating SPECT images: visual, semi-quantitative (evaluation of the radioactivity ratio of the cerebral region to the cerebellum (R/CE) or to the thalamus (R/TH)) and quantitative (Matsuda`s method by Patlak plot method using {sup 99m}Tc-hexamethylpropylene amine oxime radionuclide angiography). We evaluated SPECT images by the quantitative method in 14 patients with neurological disorders and examined the correlation of the results to those obtained by the semi-quantitative method. There was no significant correlation between the R/CE or R/TH ratio and regional CBF except two regions. The evaluation by the semi-quantitative method may have been inappropriate, probably because the cerebellar or thalamic blood flow was not constant in each case. Evaluation by the quantitative method, on the other hand, seemed to be useful not only for the comparison of CBF among normal subjects, but also in the demonstration of progressive changes of CBF in the same case. The Matsuda`s method by the Patlak plot method is suitable for examination of children, since it dose not require aortic blood sampling. (author)

  17. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma

    International Nuclear Information System (INIS)

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation

  18. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma.

    Science.gov (United States)

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation.

  19. Prediction of language and neurologic recovery after cerebral infarction with SPECT imaging using N-isopropyl-p-(I-123) iodoamphetamine

    International Nuclear Information System (INIS)

    Bushnell, D.L.; Gupta, S.; Mlcoch, A.G.; Barnes, W.E.

    1989-01-01

    Fourteen patients (10 with left-sided and 4 with right-sided cerebral infarction) were prospectively studied with single-photon emission computed tomography (SPECT) using N-isopropyl-p-(I-123) iodoamphetamine (IMP, SPECTamine) to determine its usefulness in predicting neurologic/language recovery after cerebral infarction. All neuro-SPECT imaging was performed within 30 days after infarction. Detailed assessment of neurologic and/or language recovery (after 3 months) was carried out prospectively in each patient. Patients with smaller volume IMP defects in the region of infarction demonstrated significantly better neurologic and language recovery than patients with large IMP defects. Analysis of the IMP ''redistribution'' phenomenon failed to demonstrate definitively a relationship with clinical recovery. It was concluded that the volume of the IMP defect can aid in predicting recovery potential after cerebral infarction

  20. Attenuation maps for SPECT determined using cone beam transmission computed tomography

    International Nuclear Information System (INIS)

    Manglos, S.H.; Bassano, D.A.; Duxbury, C.E.; Capone, R.B.

    1990-01-01

    This paper presents a new method for measuring non-uniform attenuation maps, using a cone beam geometry CT scan acquired on a standard rotating gamma camera normally used for SPECT imaging. The resulting map is intended for use in non-uniform attenuation compensation of SPECT images. The method was implemented using a light-weight point source holder attached to the camera. A cone beam collimator may be used on the gamma camera, but the cone beam CT scans may also be acquired without collimator. In either implementation, the advantages include very high efficiency and resolution limited not by the collimator but by the intrinsic camera resolution (about 4 mm). Several phantoms tested the spatial uniformity, noise, linearity as a function of attenuation coefficient, and spatial resolution. Good quality attenuation maps were obtained, at least for the central slices where no truncation was present

  1. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  2. Kombineret ventilations/perfusions-SPECT/CT er bedst til diagnostik af lungeemboli

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Mortensen, Jann; Kristoffersen, Ulrik Sloth

    2012-01-01

    The diagnosis of pulmonary embolism (PE) is usually established by a combination of clinical assessment, D-dimer test and imaging with either lung scintigraphy or pulmonary multidetector computed tomography angiography (CTA). Which of the two methods to use in PE diagnostic has not been determined...... and very limited data comparing these modalities are available. With the use of hybrid scanners, ventilation/perfusion-single-photon-emission-tomography (V/Q-SPECT) in combination with low-dose CT without contrast enhancement is feasible and should probably be considered first-line imaging in diagnosing PE....

  3. Single photon emission computed tomography of technetium-99m tetrofosmin myocardial perfusion imaging in patients with systemic lupus erythematosus-A preliminary report

    International Nuclear Information System (INIS)

    Lin, Jen-Jhy; Hsu, Hsiu-Bao; Sun, Shung-Shung; Kao, Chia-Hung; Ho, Shung-Tai

    2003-01-01

    The purpose of this study was to evaluate the utility of single-photon emission computed tomography (SPECT) of technetium-99m tetrofosmin (Tc-99m TF) myocardial perfusion imaging to detect myocardial involvement in patients with systemic lupus erythematosus (SLE). Three groups of subjects-group 1: 25 SLE female patients with non-specific cardiac symptoms and signs, group 2: 25 female SLE patients without any cardiac symptoms and signs, and group 3: 25 female healthy controls-were evaluated by comparing rest and dipyridamole-stress Tc-99m TF myocardial perfusion SPECT. Tc-99m TF myocardial perfusion SPECT revealed perfusion defects in 88% and 40% of the cases in groups 1 and 2, respectively. However, no cases in group 3 demonstrated myocardial perfusion defects. Tc-99m TF myocardial perfusion SPECT is a useful noninvasive imaging modality to detect cardiac involvement in SLE patients with or without cardiac symptoms and signs. (author)

  4. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  5. Measurement of lung water with SPECT

    International Nuclear Information System (INIS)

    Chu, R.Y.L.; Ficken, V.J.; Ekeh, S.U.; Ryals, C.J.; Allen, E.W.; Basmadjian, G.

    1990-01-01

    This paper investigates the use of iodoantipyrine (IAP) labeled with radioactive iodine (I-123) and single photon emission tomography (SPECT) to measure lung water. I-123 IAP was injected intravenously to six New Zealand White rabbits under anesthesia. After 1 hour, Tc-99m macroaggregates of albumin (MAA) were injected. SPECT imaging was performed in dual-energy mode. After a blood sample was drawn, the animals were sacrificed, and the lungs were removed. Blood samples were assayed for radioactivity. The lungs were weighed, dried, and weighted again to determine water content. The product of area defined by MAA in a tomogram and IAP count rate of central pixels of that region in the corresponding tomogram was taken as the relative amount of IAP in each lung

  6. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  7. Limitations of Tc99m-MIBI-SPECT imaging scans in persistent primary hyperparathyroidism

    NARCIS (Netherlands)

    Witteveen, Janneke E.; Kievit, Job; Stokkel, Marcel P. M.; Morreau, Hans; Romijn, Johannes A.; Hamdy, Neveen A. T.

    2011-01-01

    In primary hyperparathyroidism (PHPT) the predictive value of technetium 99m sestamibi single emission computed tomography (Tc99m-MIBI-SPECT) for localizing pathological parathyroid glands before a first parathyroidectomy (PTx) is 83-100%. Data are scarce in patients undergoing reoperative

  8. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    International Nuclear Information System (INIS)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-01-01

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision

  9. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada); Wei, Lihui [Nordion, Inc., Ottawa, Ontario K2K 1X8 (Canada)

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  10. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  11. Measurement of heterogeneous distribution on technegas SPECT images by three-dimensional fractal analysis

    International Nuclear Information System (INIS)

    Nagao, Michinobu; Murase, Kenya

    2002-01-01

    This review article describes a method for quantifying heterogeneous distribution on Technegas ( 99m Tc-carbon particle radioaerosol) SPECT images by three-dimensional fractal analysis (3D-FA). Technegas SPECT was performed to quantify the severity of pulmonary emphysema. We delineated the SPECT images by using five cut-offs (15, 20, 25, 30 and 35% of the maximal voxel radioactivity), and measured the total number of voxels in the areas surrounded by the contours obtained with each cut-off level. We calculated fractal dimensions from the relationship between the total number of voxels and the cut-off levels transformed into natural logarithms. The fractal dimension derived from 3D-FA is the relative and objective measurement, which can assess the heterogeneous distribution on Technegas SPECT images. The fractal dimension strongly correlate pulmonary function in patients with emphysema and well documented the overall and regional severity of emphysema. (author)

  12. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M. [Karolinska Univ. Hospital, Stockholm (Sweden). Div. of Radiology

    2006-11-15

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using {sup 99m}Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice.

  13. Episodic aphasia associated with tumor active multiple sclerosis: a correlative SPECT study utilising image fusion

    International Nuclear Information System (INIS)

    Roff, G.; Campbell, A.; Lawn, N.; Henderson, A.; McCarthy, M.; Lenzo, N.

    2003-01-01

    Full text: Cerebral perfusion imaging is a common technique to assess cerebral perfusion and metabolism. It can complement anatomical imaging in assessing a number of neurological conditions. At times it can better define the clinical manifestations of a disease process than anatomical imaging alone. We present a clinical case whereby cerebral SPECT imaging helped define the physiological reason for intermittent aphasia in a patient with tumor active multiple sclerotic white matter plaques. Cerebral SPECT studies were performed during a period of aphasia and when the patient had recovered. We utilised subtraction analyses and image fusion techniques to better define the changes seen on SPECT. We discuss the neuroanatomical relationship of aphasia and the automatic fusion technique that allows accurate co-registration of the MRI and SPECT data. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography

    DEFF Research Database (Denmark)

    Vavere, Andrea L; Simon, Gregory G; George, Richard T

    2013-01-01

    Multidetector coronary computed tomography angiography (CTA) is a promising modality for widespread clinical application because of its noninvasive nature and high diagnostic accuracy as found in previous studies using 64 to 320 simultaneous detector rows. It is, however, limited in its ability...... to detect myocardial ischemia. In this article, we describe the design of the CORE320 study ("Combined coronary atherosclerosis and myocardial perfusion evaluation using 320 detector row computed tomography"). This prospective, multicenter, multinational study is unique in that it is designed to assess...... the diagnostic performance of combined 320-row CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). The trial is being performed at 16 medical centers located in 8...

