WorldWideScience

Sample records for tomographic image guidance

  1. Optical Coherence Tomographic Imaging and Delivery for Surgical Guidance

    National Research Council Canada - National Science Library

    Fujimoto, James G

    2004-01-01

    .... OCT can thus function as a type of "optical biopsy," enabling imaging of tissue with resolution approaching conventional biopsy and histopathology, but without the need to remove and process specimens...

  2. Tomographic imaging

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Tomography is used to image anatomy of organs as in the case of CT and MRI or image body functions as in the case of SPECT and PET. The theory of reconstruction applies equally well to CT, SPECT and PET with a minor differences. The main difference between SPECT and PET is that SPECT images single photon emitters (radionuclides) which emit normal gamma rays (like Tc-99m), whereas PET images positron emitting radionuclides such as O 15 or F 18 . The word tomography means drawing of the body. Every tomography results in an image of the inside of the body and is represented as a slice. (author)

  3. Advantages of computed tomographic guidance

    International Nuclear Information System (INIS)

    Casola, G.; Vansonnenberg, E.

    1987-01-01

    Both ultrasound and CT are successfully used to guide interventional procedures throughout the body. There are advantages and disadvantages to each modality and choosing one over the other will vary from case to case. Major factors influencing choice are discussed in this paper. As a general rule CT guidance is usually required for lesions in the thorax, the adrenals, the pancreas, lymph nodes, and for percutaneous abscess drainage. The authors feel that a complimentary use of ultrasound and CT is essential to optimize success and cost-effectiveness; therefore, the interventional radiologist should be familiar with both imaging modalities

  4. Cone-Beam Computed Tomographic Image Guidance for Lung Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Bissonnette, Jean-Pierre; Purdie, Thomas G.; Higgins, Jane A.; Li, Winnie; Bezjak, Andrea

    2009-01-01

    Purpose: To determine the geometric accuracy of lung cancer radiotherapy using daily volumetric, cone-beam CT (CBCT) image guidance and online couch position adjustment. Methods and Materials: Initial setup accuracy using localization CBCT was analyzed in three lung cancer patient cohorts. The first (n = 19) involved patients with early-stage non-small-cell lung cancer (NSCLC) treated using stereotactic body radiotherapy (SBRT). The second (n = 48) and third groups (n = 20) involved patients with locally advanced NSCLC adjusted with manual and remote-controlled couch adjustment, respectively. For each group, the couch position was adjusted when positional discrepancies exceeded ±3 mm in any direction, with the remote-controlled couch correcting all three directions simultaneously. Adjustment accuracy was verified with a second CBCT. Population-based setup margins were derived from systematic (Σ) and random (σ) positional errors for each group. Results: Localization imaging demonstrates that 3D positioning errors exceeding 5 mm occur in 54.5% of all delivered fractions. CBCT reduces these errors; post-correction Σ and σ ranged from 1.2 to 1.9 mm for Group 1, with 82% of all fractions within ±3 mm. For Group 2, Σ and σ ranged between 0.8 and 1.8 mm, with 76% of all treatment fractions within ±3 mm. For Group 3, the remote-controlled couch raised this to 84%, and Σ and σ were reduced to 0.4 to 1.7 mm. For each group, the postcorrection setup margins were 4 to 6 mm, 3 to 4 mm, and 2 to 3 mm, respectively. Conclusions: Using IGRT, high geometric accuracy is achievable for NSCLC patients, potentially leading to reduced PTV margins, improved outcomes and empowering adaptive radiation therapy for lung cancer

  5. Image Guidance

    Science.gov (United States)

    Guidance that explains the process for getting images approved in One EPA Web microsites and resource directories. includes an appendix that shows examples of what makes some images better than others, how some images convey meaning more than others

  6. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  7. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  8. Caveats on tomographic images

    DEFF Research Database (Denmark)

    Foulger, Gillian R.; Panza, Giuliano F.; Artemieva, Irina

    2013-01-01

    Geological and geodynamic models of the mantle often rely on joint interpretations of published seismic tomography images and petrological/geochemical data. This approach tends to neglect the fundamental limitations of, and uncertainties in, seismic tomography results. These limitations and uncer...

  9. Cone Beam Computed Tomographic imaging in orthodontics.

    Science.gov (United States)

    Scarfe, W C; Azevedo, B; Toghyani, S; Farman, A G

    2017-03-01

    Over the last 15 years, cone beam computed tomographic (CBCT) imaging has emerged as an important supplemental radiographic technique for orthodontic diagnosis and treatment planning, especially in situations which require an understanding of the complex anatomic relationships and surrounding structures of the maxillofacial skeleton. CBCT imaging provides unique features and advantages to enhance orthodontic practice over conventional extraoral radiographic imaging. While it is the responsibility of each practitioner to make a decision, in tandem with the patient/family, consensus-derived, evidence-based clinical guidelines are available to assist the clinician in the decision-making process. Specific recommendations provide selection guidance based on variables such as phase of treatment, clinically-assessed treatment difficulty, the presence of dental and/or skeletal modifying conditions, and pathology. CBCT imaging in orthodontics should always be considered wisely as children have conservatively, on average, a three to five times greater radiation risk compared with adults for the same exposure. The purpose of this paper is to provide an understanding of the operation of CBCT equipment as it relates to image quality and dose, highlight the benefits of the technique in orthodontic practice, and provide guidance on appropriate clinical use with respect to radiation dose and relative risk, particularly for the paediatric patient. © 2017 Australian Dental Association.

  10. Blunt oesophageal perforation: treatment with surgical exclusion and percutaneous drainage under computed tomographic guidance

    International Nuclear Information System (INIS)

    Vauthey, J.N.; Lerut, J.; Laube, M.; Gertsch, P.

    1992-01-01

    We report a patient with a left thoracic contusion and rupture of the distal oesophagus. Persistent sepsis developed after oesophageal exclusion without closure. Two collection were drained percutaneously under computed tomographic guidance and the sepsis resolved. (11 refs., 1 fig.)

  11. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  12. Interpretation of computed tomographic images

    International Nuclear Information System (INIS)

    Stickle, R.L.; Hathcock, J.T.

    1993-01-01

    This article discusses the production of optimal CT images in small animal patients as well as principles of radiographic interpretation. Technical factors affecting image quality and aiding image interpretation are included. Specific considerations for scanning various anatomic areas are given, including indications and potential pitfalls. Principles of radiographic interpretation are discussed. Selected patient images are illustrated

  13. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  14. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  15. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  16. Method and apparatus for producing tomographic images

    International Nuclear Information System (INIS)

    Annis, M.

    1989-01-01

    A device useful in producing a tomographic image of a selected slice of an object to be examined is described comprising: a source of penetrating radiation, sweep means for forming energy from the source into a pencil beam and repeatedly sweeping the pencil beam over a line in space to define a sweep plane, first means for supporting an object to be examined so that the pencil beam intersections the object along a path passing through the object and the selected slice, line collimating means for filtering radiation scattered by the object, the line collimating means having a field of view which intersects and sweep plane in a bounded line so that the line collimating means passes only radiation scattered by elementary volumes of the object lying along the bounded line, and line collimating means including a plurality of channels such substantially planar in form to collectively define the field of view, the channels oriented so that pencil beam sweeps along the bounded line as a function of time, and radiation detector means responsive to radiation passed by the line collimating means

  17. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  18. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  19. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  20. Tomographic spectral imaging: microanalysis in 3D

    International Nuclear Information System (INIS)

    Kotula, P.G.; Keenan, M.R.; Michael, J.R.

    2003-01-01

    Full text: Spectral imaging, where a series of complete x-ray spectra are typically collected from a 2D area, holds great promise for comprehensive near-surface microanalysis. There are however numerous microanalysis problems where 3D chemical information is needed as well. In the SEM, some sort of sectioning (either mechanical or with a focused ion beam (FIB) tool) followed by x-ray mapping has, in the past, been utilized in an attempt to perform 3D microanalysis. Reliance on simple mapping has the potential to miss important chemical features as well as misidentify others. In this paper we will describe the acquisition of serial-section tomographic spectral images (TSI) with a dual-beam FIB/SEM equipped with an EDS system. We will also describe the application of a modified version of our multivariate statistical analysis algorithms to TSIs. Serial sectioning was performed with a FEI DB-235 FIB/SEM. Firstly, the specimen normal was tilted to the optic axis of the FIB column and a trench was milled into the surface of the specimen. A second trench was then milled perpendicular to the first to provide visibility of the entire analysis surface to the x-ray detector. In addition, several fiducial markers were milled into the surface to allow for alignment from slice to slice. The electron column is at an angle of 52 deg to the ion column so the electron beam can 'see' the analysis surface milled by the FIB with no additional specimen tilting or rotation. Likewise the x-ray detector is at a radial angle of 45 deg to the plane of the electron and ion columns (about the electron column) and a take-off-angle of 35 deg with respect to an untilted specimen so it can 'see' the analysis surface as well with no additional sample tilting or rotation. Spectral images were acquired from regions 40 μm wide and 20μm deep for each slice. Approximately 1μm/slice was milled and 10-12 total slices were cut. Spectral images were acquired with a Thermo NORAN Vantage (Digital imaging

  1. Comparative study of the macroscopic finding, conventional tomographic imaging, and computed tomographic imaging in locating the mandibular canal

    International Nuclear Information System (INIS)

    Choi, Hang Moon; You, Dong Soo

    1995-01-01

    The purpose of this study was comparison of conventional tomography with reformatted computed tomography for dental implant in locating the mandibular canal. Five dogs were used and after conventional tomographs and fitted computed tomographs were taken, four dentist traced all films. Mandibles were sectioned with 2 mm slice thickness and the sections were then radiographed (contact radiography). Each radiograpic image was traced and linear measurements were made from mandibular canal to alveolar crest, buccal cortex, lingual cortex, and inferior border. The following results were obtained; 1. Reformatted computed tomographs were exacter than conventional tomography by alveolar crest to canal length of -0.6 mm difference between real values and radiographs 2. The average measurements of buccal cortex to mandibular canal width and lingual cortex to mandibular canal width of conventional tomographs were exacter than reformatted computed tomographs, but standard deviations were higher than reformatted computed tomographs. 3. Standard deviations of reformatted computed tomographs were lower than conventional tomographs at all comparing sites 4. At reformatted computed tomography 62.5% of the measurements performed were within ±1 mm of the true value, and at conventional tomography 24.1% were. 5. Mandibular canal invisibility was 0.8% at reformatted computed tomography and 9.2% at conventional tomography. Reformatted computed tomography has been shown to be more useful radiographic technique for assessment of the mandibular canal than conventional tomography.

  2. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    Andrade, M.A.; Silva, A.M. Marques da

    2004-01-01

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  3. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    Science.gov (United States)

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  4. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  5. Design and applications of Computed Industrial Tomographic Imaging System (CITIS)

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, G S; Kumar, Umesh; Datta, S S [Bhabha Atomic Research Centre, Bombay (India). Isotope Div.

    1994-12-31

    This paper highlights the design and development of a prototype Computed Tomographic (CT) imaging system and its software for image reconstruction, simulation and display. It also describes results obtained with several test specimens including Dhruva reactor uranium fuel assembly and possibility of using neutrons as well as high energy x-rays in computed tomography. 5 refs., 4 figs.

  6. Generalized Row-Action Methods for Tomographic Imaging

    DEFF Research Database (Denmark)

    Andersen, Martin Skovgaard; Hansen, Per Christian

    2014-01-01

    Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast...... initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow...

  7. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  8. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.; Alarfaj, Meshal K.; Li, Erqiang; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T

    2017-01-01

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets

  9. Design and applications of Computed Industrial Tomographic Imaging System (CITIS)

    International Nuclear Information System (INIS)

    Ramakrishna, G.S.; Umesh Kumar; Datta, S.S.; Rao, S.M.

    1996-01-01

    Computed tomographic imaging is an advanced technique for nondestructive testing (NDT) and examination. For the first time in India a computed aided tomography system has been indigenously developed in BARC for testing industrial components and was successfully demonstrated. The system in addition to Computed Tomography (CT) can also perform Digital Radiography (DR) to serve as a powerful tool for NDT applications. It has wider applications in the fields of nuclear, space and allied fields. The authors have developed a computed industrial tomographic imaging system with Cesium 137 gamma radiation source for nondestructive examination of engineering and industrial specimens. This presentation highlights the design and development of a prototype system and its software for image reconstruction, simulation and display. The paper also describes results obtained with several tests specimens, current development and possibility of using neutrons as well as high energy x-rays in computed tomography. (author)

  10. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  11. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  12. Segmentation Toolbox for Tomographic Image Data

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    , techniques to automatically analyze such data becomes ever more important. Most segmentation methods for large datasets, such as CT images, deal with simple thresholding techniques, where intensity values cut offs are predetermined and hard coded. For data where the intensity difference is not sufficient......Motivation: Image acquisition has vastly improved over the past years, introducing techniques such as X-ray computed tomography (CT). CT images provide the means to probe a sample non-invasively to investigate its inner structure. Given the wide usage of this technique and massive data amounts......, and partial volume voxels occur frequently, thresholding methods do not suffice and more advanced methods are required. Contribution: To meet these requirements a toolbox has been developed, combining well known methods within the image analysis field. The toolbox includes cluster-based methods...

  13. Optical tomographic imaging for breast cancer detection

    Science.gov (United States)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  14. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  15. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  16. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  17. Application of image guidance in pituitary surgery

    Science.gov (United States)

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  18. Low-dose computed tomographic imaging in orbital trauma

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, A.; Whitehouse, R.W. (Manchester Univ. (United Kingdom). Dept. of Diagnostic Radiology)

    1993-08-01

    The authors review findings in 75 computed tomographic (CT) examinations of 66 patients with orbital trauma who were imaged using a low-radiation-dose CT technique. Imaging was performed using a dynamic scan mode and exposure factors of 120 kVp and 80 mAs resulting in a skin dose of 11 mGy with an effective dose-equivalent of 0.22 mSv. Image quality was diagnostic in all cases and excellent in 73 examinations. Soft-tissue abnormalities within the orbit including muscle adhesions were well demonstrated both on primary axial and reconstructed multiplanar images. The benefits of multiplanar reconstructions are stressed and the contribution of soft-tissue injuries to symptomatic diplopia examined. (author).

  19. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  20. 3D Tomographic Image Reconstruction using CUDA C

    International Nuclear Information System (INIS)

    Dominguez, J. S.; Assis, J. T.; Oliveira, L. F. de

    2011-01-01

    This paper presents the study and implementation of a software for three dimensional reconstruction of images obtained with a tomographic system using the capabilities of Graphic Processing Units(GPU). The reconstruction by filtered back-projection method was developed using the CUDA C, for maximum utilization of the processing capabilities of GPUs to solve computational problems with large computational cost and highly parallelizable. It was discussed the potential of GPUs and shown its advantages to solving this kind of problems. The results in terms of runtime will be compared with non-parallelized implementations and must show a great reduction of processing time. (Author)

  1. Usefulness of tomographic phase image in ventricular conduction abnormalities

    International Nuclear Information System (INIS)

    Sakurai, Mitsuru; Watanabe, Yoshihiko; Kondo, Takeshi

    1985-01-01

    In order to evaluate three-dimensional phase changes in ventricular conduction abnormalities, tomographic phase images were constructed in 7 normal subjects, 12 patients with ventricular pacing, 21 patients with bundle branch block and 12 patients with Wolff-Parkinson-White syndrome. Eight to 12 slices of the short-axis ventricular tomographic phase image (TPI) were derived using a 7-pinhole collimator, and compared with planar phase images (PPIs) in left anterior oblique (LAO) and right anterior oblique (RAO) projections. TPIs were excellent for observing biventricular phase changes in the long-axis direction. In 6 cases of complete right bundle branch block with left axis deviation (beyond -30 0 ), the phase delay in the left ventricular anterior wall was recognized in 5 cases by TPI, although it was difficult to be detected by PPIs. The site of the pacing electrode was identified by TPI in 11 out of 12 cases, compared to 8 cases by PPIs in LAO and RAO projections. The site of the accessory pathway in Wolff-Parkinson-White syndrome was detected in the basal slice of TPIs in 10 out of 12 cases, compared to 8 cases by PPI in the LAO projection. Therefore, it is obvious that TPIs offer more valid information than PPIs. In conclusion, TPI is useful for investigation of ventricular conduction abnormalities. (author)

  2. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka

    1980-01-01

    The authors constructed a Multiple Pinhole Coded Aperture (MPCA) and developed related decoding software. When simple coordinate transformation was performed, omission of points and shifting of counts occurred. By selecting various tomographic planes and collecting count for each tomographic depth from the shadowgram, a solution to these problems was found. The counts from the central portion of the tomographic image from the MPCA were incorrectly high, this was rectified by a correction function to improve the uniformity correction program of the γ-camera. Depth resolution of the tomographic image improved in proportion to the area encompassed by the pinhole configuration. An MPCA with a uniform arrangement of pinholes (e, g, pinholes in an arrangement parallel to the X-axis or the Y-axis) yielded decoded tomographic images of inferior quality. Optimum results were obtained with a ring-shaped arrangement yielding clinically applicable tomographic images even for large objects. (author)

  3. Imaging MOSS tomographic system for H-1NF

    International Nuclear Information System (INIS)

    Glass, F.; Howard, J.