  15. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Yan, Susu; Tough, MengHeng; Bowsher, James; Yin, Fang-Fang; Cheng, Lin

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom TM ), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  16. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  17. Therapeutic effects of coenzyme Q10 on dilated cardiomyopathy. Assessment by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). A multicenter trial in Osaka University Medical School Group

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Hori, Masatsugu [Osaka Univ. (Japan). Faculty of Medicine

    1996-01-01

    To evaluate therapeutic effects of Coenzyme Q10 (CoQ10), 15 patients with dilated cardiomyopathy were investigated by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). The BMIPP defect score was determined semiquantitatively by using representative short and long axial SPECT images. Mean BMIPP defect score with CoQ10 treatment was significantly low, 7.7{+-}6.1 compared to 12.7{+-}7.4 without CoQ10 treatment. On the other hand, in 8 patients of dilated cardiomyopathy, % fractional shortening using echocardiography was not different before and after CoQ10 treatment. In conclusion, {sup 123}I-BMIPP myocardial SPECT was proved to be sensitive to evaluate the therapeutic effects of CoQ10, which improve myocardial mitochondrial function, in the cases of dilated cardiomyopathy. (author).

  18. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang; Feng, Jianlin; Lloyd, Michael S.; Chen, Ji

    2012-01-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  19. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun; Li, Dianfu; Miao, Changqing; Zhou, Yanli; Cao, Kejiang [First Affiliated Hospital of Nanjing Medical University, Department of Cardiology, Nanjing, Jiangsu (China); Feng, Jianlin [First Affiliated Hospital of Nanjing Medical University, Department of Nuclear Medicine, Nanjing, Jiangsu (China); Lloyd, Michael S. [Emory University School of Medicine, Division of Cardiology, Atlanta, GA (United States); Chen, Ji [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2012-07-15

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. (orig.)

  20. Subendocardial versus transmural ischaemia in myocardial perfusion SPECT--a Monte Carlo study

    DEFF Research Database (Denmark)

    Bartosik, Jolanta; El-Ali, Henrik Hussein; Nilsson, Ulf

    2006-01-01

    Myocardial perfusion imaging with single-photon emission computed tomography (SPECT) is useful for the evaluation of patients with known or suspected coronary artery disease. Parameters of interest are the reduction in the blood perfusion (severity) and the lesion volume (extent). The aim of this...

  1. Recent advances in iterative reconstruction for clinical SPECT/PET and CT.

    Science.gov (United States)

    Hutton, Brian F

    2011-08-01

    Statistical iterative reconstruction is now widely used in clinical practice and has contributed to significant improvement in image quality in recent years. Although primarily used for reconstruction in emission tomography (both single photon emission computed tomography (SPECT) and positron emission tomography (PET)) there is increasing interest in also applying similar algorithms to x-ray computed tomography (CT). There is increasing complexity in the factors that are included in the reconstruction, a demonstration of the versatility of the approach. Research continues with exploration of methods for further improving reconstruction quality with effective correction for various sources of artefact.

  2. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Ichiseki, Hajime; Terashi, Akiro; Hamamoto, Makoto; Miyazaki, Tokuzo.

    1995-01-01

    We have performed single photon emission computed tomography (SPECT) with 99m Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author)

  3. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ichiseki, Hajime; Terashi, Akiro [Nippon Medical School, Tokyo (Japan); Hamamoto, Makoto; Miyazaki, Tokuzo

    1995-12-01

    We have performed single photon emission computed tomography (SPECT) with {sup 99m}Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author).

  4. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru [Chiba Univ. (Japan). School of Medicine

    1994-09-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author).

  5. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru

    1994-01-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author)

  6. Prospective Evaluation of (99m)Tc-sestamibi SPECT/CT for the Diagnosis of Renal Oncocytomas and Hybrid Oncocytic/Chromophobe Tumors.

    Science.gov (United States)

    Gorin, Michael A; Rowe, Steven P; Baras, Alexander S; Solnes, Lilja B; Ball, Mark W; Pierorazio, Phillip M; Pavlovich, Christian P; Epstein, Jonathan I; Javadi, Mehrbod S; Allaf, Mohamad E

    2016-03-01

    Nuclear imaging offers a potential noninvasive means of determining the histology of renal tumors. The aim of this study was to evaluate the accuracy of technetium-99m ((99m)Tc)-sestamibi single-photon emission computed tomography/x-ray computed tomography (SPECT/CT) for the differentiation of oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) from other renal tumor histologies. In total, 50 patients with a solid clinical T1 renal mass were imaged with (99m)Tc-sestamibi SPECT/CT prior to surgical resection. Preoperative SPECT/CT scans were reviewed by two blinded readers, and their results were compared with centrally reviewed surgical pathology data. Following surgery, 6 (12%) tumors were classified as renal oncocytomas and 2 (4%) as HOCTs. With the exception of 1 (2%) angiomyolipoma, all other tumors were renal cell carcinomas (82%). (99m)Tc-sestamibi SPECT/CT correctly identified 5 of 6 (83.3%) oncocytomas and 2 of 2 (100%) HOCTs, resulting in an overall sensitivity of 87.5% (95% confidence interval [CI], 47.4-99.7%). Only two tumors were falsely positive on SPECT/CT, resulting in a specificity of 95.2% (95% CI, 83.8-99.4%). In summary, (99m)Tc-sestamibi SPECT/CT is a promising imaging test for the noninvasive diagnosis of renal oncocytomas and HOCTs. We found that the imaging test (99m)Tc-sestamibi SPECT/CT can be used to accurately diagnose two types of benign kidney tumors. This test may be eventually used to help better evaluate patients diagnosed with a renal tumor. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-01-01

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising

  8. Semi-quantitative analysis of post-transarterial radioembolization {sup 90}Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with {sup 99m}Tc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol [Korea University Anam Hospital, Seoul (Korea, Republic of); Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2016-03-15

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ({sup 99}mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ({sup 90}Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent {sup 90}Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone {sup 99}mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of {sup 90}Y microspheres, the patients underwent posttreatment {sup 90}Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in {sup 90}Y PET/CT (TNR-yp) and {sup 99}mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with {sup 90}Y PET/CT in TNR values, suggesting that {sup 99}mTc MAA can be used as an adequate pretreatment evaluation method. However, the {sup 99}mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using {sup 99}mTc MAA SPECT. Considering that

  9. Precise fusion of MRI and dual energy 111In WBC/99mTc HDP SPECT/CT in the diabetic foot using companion CT: an example of SPECT/MRI imaging

    International Nuclear Information System (INIS)

    Knešaurek, K.; Heiba, S.; Kolker, D.; Vatti, S.

    2015-01-01

    The purpose of our study was to correctly fuse MRI and SPECT 111 In WBC and 99m Tc HDP images using companion CT images. The fused images could be used to assess proper surgical approach in treatment of the diabetic foot. Nine patients who had dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT and MRI studies within a week were investigated in an ongoing project. A GE Infinia SPECT/CT camera and Siemens MAGNETOM 1.5T MR system were used in this study. First, the MRI and corresponding CT images were coregistrated using a transformation based on normalized mutual information. The transformation was saved and used for MRI and 111 In WBC/ 99 m Tc HDP SPECT fusion. A Jaszczak phantom study was also performed in order to estimate accuracy of MRI/ SPECT fusion. The Jaszczak phantom study with 3.7 MBq 111 In hot sphere showed that MRI/SPECT alignment using the approach described above produced registration with 0.7±0.4 mm accuracy in all three dimensions (3D). The nine clinical cases were visually evaluated and showed 1-2 mm 3D fusion accuracy. MRI provides almost perfect anatomy of soft tissue and bony structures but it may exaggerate the extent of infection. 111 In WBC/ 99 m Tc HDP SPECT imaging is more accurate for infection detection but lacks anatomical reference. Combination of these images proved an essential adjunct to diagnosis. A clinical utility of the approach is illustrated in two clinical examples. In conclusion, the CT in dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT studies can be used to accurately fuse and compare 111 In WBC/ 99 m Tc HDP SPECT and MRI images of the diabetic foot. This can significantly help in conservative treatment planning and limb salvage procedures in treatment of diabetic foot infections.

  10. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    Science.gov (United States)

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  11. Preliminary application of brain perfusion SPECT imaging in schizophrenia

    International Nuclear Information System (INIS)

    Wu Zhixing; Guo Chanliu; Li Xingbao; Liang Rongxiang; Zhao Jun; Yan Tingxiu

    1996-01-01

    The clinical value of 99m Tc-ECD brain perfusion SPECT imaging was evaluated in patients with schizophrenia. 32 patients with schizophrenia and 21 normal controls were analyzed with 99m Tc-ECD SPECT. 93.8% (30/32) of the patients showed decreased regional cerebral blood flow (rCBF). There was normal rCBF in controls. In the patient group rCBF decreased significantly in bilateral frontal lobes, left temporal lobe and right basal ganglion. The rCBF of left temporal lobe was significantly lower than that of right temporal lobe. The decreasing rCBF was not significantly related to previous treatment and duration of illness. 99m Tc-ECD SPECT is useful for the study and diagnosis of patients with schizophrenia

  12. Brain perfusion SPECT imaging before and during the acetazolamide test using sup 99m Tc-HMPAO

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Higashi, Sotaro; Kinuya, Keiko; Tsuji, Shiro; Sumiya, Hisashi; Hisada, Kinichi; Yamashita, Junkoh (Kanazawa Univ. (Japan). School of Medicine)

    1990-05-01

    A new method using brain perfusion {sup 99m}Tc-HMPAO SPECT imaging was developed for evaluating cerebral perfusion reserve by the acetazolamide test with a short period. The first SPECT study was carried out for 13.5 min to obtain SPECT images at the resting state after 3 min postinjection of 555 MBq (15 mCi) of {sup 99m}Tc-HMPAO. At the same time as the start of the first SPECT study, 1 g of acetazolamide was intravenously injected. Immediately after the stop of the 1st SPECT study, 925 MBq (25 mCi) of {sup 99m}Tc-HMPAO from the same vial as in the first study was additionally injected. Three minutes later the second SPECT study was carried out for 10 min. After reconstruction the tomographic images in the first study were subtracted from the images in the second study to obtain those during the acetazolamide test after correction of the time differences in data acquisition between the two studies. This subtraction technique gives independent brain perfusion SPECT images before and during the acetazolamide test. Besides, the regional flow changes during the test were quantitatively analyzed. In conclusion this method seems to be practically useful for evaluating regional brain perfusion before and during drug treatments as a consecutive study with a short period of approximately 30 min. (author).