    1999-01-01

    A tomographic diagnostic utilising the Modulated Optical Solid-State spectrometer (MOSS) is planned for the H-1NF stellarator at the ANU. It is designed to create two-dimensional temperature or velocity maps of a poloidal cross-section of the high temperature plasma of H-1NF. The introduction of the MOSS spectrometers has enabled the development of several diagnostics to be used on the H-1NF stellerator. The MOSS spectrometer allows calculations of the plasma temperature and bulk velocity based on a line-integrated measurement of light emitted from electronic transitions within the plasma. A tomographic system utilising a rotatable multi-view ring apparatus and spatial multiplexing through a MOSS spectrometer is currently being developed. The ring apparatus is placed inside the H-1NF vessel and encircles the plasma. Multiple line-of-sight views collect light through a poloidal cross-section of the plasma and the emitted light is coupled into large core optical fibres. The transmitted light, via the optical fibre bundle, is then imaged through a large aperture MOSS spectrometer and onto another optical fibre array. Each fibre is then fed into a photomultiplier tube for signal detection. Characterisation of the properties of the lithium niobate (LiNbO 3 ) crystal used for modulation in the MOSS spectrometer is being undertaken to account for ray divergence in the imaging system. Tomographic techniques enable the construction of a temperature or velocity map of the poloidal cross-section. Rotating the ring apparatus to a new viewing position for the next pulse of plasma should allow an accurate picture to be built up based on the reproducibility of the plasma pulses. It is expected that initial testing of the system will begin in May when H-1NF begins operations at 0.5 Telsa field strength

  4. Longitudinal and transverse digital image reconstruction with a tomographic scanner

    International Nuclear Information System (INIS)

    Pickens, D.R.; Price, R.R.; Erickson, J.J.; Patton, J.A.; Partain, C.L.; Rollo, F.D.

    1981-01-01

    A Siemens Gammasonics PHO/CON-192 Multiplane Imager is interfaced to a digital computer for the purpose of performing tomographic reconstructions from the data collected during a single scan. Data from the two moving gamma cameras as well as camera position information are sent to the computer by an interface designed in the authors' laboratory. Backprojection reconstruction is implemented by the computer. Longitudinal images in whole-body format as well as smaller formats are reconstructed for up to six planes simultaneously from the list mode data. Transverse reconstructions are demonstrated for 201 T1 myocardial scans. Post-reconstruction deconvolution processing to remove the blur artifact (characteristic of focal plane tomography) is applied to a multiplane phantom. Digital data acquisition of data and reconstruction of images are practical, and can extend the usefulness of the machine when compared with the film output (author)

  5. The development of a compact positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Qi, Jinyi; Derenzo, Stephen E.; Moses, William W.; Huesman, Ronald H.; Budinger, Thomas F.

    2002-12-17

    We give design details and expected image results of a compact positron tomograph designed for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The bottom bank is fixed below the patient bed, and the top bank moves upward for patient access and downward for maximum sensitivity. Each bank is composed of two rows (axially) of 20 CTI PET Systems HR+ block detectors, forming two arcs that can be tilted to minimize attenuation. Compared to a conventional PET system, our camera uses about one-quarter the number of detectors and has almost two times higher solid angle coverage for a central point source, because the detectors are close to the patient. The detectors are read out by modified CTI HRRT data acquisition electronics. The individual detectors are angled in the plane to point towards the prostate to minimize reso

  6. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  7. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Bilsky, A V; Lozhkin, V A; Markovich, D M; Tokarev, M P

    2013-01-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART. (paper)

  8. Fusion Imaging for Procedural Guidance.

    Science.gov (United States)

    Wiley, Brandon M; Eleid, Mackram F; Thaden, Jeremy J

    2018-05-01

    The field of percutaneous structural heart interventions has grown tremendously in recent years. This growth has fueled the development of new imaging protocols and technologies in parallel to help facilitate these minimally-invasive procedures. Fusion imaging is an exciting new technology that combines the strength of 2 imaging modalities and has the potential to improve procedural planning and the safety of many commonly performed transcatheter procedures. In this review we discuss the basic concepts of fusion imaging along with the relative strengths and weaknesses of static vs dynamic fusion imaging modalities. This review will focus primarily on echocardiographic-fluoroscopic fusion imaging and its application in commonly performed transcatheter structural heart procedures. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    International Nuclear Information System (INIS)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-01-01

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.

  10. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  11. Ectomography - a tomographic method for gamma camera imaging

    International Nuclear Information System (INIS)

    Dale, S.; Edholm, P.E.; Hellstroem, L.G.; Larsson, S.

    1985-01-01

    In computerised gamma camera imaging the projections are readily obtained in digital form, and the number of picture elements may be relatively few. This condition makes emission techniques suitable for ectomography - a tomographic technique for directly visualising arbitrary sections of the human body. The camera rotates around the patient to acquire different projections in a way similar to SPECT. This method differs from SPECT, however, in that the camera is placed at an angle to the rotational axis, and receives two-dimensional, rather than one-dimensional, projections. Images of body sections are reconstructed by digital filtration and combination of the acquired projections. The main advantages of ectomography - a high and uniform resolution, a low and uniform attenuation and a high signal-to-noise ratio - are obtained when imaging sections close and parallel to a body surface. The filtration eliminates signals representing details outside the section and gives the section a certain thickness. Ectomographic transverse images of a line source and of a human brain have been reconstructed. Details within the sections are correctly visualised and details outside are effectively eliminated. For comparison, the same sections have been imaged with SPECT. (author)

  12. Combination tomographic and cardiographic ultrasonic imaging method and system

    International Nuclear Information System (INIS)

    Yano, T.; Fukukita, H.; Fukumoto, A.; Hayakawa, Y.; Irioka, K.

    1984-01-01

    Ultrasonic echo signals are successively sampled and converted to digital echo data which are written into a first digital memory column by column and then read out row by row into a first buffer memory. The digital echo data which are derived in response to beams successively transmitted in a predetermined direction are written into columns of a second digital memory and read out of the memory in rows into a second buffer memory. The data stored in the first and second buffer memories are read out for digital-to-analog conversion and selectively applied within a television ''frame'' interval to control electron beam intensity of a single cathode ray tube so as to present tomographic and cardiographic images in different display areas of the tube

  13. Tomographic Image Reconstruction Using Training Images with Matrix and Tensor Formulations

    DEFF Research Database (Denmark)

    Soltani, Sara

    the image resolution compared to a classical reconstruction method such as Filtered Back Projection (FBP). Some priors for the tomographic reconstruction take the form of cross-section images of similar objects, providing a set of the so-called training images, that hold the key to the structural......Reducing X-ray exposure while maintaining the image quality is a major challenge in computed tomography (CT); since the imperfect data produced from the few view and/or low intensity projections results in low-quality images that are suffering from severe artifacts when using conventional...... information about the solution. The training images must be reliable and application-specific. This PhD project aims at providing a mathematical and computational framework for the use of training sets as non-parametric priors for the solution in tomographic image reconstruction. Through an unsupervised...

  14. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  15. Voxel-based model construction from colored tomographic images

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  16. Spiral Computed Tomographic Imaging Related to Computerized Ultrasonographic Images of Carotid Plaque Morphology and Histology

    DEFF Research Database (Denmark)

    Grønholdt, Marie-Louise M.; Wagner, Aase; Wiebe, Britt M.

    2001-01-01

    Echolucency of carotid atherosclerotic plaques, as evaluated by computerized B-mode ultrasonographic images, has been associated with an increased incidence of brain infarcts on cerebral computed tomographic scans. We tested the hypotheses that characterization of carotid plaques on spiral comput...

  17. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Method of making tomographic images of X-rayed objects

    International Nuclear Information System (INIS)

    Eickel, R.

    1979-01-01

    A tomographic image of a selected layer of a stationary object is made by moving the source of X-rays along a first path at one side of the selected layer and by moving an ionography imaging chamber which contains a dielectric receptor sheet along a second path at the other side of the selected layer. The movement of the sheet is synchronized with movement of the source of X-rays and includes a translatory movement in a direction counter to the direction of movement of the source, a pivotal movement to maintain the sheet in a plane which is normal to the central beam of the bundle of X-rays, and a sidewise movement to vary the distance between the selected layer and the sheet so that the length of the projection of selected layer upon the sheet remains unchanged. If the sheet is rectangular, the pivotal movement is performed about an axis which is located in the plane of the selected layer and is parallel to the shorter sides of the sheet

  19. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    International Nuclear Information System (INIS)

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  20. Cardiac imaging systems and methods employing computerized tomographic scanning

    International Nuclear Information System (INIS)

    Richey, J.B.; Wake, R.H.; Walters, R.G.; Hunt, W.F.; Cool, S.L.

    1980-01-01

    The invention relates to cardiac imaging systems and methods employing computerised tomographic scanning. Apparatus is described which allows an image of the radiation attenuation of the heart at a desired phase of the cardiac cycle. The patients ECG signal can be used in a transverse-and-rotate type CT scanner as a time base, so that the beam reaches the heart at a desired phase of the cardiac cycle, or, in a purely rotational-type CT scanner continuously generated scan data is only stored for corresponding phases of successive cardiac cycles. Alternatively, gating of the beams themselves by shuttering or switching the power supply can be controlled by the ECG signal. A pacemaker is used to stabilize the cardiac period. Also used is a system for recognising unacceptable variations in the cardiac period and discarding corresponding scan data. In a transverse-and-rotate type fan-beam CT scanner, the effective beam width is narrowed to reduce the duration of the traverse of the heart. (U.K.)

  1. Positioning of Nuclear Fuel Assemblies by Means of Image Analysis on Tomographic Data

    International Nuclear Information System (INIS)

    Troeng, Mats

    2005-06-01

    A tomographic measurement technique for nuclear fuel assemblies has been developed at the Department of Radiation Sciences at Uppsala University. The technique requires highly accurate information about the position of the measured nuclear fuel assembly relative to the measurement equipment. In experimental campaigns performed earlier, separate positioning measurements have therefore been performed in connection to the tomographic measurements. In this work, another positioning approach has been investigated, which requires only the collection of tomographic data. Here, a simplified tomographic reconstruction is performed, whereby an image is obtained. By performing image analysis on this image, the lateral and angular position of the fuel assembly can be determined. The position information can then be used to perform a more accurate tomographic reconstruction involving detailed physical modeling. Two image analysis techniques have been developed in this work. The stability of the two techniques with respect to some central parameters has been studied. The agreement between these image analysis techniques and the previously used positioning technique was found to meet the desired requirements. Furthermore, it has been shown that the image analysis techniques offer more detailed information than the previous technique. In addition, its off-line analysis properties reduce the need for valuable measurement time. When utilizing the positions obtained from the image analysis techniques in tomographic reconstructions of the rod-by-rod power distribution, the repeatability of the reconstructed values was improved. Furthermore, the reconstructions resulted in better agreement to theoretical data

  2. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  3. ECAT: a new computerized tomographic imaging system for position-emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Huang, S.C.; Kuhl, D.E.

    1977-01-01

    The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems

  4. Advances in imaging for oncology guidance

    International Nuclear Information System (INIS)

    Amies, Christopher J.

    2008-01-01

    Over the last 30 years major improvements in medical imaging have played a significant role to help advance the management of oncology diseases. These advances have covered the continuum of care from screening, diagnosis, staging, treatment planning and intervention. More recently image guided radiation therapy (IGRT) has placed sophisticated imaging closer to the treatment event. The opportunity to improve care seems obvious; however the clinical benefits of IGRT are at present not easily proven and yet contribute to the complexity of treatment and the rising costs of care. It is proposed that this is in part due to the present immaturity of IGRT technology development, which is predominantly determined by the challenge of achieving precise delivery of radiation in one or many episodes (fractions) for very different diseases. There is no single type or mode of imaging that will be suitable to address all radiotherapy guidance challenges whether defined by the general criteria identified for a specific disease or the unique characteristics encountered with an individual patient. Finally the wide adoption of this or any medical technology general requires the attainment of a sufficient degree of safety and efficiency. I present the challenges faced by industry as well as select interesting technology based solutions and concepts that may help advance the field of oncology guidance

  5. Localization of ectopic parathyroid glands using technetium-99m sestamibi imaging: comparison with magnetic resonance and computed tomographic imaging

    International Nuclear Information System (INIS)

    Ishibashi, Masatoshi; Nishida, Hidemi; Hiromatsu Yuji; Kojima, Kazuyuki; Uchida, Masafumi; Hayabuvhi, Naofumi

    1997-01-01

    The aim of the study was to compare the accuracy of technetium-99m sestamibi imaging for localization of ectopic parathyroid glands in patients with hyperparathyroidism with that of magnetic resonance (MR) and computed tomographic (CT) imaging. Eleven patients with primary (n=3) or secondary (n=8) hyperparathyroidism were studied with 99m Tc sestamibi parathyroid imaging CT and MR imaging. Images of the neck were acquired at 10 min and 2-3 after tracer injection. The three patients with primary hyperparathyroidism and five patients with secondary hyperparathyroidism underwent parathyroidectomy. The ectopic glands were confirmed by histopathological examination of the resected specimens. In respect of 20 parathyroid glands in the eight patients explored surgically, the sensitivity and specificity of sestamibi imaging were 70% (14/20) and 88%, respectively, those of CT, 40% (8/20) and 88%, and those of MR imaging, 60% (12/20) and 88%. Of these patients, three had parathyroid adenomas while five had hyperplasia (17 glands). Sestamibi imaging localized eight ectopic parathyroid glands, which were surgically confirmed (six were located in the thymus and two in the mediastinum). In one patient explored surgically, the ectopic gland was located outside the field of the MR coil. Although the remaining three cases of secondary hyperparathyroidism were not confirmed surgically, these patients demonstrated sestamibi uptake in five parathyroid glands, including three ectopic glands. MR imagedemonstrated abnormal parathyroid glands in the same regions as sestamibi imaging. Our data indicate that 99m Tc-sestamibi imaging should be used initially to localize the ectopic parathyroid glands in patients with hyperparathyroidism for anatomical guidance prior to MR or CT imaging

  6. Imaging properties of a positron tomograph with 280 BGO crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.; Vuletich, T.