  13. Dosimetry estimation of SPECT/CT for iodine 123-labeled metaiodobenzylguanidine in children

    Directory of Open Access Journals (Sweden)

    Aida Mhiri

    2015-09-01

    Full Text Available Purpose: To evaluate the additional radiation exposure in terms of effective dose incurred by patients in the CT (computed tomography portion of 123I-MIBG (123II-metaiodobenzylguanidine study with SPECT/CT (Single photon emission computed tomography associated to computed tomography in some pediatric patients of our department. Methods: Data from 123II-MIBG scans comprising 50 children were presented in this study. The contribution of total effective dose imparted by the nuclear tracer and patient's age was calculated. Effective dose from the CT portion of the examination is also estimated.SPECT acquisitions were performed with a dual-headed SPECT unit with an integrated 2-slice CT scanner (Symbia T E-Cam, Siemens Medical Systems, Erlangen, Germany. The CT acquisition were performed using a tube current modulation system (Care Dose 4D. Parameters used were: tube current of 30 - 60 mAs, slice thickness of 3-5 mm, and tube voltage of 110 kV. Results: Our results show that SPECT dosimetry depends on administered activity and patient’s age and weight. For CT scan, effective dose is affected by tube current (mA, tube potential (kVp, rotation speed, pitch, slice thickness, patient mass, and the exact volume of the patient that is being imaged. Conclusion: For children, 123II-MIBG study with SPECT/CT should be performed using the lowest available voltage and current. A sensible choice of these two parameters used can significantly reduce radiation dose, without any compromise in the quality of the diagnostic information.

  14. Radiopharmaceuticals for SPECT cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru; Sinilkin, I. G., E-mail: sinilkinig@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Stasyuk, E. S.; Larionova, L. A. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Slonimskaya, E. M.; Choynzonov, E. L. [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tl SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  15. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  16. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    International Nuclear Information System (INIS)

    Lee, Sang Kun; Lee, Dong Soo

    2003-01-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test

  17. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kun; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

  18. The added value of SPECT-CT for the identification of sentinel lymph nodes in early stage oral cancer

    International Nuclear Information System (INIS)

    Toom, Inne J. den; Bree, Remco de; Schie, Annelies van; Hoekstra, Otto S.; Weert, Stijn van; Karagozoglu, K.H.; Bloemena, Elisabeth

    2017-01-01

    To assess the role of single-photon emission computed tomography with computed tomography (SPECT-CT) for the identification of sentinel lymph nodes (SLNs) in patients with early stage (T1-T2) oral cancer and a clinically negative neck (cN0). In addition to planar lymphoscintigraphy, SPECT-CT was performed in 66 consecutive patients with early stage oral cancer and a clinically negative neck. The addition of SPECT-CT to planar images was retrospectively analyzed for the number of additional SLNs, more precise localization of SLNs, and importance of anatomical information by a team consisting of a nuclear physician, surgeon, and investigator. Identification rate for both imaging modalities combined was 98% (65/66). SPECT-CT identified 15 additional SLNs in 14 patients (22%). In 2/15 (13%) of these additional SLNs, the only metastasis was found, resulting in an upstaging rate of 3% (2/65). In 20% of the patients with at least one positive SLN, the only positive SLN was detected due to the addition of SPECT-CT. SPECT-CT was considered to add important anatomical information in two patients (3%). In 5/65 (8%) of the patients initially scored SLNs on planar lymphoscintigrams were scored as non-SLNs when SPECT-CT was added. There were four false-negative SLN biopsy procedures in this cohort. The addition of SPECT-CT to planar lymphoscintigraphy is recommended for the identification of more (positive) SLNs and better topographical orientation for surgery in sentinel lymph node biopsy for early stage oral cancer. (orig.)

  19. The added value of SPECT-CT for the identification of sentinel lymph nodes in early stage oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Toom, Inne J. den; Bree, Remco de [VU University Medical Center, Department of Otolaryngology-Head and Neck Surgery, Amsterdam (Netherlands); UMC Utrecht Cancer Center, University Medical Center, Department of Head and Neck Surgical Oncology, PO Box 85500, Utrecht (Netherlands); Schie, Annelies van; Hoekstra, Otto S. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Weert, Stijn van [VU University Medical Center, Department of Otolaryngology-Head and Neck Surgery, Amsterdam (Netherlands); Karagozoglu, K.H. [VU University Medical Center/Academic Centre for Dentistry (ACTA) Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam (Netherlands); Bloemena, Elisabeth [VU University Medical Center/Academic Centre for Dentistry (ACTA) Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam (Netherlands); VU University Medical Center, Department of Pathology, Amsterdam (Netherlands)

    2017-06-15

    To assess the role of single-photon emission computed tomography with computed tomography (SPECT-CT) for the identification of sentinel lymph nodes (SLNs) in patients with early stage (T1-T2) oral cancer and a clinically negative neck (cN0). In addition to planar lymphoscintigraphy, SPECT-CT was performed in 66 consecutive patients with early stage oral cancer and a clinically negative neck. The addition of SPECT-CT to planar images was retrospectively analyzed for the number of additional SLNs, more precise localization of SLNs, and importance of anatomical information by a team consisting of a nuclear physician, surgeon, and investigator. Identification rate for both imaging modalities combined was 98% (65/66). SPECT-CT identified 15 additional SLNs in 14 patients (22%). In 2/15 (13%) of these additional SLNs, the only metastasis was found, resulting in an upstaging rate of 3% (2/65). In 20% of the patients with at least one positive SLN, the only positive SLN was detected due to the addition of SPECT-CT. SPECT-CT was considered to add important anatomical information in two patients (3%). In 5/65 (8%) of the patients initially scored SLNs on planar lymphoscintigrams were scored as non-SLNs when SPECT-CT was added. There were four false-negative SLN biopsy procedures in this cohort. The addition of SPECT-CT to planar lymphoscintigraphy is recommended for the identification of more (positive) SLNs and better topographical orientation for surgery in sentinel lymph node biopsy for early stage oral cancer. (orig.)

  20. Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results.

    Science.gov (United States)

    Goshen, Elinor; Beilin, Leonid; Stern, Eli; Kenig, Tal; Goldkorn, Ronen; Ben-Haim, Simona

    2018-03-14

    The performance of a prototype novel digital single-photon emission computed tomography (SPECT) camera with multiple pixelated CZT detectors and high sensitivity collimators (Digital SPECT; Valiance X12 prototype, Molecular Dynamics) was evaluated in various clinical settings. Images obtained in the prototype system were compared to images from an analog camera fitted with high-resolution collimators. Clinical feasibility, image quality, and diagnostic performance of the prototype were evaluated in 36 SPECT studies in 35 patients including bone (n = 21), brain (n = 5), lung perfusion (n = 3), and parathyroid (n = 3) and one study each of sentinel node and labeled white blood cells. Images were graded on a scale of 1-4 for sharpness, contrast, overall quality, and diagnostic confidence. Digital CZT SPECT provided a statistically significant improvement in sharpness and contrast in clinical cases (mean score of 3.79 ± 0.61 vs. 3.26 ± 0.50 and 3.92 ± 0.29 vs. 3.34 ± 0.47 respectively, p < 0.001 for both). Overall image quality was slightly higher for the digital SPECT but not statistically significant (3.74 vs. 3.66). CZT SPECT provided significantly improved image sharpness and contrast compared to the analog system in the clinical settings evaluated. Further studies will evaluate the diagnostic performance of the system in large patient cohorts in additional clinical settings.

  1. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    Science.gov (United States)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  2. Is there any advantage from the hybrid imaging diagnostic?

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2012-01-01

    The hybrid imaging methods- Single Photon Emission Tomography-Computer Tomography / SPECT-CT / and Positron Emission Tomography-Computer Tomography / PET-CT/ allow receiving of combined image of two different techniques. In such a way it is possible to superimpose detailed anatomical image of the multislice spiral computer tomography with specific and sensitive molecular images of the SPECT and PET in a single study, allowing utilization of the full possibilities of the both techniques. They have advantages and disadvantages, which basically stem from the differences in the used radiopharmaceuticals and their physical properties. In PET-CT-positron emitters are applied, most often 18F and 11C, while-in SPECT-CT - single photon emitters, most often 99mTc and 131I. A disadvantage of PET is a high cost, which is produced in cyclotron and its logistics is complicated. The great advantage of PET is its better spatial resolution, compared to SPECT, because of the possibility to for simultaneous detection of pared photons and better registration. These techniques, especially PET-CT are nowadays the most increasing imaging methods in the world in making diagnosis, staging and following the effect of treatment in patients with oncological, neurological, cardiological, orthopedic diseases and infections. Recently, they are applied for the purposes of radiotherapy planning on the basis of the metabolically active tumour. As a final result, compared to the conventional techniques- roentgenography, computer tomography and magnetic resonance imaging, it is possible in many cases to make an early and more precise diagnosis and to safe time for the patient for adequate treatment. As a conclusion it is clear, that the hybrid imaging has future and its application will increase in future

  3. of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    Directory of Open Access Journals (Sweden)

    Hirofumi Fujii

    2012-01-01

    Full Text Available Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.