    1980-11-01

    The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm x 30 mm x 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm x 32 mm x 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm 3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1). However, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9 to 10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated

  7. Image-guidance for surgical procedures

    International Nuclear Information System (INIS)

    Peters, Terry M

    2006-01-01

    Contemporary imaging modalities can now provide the surgeon with high quality three- and four-dimensional images depicting not only normal anatomy and pathology, but also vascularity and function. A key component of image-guided surgery (IGS) is the ability to register multi-modal pre-operative images to each other and to the patient. The other important component of IGS is the ability to track instruments in real time during the procedure and to display them as part of a realistic model of the operative volume. Stereoscopic, virtual- and augmented-reality techniques have been implemented to enhance the visualization and guidance process. For the most part, IGS relies on the assumption that the pre-operatively acquired images used to guide the surgery accurately represent the morphology of the tissue during the procedure. This assumption may not necessarily be valid, and so intra-operative real-time imaging using interventional MRI, ultrasound, video and electrophysiological recordings are often employed to ameliorate this situation. Although IGS is now in extensive routine clinical use in neurosurgery and is gaining ground in other surgical disciplines, there remain many drawbacks that must be overcome before it can be employed in more general minimally-invasive procedures. This review overviews the roots of IGS in neurosurgery, provides examples of its use outside the brain, discusses the infrastructure required for successful implementation of IGS approaches and outlines the challenges that must be overcome for IGS to advance further. (topical review)

  8. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka; Akagi, Kiyoshi; Uehata, Hiroshi

    1981-01-01

    In order to obtain a radioisotope (RI) tomographic image, there are various, methods, including the RCT method, Time Modulate method, and Multiple Pinhole Coded Aperture (MPCA) method and others. The MPCA method has several advantages. Using the MPCA method, there is no need to move either the detector or the patient, Furthermore, the generally used γ-camera may be used without any alterations. Due to certain problems in reconstructing the tomographic image, the use of the MPCA method in clinical practice is limited to representation of small organs (e.g. heart) using the 7-Pinhole collimator. This research presents an experimental approach to overcome the problems in reconstruction of tomographic images of large organs (organs other than the heart, such as the brain, liver, lung etc.) by introducing a reconstruction algorithm and correction software into the MPCA method. There are 2 main problems in MPCA image reconstruction: (1) Due to the rounding-off procedure, there is both point omission and shifting of point coordinates. (2) The central portion is characterized by high-counts. Both of these problems were solved by incorporating a reconstruction algorithm and a correction function. The resultant corrected tomographic image was processed using a filter derived from subjecting a PSF to a Fourier transform. Thus, it has become possible to obtain a high-quality tomographic image of large organs for clinical use. (author)

  9. The vision guidance and image processing of AGV

    Science.gov (United States)

    Feng, Tongqing; Jiao, Bin

    2017-08-01

    Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.

  10. Reconstruction of tomographic image from x-ray projections of a few views

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    Computer tomographs have progressed rapidly, and in the latest high performance types, the photographing time has been shortened to less than 5 sec, but the clear images of hearts have not yet been obtained. The X-ray tomographs used so far irradiate X-ray from many directions and measure the projected data, but by limiting projection direction to a small number, it was planned to shorter the X-ray photographing time and to reduce X-ray exposure as the objective of this study. In this paper, a method is proposed, by which tomographic images are reconstructed from projected data in a small number of direction by generalized inverse matrix penalty method. This method is the calculation method newly devised by the authors for this purpose. It is a kind of the nonlinear planning method added with the restrictive condition using a generalized inverse matrix, and it is characterized by the simple calculation procedure and rapid convergence. Moreover, the effect on reconstructed images when errors are included in projected data was examined. Also, the simple computer simulation to reconstruct tomographic images using the projected data in four directions was performed, and the usefulness of this method was confirmed. It contributes to the development of superhigh speed tomographs in future. (Kako, I.)

  11. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  12. A new algorithm for γ-ray tomographic imaging using a scintillation camera

    International Nuclear Information System (INIS)

    Terajima, Hirokatsu; Nakajima, Masato; Itoh, Takashi.

    1979-01-01

    The gamma ray tomographic imaging giving 3-dimensional distribution of RI in human bodies is being actively investigated for the reason that the conventional images are of 2-dimensional projection, but it is not yet employed practically, because there are some problems in the tomographic image quality obtained. One of the methods is a technique to determine the radioisotope distribution on each tomographic plane by placing a planar detector in parallel with the assumed tomographic planes and by processing the 2-dimensional radioisotope projection images thus obtained. It does not require the repetition of reconstructive algorithm. The authors have proposed the algorithm for this method, and have carried out the experiments to verify the propriety of the algorithm. Radioisotope phantom is composed of the overlapping acrylic cubic vessels of 30 mm sides containing radioisotopes arranged 2-dimensionally in each layer, and the multi-pinhole shutter array is used as the collimator. The projection image of radioisotope distribution on the scintillator face is converted into the digital imaging data sampled in 2-dimensional space of 64 x 64 with the mini-computer. Among the probable causes to affect the reconstructed image quality, statistical fluctuation, absorption of gamma ray and the shape of aperture for the collimator are discussed. These indicate that this method is more effective than the conventional methods, and can be the effective technique for medical diagnosis and therapy, because this is a technique to determine 3-dimensional distribution of RI by utilizing existing equipments. (Wakatsuki, Y.)

  13. Construction of tomographic head model using sectioned photographic images of cadaver

    International Nuclear Information System (INIS)

    Lee, Choon Sik; Lee, Jai Ki; Park, Jin Seo; Chung, Min Suk

    2004-01-01

    Tomographic models are currently the most complete, developed and realistic models of the human anatomy. They have been used to estimate organ doses for diagnostic radiation examination and radiotherapy treatment planning, and radiation protection. The quality of original anatomic images is a key factor to build a quality tomographic model. Computed tomography (CT) and magnetic resonance imaging (MRI) scan, from which most of current tomographic models are constructed, have their inherent shortcomings. In this study, a tomographic model of Korean adult male head was constructed by using serially sectioned photographs of cadaver. The cadaver was embedded, frozen, serially sectioned and photographed by high resolution digital camera at 0.2 mm interval. The contours of organs and tissues in photographs were segmented by several trained anatomists. The 120 segmented images of head at 2mm interval were converted into binary files and ported into Monte Carlo code to perform an example calculation of organ dose. Whole body tomographic model will be constructed by using the procedure developed in this study

  14. Computed tomographic guidance stereotaxis in the management of intracranial mass lesions

    International Nuclear Information System (INIS)

    Apuzzo, M.L.; Sabshin, J.K.

    1983-01-01

    A prototype Brown-Roberts-Welles stereotactic instrument has been used as both a diagnostic and a therapeutic surgical adjunct in cases of intracranial mass lesions. Eighty-three procedures (142 point placements) required computerized guidance stereotaxy. The unit accomplished point intracranial access with an accuracy of greater than 1 mm. Pathological processes included a variety of neoplasms (56 cases), strokes (7 cases), and infections (20 cases) affecting deep regions of the cerebral hemispheres, the ventricular system, the cerebellum, and the rostral brain stem. Procedures were undertaken with the patient under local anesthesia for biopsy (300 point specimens), culture, evacuation, aspiration, endoscopic excision, and implantation of radioisotopes. The techniques and instrumentation for each of these procedures are described. Procedural objectives were satisfactorily accomplished with no mortality and an overall complication rate of 4%. Recovery of tissue specific to establish a histological diagnosis or the etiological factors related to each disease process was realized in 94% of the cases. These results were obtained with scanner utilization times averaging 15 minutes and procedurally related patient recovery periods of less than 4 hours. The value and adaptability of the instrumentation and techniques are illustrated, and potential future applications are discussed

  15. Connections model for tomographic images reconstruction; Modelo conexionista para reconstrucao de imagens tomograficas

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C. [Departamento de Fisica e Matematica (FFCLRP) USP. Av. Bandeirantes, 3900- 14040- 901- Ribeirao Preto, Sao Paulo (Brazil)

    1998-12-31

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  16. Correlation of computed tomographic and magnetic resonance imaging findings in cerebral infartion

    International Nuclear Information System (INIS)

    Komatsubara, Chizuko; Chuda, Moriyoshi; Taka, Toshihiko

    1989-01-01

    We evaluated neurological findings in 75 patients of cerebral infarction, and correlated computed tomographic (CT) and magnetic resonance imaging (MRI) findings. MRI was found to have the advantage when the lesion were multiple, or in the posterior fossa. MRI demonstrates the anatomical details, and lacks the bony artifact, so it is an excellent method for identification of cerebral infarction. (author)

  17. An original emission tomograph for in vivo brain imaging of small animals

    International Nuclear Information System (INIS)

    Ochoa, A.V.; Ploux, L.; Mastrippolito, R.

    1996-01-01

    The principle of a new tomograph TOHR dedicated for small volume analysis with very high resolution is presented in this paper. We use uncorrelated multi-photons (X or gamma rays) radioisotopes and a large solid angle focusing collimator to make tomographic imaging without reconstruction algorithm. With this original device, detection efficiency and resolution are independent and submillimetric resolution can be achieved. A feasibility study shows that, made achieve the predicted performances of TOHR. We discuss its potential in rat brain tomography by simulating a realistic neuropharmacological experiment using a 1.4 mm resolution prototype of TOHR under development

  18. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    Science.gov (United States)

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  19. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  20. The application of real-time, non-destructive electrical tomographic imaging to heritage conservation

    OpenAIRE

    Ogilvy, Richard

    2008-01-01

    Significant advances have been made in recent times with the non-invasive electrical tomographic imaging of the shallow subsurface. These emerging technologies are analogous to magnetic resonance imaging (MRI) or CT scans used in medical physics. Electrical Resistivity Tomography (ERT) is increasingly used to underpin studies in waste management, contaminated land characterisation and remediation, monitoring groundwater resources and the monitoring of geohazards or safety-critical plant. Ther...

  1. Unfolding and smoothing applied to the quality enhancement of neutron tomographic images

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Silvani, Maria I.; Lopes, Ricardo T.

    2008-01-01

    Resolution and contrast are the major parameters defining the quality of a computer-aided tomographic image. These parameters depend upon several features of the image acquisition system, such as detector resolution, geometrical arrangement of the source-object-detector, beam divergence, source strength, detector efficiency and counting time. Roughly, the detector finite resolution is the main source of systematic errors affecting the separation power of the image acquisition system, while the electronic noise and statistical fluctuation are responsible for the data dispersion, which spoils the contrast. An algorithm has been developed in this work aiming at the improvement of the image quality through the minimization of both types of errors. The systematic ones are reduced by a mathematical unfolding of the position spectra - used as projections to reconstruct the 2D-images - using the Line Spread Function - LSF of the neutron tomographic system. The principle behind this technique is that every single channel contains information about all channels of the spectrum, but it is concealed due to the automatic integration carried out by the detector. Therefore, knowing the shape of this curve, it is possible to retrieve the original spectra. These spectra are unfortunately corrupted by the unavoidable statistical fluctuation, and by oscillations arising from the unfolding process, which strongly affects the quality of the final unfolded image. In order to reduce this impact, the spectra have been filtered by a Fourier transform technique or smoothed with a least square fitting procedure. The algorithm has been applied to spectra of some test-bodies generated by an earlier developed tomographic simulator, which reproduces the spectra furnished by a thermal neutron tomographic system employing a position sensitive detector. The obtained results have shown that the unfolded spectra produce final images capable to resolve features otherwise not achievable with the

  2. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  3. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single-shot, volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...acquisition; (110.6955) Tomographic imaging ; (110.6960) Tomography; (280.2490) Flow diagnostics; (300.2530) Fluorescence , laser-induced...84 (1983). 2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence ,” Exp

  4. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  5. Tomographic imaging of the cervical spine of horses

    International Nuclear Information System (INIS)

    Souza, L.P.; Machado, V.M.V.; Santos, R.V.; Evangelista, F.C.; Vulcano, L.C.

    2012-01-01

    The anatomy of the cervical spine of mature horses based on images obtained with a helical computed tomography examination performed on anatomic specimens was studied. Computed tomography was the diagnostic imaging method of choice and allowed three-dimensional reconstructions of images and other anatomical planes, such as coronal and sagittal. All images were acquired and evaluated in the filter and window to bone tissue. It was possible to demonstrate the anatomical differences and peculiarities of the normal vertebrae, particularly the occipito-atlantoaxial region, which has a higher incidence of changes to assist in the visualization of any change of the bone pattern on CT studies. (author)

  6. Process and installation for producing tomographic images of the distribution of a radiotracer

    International Nuclear Information System (INIS)

    Fonroget, Jacques; Brunol, Jean.

    1977-01-01

    The invention particularly concerns a process for obtaining tomographic images of an object formed by a radiotracer distributed spacially over three dimensions. This process, using a detection device with an appreciably plane detection surface and at least one collimation orifice provided in a partition between the detection surface and the object, enables tomographic sections to be obtained with an excellent three-dimensional resolution of the images achieved. It is employed to advantage in an installation that includes a detection device or gamma camera on an appreciably plane surface, a device having a series of collimation apertures which may be used in succession, these holes being appreciably distributed over a common plane parallel to the detection surface, and a holder for the object. This holder can be moved in appreciably parallel translation to the common plane. The aim of this invention is, inter alia, to meet two requirements: localization in space and obtaining good contrasts. This aim is achieved by the fact that at least one tomographic image is obtained from a series of intermediate images of the object [fr

  7. Automated angular and translational tomographic alignment and application to phase-contrast imaging

    DEFF Research Database (Denmark)

    Cunha Ramos, Tiago Joao; Jørgensen, Jakob Sauer; Andreasen, Jens Wenzel

    2017-01-01

    X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object po...... improvement in the reconstruction resolution. A MATLAB implementation is made publicly available and will allow robust analysis of large volumes of phase-contrast tomography data.......X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object...... reconstruction artifacts and limit the attained resolution in the final tomographic reconstruction. Alignment algorithms that require manual interaction impede data analysis with ever-increasing data acquisition rates, supplied by more brilliant sources. We present in this paper an iterative reconstruction...

  8. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    Science.gov (United States)

    Xia, Rongmin; Li, Xu; He, Bin

    2007-08-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, the authors have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, they demonstrated a three-dimensional MAT-MI imaging approach in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue.

  9. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  10. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    OpenAIRE

    Xia, Rongmin; Li, Xu; He, Bin

    2007-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, we have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, we demonstrated 3-dimensional MAT-MI imaging in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and ...

  11. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  12. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance

    International Nuclear Information System (INIS)

    Slaets, Joan F.W.; Almeida, Lirio O.B.; Traina, Agma J.M.

    1992-01-01

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in 'C' language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author)

  13. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  14. Molecular imaging of small animals with dedicated PET tomographs

    International Nuclear Information System (INIS)

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  15. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    Science.gov (United States)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Korde, Vrushali; Winkler, Amy M.; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2009-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women. If diagnosed at early stages, 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of cases are diagnosed at early, localized stages. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 µm) at imaging depths up to 2 mm. Previously, we studied OCT in normal and diseased human ovary ex vivo. Changes in collagen were suggested with several images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated for in vivo imaging. The LOCT probe, consisting of a 38 mm diameter handpiece terminated in a 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar, is capable of obtaining up to 9.5 mm image lengths at 10 µm axial resolution. In this pilot study, we utilize the LOCT probe to image one or both ovaries of 17 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of differentiating normal and neoplastic ovary. We have laparoscopically imaged the ovaries of seventeen patients with no known complications. Initial data evaluation reveals qualitative distinguishability between the features of undiseased post-menopausal ovary and the cystic, non-homogenous appearance of neoplastic ovary such as serous cystadenoma and endometroid adenocarcinoma.

  16. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    Muehllehner, G.; Buchin, M.P.

    1980-01-01

    Improvements to a positron camera imaging system are described. A pair of Angear-type scintillation cameras serve as the detectors, each camera being positioned on opposite sides of the organ of interest. Pulse shaping circuits reduce the pulse duration below 900 nanoseconds and the integration time below 500 noneseconds, improving the count rate capability and the counting statistics of the system and thus the image quality and processing speed. The invention also provides means for rotating the opposed camera heads about an axis which passes through the organ of interest. The cameras do not use collimators, and are capable of accepting radiation travelling in planes not perpendicular to the scintillation crystals. (LL)

  17. Modification of grey scale in computer tomographic images

    International Nuclear Information System (INIS)

    Hemmingsson, A.; Jung, B.

    1980-01-01

    Optimum perception of minute but relevant attenuation differences in CT images often requires display window settings so narrow that a considerable fraction of the image appears completely black or white and consequently without structure. In order to improve the display characteristics two principles of grey scale modification are presented. In one method the pixel contents are displayed unchanged within a selectable attenuation band but moved towards the limits of the band for pixels that are outside it. In the other the grey scale is arranged to a constant number of pixels per grey scale interval. (Auth.)

  18. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  19. Tomographic image reconstruction and rendering with texture-mapping hardware

    International Nuclear Information System (INIS)

    Azevedo, S.G.; Cabral, B.K.; Foran, J.

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties

  20. Tomographic imaging of matter using primary and secondary X-and gamma-radiation

    International Nuclear Information System (INIS)

    Holloway, I.E.

    1991-04-01

    Gamma rays may interact with matter by a variety of processes, many of which give rise to secondary radiations. This thesis examines the possibility of performing tomographic imaging by means of these secondary photons using low-cost apparatus. The techniques are compared with each other and with transmission tomography, which plays such an important role in modern diagnostic imaging. The progress of industrial tomography is reviewed as are techniques of investigation using gamma ray scattering in both industry and medicine. Some new applications of a simple gamma ray computerized tomography (CT) scanner have been performed. A method of determining the spatial distribution of pure beta emitters in matter by performing tomographic imaging using the bremsstrahlung radiation produced by the beta particles has been demonstrated. This technique has been shown to permit imaging at depths in material greatly exceeding the range of beta particles in matter. All the imaging techniques using secondary radiation have displayed two principal limitations: long scanning times and poor quantitative accuracy. The low scanning rate results from the small number of secondary photons that are detected. The major contributing factors to poor accuracy are attenuation and the noise produced by unwanted in-scattering. The possible applications for secondary photon imaging have been briefly outlined and some suggestions for future work are included. Although techniques based upon imaging using secondary radiation will not be able to compete with transmission CT in the vast majority of applications, they may prove valuable in a range of specialised fields. (author)

  1. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    Just, E.G.

    1982-01-01

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV) [de

  2. Investigation of the noise effect on tomographic reconstructions for a tangentially viewing vacuum ultraviolet imaging diagnostic

    International Nuclear Information System (INIS)

    Ming, Tingfeng; Ohdachi, Satoshi; Suzuki, Yasuhiro

    2011-01-01

    Tomographic reconstruction for a tangentially viewing two-dimensional (2D) imaging system is studied. A method to calculate the geometry matrix in 2D tomography is introduced. An algorithm based on a Phillips-Tikhonov (P-T) type regularization method is investigated, and numerical tests using the P-T method are conducted with both tokamak and Heliotron configurations. The numerical tests show that the P-T method is not sensitive to the added noise levels and the emission profiles with higher mode numbers can be reconstructed with adequate resolution. The results indicate that this method is suitable for 2D tomographic reconstruction for a tangentially viewing vacuum ultraviolet telescope system. (author)

  3. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    International Nuclear Information System (INIS)

    Virador, Patrick R.G.

    2000-01-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  4. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  5. Initial results of a positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Choong, W.S.; Moses, W.W.; Qi, J.; Hu, J.; Wang,G.C.; Wilson, D.; Oh, S.; Huesman, R.H.; Derenzo, S.E.; Budinger, T.F.

    2004-11-29

    We present the status and initial images of a positrontomograph for prostate imaging that centers a patient between a pair ofexternal curved detector banks (ellipse: 45 cm minor, 70 cm major axis).The distance between detector banks adjusts to allow patient access andto position the detectors as closely as possible for maximum sensitivitywith patients of various sizes. Each bank is composed of two axial rowsof 20 CTI PET Systems HR+ block detectors for a total of 80 modules inthe camera. Compared to an ECAT HR PET system operating in 3D mode, ourcamera uses about one-quarter the number of detectors and hasapproximately the same sensitivity for a central point source, becauseour detectors are close to the patient. The individual detectors areangled in the plane to point towards the prostate to minimize resolutiondegradation in that region. The detectors are read out by modified CTIdata acquisition electronics. We have completed construction of thegantry and electronics, have developed detector calibration and dataacquisition software, and are taking coincidence data. We demonstratethat we can clearly visualize a "prostate" in a simple phantom.Reconstructed images of two phantoms are shown.

  6. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  7. Tomographic Imaging of the Seismic Structure Beneath the East Anatolian Plateau, Eastern Turkey

    Science.gov (United States)

    Gökalp, Hüseyin

    2012-10-01

    The high level of seismic activity in eastern Turkey is thought to be mainly associated with the continuing collision of the Arabian and Eurasian tectonic plates. The determination of a detailed three-dimensional (3D) structure is crucial for a better understanding of this on-going collision or subduction process; therefore, a body wave tomographic inversion technique was performed on the region. The tomographic inversion used high quality arrival times from earthquakes occurring in the region from 1999 to 2001 recorded by a temporary 29 station broadband IRIS-PASSCAL array operated by research groups from the Universities of Boğaziçi (Turkey) and Cornell (USA). The data was inverted and consisted of 3,114 P- and 2,298 S-wave arrival times from 252 local events with magnitudes ( M D) ranging from 2.5 to 4.8. The stability and resolution of the results were qualitatively assessed by two synthetic tests: a spike test and checkerboard resolution test and it was found that the models were well resolved for most parts of the imaged domain. The tomographic inversion results reveal significant lateral heterogeneities in the study area to a depth of ~20 km. The P- and S-wave velocity models are consistent with each other and provide evidence for marked heterogeneities in the upper crustal structure beneath eastern Turkey. One of the most important features in the acquired tomographic images is the high velocity anomalies, which are generally parallel to the main tectonic units in the region, existing at shallow depths. This may relate to the existence of ophiolitic units at shallow depths. The other feature is that low velocities are widely dispersed through the 3D structure beneath the region at deeper crustal depths. This feature can be an indicator of the mantle upwelling or support the hypothesis that the Anatolian Plateau is underlain by a partially molten uppermost mantle.

  8. Development of a portable computed tomographic scanner for on-line imaging of industrial piping systems

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Mohd Arif Hamzah; Mohd Soyapi Mohd Yusof; Mohd Fitri Abdul Rahman; Fadil IsmaiI; Rasif Mohd Zain

    2003-01-01

    Computed tomography (CT) technology is being increasingly developed for industrial application. This paper presents the development of a portable computed tomographic scanner for on?line imaging of industrial piping systems. The theoretical approach, the system hardware, the data acquisition system and the adopted algorithm for image reconstruction are discussed. The scanner has large potential to be used to determine the extent of corrosion under insulation (CUI), to detect blockages, to measure the thickness of deposit/materials built-up on the walls and to improve understanding of material flow in pipelines. (Author)

  9. A novel clinical multimodal multiphoton tomograph for AF, SHG, CARS imaging, and FLIM

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; König, Karsten

    2014-02-01

    We report on a flexible nonlinear medical tomograph with multiple miniaturized detectors for simultaneous acquisition of two-photon autofluorescence (AF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) images. The simultaneous visualization of the distribution of endogenous fluorophores NAD(P)H, melanin and elastin, SHG-active collagen and as well as non-fluorescent lipids within human skin in vivo is possible. Furthermore, fluorescence lifetime images (FLIM) can be generated using time-correlated single photon counting.

  10. Use of artificial neural networks in drug and explosive detection through tomographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X.

    2009-01-01

    The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)

  11. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  12. Sequential computed tomographic imaging of a transplantable rabbit brain tumor

    International Nuclear Information System (INIS)

    Kumar, A.J.; Rosenbaum, A.E.; Beck, T.J.; Ahn, H.S.; Anderson, J.

    1986-01-01

    The accuracy of CT imaging in evaluating VX-2 tumor growth in the rabbit brain was assessed. CT scanning was performed in 5 outbred New Zealand white male rabbits before and at 4, 7, 9 and 13 (in 3 animals) days after surgical implantation of 3 x 10 5 viable VX-2 tumor cells in the frontoparietal lobes. The CT studies were correlated with gross pathology in each. The tumor was visualized with CT in all 5 rabbits by the 9th day post implantation when the tumor ranged in size from 4-6 x 3-4 x 2-3 mm. Between the 9th and 13th day, the tumor increased 6-fold in two rabbits and 12-fold in the third rabbit. CT is a useful technique to evaluate brain tumor growth in this model and should be valuable in documenting the efficacy of chemotherapy on tumor growth. (orig.)

  13. Post-operative computed tomographic imaging of the shoulder joint

    International Nuclear Information System (INIS)

    Helweg, G.; Zur Nedden, D.; Wicke, K.; Knapp, R.; Oberhauser, A.; Resch, H.; Sperner, G.

    1992-01-01

    Between 1984 and 1990 312 patients underwent surgery for habitual or recurrent shoulder dislocation. Out then, 65 had a post-operative CT examination. This retrospective study was launched to demonstrate the value of CT in post-operative shoulder imaging. In most cases, CT was done using standardised techniques without contrast medium. Except in 4 cases, an intra-articular double-contrast technique was used. Evaluation was focused on 41 cases after implantation of a wedged bone graft in cases of primary or secondary flat glenoid or widening of a small glenoid with cortical consoles and bone block. The results demonstrate the effectiveness of standardised CT technique in that all necessary information concerning stabilisation of the shoulder joint, sufficient implant of bone grafts and assessment of correct inclination after osteotomy were obtained. (orig.)

  14. Image guidance improves localization of sonographically occult colorectal liver metastases

    Science.gov (United States)

    Leung, Universe; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.; Kingham, T. Peter

    2015-03-01

    Assessing the therapeutic benefit of surgical navigation systems is a challenging problem in image-guided surgery. The exact clinical indications for patients that may benefit from these systems is not always clear, particularly for abdominal surgery where image-guidance systems have failed to take hold in the same way as orthopedic and neurosurgical applications. We report interim analysis of a prospective clinical trial for localizing small colorectal liver metastases using the Explorer system (Path Finder Technologies, Nashville, TN). Colorectal liver metastases are small lesions that can be difficult to identify with conventional intraoperative ultrasound due to echogeneity changes in the liver as a result of chemotherapy and other preoperative treatments. Interim analysis with eighteen patients shows that 9 of 15 (60%) of these occult lesions could be detected with image guidance. Image guidance changed intraoperative management in 3 (17%) cases. These results suggest that image guidance is a promising tool for localization of small occult liver metastases and that the indications for image-guided surgery are expanding.

  15. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry

    Science.gov (United States)

    Atkinson, Callum; Soria, Julio

    2009-10-01

    To date, Tomo-PIV has involved the use of the multiplicative algebraic reconstruction technique (MART), where the intensity of each 3D voxel is iteratively corrected to satisfy one recorded projection, or pixel intensity, at a time. This results in reconstruction times of multiple hours for each velocity field and requires considerable computer memory in order to store the associated weighting coefficients and intensity values for each point in the volume. In this paper, a rapid and less memory intensive reconstruction algorithm is presented based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Reconstructions of simulated images are presented for two simultaneous algorithms (SART and SMART) as well as the now standard MART algorithm, which indicate that the same accuracy as MART can be achieved 5.5 times faster or 77 times faster with 15 times less memory if the processing and storage of the weighting matrix is considered. Application of MLOS-SMART and MART to a turbulent boundary layer at Re θ = 2200 using a 4 camera Tomo-PIV system with a volume of 1,000 × 1,000 × 160 voxels is discussed. Results indicate improvements in reconstruction speed of 15 times that of MART with precalculated weighting matrix, or 65 times if calculation of the weighting matrix is considered. Furthermore the memory needed to store a large weighting matrix and volume intensity is reduced by almost 40 times in this case.

  16. Positron transaxial emission tomograph with computerized image reconstruction

    International Nuclear Information System (INIS)

    Jatteau, Michel.

    1981-01-01

    This invention concerns a positron transaxial emission tomography apparatus with computerized image reconstruction, like those used in nuclear medicine for studying the metabolism of organs, in physiological examinations and as a diagnosis aid. The operation is based on the principle of the detection of photons emitted when the positrons are annihilated by impact with an electron. The appliance is mainly composed of: (a) - a set of gamma ray detectors distributed on a polygonal arrangement around the body area to be examined, (b) - circuits for amplifying the signals delivered by the gamma ray detectors, (c) - computers essentially comprising energy integration and discrimination circuits and provided at the output of the detectors for calculating and delivering, as from the amplified signals, information on the position and energy relative to each occurrence constituted by the detections of photons, (d) - time coincidence circuits for selecting by emission of detector validation signals, only those occurrences, among the ensemble of those detected, which effectively result from the annihilation of positrons inside the area examined, (e) - a data processing system [fr

  17. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  18. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined instrument

  19. Collaborative Research: Tomographic imaging of laser-plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [University of Texas at Austin

    2018-01-18

    The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledge of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.

  20. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process.

    Science.gov (United States)

    Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok

    2017-11-28

    Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  1. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    Science.gov (United States)

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  2. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process

    Directory of Open Access Journals (Sweden)

    Hansol Jang

    2017-11-01

    Full Text Available Diffuse optical tomography (DOT has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  3. GPU acceleration towards real-time image reconstruction in 3D tomographic diffractive microscopy

    Science.gov (United States)

    Bailleul, J.; Simon, B.; Debailleul, M.; Liu, H.; Haeberlé, O.

    2012-06-01

    Phase microscopy techniques regained interest in allowing for the observation of unprepared specimens with excellent temporal resolution. Tomographic diffractive microscopy is an extension of holographic microscopy which permits 3D observations with a finer resolution than incoherent light microscopes. Specimens are imaged by a series of 2D holograms: their accumulation progressively fills the range of frequencies of the specimen in Fourier space. A 3D inverse FFT eventually provides a spatial image of the specimen. Consequently, acquisition then reconstruction are mandatory to produce an image that could prelude real-time control of the observed specimen. The MIPS Laboratory has built a tomographic diffractive microscope with an unsurpassed 130nm resolution but a low imaging speed - no less than one minute. Afterwards, a high-end PC reconstructs the 3D image in 20 seconds. We now expect an interactive system providing preview images during the acquisition for monitoring purposes. We first present a prototype implementing this solution on CPU: acquisition and reconstruction are tied in a producer-consumer scheme, sharing common data into CPU memory. Then we present a prototype dispatching some reconstruction tasks to GPU in order to take advantage of SIMDparallelization for FFT and higher bandwidth for filtering operations. The CPU scheme takes 6 seconds for a 3D image update while the GPU scheme can go down to 2 or > 1 seconds depending on the GPU class. This opens opportunities for 4D imaging of living organisms or crystallization processes. We also consider the relevance of GPU for 3D image interaction in our specific conditions.

  4. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  5. Robotic needle steering: design, modeling, planning, and image guidance

    NARCIS (Netherlands)

    Cowan, Noah J.; Goldberg, Ken; Chirikjian, Gregory S.; Fichtinger, Gabor; Alterovitz, Ron; Reed, Kyle B.; Kallem, Vinutha; Misra, Sarthak; Park, Wooram; Okamura, Allison M.; Rosen, Jacob; Hannaford, Blake; Satava, Richard M.