  4. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  5. SPECT imaging evaluation in movement disorders: far beyond visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Badiavas, Kosmas [General Hospital, Medical Physics Department, Thessaloniki (Greece); Molyvda, Elisavet; Psarrakos, Kyriakos [Medical Physics Dept., General Hospital, Thessaloniki (Greece); Iakovou, Ioannis; Karatzas, Nikolaos [Medical Physical Dept., Aristotle Univ., Thessaloniki (Greece); Tsolaki, Magdalini [3. Neurology Clinic, Aristotle Univ., Thessaloniki (Greece)

    2011-04-15

    Single photon emission computed tomography (SPECT) imaging with {sup 123}I-FP-CIT is of great value in differentiating patients suffering from Parkinson's disease (PD) from those suffering from essential tremor (ET). Moreover, SPECT with {sup 123}I-IBZM can differentiate PD from Parkinson's ''plus'' syndromes. Diagnosis is still mainly based on experienced observers' visual assessment of the resulting images while many quantitative methods have been developed in order to assist diagnosis since the early days of neuroimaging. The aim of this work is to attempt to categorize, briefly present and comment on a number of semi-quantification methods used in nuclear medicine neuroimaging. Various arithmetic indices have been introduced with region of interest (ROI) manual drawing methods giving their place to automated procedures, while advancing computer technology has allowed automated image registration, fusion and segmentation to bring quantification closer to the final diagnosis based on the whole of the patient's examinations results, clinical condition and response to therapy. The search for absolute quantification has passed through neuroreceptor quantification models, which are invasive methods that involve tracer kinetic modelling and arterial blood sampling, a practice that is not commonly used in a clinical environment. On the other hand, semi-quantification methods relying on computers and dedicated software try to elicit numerical information out of SPECT images. The application of semi-quantification methods aims at separating the different patient categories solving the main problem of finding the uptake in the structures of interest. The semi-quantification methods which were studied fall roughly into three categories, which are described as classic methods, advanced automated methods and pixel-based statistical analysis methods. All these methods can be further divided into various subcategories. The plethora of

  6. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Maruno, Hirotaka; Yui, Nobuharu

    1993-01-01

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99m Tc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  7. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging

    International Nuclear Information System (INIS)

    Kubo, Naoki; Zhao, Songji; Fujiki, Yutaka

    2005-01-01

    Small animal imaging has recently been focused on basic nuclear medicine. We have designed and built a small animal SPECT imaging system using a semiconductor camera and a newly designed collimator. We assess the performance of this system for small object imaging. We employed an MGC 1500 (Acrorad Co.) camera including a CdTe semiconductor. The pixel size was 1.4 mm/pixel. We designed and produced a parallel-hole collimator with 20-mm hole length. Our SPECT system consisted of a semiconductor camera with the subject holder set on an electric rotating stage controlled by a computer. We compared this system with a conventional small animal SPECT system comprising a SPECT-2000H scanner with four Anger type cameras and pinhole collimators. The count rate linearity for estimation of the scatter was evaluated for a pie-chart phantom containing different concentrations of 99m Tc. We measured the full width half maximum (FWHM) of the 99m Tc SPECT line source along with scatter. The system volume sensitivity was examined using a flood source phantom which was 35 mm long with a 32-mm inside diameter. Additionally, an in vivo myocardial perfusion SPECT study was performed with a rat. With regards to energy resolution, the semiconductor camera (5.6%) was superior to the conventional Anger type camera (9.8%). In the count rate linearity evaluation, the regression lines of the SPECT values were y=0.019x+0.031 (r 2 =0.999) for our system and y=0.018x+0.060 (r 2 =0.997) for the conventional system. Thus, the scatter count using the semiconductor camera was less than that using the conventional camera. FWHMs of our system and the conventional system were 2.9±0.1 and 2.0±0.1 mm, respectively. Moreover, the system volume sensitivity of our system [0.51 kcps/(MBq/ml)/cm] was superior to that of the conventional system [0.44 kcps/(MBq/ml)/cm]. Our system provided clear images of the rat myocardium, sufficient for practical use in small animal imaging. Our SPECT system, utilizing a

  8. Assessment of technetium-99m technegas scintigraphy for ventilatory impairment in pulmonary emphysema. Comparison of planar and SPECT images

    International Nuclear Information System (INIS)

    Satoh, Katashi; Tanabe, Masatada; Takahashi, Kazue

    1997-01-01

    Pulmonary emphysema can be diagnosed easily by X-ray CT (CT) as a low attenuation area. Recently Tc-99m-Technegas (Technegas) has been used for ventilation scintigraphy. The present study was undertaken to assess the usefulness of planar and SPECT images by using Technegas scintigraphy in patients with pulmonary emphysema. Technegas scintigraphy, CT and pulmonary function tests were performed in 20 patients (males, age 32-78 years). We classified the findings of Technegas images into 4 grades. Comparing planar and SPECT images of Technegas, more detailed findings were shown by SPECT than by planar images in mild cases (6 cases, 30%). In more severe cases, findings of SPECT and planar images were equivalent (14 cases, 70%). The degree of abnormal findings obtained by SPECT was equivalent to that obtained by CT in severe cases (6 cases, 30%). SPECT should be excluded in advanced stages as indicated by planar images. (author)

  9. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  10. Quantification of tomography images for dose calculation for diagnosis and therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Massicano, Felipe

    2010-01-01

    The nuclear medicine area has an increasing slope in the therapy of diseases, particularly in the treatment of radiosensitive tumors. Due to the high dose levels in radionuclide therapy, it is very important the accurate quantify of the dose distribution to avoid deleterious effects on healthy tissues. In Brazil, the internal dosimetry system used is the MIRD (Medical Internal Radiation Dose) based on a reference model that does not have adequate patient data to obtain a dose accurate assessment in therapy. However, in recent years, internal radionuclide dosimetry evaluates the spatial dose distribution base ad on information obtained from CT and SPECT or PET images together with the using of Monte Carlo codes. Those systems are called patient-specific dosimetry systems. In the Nuclear Engineering Center at IPEN, this methodology is in development. When the CT images are inserted into the Monte Carlo code MCNP5 through of use of a interface software called SCMS the dosimetry can be accomplished using patient-specific data, resulting in a more accurate energy deposition in organs of interest. This work aim to contribute with the development of part of that patient-specific dosimetry for therapy. To achieve this goal we have proposed three specific objectives: (1) Development of a software to convert images from Computed Tomography (CT) in the tissue parameters (ρ, ω(ι)); (2) Development of a software to perform attenuation correction in nuclear medicine tomographic images (SPECT or PET) and to provide the map of relative activity and (3) Provide data to the SCMS code by these two software. The software developed for the rst specific objective was the Image Converter Computed Tomography (ICCT), which obtained a good accuracy to determine the density and the tissue composition; the elements that had high variation were carbon and oxygen. Fortunately, this variation for the energy range used in radionuclide therapy is not detrimental to the dose distribution. A

  11. The predictive value of single-photon emission computed tomography/computed tomography for sentinel lymph node localization in head and neck cutaneous malignancy.

    Science.gov (United States)

    Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S

    2015-04-01

    Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  12. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  13. First Robotic SPECT for Minimally Invasive Sentinel Lymph Node Mapping.

    Science.gov (United States)

    Fuerst, Bernhard; Sprung, Julian; Pinto, Francisco; Frisch, Benjamin; Wendler, Thomas; Simon, Hervé; Mengus, Laurent; van den Berg, Nynke S; van der Poel, Henk G; van Leeuwen, Fijs W B; Navab, Nassir

    2016-03-01

    In this paper we present the usage of a drop-in gamma probe for intra-operative Single-Photon Emission Computed Tomography (SPECT) imaging in the scope of minimally invasive robot-assisted interventions. The probe is designed to be inserted and reside inside the abdominal cavity during the intervention. It is grasped during the procedure using a robotic laparoscopic gripper enabling full six degrees of freedom handling by the surgeon. We demonstrate the first deployment of the tracked probe for intra-operative in-patient robotic SPECT enabling augmented-reality image guidance. The hybrid mechanical- and image-based in-patient probe tracking is shown to have an accuracy of 0.2 mm. The overall system performance is evaluated and tested with a phantom for gynecological sentinel lymph node interventions and compared to ground-truth data yielding a mean reconstruction accuracy of 0.67 mm.

  14. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia

    Directory of Open Access Journals (Sweden)

    Berna Okudan

    2018-02-01

    Full Text Available Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%, stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  15. Single photon emission computed tomography in AIDS dementia complex

    International Nuclear Information System (INIS)

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-01-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder

  16. Liver Function in Areas of Hepatic Venous Congestion After Hepatectomy for Liver Cancer: 99mTc-GSA SPECT/CT Fused Imaging Study.

    Science.gov (United States)

    Yoshida, Morikatsu; Beppu, Toru; Shiraishi, Shinya; Tsuda, Noriko; Sakamoto, Fumi; Kuramoto, Kunitaka; Okabe, Hirohisa; Nitta, Hidetoshi; Imai, Katsunori; Tomiguchi, Seiji; Baba, Hideo; Yamashita, Yasuyuki

    2018-05-01

    Background/Aim: The sacrifice of a major hepatic vein can cause hepatic venous congestion (HVC). We evaluated the effects of HVC on regional liver function using the liver uptake value (LUV), that was calculated from 99m Tc-labeled-galactosyl-human-serum-albumin ( 99m Tc-GSA) single-photon emission computed tomography (SPECT) /contrast-enhanced computed tomography (CE-CT) fused images. Patients and Methods: Sixty-two patients underwent 99m Tc-GSA SPECT/CE-CT prior to hepatectomy for liver cancer and at 7 days after surgery were divided into groups with (n=8) and without HVC (n=54). In the HVC group, CT volume (CTv) and LUV were separately calculated in both congested and non-congested areas. Results: The remnant LUV/CTv of the HVC group was significantly smaller than that of the non-HVC group (pliver function per unit volume in the congested areas was approximately 40% of that in the non-congested areas. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. An investigation of head movement with a view to minimising motion artefact during SPECT and PET imaging of the brain

    International Nuclear Information System (INIS)

    Patterson, H.; Clarke, G.H.; Guy, R.; McKay, W.J.

    1998-01-01

    Full text: Motion artefact has long been recognised as a major cause of image degradation. Single Photon Emission Computerised Tomography (SPECT) and Positron Emission Tomography (PET) of the brain are playing an important role in the diagnosis and management of several neurological disorders. If these imaging modalities are to contribute fully to medical imaging it is essential that the improved spatial resolution of these systems is not compromised by patient movement. Thirty volunteer subjects have been examined using a simple video technique and the video images were used to classify and measure head movements which may occur during brain imaging. All subjects demonstrated angular movement within the transverse plane or rotation of the head. Angular movement within the sagittal plane or flexion/extension of the neck occurred in 69% of subjects and 72% of subjects exhibited translational movement of the sagittal plane. There was no movement of the coronal plane; nor was there any translational movement of the sagittal plane. These results suggest that when positioning the patient's head for brain imaging a system of head restraint which minimises rotation of the head should be used if image quality is to be maintained

  18. SPECT imaging of 131I (364 keV): importance of collimation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Saw, C.B.; Leong, L.K.; Serafini, A.N.