    2010-01-01

    This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of

  6. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  7. A tensor-based dictionary learning approach to tomographic image reconstruction

    DEFF Research Database (Denmark)

    Soltani, Sara; Kilmer, Misha E.; Hansen, Per Christian

    2016-01-01

    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion...... coefficients in that dictionary. Our approach differs from past approaches in that (a) we use a third-order tensor representation for our images and (b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem...... with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images...

  8. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  9. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  10. Re-evaluation of Magnetic Resonance and Computerised Tomographic Imaging in Neuro-Ophthalmic Patients in an Academic Centre

    NARCIS (Netherlands)

    Koekoek, Clarence G. J.; Meiners, Linda C.; Pott, Jan Willem R.

    The aim of the study is to report the frequency of missed diagnoses on magnetic resonance and computerised tomographic imaging in neuro-ophthalmic patients who were referred to an academic ophthalmology department, with apparent normal imaging. The authors included all neuro-ophthalmic patients,

  11. Achievement report for fiscal 1998. Optical tomographic system; 1998 nendo seika hokokusho. Hikari danso imaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Evaluations were given on spatial resolution and measurement time of an optical tomographic system by using the developed 64-channel time-resolved spectroscopy and an image reconstruction algorithm. With respect to the spatial resolution, the target value of 1 cm was verified from tomographic images of a phantom with a diameter of 10cm, simulating a neonate. The measurement time achieved 20 minutes, being one third of the target value. In installing the equipment at Hokkaido University, speeds of the optical switches and attenuators were increased to have reduced the measurement time to one minute. For installation at Kanagawa Rehabilitation Center, development has been made on a nano-second light pulser, whose average beam quantity has been increased to 40 times, and improvement has been given on the optical switches, the attenuators, and the indication software, by which the measurement time was decreased further by 30 seconds than that at Hokkaido University. In performing the clinical evaluation, the evaluation protocol resolved by the Experiment Evaluation Special Committee was submitted for deliberation at the Medical Welfare Device Clinical Evaluation Committee. Upon having been authorized by the Committee, the clinical evaluations were performed at Hokkaido University and the Kanagawa Rehabilitation Center. (NEDO)

  12. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  13. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  14. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  15. Localization and quantification of acute myocardial infarction by myocardial perfusion tomographic imaging

    International Nuclear Information System (INIS)

    Lin Xiufang; Min Changgeng; Lin Zhihu; Ke Ruoyi

    1994-01-01

    The authors reported the result of the quantification and localization of 30 clinically confirmed acute myocardial infarction patients in comparison with that of ECG. A left ventricle model was used to correct the area calculated by the method of Bull's eye. The result indicated that the infarction area calculated by the corrected Bull's eye method correlated closely with that determined by the ECG QRS scoring method (r = 0.706, P<0.01). Myocardial infarctions of all 30 patients were detected by both ECG and myocardial perfusion tomographic imaging. The accuracy of localization of myocardial infarction by myocardial perfusion imaging was similar to that of ECG in the anterior wall, anterior septum, anterior lateral and inferior wall, but superior to that of ECG in the apex, posterior lateral, posterior septum, and posterior wall

  16. Diagnosis of Alzheimer's disease and multiple infarct dementia by tomographic imaging of iodine-123 IMP

    International Nuclear Information System (INIS)

    Cohen, M.B.; Graham, L.S.; Lake, R.

    1986-01-01

    Tomographic imaging of the brain was performed using a rotating slant hole collimator and [ 123 I]N-isopropyl p-iodoamphetamine (IMP) in normal subjects (n = 6) and patients with either Alzheimer's disease (n = 5) or multiple infarct dementia (n = 3). Four blinded observers were asked to make a diagnosis from the images. Normal subjects and patients with multiple infarct dementia were correctly identified. Alzheimer's disease was diagnosed in three of the five patients with this disease. One patient with early Alzheimer's disease was classified as normal by two of the four observers. Another patient with Alzheimer's disease had an asymmetric distribution of IMP and was incorrectly diagnosed as multiple infarct dementia by all four observers. Limited angle tomography of the cerebral distribution of 123 I appears to be a useful technique for the evaluation of demented patients

  17. William, a voxel model of child anatomy from tomographic images for Monte Carlo dosimetry calculations

    International Nuclear Information System (INIS)

    Caon, M.

    2010-01-01

    Full text: Medical imaging provides two-dimensional pictures of the human internal anatomy from which may be constructed a three-dimensional model of organs and tissues suitable for calculation of dose from radiation. Diagnostic CT provides the greatest exposure to radiation per examination and the frequency of CT examination is high. Esti mates of dose from diagnostic radiography are still determined from data derived from geometric models (rather than anatomical models), models scaled from adult bodies (rather than bodies of children) and CT scanner hardware that is no longer used. The aim of anatomical modelling is to produce a mathematical representation of internal anatomy that has organs of realistic size, shape and positioning. The organs and tissues are represented by a great many cuboidal volumes (voxels). The conversion of medical images to voxels is called segmentation and on completion every pixel in an image is assigned to a tissue or organ. Segmentation is time consuming. An image processing pack age is used to identify organ boundaries in each image. Thirty to forty tomographic voxel models of anatomy have been reported in the literature. Each model is of an individual, or a composite from several individuals. Images of children are particularly scarce. So there remains a need for more paediatric anatomical models. I am working on segmenting ''William'' who is 368 PET-CT images from head to toe of a seven year old boy. William will be used for Monte Carlo dose calculations of dose from CT examination using a simulated modern CT scanner.

  18. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    Science.gov (United States)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  20. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  1. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  2. A morphological study of the mandibular molar region using reconstructed helical computed tomographic images

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Noguchi, Makoto; Noguchi, Akira; Yoshida, Keiko; Tachinami, Yasuharu

    2010-01-01

    This study investigated the morphological variance in the mandibular molar region using reconstructed helical computed tomographic (CT) images. In addition, we discuss the necessity of CT scanning as part of the preoperative assessment process for dental implantation, by comparing the results with the findings of panoramic radiography. Sixty patients examined using CT as part of the preoperative assessment for dental implantation were analyzed. Reconstructed CT images were used to evaluate the bone quality and cross-sectional bone morphology of the mandibular molar region. The mandibular cortical index (MCI) and X-ray density ratio of this region were assessed using panoramic radiography in order to analyze the correlation between the findings of the CT images and panoramic radiography. CT images showed that there was a decrease in bone quality in cases with high MCI. Cross-sectional CT images revealed that the undercuts on the lingual side in the highly radiolucent areas in the basal portion were more frequent than those in the alveolar portion. This study showed that three-dimensional reconstructed CT images can help to detect variances in mandibular morphology that might be missed by panoramic radiography. In conclusion, it is suggested that CT should be included as an important examination tool before dental implantation. (author)

  3. Active instrumental guidance in interventional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wildermuth, S.; Erhart, P.; Leung, D.A.; Goehde, S.; Schoenenberger, A.; Debatin, J.F.

    1998-01-01

    Purpose: An active MR-based guidance system for visualisation of invasive instruments is described. Methods: The principle of MR tracking is based on the integration of a miniaturised coil into the tip of the instrument itself. A phantom experiment was designed to demonstrate the localising accuracy of this technique. In [dition, bicompatibility and warming effects were evaluated. Preliminary intravascular applications that were performed in animal experiments under MR guidance included embolisation, vascular occlusion as well as transjugular intrahepatic punctures. Percutaneous biopsies, cholecystostomies and laparoscopic applications were also evaluated with MR tracking. Results: Phantom experiments confirmed an excellent localisation accuracy of MR tracking compared to conventional r[iography. At a field strength of 0.5 T, the temperature increase remained below 2 C. Results of phantom experiments revealed a potential of significant heating dependent on the sequence parameters employed. MR tracking allowed a robust, simultaneously biplanar visualisation of the instrument tips in real time. Based on MR 'ro[ map' images, various intravascular and percutaneous interventions were successfully performed in vivo under MR guidance. Conclusions: MR tracking is a flexible concept permitting monitoring in the guidance of instruments in an MR environment. Various preliminary in vitro and in vivo experiments demonstrate safety, localisation accuracy and feasibility of this biplanar localisation technique in real time. (orig.) [de

  4. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    Science.gov (United States)

    2015-03-26

    clustering is an algorithm that has been used in data mining applications such as machine learning applications , pattern recognition, hyper-spectral imagery...42 3.7.2 Application of K-means Clustering . . . . . . . . . . . . . . . . . 42 3.8 Experiment Design...Tomographic Imaging WLAN Wireless Local Area Networks WSN Wireless Sensor Network xx ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS CLUSTERING

  5. New techniques for resolution enhancement of 3D x-ray tomographic imaging from incomplete data

    International Nuclear Information System (INIS)

    Vengrinovich, V.; Zolotarev, S.; Denkevich, Y.; Tillack, G.-R.

    2004-01-01

    Accurate evaluation of dimensions directly from tomographic images, restored from only few x-ray projections, made in a limited observation sector, is considered exploiting pipes wall thickness assessment like a typical example. Both experiments and simulations are used to extract main errors sources. It is taken from as known, that neglecting of the scattered radiation and beam hardening effects results in image blurring, strong artifacts and finally inaccurate sizing. The computerized technique is developed to simulate the contribution of scattered radiation and beam hardening for the purpose of their further extraction from projected data. After those accompanying effects extraction the iterative Bayesian techniques are applied to reconstruct images from the projections, using volumetric and/or shell representation of the objects like pipes. The achieved error of virtual pipe wall thickness assessment from 3D images can be as small as 300μk comparing to 1mm provided by modern techniques. Finally the conclusion was drawn that standard projection techniques using X- or Gamma rays in combination with X-ray film or imaging plates can be applied for the data acquisition to reconstruct finally wall thickness profiles in an in-field environment. (author)

  6. Three-dimensional DNA image cytometry by optical projection tomographic microscopy for early cancer diagnosis.

    Science.gov (United States)

    Agarwal, Nitin; Biancardi, Alberto M; Patten, Florence W; Reeves, Anthony P; Seibel, Eric J

    2014-04-01

    Aneuploidy is typically assessed by flow cytometry (FCM) and image cytometry (ICM). We used optical projection tomographic microscopy (OPTM) for assessing cellular DNA content using absorption and fluorescence stains. OPTM combines some of the attributes of both FCM and ICM and generates isometric high-resolution three-dimensional (3-D) images of single cells. Although the depth of field of the microscope objective was in the submicron range, it was extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. These projections were later reconstructed using computed tomography methods to form a 3-D image. We also present an automated method for 3-D nuclear segmentation. Nuclei of chicken, trout, and triploid trout erythrocyte were used to calibrate OPTM. Ratios of integrated optical densities extracted from 50 images of each standard were compared to ratios of DNA indices from FCM. A comparison of mean square errors with thionin, hematoxylin, Feulgen, and SYTOX green was done. Feulgen technique was preferred as it showed highest stoichiometry, least variance, and preserved nuclear morphology in 3-D. The addition of this quantitative biomarker could further strengthen existing classifiers and improve early diagnosis of cancer using 3-D microscopy.

  7. Positron tomographic imaging of the liver: 68Ga iron hydroxide colloid

    International Nuclear Information System (INIS)

    Kumar, B.; Miller, T.R.; Siegel, B.A.; Mathias, C.J.; Markham, J.; Ehrhardt, G.J.; Welch, M.J.

    1981-01-01

    A new radiopharmaceutical, 68 Ga iron hydroxide colloid, for hepatic imaging by positron emission tomography was prepared from the eluate of a 68 Ge- 68 Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by positron tomography and transmission computed tomography. Emission tomography with 68 Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional /sup 99m/Tc-sulfur colloid scintigraphy. All focal defects noted on the conventional scintigrams were easily identified and generally were seen more clearly by positron tomography. In one patient, additional lesions not identified on the initial /sup 99m/Tc-sulfur colloid images were demonstrated. The positron tomographic images were compared with those obtained by transmission computed tomography in seven patients; the two studies showed comparable findings in five patients, whereas positron tomography more clearly showed multiple lesions in two. Our results suggest that positron emission tomography is a suitable technique for obtaining high contrast, cross-sectional images of large abdominal organs

  8. Positron tomographic imaging of the liver: 68Ga iron hydroxide colloid

    International Nuclear Information System (INIS)

    Kumar, B.; Miller, T.R.; Siegel, B.A.; Mathias, C.J.; Markham, J.; Ehrhardt, G.J.; Welch, M.J.

    1981-01-01

    A new radiopharmaceutical, 68 Ga ion hydroxide colloid, for hepatic imaging by positron emission tomography was prepared from the eluate of a 68 Ge- 68 Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by positron tomography and transmission computed tomography. Emission tomography with 68 Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional 99mTc sulfur colloid scintigraphy. All focal defects noted on the conventional scintigrams were easily identified and generally were seen more clearly by positron tomography. In one patient, additional lesions not identified on the initial 99mTc sulfur colloid images were demonstrated. The positron tomographic images were compared with those obtained by transmission computed tomography in seven patients; the two studies showed comparable findings in five patients, whereas positron tomography more clearly showed multiple lesions in two. Our results suggest that positron emission tomography is a suitable technique for obtaining high contrast, cross-sectional images of large abdominal organs

  9. Statistical list-mode image reconstruction for the high resolution research tomograph

    International Nuclear Information System (INIS)

    Rahmim, A; Lenox, M; Reader, A J; Michel, C; Burbar, Z; Ruth, T J; Sossi, V

    2004-01-01

    We have investigated statistical list-mode reconstruction applicable to a depth-encoding high resolution research tomograph. An image non-negativity constraint has been employed in the reconstructions and is shown to effectively remove the overestimation bias introduced by the sinogram non-negativity constraint. We have furthermore implemented a convergent subsetized (CS) list-mode reconstruction algorithm, based on previous work (Hsiao et al 2002 Conf. Rec. SPIE Med. Imaging 4684 10-19; Hsiao et al 2002 Conf. Rec. IEEE Int. Symp. Biomed. Imaging 409-12) on convergent histogram OSEM reconstruction. We have demonstrated that the first step of the convergent algorithm is exactly equivalent (unlike the histogram-mode case) to the regular subsetized list-mode EM algorithm, while the second and final step takes the form of additive updates in image space. We have shown that in terms of contrast, noise as well as FWHM width behaviour, the CS algorithm is robust and does not result in limit cycles. A hybrid algorithm based on the ordinary and the convergent algorithms is also proposed, and is shown to combine the advantages of the two algorithms (i.e. it is able to reach a higher image quality in fewer iterations while maintaining the convergent behaviour), making the hybrid approach a good alternative to the ordinary subsetized list-mode EM algorithm

  10. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  11. Positron Tomographic Imaging Of The Liver With Ga-68 Iron Hydroxide Colloid

    Science.gov (United States)

    Kumar, Bharath; Miller, Tom R.; Siegel, Barry A.; Mathias, Carla J.; Markham, Joanne; Ehrhardt, Gary J.; Welch, Michael J.

    1980-08-01

    A new radiopharmaceutical, 68Ga-iron hydroxide colloid, for hepatic imaging by positron emission tomography (PET) was prepared from the eluate of a "Ge-68Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by PET and transmission computed tomography (CT). PET with 68Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional scintigraphy with 99mTc-sulfur colloid. All focal defects noted on the conventional scintigrams were easily identified and generally seen more clearly by PET. In one patient, lesions not identified on the initial 99mTc-sulfur colloid images were demonstrated by PET. The positron tomographic images were compared with those obtained by CT in 7 patients; the two studies showed comparable findings in 5 patients, whereas PET more clearly showed multiple lesions in 2. Our results suggest that PET is a suitable technique for obtaining high-contrast, cross-sectional images of large abdominal organs. Emission computed tomography with positron-emitting radionuclides shows promise as an important new tool for clinical research (1-4). Unfortunately, wide clinical application of positron-emission tomography (PET) is presently limited by the need for an expensive, hospital-based cyclotron facility and highly trained professional and technical personnel to synthesize the radiopharmaceuticals labeled with the very short-lived radionuclides 11c, 13N, 150 and 18 F that are employed most commonly in such studies. These difficulties may be circumvented in part by the use of a simple generator system that produces the positron-emitting radionuclide 68Ga (T1/2 = 68 min) from the long-lived parent 68Ge (T1/2 = 275 days) (5-7). A large number of radiopharmaceuticals of potential clinical interest may be prepared readily from the eluate of such a generator (6

  12. Anatomical Variations of Carotid Artery and Optic Nerve in Sphenoid Sinus Using Computerized Tomographic Imaging

    Directory of Open Access Journals (Sweden)

    Nikakhlagh

    2014-12-01

    Full Text Available Background Sphenoid sinus is surrounded by many vital vascular and nervous structures. In more than 20% of patients with chronic sinusitis, involvement of sphenoid sinus has been observed. Besides, sphenoid sinus is an appropriate route to access anterior and middle cranial fossa in surgery. Therefore, it is important to have an adequate knowledge about the contents of sphenoid sinus and its proximity for nasal endoscopy, sinus surgeries and neurosurgeries. Objectives The aim of this study was to study sphenoid sinus proximity with carotid artery and the optic nerve using computerized tomographic imaging. Materials and Methods In this prospective study, computerized tomographic images of sphenoid sinus of patients referred to Imam Khomeini and Apadana hospitals were studied. The images were studied regarding any bulging, as well as not having a bone covering in sphenoid sinus regarding internal carotid artery and optic nerve. Furthermore, unilateralness or bilateralness of their relationships was studied. Results Among 468 coronal and axial CT scan images of sphenoid sinus, 365 (78% showed post-sellar pneumatization and 103 (22% pre-sellar pneumatization. Regarding existence of internal septa, 346 (74% cases showed multiple septation, and the remaining images were reported to have a single septum. According to the reports of CT scan images, the existence of bulging as a result of internal carotid artery and uncovered artery were 4.22% and 5.8% in the right sinus, 4.9% and 5.4% in the left sinus, and 4.34% and 4.6% in both sinuses, respectively. According to the reports of CT scan images, existence of bulging as a result of optic nerve and uncovered nerve were 5.7% and 4.3% in the right sinus, 6% and 5.4% in the left sinus, and 12% and 3.2% in both sinuses, respectively. Conclusions Due to variability of sphenoid sinus pneumatization and the separator blade of the two sinus cavities, careful attention is required during sinus surgery to avoid

  13. Tomographic X-ray apparatus for the production of transverse layer images

    International Nuclear Information System (INIS)

    Liebetruth, R.

    1984-01-01

    In an extension of the utility of rotary scan tomographic x-ray apparatus, the apparatus is locked in a fixed angular relationship and the patient support is automatically advanced in small longitudinal increments relative to the angularly fixed scanner, the scanner being pulsed in synchronism with the longitudinal steps to produce successive sets of transmittance readings defining a radiographic shadow image having a substantial longitudinal extent. The stored sets of readings may be reproduced on a conventional television display unit. Advantageously, the scanner may present a fan-type beam which in a fixed angular relationship to the patient still scans a substantial portion of the patient cross section, the x-ray source or sources being pulsed at successive longitudinal positions of the patient relative to the scanning apparatus, and the successive sets of readings being utilized for on line display of a shadow radiograph covering the desired longitudinal extent

  14. The inverse problems of reconstruction in the X-rays, gamma or positron tomographic imaging systems

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    The revolution in imagery, brought by the tomographic technic in the years 70, allows the computation of local values cartography for the attenuation or the emission activity. The reconstruction techniques thus allow the connection from integral measurements to characteristic information distribution by inversion of the measurement equations. They are a main application of the solution technic for inverse problems. In a first part the author recalls the physical principles for measures in X-rays, gamma and positron imaging. Then he presents the various problems with their associated inversion techniques. The third part is devoted to the activity sector and examples, to conclude in the last part with the forecast. (A.L.B.)

  15. Percutaneous Thermal Ablation with Ultrasound Guidance. Fusion Imaging Guidance to Improve Conspicuity of Liver Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros; Deschamps, Frederic [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France); Petrover, David [Imagerie Médicale Paris Centre, IMPC (France); Baere, Thierry De [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France)

    2017-05-15

    PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time required for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.

  16. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.T.C. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  17. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    International Nuclear Information System (INIS)

    Wong, S.T.C.

    1997-01-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a open-quotes true 3D screenclose quotes. To confine the scope, this presentation will not discuss such approaches

  18. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  19. Detachments of the subducted Indian continental lithosphere based on 3D finite-frequency tomographic images

    Science.gov (United States)

    Liang, X.; Tian, X.; Wang, M.

    2017-12-01

    Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.

  20. Fractal analysis of en face tomographic images obtained with full field optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wanrong; Zhu, Yue [Department of Optical Engineering, Nanjing University of Science and Technology, Jiangsu (China)

    2017-03-15

    The quantitative modeling of the imaging signal of pathological areas and healthy areas is necessary to improve the specificity of diagnosis with tomographic en face images obtained with full field optical coherence tomography (FFOCT). In this work, we propose to use the depth-resolved change in the fractal parameter as a quantitative specific biomarker of the stages of disease. The idea is based on the fact that tissue is a random medium and only statistical parameters that characterize tissue structure are appropriate. We successfully relate the imaging signal in FFOCT to the tissue structure in terms of the scattering function and the coherent transfer function of the system. The formula is then used to analyze the ratio of the Fourier transforms of the cancerous tissue to the normal tissue. We found that when the tissue changes from the normal to cancerous the ratio of the spectrum of the index inhomogeneities takes the form of an inverse power law and the changes in the fractal parameter can be determined by estimating slopes of the spectra of the ratio plotted on a log-log scale. The fresh normal and cancer liver tissues were imaged to demonstrate the potential diagnostic value of the method at early stages when there are no significant changes in tissue microstructures. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Wide-band antenna design for use in minimal-scan, microwave tomographic imaging

    Science.gov (United States)

    Klaser, Jacob

    Microwave tomography is widely used in biomedical imaging and nondestructive evaluation of dielectric materials. A novel microwave tomography system that uses an electrically-conformable mirror to steer the incident energy for producing multi-view projection data is being developed in the Non-Destructive Evaluation Laboratory (NDEL). Such a system will have a significant advantage over existing tomography systems in terms of simplicity of design and operation, particularly when there is limited-access of the structure that is being imaged. The major components of a mirror-based tomography system are the source mirror assembly, and a receiver array for capturing the multi-view projection data. This thesis addresses the design and development of the receiver array. This imaging array features balanced, anti-podal Vivaldi antennas, which offer large bandwidth, high gain and a compact size. From the simulations, as well as the experimental results for the antenna, the return loss (S 11) is below -10dB for the range from 2.2GHz to 8.2GHz, and the gain is measured to be near 6dB. The data gathered from the receiver array is then run through MATLAB code for tomographic reconstruction using the Filtered Back-Propagation algorithm from limited-view projections. Initial results of reconstruction from the measured data shows the feasibility of the approach, but a significant challenge remains in interpolating the data for a limited number of receiving antenna elements and removing noise from the reconstructed image.

  2. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source

    Energy Technology Data Exchange (ETDEWEB)

    King, A.; Luo, X. [CSIRO Exploration and Mining, Kenmore, Qld. (Australia)

    2009-03-15

    Poor rock conditions in a coal long wall panel can result in roof collapse when a problematic zone is mined, significantly interrupting mine production. The ability to image rock conditions (stress and degree of fracturing) ahead of the face gives the miners the ability to respond proactively to such problems. This method uses the energy from mining machinery, in this case a coal shearer, to produce an image of the rock velocity ahead of the mining face without interrupting mining. Data from an experiment illustrates the concept. Geophones installed in gate-road roofs record the noise generated by the shearer after it has traversed the panel ahead of the mining face. A generalized crosscorrelation of the signals from pairs of sensors determines relative arrival times from the continuous seismic noise produced by the shearer. These relative times can then be inverted for a velocity structure. The crosscorrelations, performed in the frequency domain, are weighted by a confidence value derived from the spectral coherence between the traces. This produces stable crosscorrelation lags in the presence of noise. The errors in the time-domain data are propagated through to the relative traveltimes and then to the final tomographic velocity image, yielding an estimate of the uncertainty in velocity at each point. This velocity image can then be used to infer information about the stress and fracture state of the rock, providing advance warning of potentially hazardous zones.

  3. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  4. Radio tomographic imaging of sporadic-E layers during SEEK-2

    Directory of Open Access Journals (Sweden)

    P. A. Bernhardt

    2005-10-01

    Full Text Available During the SEEK-2 Rocket Campaign in August 2002, a Dual Band Beacon (DBB transmitting to Ground Receivers provided unique data on E-Region electron densities. Information from two rocket beacons and four ground receivers yielded multiple samples of E-region horizontal and vertical variations. The radio beacon measurements were made at four sites (Uchinoura, Tarumizu, Tanegashima, Takazaki in Japan for two rockets (S310-31 and S310-32 launched by the Institute of Space and Aeronautical Science (ISAS. Analysis was completed for four sets of beacon data to provide electron density images of sporadic-E layers. Signals from the two-frequency beacons on the SEEK-2 rockets were processed to yield total electron content (TEC data that was converted into electron density measurements. Wide variations in layer structures were detected. These included horizontal sporadic-E variations, vertical profiles of double, single, and weak layers. The radio beacon measurements were shown to be in agreement with the in-situ SEEK-2 sensors. The first tomographic image of a sporadic-E layer was produced from the data. The rocket beacon technique was shown to be an excellent tool to study sporadic-E layers because absolute TEC accuracy of 0.01 TEC Units can be easily obtained and, with proper receiver placement, electron density images can be produced using computerized ionospheric tomography with better than 1km horizontal and vertical resolution. Keywords. Ionospheric irregularities – Instruments and techniques – Mid-latitude ionosphere

  5. A distribution-based parametrization for improved tomographic imaging of solute plumes

    Science.gov (United States)

    Pidlisecky, Adam; Singha, K.; Day-Lewis, F. D.

    2011-01-01

    Difference geophysical tomography (e.g. radar, resistivity and seismic) is used increasingly for imaging fluid flow and mass transport associated with natural and engineered hydrologic phenomena, including tracer experiments, in situ remediation and aquifer storage and recovery. Tomographic data are collected over time, inverted and differenced against a background image to produce 'snapshots' revealing changes to the system; these snapshots readily provide qualitative information on the location and morphology of plumes of injected tracer, remedial amendment or stored water. In principle, geometric moments (i.e. total mass, centres of mass, spread, etc.) calculated from difference tomograms can provide further quantitative insight into the rates of advection, dispersion and mass transfer; however, recent work has shown that moments calculated from tomograms are commonly biased, as they are strongly affected by the subjective choice of regularization criteria. Conventional approaches to regularization (Tikhonov) and parametrization (image pixels) result in tomograms which are subject to artefacts such as smearing or pixel estimates taking on the sign opposite to that expected for the plume under study. Here, we demonstrate a novel parametrization for imaging plumes associated with hydrologic phenomena. Capitalizing on the mathematical analogy between moment-based descriptors of plumes and the moment-based parameters of probability distributions, we design an inverse problem that (1) is overdetermined and computationally efficient because the image is described by only a few parameters, (2) produces tomograms consistent with expected plume behaviour (e.g. changes of one sign relative to the background image), (3) yields parameter estimates that are readily interpreted for plume morphology and offer direct insight into hydrologic processes and (4) requires comparatively few data to achieve reasonable model estimates. We demonstrate the approach in a series of

  6. A new method to evaluate image quality of nuclear medicine tomographs

    International Nuclear Information System (INIS)

    Giannone, C.A.; Cabrejas, M.L.; Arashiro, J.A.

    2002-01-01

    Objective: To evaluate the usefulness of a new statistics, the Performance Index (PI), in order to make judgements about diagnostic accuracy of nuclear medicine tomographs (NMT). Methods: A phantom was designed for blind evaluation of device performance. It has 8 cold cylindrical inserts of different diameters. Acquisitions were performed in 40 labs following a defined protocol (under an International Atomic Energy Agency survey). Non-reconstructed set of views were processed and evaluated at a central lab using the same protocol for all the studies. Lesion detection was performed over eye-selected reconstructed slices applying a smoothing filter and a look up table (LUT) with fixed thresholds: counts/pixel = mean ± K . Standard deviation, with K=1,2,3 or >3. The number and location of the inserts was reported by blind observers, afterwards the true and false positive fractions was assessed by another observer. Receiver operating characteristic (ROC) analysis cannot be applied in our experiment where each image with multiple simulated lesions needs to be evaluated. A free-response ROC analysis, developed for observers' performance evaluation, has also flaws. Moreover, our goal was to assess device performance minimising the observer component. A new index, PI, that considers simultaneously the number of true and false positives (TP and FP) was evaluated to categorise NMT. PI is the ratio between the positive predictive value and the sensitivity, expressed as its complement adding a constant to avoid a singularity. Results: The smoothing filter and the selected LUT leads to observers-independent simulated lesion detection. Based on statistical analysis (bootstrapping), it is concluded that the number of observed false positives must be lower than the observed true positives (no. FP < no. TP) to accept an instrument for clinical purposes. Moreover, the number of observed TP must be considered in relation to a minimum tomographic resolution needed to achieve enough

  7. Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity

    International Nuclear Information System (INIS)

    Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.

    2010-01-01

    In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T e ) α (n e ) β , in which α=0.25-0.7 and β=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity

  8. New Pn and Sn tomographic images of the uppermost mantle beneath the Mediterranean region

    Science.gov (United States)

    Gil, A.; Díaz, J.; Gallart, J.

    2012-04-01

    We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath the Mediterranean region, compiled from inversion of Pn and Sn phases. The method of Hearn (1996) has been applied to Pn and Sn lectures from the catalogs of the International Seismological Center and the Spanish Instituto Geografico Nacional. A total of 1,172,293 Pn arrivals coming from 16,527 earthquakes recorded at 1,657 stations with epicentral distances between 220 km and 1400 km have been retained (331,567 arrivals from 15,487events at 961 stations for Sn). Our results, grossly consistent with available 3D tomography images, show significant features well correlated with surface geology. The Pn velocities are high (>8.2 km/s) beneath major sedimentary basins (western Alboran Sea, Valencia Trough, Adriatic Sea, Aquitaine, Guadalquivir, Rharb, Aquitaine and Po basins), and low (Islands, probably related to a thermal anomaly associated to the westward displacement of the Alboran block along the Emile Baudot escarpment 16 Ma ago. The Pn anisotropic image shows consistent orientations sub-parallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The station delays beneath Betic and Rif ranges are strongly negative, suggesting the presence of crustal thickening all along the Gibraltar Arc. However, only the Betics have a very strong low-velocity anomaly and a pronounced anisotropy pattern. The Sn tomographic image correlates well with the Pn image, even if some relevant differences can be observed beneath particular regions.

  9. Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India

    Science.gov (United States)

    Behera, Laxmidhar

    2011-09-01

    The crustal structure toward southern part of SGT is poorly defined leaving an opportunity to understand the tectonic and geodynamic evolution of this high-grade granulite terrain surrounded by major shear and tectonically disturbed zones like Achankovil Shear Zone (AKSZ) and Palghat Cauvery Shear Zone (PCSZ). To develop a geologically plausible crustal tectonic model depicting major structural elements, a comprehensive tomographic image was derived using deep-seismic-sounding data corroborated by Bouguer gravity modeling, coincident-reflection-seismic, heat-flow and available geological/geochronological informations along the N-S trending Vattalkundu-Kanyakumari geotransect. The final tectonic model represents large compositional changes of subsurface rocks accompanied by velocity heterogeneities with crustal thinning (44-36 km) and Moho upwarping from north to south. This study also reveals and successfully imaged anomalous zone of exhumation near AKSZ having transpression of exhumed rocks at mid-to-lower crustal level (20-30 km) with significant underplating and mantle upwelling forming a complex metamorphic province. The presence of shear zones with high-grade charnockite massifs in the upper-crust exposed in several places reveal large scale exhumation of granulites during the Pan-African rifting (~ 550 Ma) and provide important insights of plume-continental lithosphere interaction with reconstruction of the Gondwanaland.