    1985-01-01

    A low sensitivity medium energy collimator (LSMEC) designed with thick septa and long bore (theoretical leakage 131 I for a SPECT system operated in both planar and tomographic imaging modes. The collimator was designed to minimize the influence of photon penetration on spatial resolution, in particular the resolution index FWTM. Overall spatial resolution for the planar imaging mode at 10 cm from the collimator face was found to be 11.6 mm FWHM and 21.6 mm FWTM. The corresponding transverse plane and slice thickness resolution was of the order of 17 mm FWHM and 31 mm FWTM, for a radius of rotation of 16 cm. A SPECT resolution phantom was imaged. Two quadrants of cold rods were well resolved, with rod dimensions of 16 and 12.7 mm respectively, the resolution being comparable to that obtained using 99 Tcsup(m) (140 keV) and a low-energy high-resolution collimator. NEMA sensitivity obtained was 75 cpm/μCi 131 I. The resolution measurements obtained suggest that this collimator should be useful for SPECT imaging with 131 I in either radioimmunoimaging or radioimmunotherapy. (author)

  19. Modeling and characterization of a SPECT system with pinhole collimation for the imaging of small animals

    International Nuclear Information System (INIS)

    Auer, Benjamin

    2017-01-01

    My thesis work focuses on the development of several quantitative reconstruction methods dedicated to small animal Single Photon Emission Computed Tomography (SPECT). The latter is based on modeling the acquisition process of the 4-heads pinhole SPECT system available at Institut Pluridisciplinaire Hubert Curien (IPHC) and fully integrated to the AMISSA platform using Monte Carlo simulations. The system matrix approach, combined with the OS-EM iterative reconstruction algorithm, enabled to characterize the system performances and to compare it to the state of the art. Sensitivity of about 0,027% in the center of the field of view associated to a tomographic spatial resolution of 0, 875 ± 0, 025 mm were obtained. The major drawbacks of Monte Carlo methods led us to develop an efficient and simplified modeling of the physical effects occurring in the subject. My approach based on a system matrix decomposition, associated to a scatter pre-calculated database method, demonstrated an acceptable time for a daily imaging subject follow-up (∼ 1 h), leading to a personalized imaging reconstruction (article accepted). The inherent approximations of the scatter pre-calculated approach (first order scattering modeling and segmented emission) have a moderate impact on the recovery coefficients results, nevertheless a correction of about 10% was achieved. (author) [fr

  20. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    International Nuclear Information System (INIS)

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    2002-01-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  1. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    2002-03-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  2. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  3. Clinical evaluation of the Tl-201 ECG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Mochizuki, Teruhito

    1989-01-01

    In order to evaluate the clinical usefulness of the Tl-201 ECG-gated myocardial single photon emission computed tomography (SPECT), we compared the wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT with the wall motion of the ECG-gated blood pool SPECT. Materials were 87 patients of 50 old myocardial infarctions (OMIs), 19 hypertrophic cardiomyopathies (HCMs), 2 dilated cardiomyopathies (DCMs) and 16 others. After intravenous injection of 111-185 MBq (3-5 mCi) of Tl-201 at rest, the projection data were acquired using a rotating gamma-camera through 180deg, from RAO 45deg in 24 directions, each of which consisted of 80-100 beats. For the reconstruction of ED, ES and non-gated images, R-R interval was divided into about 20 (18-22) fractions. In 348 regions of interest (anterior, septal, lateral and inferior wall) in 87 cases, wall motion and the Tl-201 uptake were evaluated to three grades (normal, hypokinesis and akinesis; normal, low and defect, respectively), which were compared with the wall motion of the ECG-gated blood pool SPECT. The wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT correlated well with the wall motion of the ECG-gated blood pool SPECT (96.6% and 87.9%, respectively). In conclusion, the ECG-gated myocardial SPECT can provide clear perfusion images and is a very useful diagnostic strategy to evaluate the regional wall motion and perfusion simultaneously. (author)

  4. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  5. Quality control of analogue to digital conversion circuitry for artefact-free SPECT imaging

    International Nuclear Information System (INIS)

    Gillen, G.J.; Elliott, A.T.

    1992-01-01

    A simple method for the objective, quantitative assessment of analogue to digital conversion (ADC) differential linearity has been developed for SPECT imaging. The analytical approach uses the fact that a differential non-linearity in the ADC will produce a non-uniformity in the digitized image which has a well defined periodicity. This can be most clearly demonstrated in the frequency space domain by determining the Fourier transform of a thick profile which is taken through the centre of a flood field image. The accuracy of the method permits deteriorations in the performance of ADCs to be detected well before significant reductions in SPECT image quality are produced. The availability of a quantitative measure of ADC performance, which can be tested objectively using a simple data acquisition method, is of value in the specification, acceptance testing and general quality control of gamma camera SPECT systems. (author)

  6. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mathias [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim–Heidelberg University, Mannheim (Germany); Nance, John W. [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Moscariello, Antonio [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, “A. Gemelli” Hospital, Rome (Italy); Weininger, Markus; Rowe, Garrett W.; Ruzsics, Balazs [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Kang, Doo Kyoung [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); Chiaramida, Salvatore A. [Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Schoenberg, Stefan O.; Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim–Heidelberg University, Mannheim (Germany); and others

    2012-12-15

    Purpose: We compared cost-effectiveness and potential lifetime benefits of using dual-energy computed tomography (DECT) for myocardial perfusion assessment instead of single photon emission computed tomography (SPECT) for the workup of coronary artery disease (CAD). Materials and methods: A decision and simulation model was developed to estimate cost and health effects of using DECT myocardial perfusion imaging instead of SPECT for identifying patients in need of invasive imaging and possible revascularization. The model was based on the performance indices of stress/rest DECT compared with stress/rest SPECT for detecting myocardial perfusion deficits in 50 patients (mean age 61 ± 10 years) with CAD. Stress/rest perfusion and delayed enhancement cardiac MRI served as reference standard. For DECT a reimbursement of US$1700 was assumed but costs of cardiac MRI were not included in the model. All other actual healthcare costs in these patients were derived from MUSC's hospital billing system. Results: Compared with cardiac MRI, DECT (versus SPECT) had 90% (85%) sensitivity and 71% (58%) specificity for identifying patients with obstructive CAD. Compared with the no imaging and no treatment strategy, routine SPECT gained 13.49 quality-adjusted life-years (QALYs) with an incremental cost-effectiveness ratio (ICER) of US$3557 (in 2010) per QALY. In comparison, DECT ICER was lower (US$3.191 per QALY, p = 0.0002) and an additional 0.64 QALYs was obtained (total of 14.13 QALYs) if compared with the SPECT strategy as well as the no imaging and no treatment strategy. Conclusion: Using DECT as the first-line imaging test for myocardial perfusion for the workup of patients with CAD has the potential to provide gains in QALYs, while lowering costs if compared to routine myocardial perfusion SPECT.

  7. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease

    International Nuclear Information System (INIS)

    Meyer, Mathias; Nance, John W.; Schoepf, U. Joseph; Moscariello, Antonio; Weininger, Markus; Rowe, Garrett W.; Ruzsics, Balazs; Kang, Doo Kyoung; Chiaramida, Salvatore A.; Schoenberg, Stefan O.; Fink, Christian

    2012-01-01

    Purpose: We compared cost-effectiveness and potential lifetime benefits of using dual-energy computed tomography (DECT) for myocardial perfusion assessment instead of single photon emission computed tomography (SPECT) for the workup of coronary artery disease (CAD). Materials and methods: A decision and simulation model was developed to estimate cost and health effects of using DECT myocardial perfusion imaging instead of SPECT for identifying patients in need of invasive imaging and possible revascularization. The model was based on the performance indices of stress/rest DECT compared with stress/rest SPECT for detecting myocardial perfusion deficits in 50 patients (mean age 61 ± 10 years) with CAD. Stress/rest perfusion and delayed enhancement cardiac MRI served as reference standard. For DECT a reimbursement of US$1700 was assumed but costs of cardiac MRI were not included in the model. All other actual healthcare costs in these patients were derived from MUSC's hospital billing system. Results: Compared with cardiac MRI, DECT (versus SPECT) had 90% (85%) sensitivity and 71% (58%) specificity for identifying patients with obstructive CAD. Compared with the no imaging and no treatment strategy, routine SPECT gained 13.49 quality-adjusted life-years (QALYs) with an incremental cost-effectiveness ratio (ICER) of US$3557 (in 2010) per QALY. In comparison, DECT ICER was lower (US$3.191 per QALY, p = 0.0002) and an additional 0.64 QALYs was obtained (total of 14.13 QALYs) if compared with the SPECT strategy as well as the no imaging and no treatment strategy. Conclusion: Using DECT as the first-line imaging test for myocardial perfusion for the workup of patients with CAD has the potential to provide gains in QALYs, while lowering costs if compared to routine myocardial perfusion SPECT.

  8. Single photon emission computed tomography (SPECT): Clinical routine diagnosis of cerebral malfunction

    International Nuclear Information System (INIS)

    Neidl, K.F.W.

    1993-01-01

    Positron emission tomography is the gold standard for in vivo research in neurophysiology and pathology. The introduction of SPECT and the development of such tracers as 99m Tc-HMPAYO ( 99m Tc-d,l-hexamethylpropylenaminoxim) and, more recently, 123 I-iomazenil and 123 I-IBZM ( 123 I-3-iodo-6-methoxybenzamide) allowed closer examination of the perfusion of the brain and neuroreceptor density mapping in more than the few institutions that can afford PET and the production of special tracers marked with a positron emitting nucleus. Nuclear medicine's future will be based on neuroreceptor density mapping, as further tracers will become commercially available and no other technique can probably show such low concentrations of the receptors. Probably MR techniques will be used for brain's perfusion measurement in future. For examination of a limited cerebral region xenon-enhanced CT is an alternative to perfusion measurements with HMPAO, or a very interesting supplement. Of the old techniques in nuclear medicine, examination of the liquor dynamics is still feasible and well supplemented by SPECT. (orig./MG) [de

  9. HM-PAO SPECT in the diagnosis of cerebrovascular disease

    International Nuclear Information System (INIS)

    Cordes, M.; Rummeny, E.; Reissmann, M.; Fox, K.; Panitz, N.; Pfannenstiel, P.