  10. Comparison of primary thyroid lymphoma with anaplastic thyroid carcinoma on computed tomographic imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hitoshi; Mitsuhashi, Norio; Niibe, Hideo

    2002-01-01

    Primary non-Hodgkin's lymphoma (LY) and anaplastic carcinoma (AC) of the thyroid gland are rare malignant tumors, and the initial symptoms of these diseases are very similar. The aim of our study was to compare the characteristics of the two diseases using computed tomographic (CT) scans in order to make an accurate differential diagnosis. Ten patients with LY and 10 with AC were analyzed. Differences in the CT findings of the two diseases were evaluated before treatment and statistically tested with either Student's t-test or the chi-square test. In the analysis of characteristics of CT imaging, the existence of calcification and necrosis, and heterogeneous tumor were dominant findings in AC, and there was a statistically significant difference in frequency between the two diseases (p<0.01). Calcification detected in AC was usually multiple and/or gross (mean size: φ8.2 mm). All lymphadenopathies were delineated as having the same homogeneous attenuation as the tumors in the thyroid gland in LY, but were shown as irregular rim enhancement in AC. The CT features of the two diseases are characteristic in terms of calcification, necrosis, and tumor composition. Evaluation by means of CT imaging is useful in distinguishing between LY and AC. (author)

  11. Morphologic analysis of Japanese adult sacroiliac joint using computed tomographic images

    International Nuclear Information System (INIS)

    Pan, Xuanchao; Takayama, Akinori; Shibata, Yasuaki; Ito, Hiromoto

    2003-01-01

    The purpose of this study was to study the relationship of angles in adult sacroiliac joints (SJ) with laterality, age, gender, degeneration, childbearing in different locations. The study was performed in 92 healthy Japanese adult volunteers (46 males and 46 females, aged 21∼86 years) who had no low back complaints. Axial computed tomographic (CT) images were obtained using an X-VIGOR apparatus (Toshiba Medical Inc. Japan). The angle measurements were taken directly using soft National Institutes of Health (NIH) Image 1.61 (Scion Inc. USA). We examined possible factors. Statistical evaluation was calculated using t-test by soft SPSS (SPSS Inc. Japan). Our findings indicated that SJ angles had no relationships with laterality, gender. But from upper part to lower part, the average of SJ angle was 7.61 deg±8.7 deg, 5.16 deg±7.3 deg, -0.85 deg±7.3 deg respectively in the left and 6.56 deg±9.4 deg, 4.10 deg±7.2 deg, -2.30 deg±7.0 deg in the right. The difference is significant between lower part and upper-middle part (P<0.05). Our results provided new anatomic and morphological data for better understandings of SJ in the clinic work. (author)

  12. Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Han, Seung Ho; Choi, Seong Ho; Kim, Chong Kwan; Park, Chang Seo

    2006-01-01

    To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed: 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analysed by Mann-Whitney test. There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement

  13. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    Science.gov (United States)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  14. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  15. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  16. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    International Nuclear Information System (INIS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2014-01-01

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media

  17. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Azuma Takahashi

    Full Text Available The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D distribution of strain using tomographic particle image velocimetry (Tomo-PIV and compares the measurement accuracy with the gauge strain in tensile tests.The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen.We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.

  18. Direct aperture deformation: An interfraction image guidance strategy

    International Nuclear Information System (INIS)

    Feng Yuanming; Castro-Pareja, Carlos; Shekhar, Raj; Yu, Cedric

    2006-01-01

    A new scheme, called direct aperture deformation (DAD), for online correction of interfraction geometric uncertainties under volumetric imaging guidance is presented. Using deformable image registration, the three-dimensional geometric transformation matrix can be derived that associates the planning image set and the images acquired on the day of treatment. Rather than replanning or moving the patient, we use the deformation matrix to morph the treatment apertures as a potential online correction method. A proof-of-principle study using an intensity-modulated radiation therapy plan for a prostate cancer patient was conducted. The method, procedure, and algorithm of DAD are described. The dose-volume histograms from the original plan, reoptimized plan, and rigid-body translation plan are compared with the ones from the DAD plan. The study showed the feasibility of the DAD as a general method for both target dislocation and deformation. As compared with using couch translation to move the patient, DAD is capable of correcting both target dislocation and deformations. As compared with reoptimization, online correction using the DAD scheme could be completed within a few minutes rather than tens of minutes and the speed gain would be at a very small cost of plan quality

  19. A tomographic particle image velocimetry investigation of the flow development over dual step cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Morton, C., E-mail: chris.morton@ucalgary.ca [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4 (Canada); Yarusevych, S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada); Scarano, F. [Department of Aerospace Engineering, Delft University of Technology, 2628 Delft (Netherlands)

    2016-02-15

    This experimental study focuses on the near wake development of a dual step cylinder geometry consisting of a long base cylinder of diameter d to which a larger diameter (D) cylinder of length L is attached coaxially at mid-span. The experiments cover a range of Reynolds numbers, 2000 ≤ Re{sub D} ≤ 5000, diameter ratios, 1.33 ≤ D/d ≤ 2.0 and large cylinder aspect ratios, 0.5 ≤ L/D ≤ 5 using Tomographic particle image velocimetry. Distinct changes in wake topology are observed varying the above parameters. Supporting previous experimental studies on the same geometry involving flow visualization and planar measurements, four distinct flow regimes are identified to which a distinct three-dimensional wake topology can be associated. The vortex-dominated wake dynamical behaviour is investigated with Proper Orthogonal Decomposition (POD) and conditional averaging of three-dimensional velocity fields is used to exemplify the different shedding regimes. The conditionally averaged flow fields are shown to quantitatively resolve flow features equivalent to those obtained from a reduced order model consisting of the first ten to twenty POD modes, identifying the dominant vortex shedding cells and their interactions.

  20. Tomographic Imaging of the Peru Subduction Zone beneath the Altiplano and Implications for Andean Tectonics

    Science.gov (United States)

    Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.

    2010-12-01

    This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.

  1. Tomographically-imaged subducted slabs and magmatic history of Caribbean and Pacific subduction beneath Colombia

    Science.gov (United States)

    Bernal-Olaya, R.; Mann, P.; Vargas, C. A.; Koulakov, I.

    2013-12-01

    We define the length and geometry of eastward and southeastward-subducting slabs beneath northwestern South America in Colombia using ~100,000 earthquake events recorded by the Colombian National Seismic Network from 1993 to 2012. Methods include: hypocenter relocation, compilation of focal mechanisms, and P and S wave tomographic calculations performed using LOTOS and Seisan. The margins of Colombia include four distinct subduction zones based on slab dip: 1) in northern Colombia, 12-16-km-thick oceanic crust subducts at a modern GPS rate of 20 mm/yr in a direction of 110 degrees at a shallow angle of 8 degrees; as a result of its low dip, Pliocene-Pleistocene volcanic rocks are present 400 km from the frontal thrust; magmatic arc migration to the east records 800 km of subduction since 58 Ma ago (Paleocene) with shallow subduction of the Caribbean oceanic plateau starting ~24-33 Ma (Miocene); at depths of 90-150 km, the slab exhibits a negative velocity anomaly we associate with pervasive fracturing; 2) in the central Colombia-Panama area, we define an area of 30-km-thick crust of the Panama arc colliding/subducting at a modern 30/mm in a direction of 95 degrees; the length of this slab shows subduction/collision initiated after 20 Ma (Middle Miocene); we call this feature the Panama indenter since it has produced a V-shaped indentation of the Colombian margin and responsible for widespread crustal deformation and topographic uplift in Colombia; an incipient subduction area is forming near the Panama border with intermediate earthquakes at an eastward dip of 70 degrees to depths of ~150 km; this zone is not visible on tomographic images; 3) a 250-km-wide zone of Miocene oceanic crust of the Nazca plate flanking the Panama indenter subducts at a rate of 25 mm/yr in a direction of 55 degrees and at a normal dip of 40 degrees; the length of this slab suggests subduction began at ~5 Ma; 4) the Caldas tear defines a major dip change to the south where a 35 degrees

  2. MR imaging guidance and monitoring of focal thermotherapies. A review

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.G.; California Univ., San Francisco, CA; Heuck, A.F.

    1998-01-01

    Minimally invasive thermotherapies for focal tissue destruction on the basis of laser-, microwave-, focused ultrasound-, or cryogeninduced changes of tissue temperature represent an alternative to surgical tissue ablation, particularly in the treatment of tumors. The thermotherapy modalities listed necessitate indirect guidance and monitoring, since they often do not lend themselves to immediate visual control. In the brain, in head and neck tumors, in the liver, and in the prostate, MRI reliably and accurately delineates both the positions of interstitial thermotherapy applicators and - in contrast-enhanced, T1-weighted images - the perfusion defects in tissue necrosis induced by thermotherapy. The transfer of results of in-vitro and in-vivo model studies to assess interstitial temperature and lesion development during thermotherapy to the actual treatment of patients, however, is still in an initial phase. Further development of both rapid MRI sequences and MRI scanners suited for interventions will show how far treatment systems and guidance systems can be adapted to one another. (orig.) [de

  3. EPA guidance on improving the image of psychiatry.

    Science.gov (United States)

    Möller-Leimkühler, A M; Möller, H-J; Maier, W; Gaebel, W; Falkai, P

    2016-03-01

    This paper explores causes, explanations and consequences of the negative image of psychiatry and develops recommendations for improvement. It is primarily based on a WPA guidance paper on how to combat the stigmatization of psychiatry and psychiatrists and a Medline search on related publications since 2010. Furthermore, focussing on potential causes and explanations, the authors performed a selective literature search regarding additional image-related issues such as mental health literacy and diagnostic and treatment issues. Underestimation of psychiatry results from both unjustified prejudices of the general public, mass media and healthcare professionals and psychiatry's own unfavourable coping with external and internal concerns. Issues related to unjustified devaluation of psychiatry include overestimation of coercion, associative stigma, lack of public knowledge, need to simplify complex mental issues, problem of the continuum between normality and psychopathology, competition with medical and non-medical disciplines and psychopharmacological treatment. Issues related to psychiatry's own contribution to being underestimated include lack of a clear professional identity, lack of biomarkers supporting clinical diagnoses, limited consensus about best treatment options, lack of collaboration with other medical disciplines and low recruitment rates among medical students. Recommendations are proposed for creating and representing a positive self-concept with different components. The negative image of psychiatry is not only due to unfavourable communication with the media, but is basically a problem of self-conceptualization. Much can be improved. However, psychiatry will remain a profession with an exceptional position among the medical disciplines, which should be seen as its specific strength.

  4. Imaging of Anal Fistulas: Comparison of Computed Tomographic Fistulography and Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Changhu [Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021 (China); Lu, Yongchao [Traditional Chinese Medicine Department, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Zhao, Bin [Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021 (China); Du, Yinglin [Shandong Provincial Center for Disease Control and Prevention, Public Health Institute, Jinan 250014 (China); Wang, Cuiyan [Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021 (China); Jiang, Wanli [Department of Radiology, Taishan Medical University, Taian 271000 (China)

    2014-07-01

    The primary importance of magnetic resonance (MR) imaging in evaluating anal fistulas lies in its ability to demonstrate hidden areas of sepsis and secondary extensions in patients with fistula in ano. MR imaging is relatively expensive, so there are many healthcare systems worldwide where access to MR imaging remains restricted. Until recently, computed tomography (CT) has played a limited role in imaging fistula in ano, largely owing to its poor resolution of soft tissue. In this article, the different imaging features of the CT and MRI are compared to demonstrate the relative accuracy of CT fistulography for the preoperative assessment of fistula in ano. CT fistulography and MR imaging have their own advantages for preoperative evaluation of perianal fistula, and can be applied to complement one another when necessary.

  5. Tomographic and analog 3-D simulations using NORA. [Non-Overlapping Redundant Image Array formed by multiple pinholes

    Science.gov (United States)

    Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.

    1984-01-01

    The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.

  6. Neural network analysis for geological interpretation of tomographic images beneath the Japan Islands

    Science.gov (United States)

    Kuwatani, T.; Toriumi, M.

    2009-12-01

    prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.

  7. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: comparison with rest-redistribution thallium 201 imaging.

    Science.gov (United States)

    Iskandrian, A S; Powers, J; Cave, V; Wasserleben, V; Cassell, D; Heo, J

    1995-01-01

    This study examined the ability of dynamic 123I-labeled iodophenylpentadecanoic acid (IPPA) imaging to detect myocardial viability in patients with left ventricular (LV) dysfunction caused by coronary artery disease. Serial 180-degree single-photon emission computed tomographic (SPECT) images (five sets, 8 minutes each) were obtained starting 4 minutes after injection of 2 to 6 mCi 123I at rest in 21 patients with LV dysfunction (ejection fraction [EF] 34% +/- 11%). The segmental uptake was compared with that of rest-redistribution 201Tl images (20 segments/study). The number of perfusion defects (reversible and fixed) was similar by IPPA and thallium (11 +/- 5 vs 10 +/- 5 segments/patient; difference not significant). There was agreement between IPPA and thallium for presence or absence (kappa = 0.78 +/- 0.03) and nature (reversible, mild fixed, or severe fixed) of perfusion defects (kappa = 0.54 +/- 0.04). However, there were more reversible IPPA defects than reversible thallium defects (7 +/- 4 vs 3 +/- 4 segments/patient; p = 0.001). In 14 patients the EF (by gated pool imaging) improved after coronary revascularization from 33% +/- 11% to 39% +/- 12% (p = 0.002). The number of reversible IPPA defects was greater in the seven patients who had improvement in EF than in the patients without such improvement (10 +/- 4 vs 5 +/- 4 segments/patient; p = 0.075). 123I-labeled IPPA SPECT imaging is a promising new technique for assessment of viability. Reversible defects predict recovery of LV dysfunction after coronary revascularization.

  8. Cone beam computed tomographic imaging: perspective, challenges, and the impact of near-trend future applications.

    Science.gov (United States)

    Cavalcanti, Marcelo Gusmão Paraiso

    2012-01-01

    Cone beam computed tomography (CBCT) can be considered as a valuable imaging modality for improving diagnosis and treatment planning to achieve true guidance for several craniofacial surgical interventions. A new concept and perspective in medical informatics is the highlight discussion about the new imaging interactive workflow. The aim of this article was to present, in a short literature review, the usefulness of CBCT technology as an important alternative imaging modality, highlighting current practices and near-term future applications in cutting-edge thought-provoking perspectives for craniofacial surgical assessment. This article explains the state of the art of CBCT improvements, medical workstation, and perspectives of the dedicated unique hardware and software, which can be used from the CBCT source. In conclusion, CBCT technology is developing rapidly, and many advances are on the horizon. Further progress in medical workstations, engineering capabilities, and improvement in independent software-some open source-should be attempted with this new imaging method. The perspectives, challenges, and pitfalls in CBCT will be delineated and evaluated along with the technological developments.

  9. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  10. Reconstruction of computed tomographic image from a few x-ray projections by means of accelerative gradient method

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    A method of the reconstruction of computed tomographic images was proposed to reduce the exposure dose to X-ray. The method is the small number of X-ray projection method by accelerative gradient method. The procedures of computation are described. The algorithm of these procedures is simple, the convergence of the computation is fast, and the required memory capacity is small. Numerical simulation was carried out to conform the validity of this method. A sample of simple shape was considered, projection data were given, and the images were reconstructed from 6 views. Good results were obtained, and the method is considered to be useful. (Kato, T.)