    1987-01-01

    Single photon emission computed tomography (SPECT) after injection of 99m-Tc-HM-PAO was used to examine 34 patients whose clinical findings could not exclude a cerebrovascular disease. In all patients an X-ray computed tomography examination was inconclusive for the clinical-neurological findings. The regional cerebral bloodflow was pathologically disturbed in 10 of 34 patients in the HM-PAO SPECT examination. The detection of the regional cerebral bloodflow with HM-PAO SPECT is helpful in the diagnosis of cerebrovascular disease. (orig.) [de

  10. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    International Nuclear Information System (INIS)

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123 I brain SPECT obtained by the hybrid SPECT/CT device. We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123 I solution (20.1 kBq/mL) in the gray matter region and with K 2 HPO 4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity

  11. Preoperative localization of epileptic foci with SPECT brain perfusion imaging, electrocorticography, surgery and pathology

    International Nuclear Information System (INIS)

    Jia Shaowei; Xu Wengui; Chen Hongyan; Weng Yongmei; Yang Pinghua

    2002-01-01

    Objective: The value of preoperative localization of epileptic foci with SPECT brain perfusion imaging was investigated. Methods: The study population consisted of 23 patients with intractable partial seizures which was difficult to control with anticonvulsant for long period. In order to preoperatively locate the epileptic foci, double SPECT brain perfusion imaging was performed during interictal and ictal stage. The foci were confirmed with electrocorticography (EcoG), surgery and pathology. Results: The author checked with EcoG the foci shown by SPECT, 23 patients had all typical spike discharge. The regions of radioactivity increase in ictal matched with the abnormal electrical activity areas that EcoG showed. The spike wave originated in the corresponding cerebrum cortex instead of hyperplastic and adherent arachnoid or tumor itself. Conclusions: SPECT brain perfusion imaging contributes to distinguishing location, size, perfusion and functioning of epileptogenic foci, and has some directive function on to making out a treatment programme at preoperation

  12. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    International Nuclear Information System (INIS)

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-01-01

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  13. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  14. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  15. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  16. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    International Nuclear Information System (INIS)

    Negahdar, M; Yamamoto, T; Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P; Diehn, M

    2014-01-01

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding

  17. Comparison of SPECT bone scintigraphy with MRI for diagnosis of meniscal tears

    International Nuclear Information System (INIS)

    Tahmasebi, Mohammad-naghi; Saghari, Mohsen; Moslehi, Masoud; Gholamrezanezhad, Ali

    2005-01-01

    Scintigraphy has been considered as competitive to MRI, but limited data are available on the accuracy of single photon emission tomography (SPECT) compared with MRI for the assessment of meniscal tears. Our objective was to assess the value of SPECT in comparison to MRI. Between January 2003 and March 2004, sixteen patients were studied with both modalities and the accuracy rates of SPECT scan results, and MRI findings in the diagnosis of meniscal tears were compared. Arthroscopy was the gold standard. The respective sensitivity rate, specificity rate, and positive and negative predictive accuracies of MRI were 89%, 94%, 93%, and 79% and for SPECT those were 78%, 94%, 94%, and 88%. There was good agreement on the presence or absence of tears between two modalities (κ statistic = 0.699). SPECT and MRI are both valuable imaging techniques. SPECT is a useful alternative when MRI is unavailable or unsuitable and it is beneficial when more possible accuracy is desired (such as when MRI results are either inconclusive or conflict with other clinical data)

  18. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    Science.gov (United States)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  19. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  20. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Science.gov (United States)

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  1. A comparison between dopamine transporters imaging and perfusion SPECT with HMPAO-99mTc in the diagnosis of dementia with Lewy bodies

    International Nuclear Information System (INIS)

    Voitota, J.B.; Emptaz, A.; Szurhaj, W.; Steinling, M.; Bombois, St.; Pasquier, F.

    2007-01-01

    Scintigraphic imaging of dementia relies today essentially on the study of brain single photo emission computed tomography (SPECT) perfusion, after intravenous injection of 99m Tc radiopharmaceutical. This paper is based on the guidelines published in October 2001 by the European Association of Nuclear medicine (http:// eanm.org). Dementia with Lewy bodies is the second cause of degenerative dementia. Differential diagnosis may be difficult, in spite of the emergence of standardized diagnostic criteria. Tomo-scintigraphy using iodine 123-labelled FP-CIT (DaTSCAN) could play a role in this process. Cerebral perfusion SPECT imaging is an important step of demented patient evaluation. We compared the diagnostic performance of both of these procedures in the diagnosis of dementia with Lewy bodies. We studied 15 patients; ten DaTSCAN and 14 cerebral perfusion studies were performed. Clinical diagnosis at the end of follow-up was established as the diagnostic reference. Cerebral perfusion SPECT showed a very low sensitivity (20%) and a good specificity (89%); considering a prevalence of dementia with Lewy bodies of 20%, positive predictive value (PPV) was 31% and negative predictive value (NPV) 82%. Performances of DaTSCAN tomo-scintigraphy were more encouraging, (sensitivity and specificity of 100%); predictive values are both of 100%. As a conclusion, DaTSCAN tomo-scintigraphy performs better than cerebral perfusion SPECT in the diagnosis of dementia with Lewy bodies and no conjoint or sequential use of those tests can be recommended. (authors)

  2. The identification of spinal pathology in chronic low back pain using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Ryan, R.J.; Gibson, T.; Fogelman, I.

    1992-01-01

    Single photon emission computed tomography (SPECT) findings were investigated in 80 consecutive patients (aged 18-70 years, median 44) referred to a rheumatology outpatient clinic with low back pain persisting for more than 3 months. Lesions of the lumbar spine were demonstrated in 60% of patients using SPECT but in only 35% with planar imaging. Fifty-one per cent of all lesions were only detected by SPECT, and lesions visualized on SPECT could be precisely localized to the vertebral body, or different parts of the posterior elements. Fifty per cent of lesions involved the facetal joints of which almost 60% were identified on SPECT alone. X-rays of the lumbar spine, with posterior oblique views, failed to demonstrate abnormalities corresponding to almost all SPECT posterior element lesions although it identified abnormalities corresponding to over 60% of anterior SPECT lesions. Computed tomography (CT) was performed in 30 patients with a SPECT lesion and sites of facetal joint activity corresponded to facetal osteoarthritis in 82%. (author)

  3. The need of appropriate brain SPECT templates for SPM comparisons

    International Nuclear Information System (INIS)

    Morbelli, S.; Altrinetti, V.; Piccardo, A.; Rodriguez, G.; Brugnolo, A.; Nobili, F.; Mignone, A.; Pupi, A.; Koulibaly, P.M.

    2008-01-01

    Statistical parametric mapping (SPM) is used worldwide to compare brain perfusion single photon emission computed tomography (SPECT) data. The default template within the SPM package used for SPECT image normalization includes images of a group of healthy subjects studied with 99m TcHMPAO. Since [ 99m Tc] HMPAO and [ 99m Tc] ECD have shown to distribute differently in SPECT studies, we formulated the hypothesis that comparing set of [ 99m Tc]ECD data normalized by means of a [ 99m Tc]HMPAO template may lead to incorrect results. A customized [ 99m Tc]ECD template was built with SPECT and magnetic resonance imaging (MRI) images of 22 neurologically healthy women. Then, two sets of subjects, i.e. a group of patients with very early Alzheimer's disease (eAD) and a matched control group, studied by means of [ 99m Tc]ECD SPECT, were chosen for comparisons. The same statistical approach (t-test between eAD patients and controls and correlation analysis between brain SPECT and a cognitive score) was applied twice, i.e. after normalization with either the default [ 99m Tc]HMPAO template or the customized [ 99m Tc]ECD template. In the comparison between eAD and controls, a cluster of difference in the posterior-cingulate gyrus of both hemispheres was only highlighted when using the customized [ 99m Tc]ECD template, but was missed when using the default [ 99m Tc]HMPAO template. In the correlation between brain perfusion and a cognitive score, the significant cluster was more significant and far more extended, also including the right superior temporal gyrus, using the customized [ 99m Tc]ECD template than using the default [ 99m Tc]HMPAO template. These data suggest the need of customized, radiopharmaceutical-matched SPECT templates to be used within the SPM package. The present customized [ 99m Tc]ECD template is now freely available on the web. (authors)

  4. Limitations of Tc99m-MIBI-SPECT imaging scans in persistent primary hyperparathyroidism.

    Science.gov (United States)

    Witteveen, Janneke E; Kievit, Job; Stokkel, Marcel P M; Morreau, Hans; Romijn, Johannes A; Hamdy, Neveen A T

    2011-01-01

    In primary hyperparathyroidism (PHPT) the predictive value of technetium 99m sestamibi single emission computed tomography (Tc99m-MIBI-SPECT) for localizing pathological parathyroid glands before a first parathyroidectomy (PTx) is 83-100%. Data are scarce in patients undergoing reoperative parathyroidectomy for persistent hyperparathyroidism. The aim of the present study was to determine the value of Tc99m-MIBI-SPECT in localizing residual hyperactive parathyroid tissue in patients with persistent primary hyperparathyroidism (PHPT) after initial excision of one or more pathological glands. We retrospectively evaluated the localizing accuracy of Tc99m-MIBI-SPECT scans in 19 consecutive patients with persistent PHPT who had a scan before reoperative parathyroidectomy. We used as controls 23 patients with sporadic PHPT who had a scan before initial surgery. In patients with persistent PHPT, Tc99m-MIBI-SPECT accurately localized a pathological parathyroid gland in 33% of cases before reoperative parathyroidectomy, compared to 61% before first PTx for sporadic PHPT. The Tc99m-MIBI-SPECT scan accurately localized intra-thyroidal glands in 2 of 7 cases and a mediastinal gland in 1 of 3 cases either before initial or reoperative parathyroidectomy. Our data suggest that the accuracy of Tc99m-MIBI-SPECT in localizing residual hyperactive glands is significantly lower before reoperative parathyroidectomy for persistent PHPT than before initial surgery for sporadic PHPT. These findings should be taken in consideration in the preoperative workup of patients with persistent primary hyperparathyroidism.

  5. A robust computational solution for automated quantification of a specific binding ratio based on [123I]FP-CIT SPECT images

    International Nuclear Information System (INIS)

    Oliveira, F. P. M.; Tavares, J. M. R. S.; Borges, Faria D.; Campos, Costa D.

    2014-01-01

    The purpose of the current paper is to present a computational solution to accurately quantify a specific to a non-specific uptake ratio in [ 123 I]fP-CIT single photon emission computed tomography (SPECT) images and simultaneously measure the spatial dimensions of the basal ganglia, also known as basal nuclei. A statistical analysis based on a reference dataset selected by the user is also automatically performed. The quantification of the specific to non-specific uptake ratio here is based on regions of interest defined after the registration of the image under study with a template image. The computational solution was tested on a dataset of 38 [ 123 I]FP-CIT SPECT images: 28 images were from patients with Parkinson’s disease and the remainder from normal patients, and the results of the automated quantification were compared to the ones obtained by three well-known semi-automated quantification methods. The results revealed a high correlation coefficient between the developed automated method and the three semi-automated methods used for comparison (r ≥0.975). The solution also showed good robustness against different positions of the patient, as an almost perfect agreement between the specific to non-specific uptake ratio was found (ICC=1.000). The mean processing time was around 6 seconds per study using a common notebook PC. The solution developed can be useful for clinicians to evaluate [ 123 I]FP-CIT SPECT images due to its accuracy, robustness and speed. Also, the comparison between case studies and the follow-up of patients can be done more accurately and proficiently since the intra- and inter-observer variability of the semi-automated calculation does not exist in automated solutions. The dimensions of the basal ganglia and their automatic comparison with the values of the population selected as reference are also important for professionals in this area.

  6. Clinical features and 123I-FP-CIT SPECT imaging in drug-induced parkinsonism and Parkinson's disease

    International Nuclear Information System (INIS)

    Diaz-Corrales, Francisco J.; Escobar-Delgado, Teresa; Sanz-Viedma, Salome; Garcia-Solis, David; Mir, Pablo

    2010-01-01

    To determine clinical predictors and accuracy of 123 I-FP-CIT SPECT imaging in the differentiation of drug-induced parkinsonism (DIP) and Parkinson's disease (PD). Several clinical features and 123 I-FP-CIT SPECT images in 32 patients with DIP, 25 patients with PD unmasked by antidopaminergic drugs (PDu) and 22 patients with PD without a previous history of antidopaminergic treatment (PDc) were retrospectively evaluated. DIP and PD shared all clinical features except symmetry of parkinsonian signs which was more frequently observed in patients with DIP (46.9%) than in patients with PDu (16.0%, p 123 I-FP-CIT SPECT images were normal in 29 patients with DIP (90.6%) and abnormal in all patients with PD, and this imaging technique showed high levels of accuracy. DIP and PD are difficult to differentiate based on clinical signs. The precision of clinical diagnosis could be reliably enhanced by 123 I-FP-CIT SPECT imaging. (orig.)

  7. Combined SPECT/CT improves detection of initial bone invasion and determination of resection margins in squamous cell carcinoma of the head and neck compared to conventional imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Oral and Maxillofacial Surgery, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Klinik und Poliklinik fuer Mund-Kiefer und Gesichtschirurgie, Muenchen (Germany); Schuster, T. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Institute of Medical Statistics and Epidemiology, Munich (Germany); Chlebowski, A.; Kesting, M.; Bissinger, O.; Weitz, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Oral and Maxillofacial Surgery, Munich (Germany); Lange, P. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Diagnostic Radiology, Munich (Germany); Scheidhauer, K.; Schwaiger, M.; Dinges, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany)

    2014-07-15

    Knowledge of the presence and extent of bone infiltration is crucial for planning the resection of potential bone-infiltrating squamous cell carcinomas of the head and neck (HNSCC). Routinely, plain-film radiography, multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are used for preoperative staging, but they show relatively high rates of false-positive and false-negative findings. Scintigraphy with {sup 99m}Tc-bisphosphonate has the ability to show increased metabolic bone activity. If combined with anatomical imaging (e.g. (SPECT)/CT), it facilitates the precise localization of malignant bone lesions. The aim of this study was to analyse the indications and advantages of SPECT/CT compared with standard imaging modalities and histology with regard to specificity and sensitivity A longitudinally evaluated group of 30 patients with biopsy-proven HNSCC adjacent to the mandible underwent {sup 99m}Tc-bisphosphonate SPECT/CT, MRI, MSCT and conventional radiography before partial or rim resection of the mandible was performed. Bone infiltration was first evaluated with plain films, MSCT and MRI. In a second reading, SPECT/CT data were taken into account. The results (region and certainty of bone invasion) were evaluated among the different imaging modalities and finally compared with histological specimens from surgical resection as the standard of reference. For a better evaluation of the hybrid property of SPECT/CT, a retrospectively evaluated group of 20 additional patients with tumour locations similar to those of the longitudinally examined SPECT/CT group underwent SPECT, MSCT and MRI. To assess the influence of dental foci on the specificity of the imaging modalities, all patients were separated into two subgroups depending on the presence or absence of teeth in the area of potential tumour-bone contact. Histologically proven bone infiltration was found in 17 patients (57 %) when analysed by conventional imaging modalities. SPECT/CT data

  8. Combined SPECT/CT improves detection of initial bone invasion and determination of resection margins in squamous cell carcinoma of the head and neck compared to conventional imaging modalities

    International Nuclear Information System (INIS)

    Kolk, A.; Schuster, T.; Chlebowski, A.; Kesting, M.; Bissinger, O.; Weitz, J.; Lange, P.; Scheidhauer, K.; Schwaiger, M.; Dinges, J.

    2014-01-01

    Knowledge of the presence and extent of bone infiltration is crucial for planning the resection of potential bone-infiltrating squamous cell carcinomas of the head and neck (HNSCC). Routinely, plain-film radiography, multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are used for preoperative staging, but they show relatively high rates of false-positive and false-negative findings. Scintigraphy with 99m Tc-bisphosphonate has the ability to show increased metabolic bone activity. If combined with anatomical imaging (e.g. (SPECT)/CT), it facilitates the precise localization of malignant bone lesions. The aim of this study was to analyse the indications and advantages of SPECT/CT compared with standard imaging modalities and histology with regard to specificity and sensitivity A longitudinally evaluated group of 30 patients with biopsy-proven HNSCC adjacent to the mandible underwent 99m Tc-bisphosphonate SPECT/CT, MRI, MSCT and conventional radiography before partial or rim resection of the mandible was performed. Bone infiltration was first evaluated with plain films, MSCT and MRI. In a second reading, SPECT/CT data were taken into account. The results (region and certainty of bone invasion) were evaluated among the different imaging modalities and finally compared with histological specimens from surgical resection as the standard of reference. For a better evaluation of the hybrid property of SPECT/CT, a retrospectively evaluated group of 20 additional patients with tumour locations similar to those of the longitudinally examined SPECT/CT group underwent SPECT, MSCT and MRI. To assess the influence of dental foci on the specificity of the imaging modalities, all patients were separated into two subgroups depending on the presence or absence of teeth in the area of potential tumour-bone contact. Histologically proven bone infiltration was found in 17 patients (57 %) when analysed by conventional imaging modalities. SPECT/CT data revealed

  9. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Science.gov (United States)

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pimproved image quality compared with local processing protocols and has been

  10. Evaluation of performance quality of SPECT camera in Sharyati Hospital of Tehran University of Medical Sciences

    International Nuclear Information System (INIS)

    Takavar, A.

    2001-01-01

    In nuclear medicine, there are two methods of imaging, planar and tomography. Single photon emission computerized tomography (SPECT) shows better image details and therefore is influenced more by image parameters such as resolution, uniformity, sensitivity, etc. Manufacturers provide customers with data which are obtained by complicated and sometimes secret methods. Marketing companies test and verify these data and buyers perform acceptance testing on installation of system. Since acceptance testing is not usually done in our country, follow up of system performance and therefore setting up of a comprehensive quality control program faces difficulty. In this research which was done sometimes after installation, evaluation of SPECT system was carried out and data obtained were compared with those of manufacturer catalogue. It was found that in most cases our figures do not correspond to those of manufacturer catalogue, therefore acceptance testing using standard and precision devices being carried out by trained personnel is strongly recommended

  11. Assessment of left ventricular function using 201Tl electrocardiogram-gated myocardial single photon emission computed tomography

    International Nuclear Information System (INIS)

    Nishikubo, Naotsugu; Tamai, Hiroyuki

    2013-01-01

    Advances in computed tomography (CT) technology make it possible to obtain left ventricular wall motion using 3D reconstruction. In this study, we compared the images obtained from CT and 201 Tl electrocardiogram (ECG) gated single photon emission computed tomography (SPECT). In 20 patients with ischemic heart disease, we performed 201 Tl ECG gated SPECT (GE Healthcare Millennium VG) and ECG gated CT (Philips Medical Systems Brilliance iCT) to evaluate of left ventricular wall motion during the resting phase. In SPECT, left ventricular images were reconstructed using quantitative gated SPECT (QGS) software. In CT, the images were reconstructed using Virtual Place (AZE Software). The left ventricle was classified into five regions (anterior, lateral, inferior, septal, and apical). The amplitude of the wall motion was classified into five grades according to AHA classification. The values of the wall motion were separately checked by two radiographers. Assessment of left ventricular function myocardial wall movement using the three-dimensional movie display with ECG gated myocardial SPECT data was in agreement with the evaluation by cardiac CT inspection, and corresponded with wall motion in 88 of all 100 segments. SPECT analysis has the same quantity as that of obtained from CT for evaluation of left ventricular wall motion. (author)

  12. Apparent CBF decrease with normal aging due to partial volume effects: MR-based partial volume correction on CBF SPECT.

    Science.gov (United States)

    Inoue, Kentaro; Ito, Hiroshi; Goto, Ryoi; Nakagawa, Manabu; Kinomura, Shigeo; Sato, Tachio; Sato, Kazunori; Fukuda, Hiroshi

    2005-06-01

    Several studies using single photon emission tomography (SPECT) have shown changes in cerebral blood flow (CBF) with age, which were associated with partial volume effects by some authors. Some studies have also demonstrated gender-related differences in CBF. The present study aimed to examine age and gender effects on CBF SPECT images obtained using the 99mTc-ethyl cysteinate dimer and a SPECT scanner, before and after partial volume correction (PVC) using magnetic resonance (MR) imaging. Forty-four healthy subjects (29 males and 15 females; age range, 27-64 y; mean age, 50.0 +/- 9.8 y) participated. Each MR image was segmented to yield grey and white matter images and coregistered to a corresponding SPECT image, followed by convolution to approximate the SPECT spatial resolution. PVC-SPECT images were produced using the convoluted grey matter MR (GM-MR) and white matter MR images. The age and gender effects were assessed using SPM99. Decreases with age were detected in the anterolateral prefrontal cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally, in the GM-MR images and the SPECT images. In the PVC-SPECT images, decreases in CBF in the lateral prefrontal cortex lost their statistical significance. Decreases in CBF with age found along the lateral sulcus and the lateral ventricle, on the other hand, remained statistically significant, but observation of the spatially normalized MR images suggests that these findings are associated with the dilatation of the lateral sulcus and lateral ventricle, which was not completely compensated for by the spatial normalization procedure. Our present study demonstrated that age effects on CBF in healthy subjects could reflect morphological differences with age in grey matter.

  13. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    International Nuclear Information System (INIS)

    Accorsi, R.; Autiero, M.; Celentano, L.

    2007-01-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125 I, 27-35 keV, 99m Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  14. Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study

    Energy Technology Data Exchange (ETDEWEB)

    Kamagata, Koji; Sato, Kanako; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K.; Aoki, Shigeki [Juntendo University Graduate School of Medicine, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Nakatsuka, Tomoya; Inaoka, Tsutomu; Terada, Hitoshi [Toho University Sakura Medical Center, Department of Radiology, Sakura, Sakura (Japan); Sakakibara, Ryuji; Tsuyusaki, Yohei [Toho University Sakura Medical Center, Department of Neurology, Sakura, Sakura (Japan); Takamura, Tomohiro [University of Yamanashi, Department of Radiology, Chuo-shi, Yamanashi (Japan)

    2017-01-15

    The characteristics of dementia with Lewy bodies (DLB), Alzheimer's disease (AD) and amnestic mild cognitive impairment (a-MCI) overlap but require different treatments; therefore, it is important to differentiate these pathologies. Assessment of dopamine uptake in the striatum using dopamine transporter (DaT) single-photon emission computed tomography (SPECT) is the gold standard for diagnosing DLB; however, this modality is expensive, time consuming and involves radiation exposure. Degeneration of the substantia nigra nigrosome-1, which occurs in DLB, but not in AD/a-MCI, can be identified by 3T susceptibility-weighted imaging (SWI). Therefore, the aim of this retrospective observational study was to compare SWI with DaT-SPECT for differentiation of DLB from AD/a-MCI. SWI data were acquired for patients with clinically diagnosed DLB (n = 29), AD (n = 18), a-MCI (n = 13) and healthy controls (n = 26). Images were analysed for nigrosome-1 degeneration. Diagnostic accuracy was evaluated for DLB, AD and a-MCI compared with striatal dopamine uptake using DaT-SPECT. SWI achieved 90% diagnostic accuracy (93% sensitivity, 87% specificity) for the detection of nigrosome-1 degeneration in DLB and not in AD/a-MCI as compared with 88.3% accuracy (93% sensitivity, 84% specificity) using DaT-SPECT. SWI nigrosome-1 evaluation was useful in differentiating DLB from AD/a-MCI, with high accuracy. This less invasive and less expensive method is a potential alternative to DaT-SPECT for the diagnosis of DLB. (orig.)

  15. Feasibility of Stereo-Infrared Tracking to Monitor Patient Motion During Cardiac SPECT Imaging

    OpenAIRE

    Beach, Richard D.; Pretorius, P. Hendrik; Boening, Guido; Bruyant, Philippe P.; Feng, Bing; Fulton, Roger R.; Gennert, Michael A.; Nadella, Suman; King, Michael A.

    2004-01-01

    Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We investigated the feasibility of monitoring patient motion using the Polaris motion-tracking system. This system uses passive infrared reflection from small spheres to provide real-time position data with vendor stated 0.35 mm accuracy and 0.2 mm repeatability. In our configuration, the Polaris system views through the SPECT gantry toward the patient's head. List-mode event data was temporally synchronized w...

  16. Single photon emission computed tomography (SPECT) in neurocysticercosis

    International Nuclear Information System (INIS)

    Braga, Francisco Jose H. N; Santos, Antonio C; Takanayagui, Oswaldo M; Agapejev, Svetlana; Maes, A

    2002-01-01

    Neurocysticercosis (NC) is a parasitic infectious disease caused by Taenia solium eggs that set in the brain. Its incidence is increasing both in the developing and the developed world, as a result of low economical and hygiene levels and immigration, respectively. Clinical manifestation of disease varies from no symptoms to epilepsy, increased intra-cranial pressure, arachnoiditis and dementia. In order to evaluate function (perfusion) of affected brains, we studied 40 patients (21 females and 19 males, 19-71 yo) by means of SPECT (ECD, ethyl cysteinate dimer, labelled with 99mTc) and with and without contrast CT. SPECT studies were all abnormal. No difference was noted between active and inactive disease. Two SPECT patterns were noted: a) several areas of focally reduced uptake, resulting from coalescent and big lesions and large destruction of brain tissue (small, isolated and symmetric cysts seen in CT were missed by SPECT); b) diffuse atrophy with reduction of the tracer uptake, associated with ventricle dilatation, corresponding to the cases where ventricular NC was important. Interestingly, we noted diffuse hypoperfusion, with the scintigraphic pattern of atrophy in 5 cases of massive parenchymal infection; in such cases, CT signs of atrophy were clearly less prominent. The first scintigraphic aspect can be explained by the destruction of large areas of brain, which produces focal absence of perfusion; generalised vasculitis and the destruction of large portions of brain tissue could explain the difference noted between the SPECT and the CT aspects in the 5 cases of massive parenchimal infection, and this may be interesting for prognosis. Dilatation of ventricles and Sylvian fissures were interestingly prominent in SPECT. SPECT may be of great value to evaluate brain perfusion in NC (Au)

  17. Bone scan and SPECT/CT findings in marble bone disease

    International Nuclear Information System (INIS)

    Kapoor, Jiten; Joshi, Prathamesh; Lele, Vikram

    2012-01-01

    Marble bone disease or osteopetrosis, is a rare inborn disorder characterized by the failure of osteoclasts to resorb bone. Overall incidence of the disease is estimated to be 1 case in 100,000-500,000 population. Whereas the radiographic features of the disease are well known, information on bone scan imaging is sparse in the literature. We present technitium 99m methylene diphosphonate ( 99m Tc MDP) bone scan features of osteopetrosis, along with single photon emission computed tomography-computed tomography(SPECT/CT) correlation in a young male.

  18. Bone scan and SPECT/CT findings in marble bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Jiten; Joshi, Prathamesh; Lele, Vikram [Jaslok Hospital and Research Centre, Woril (India)

    2012-03-15

    Marble bone disease or osteopetrosis, is a rare inborn disorder characterized by the failure of osteoclasts to resorb bone. Overall incidence of the disease is estimated to be 1 case in 100,000-500,000 population. Whereas the radiographic features of the disease are well known, information on bone scan imaging is sparse in the literature. We present technitium 99m methylene diphosphonate ({sup 99m}Tc MDP) bone scan features of osteopetrosis, along with single photon emission computed tomography-computed tomography(SPECT/CT) correlation in a young male.

  19. Clinical significance of I-123 IMP brain SPECT in children with brain diseases

    International Nuclear Information System (INIS)

    Takishima, Teruo; Machida, Kikuo; Honda, Norinari; Mamiya, Toshio; Takahashi, Taku; Kamano, Tsuyoshi; Hasegawa, Noriko

    1990-01-01

    Single photon emission computed tomography (SPECT) of the brain using N-isopropyl p-I-123-iodoamphetamine (I-123 IMP) was performed in 43 children with suspected brain diseases. Forty-three children (25 males and 18 females), with an age range of 24 days-15 years (mean: 6.6 years), were included in the study. Six patients were subsequently diagnosed as normal. Early SPECT of the brain was performed 30 minutes after intravenous administration of 74-111 MBq (2-3 mCi) I-123 IMP using a rotating gamma camera equipped with a 30-degree slant hole and medium energy collimator. Transverse images were reconstructed by Shepp-Logan filtered back projection method with attenuation correction after spatial filtering using an 8th order Butterworth-Wiener filter. Findings of I-123 IMP SPECT were compared with those of X-ray computed tomography (CT) and electroencephalography (EEG). The results showed that in I-123 IMP SPECT, abnormality was found in 30 out of 37 children with brain diseases. The incidence of abnormal findings in the 37 patients was 81% in I-123 IMP SPECT, 61% in X-ray CT, and 78% in EEG; in both cryptogenic and secondary epilepsy, the incidence of abnormality was higher in I-123 IMP SPECT than in X-ray CT. (70% and 94% vs 50% and 81% respectively), and epileptic foci detected by EEG did not correspond with defects found using I-123 IMP SPECT in 27% of the patients; and in asphyxiated infants, a high incidence of abnormality was observed on both I-123 IMP SPECT (86%) and X-ray CT (86%). In conclusion, I-123 IMP SPECT is a clinically useful examination in children with brain disease. (author)

  20. 99mTc-DMSA renal uptake in urological diseases measured from renal tomographic images using single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Oishi, Yukihiko; Tashiro, Kazuya; Kishimoto, Koichi; Wada, Tetsuro; Torii, Shinichiro; Yoshigoe, Fukuo; Machida, Toyohei; Yamada, Hideo; Toyama, Hinako.

    1987-01-01

    To determine renal function, 99m Tc-DMSA renal uptake was measured from renal tomographic images obtained by single photon emission computed tomography (SPECT). A total of 77 tests was conducted on 73 patients with various diseases in the kidneys and urinary tract to determine renal uptake. The correlation coefficient(r) between total renal volume and total renal uptake was 0.3509 and that between renal volume and uptake of 143 kidneys was 0.5433. In 62 patients whose creatinine clearance could be measured, the correlation coefficient between creatinine clearance and total renal volume was 0.2352, and that between creatinine clearance and total renal uptake was 0.8854, that is, creatinine clearance correlated well with renal uptake. Renal volume and uptake determined in 10 normal male and 10 normal female adults were 220 ml and 26.8 % for the right kidney and 239 ml and 27.6 % for the left kidney for the males and 206 ml and 26.4 % (right) and 237 ml and 27.9 % (left) for the females. This method, which requires no blood or urine collection, is very useful as an individual kidney function test to evaluate individual kidney function and to understand kidney function before and after operation in patients with renal and urinary diseases. (author)