  11. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    Science.gov (United States)

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  12. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    used as fusion algorithm for position and poses estimation. Then path planning, trajectory generation and trajectory guidance alternative strategies is presented. One of the important UAV mission is target surveillance using an onboard vision system. AUS-UAV Mazari is using a gimbaled camera for target monitoring and target tracking using basic digital image processing and techniques. Successful moving target geo-location algorithms were developed and results will be presented. Future plan is to develop a cooperation strategy between several vehicles in the air and on the ground. Use of vision system to aid the vehicle in localization using ground features is also under consideration.

  13. 3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden

    Science.gov (United States)

    Feng, L.; Muller, J. P., , Prof

    2017-12-01

    3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract

  14. Standardization of the first-trimester fetal cardiac examination using spatiotemporal image correlation with tomographic ultrasound and color Doppler imaging.

    Science.gov (United States)

    Turan, S; Turan, O M; Ty-Torredes, K; Harman, C R; Baschat, A A

    2009-06-01

    The challenges of the first-trimester examination of the fetal heart may in part be overcome by technical advances in three-dimensional (3D) ultrasound techniques. Our aim was to standardize the first-trimester 3D imaging approach to the cardiac examination to provide the most consistent and accurate display of anatomy. Low-risk women with normal findings on first-trimester screening at 11 to 13 + 6 weeks had cardiac ultrasound using the following sequence: (1) identification of the four-chamber view; (2) four-dimensional (4D) volume acquisition with spatiotemporal image correlation (STIC) and color Doppler imaging (angle = 20 degrees, sweep 10 s); (3) offline, tomographic ultrasound imaging (TUI) analysis with standardized starting plane (four-chamber view), slice number and thickness; (4) assessment of fetal cardiac anatomy (four-chamber view, cardiac axis, size and symmetry, atrioventricular valves, great arteries and descending aorta) with and without color Doppler. 107 consecutive women (age, 16-42 years, body mass index 17.2-50.2 kg/m(2)) were studied. A minimum of three 3D volumes were obtained for each patient, transabdominally in 91.6%. Fetal motion artifact required acquisition of more than three volumes in 20%. The median time for TUI offline analysis was 100 (range, 60-240) s. Individual anatomic landmarks were identified in 89.7-99.1%. Visualization of all structures in one panel was observed in 91 patients (85%). Starting from a simple two-dimensional cardiac landmark-the four-chamber view-the standardized STIC-TUI technique enables detailed segmental cardiac evaluation of the normal fetal heart in the first trimester. (c) 2009 ISUOG.

  15. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    Science.gov (United States)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  16. Fluorescence tomographic imaging of sentinel lymph node using near-infrared emitting bioreducible dextran nanogels

    Directory of Open Access Journals (Sweden)

    Li J

    2014-12-01

    nanoprobes for safe and noninvasive SLN mapping. Keywords: nanogel, disulfide, dextran, lymph node, tomographic imaging

  17. The impact of reorienting cone-beam computed tomographic images in varied head positions on the coordinates of anatomical landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Jeong, Ho Gul; Hwang, Jae Joon; Lee, Jung Hee; Han, Sang Sun [Dept. of Oral and Maxillofacial Radiology, Yonsei University, College of Dentistry, Seoul (Korea, Republic of)

    2016-06-15

    The aim of this study was to compare the coordinates of anatomical landmarks on cone-beam computed tomographic (CBCT) images in varied head positions before and after reorientation using image analysis software. CBCT images were taken in a normal position and four varied head positions using a dry skull marked with 3 points where gutta percha was fixed. In each of the five radiographic images, reference points were set, 20 anatomical landmarks were identified, and each set of coordinates was calculated. Coordinates in the images from the normally positioned head were compared with those in the images obtained from varied head positions using statistical methods. Post-reorientation coordinates calculated using a three-dimensional image analysis program were also compared to the reference coordinates. In the original images, statistically significant differences were found between coordinates in the normal-position and varied-position images. However, post-reorientation, no statistically significant differences were found between coordinates in the normal-position and varied-position images. The changes in head position impacted the coordinates of the anatomical landmarks in three-dimensional images. However, reorientation using image analysis software allowed accurate superimposition onto the reference positions.

  18. Physics-based shape matching for intraoperative image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Suwelack, Stefan, E-mail: suwelack@kit.edu; Röhl, Sebastian; Bodenstedt, Sebastian; Reichard, Daniel; Dillmann, Rüdiger; Speidel, Stefanie [Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Adenauerring 2, Karlsruhe 76131 (Germany); Santos, Thiago dos; Maier-Hein, Lena [Computer-assisted Interventions, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Wagner, Martin; Wünscher, Josephine; Kenngott, Hannes; Müller, Beat P. [General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg 69120 (Germany)

    2014-11-01

    Purpose: Soft-tissue deformations can severely degrade the validity of preoperative planning data during computer assisted interventions. Intraoperative imaging such as stereo endoscopic, time-of-flight or, laser range scanner data can be used to compensate these movements. In this context, the intraoperative surface has to be matched to the preoperative model. The shape matching is especially challenging in the intraoperative setting due to noisy sensor data, only partially visible surfaces, ambiguous shape descriptors, and real-time requirements. Methods: A novel physics-based shape matching (PBSM) approach to register intraoperatively acquired surface meshes to preoperative planning data is proposed. The key idea of the method is to describe the nonrigid registration process as an electrostatic–elastic problem, where an elastic body (preoperative model) that is electrically charged slides into an oppositely charged rigid shape (intraoperative surface). It is shown that the corresponding energy functional can be efficiently solved using the finite element (FE) method. It is also demonstrated how PBSM can be combined with rigid registration schemes for robust nonrigid registration of arbitrarily aligned surfaces. Furthermore, it is shown how the approach can be combined with landmark based methods and outline its application to image guidance in laparoscopic interventions. Results: A profound analysis of the PBSM scheme based on in silico and phantom data is presented. Simulation studies on several liver models show that the approach is robust to the initial rigid registration and to parameter variations. The studies also reveal that the method achieves submillimeter registration accuracy (mean error between 0.32 and 0.46 mm). An unoptimized, single core implementation of the approach achieves near real-time performance (2 TPS, 7–19 s total registration time). It outperforms established methods in terms of speed and accuracy. Furthermore, it is shown that the

  19. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.

    Science.gov (United States)

    Cantekin, Kenan; Sekerci, Ahmet Ercan; Buyuk, Suleyman Kutalmis

    2013-12-01

    Computed tomography (CT) is capable of providing accurate and measurable 3-dimensional images of the third molar. The aims of this study were to analyze the development of the mandibular third molar and its relation to chronological age and to create new reference data for a group of Turkish participants aged 9 to 25 years on the basis of cone-beam CT images. All data were obtained from the patients' records including medical, social, and dental anamnesis and cone-beam CT images of 752 patients. Linear regression analysis was performed to obtain regression formulas for dental age calculation with chronological age and to determine the coefficient of determination (r) for each sex. Statistical analysis showed a strong correlation between age and third-molar development for the males (r2 = 0.80) and the females (r2 = 0.78). Computed tomographic images are clinically useful for accurate and reliable estimation of dental ages of children and youth.

  20. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    Science.gov (United States)

    1987-03-01

    Oct. 1985. 28. D.L. Jaggard, K. Schultz, Y. Kim and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985...T.H. Chu - Graduate Student (50%) C.Y. Ho - Graduate Student (50%) Y. Kim - Graduate Student (50%) K S. Lee - Graduate Student (50%) P. Frangos ...1982. 3. P. Frangos (Ph.D.) - "One-Dimensional Inverse Scattering: Exact Methods and Applications". 4. C.L. Werner (Ph.D.) - ŗ-D Imaging of Coherent and

  1. Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle

    Science.gov (United States)

    Villaseñor, Antonio; Chevrot, Sébastien; Harnafi, Mimoun; Gallart, Josep; Pazos, Antonio; Serrano, Inmaculada; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro

    2015-11-01

    New tomographic images of the upper mantle beneath the westernmost Mediterranean suggest that the evolution of the region experienced two subduction-related episodes. First subduction of oceanic and/or extended continental lithosphere, now located mainly beneath the Betics at depths greater than 400 km, took place on a NW-SE oriented subduction zone. This was followed by a slab-tear process that initiated in the east and propagated to the west, leading to westward slab rollback and possibly lower crustal delamination. The current position of the slab tear is located approximately at 4°W, and to the west of this location the subducted lithosphere is still attached to the surface along the Gibraltar Arc. Our new P-wave velocity model is able to image the attached subducted lithosphere as a narrow high-velocity body extending to shallow depths, coinciding with the region of maximum curvature of the Gibraltar Arc, the occurrence of intermediate-depth earthquakes, and anomalously thick crust. This thick crust has a large influence in the measured teleseismic travel time residuals and therefore in the obtained P-wave tomographic model. We show that removing the effects of the thick crust significantly improves the shallow images of the slab and therefore the interpretations based on the seismic structure.

  2. Gynecologic radiation therapy. Novel approaches to image-guidance and management

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N. [Harvard Medical School, Boston, MA (United States). Dept. of Radiation Oncology; Kirisits, Christian; Poetter, Richard (eds.) [Vienna General Hospital Medical Univ. (Austria). Dept. of Radiotherapy; Erickson, Beth E. [Medical College of Wisconsin Clinics Froedtert Hospital, Milwaukee, WI (United States). Dept. of Radiation Oncology

    2011-07-01

    Recent advances in the treatment of gynecologic malignancies led to a new worldwide consensus to introduce image guidance to gynecologic radiation therapy, particularly to brachytherapy. The book summarizes the changed practice of management: treatment planning for cervical cancer, not modified for over 60 years, has been shifted to an image-based approach, endometrial cancer management with an increase in the use of chemotherapy and vaginal brachytherapy, and vaginal cancer therapy including image guidance and high-dose delivery with IMRT. (orig.)

  3. WE-E-18A-11: Fluoro-Tomographic Images From Projections of On-Board Imager (OBI) While Gantry Is Moving

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Hu, E; Yu, C; Lasio, G [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2014-06-15

    Purpose: A method to generate a series of fluoro-tomographic images (FTI) of the slice of interest (SOI) from the projection images of the On-board imager (OBI) while gantry is moving is developed and tested. Methods: Tomographic image via background subtraction, TIBS has been published by our group. TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). We extended the idea to 4D TIBS, which enables to generate from the projection of different gantry angles. A set of background images for different angles are prepared. A background image at a given gantry angle is subtracted from the projection image at the same angle to generate a TIBS image. Then the TIBS image is converted to a reference angle. The 4D TIBS is the set of TIBS that originated from gantry angles other than the reference angle. Projection images of lung patients for CBCT acquisition are used to test the 4D TIBS. Results: Fluoroscopic images of a coronal plane of lung patients are acquired from the CBCT projections at different gantry angles and times. Change of morphology of hilar vessels due to breathing and heart beating are visible in the coronal plane, which are generated from the set of the projection images at gantry angles other than antero-posterior. Breathing surrogate or sorting process is not needed. Unlike tomosynthesis, FTI from 4D TIBS maintains the independence of each of the projections thereby reveals temporal variations within the SOI. Conclusion: FTI, fluoroscopic imaging of a SOI with x-ray projections, directly generated from the x-ray projection images at different gantry angles is tested with a lung case and proven feasible. This technique can be used for on-line imaging of moving targets. NIH Grant R01CA133539.

  4. Diagnostic value of myocardial tomographic imaging with 123I labelled BMIPP for exercise-induced angina pectoris

    International Nuclear Information System (INIS)

    Wang Lijuan; Kaname Akioka; Hiroyuki Yamagishi

    1999-01-01

    Objective: To evaluate the diagnostic value of resting myocardial tomographic imaging with 123 I labelled BMIPP ( 123 I-BMIPP SPECT) for exercise-induced angina pectoris by comparison with stress myocardial tomographic imaging with 201 Tl( 201 Tl SPECT). Methods: 123 I-BMIPP SPECT and 201 Tl SPECT were performed in 32 patients with exercise-induced angina pectoris and 12 normal controls. Left ventricle was divided into nine segments and uptake of 201 TL and 123 I-BMIPP was evaluated by four classes score method (defect score, DS). Results: In the patients with angina pectoris, segments of 201 Tl distribution abnormality were more than that of 123 I-BMIPP. Concordant rate between DS of the 20 '1Tl SPECT for detecting coronary artery stenosis were 62%, 92% and 70%, respectively, and 201 Tl SPECT were 84%, 83% and 84%, respectively. Sensitivity of 123 I-BMIPP SPECT was significantly lower than that of 201 Tl SPECT (P 123 I-BMIPP SPECT will be. Conclusions: The results indicated that to a certain extent, resting 123 I-BMIPP SPECT may has practical clinical value for detection of coronary artery stenosis, and determination of stenotic degree in the patients with exercise-induced angina pectoris

  5. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source - A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.; King, A.; Van de Werken, M. [CSIRO, Brisbane, Qld. (Australia)

    2009-11-15

    Roof falls due to poor rock conditions in a coal longwall panel may threaten miner's life and cause significant interruption to mine production. There has been a requirement for technologies that are capable of imaging the rock conditions in longwall coal mining, ahead of the working face and without any interruption to production. A feasibility study was carried out to investigate the characteristics of seismic signals generated by the continuous coal cutter (shearer) and recorded by geophone arrays deployed ahead of the working face, for the purpose of seismic tomographic imaging of roof strata condition before mining. Two experiments were conducted at a coal mine using two arrays of geophones. The experiments have demonstrated that the longwall shearer generates strong and low-frequency (similar to 40 Hz) seismic energy that can be adequately detected by geophones deployed in shallow boreholes along the roadways as far as 300 m from the face. Using noise filtering and signal cross correlation techniques, the seismic arrival times associated with the shearer cutting can be reliably determined. It has proved the concept that velocity variations ahead of the face can be mapped out using tomographic techniques while mining is in progress.

  6. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    Energy Technology Data Exchange (ETDEWEB)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim; Alite, Fiori; Block, Alec M.; Choi, Mehee; Emami, Bahman; Harkenrider, Matthew M.; Solanki, Abhishek A.; Roeske, John C., E-mail: jroeske@lumc.edu

    2016-11-15

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scale (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.

  7. 76 FR 51993 - Draft Guidance for Industry on Standards for Clinical Trial Imaging Endpoints; Availability

    Science.gov (United States)

    2011-08-19

    ... clinical trials of therapeutic drugs and biological products. The draft guidance describes standards... important imaging endpoint is used in a clinical trial of a therapeutic drug or biological product... Services to the Chairman of [[Page 51994

  8. Quantitative analysis of length-diameter distribution and cross-sectional properties of fibers from three-dimensional tomographic images

    DEFF Research Database (Denmark)

    Miettinen, Arttu; Joffe, Roberts; Madsen, Bo

    2013-01-01

    obtained from optical microscopy of polished cross-sections of a composite. This approach gives accurate yet local results, but a rather large number of optical images have to be processed to achieve a representative description of the morphology of the material. In this work a fully automatic algorithm......A number of rule-of-mixture micromechanical models have been successfully used to predict the mechanical properties of short fiber composites. However, in order to obtain accurate predictions, a detailed description of the internal structure of the material is required. This information is often...... for estimating the length-diameter distribution of solid or hollow fibers, utilizing three-dimensional X-ray tomographic images, is presented. The method is based on a granulometric approach for fiber length distribution measurement, combined with a novel algorithm that relates cross-sectional fiber properties...

  9. Reconstruction of tomographic images from projections of a small number of views by means of mathematical programming

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1985-01-01

    Fundamental studies have been made on the application of mathematical programming to the reconstruction of tomographic images from projections of a small number of views without requiring any circular symmetry nor periodicity. Linear programming and quadratic programming were applied to minimize the quadratic sum of the residue and to finally obtain optimized reconstruction images. The mathematical algorithms were verified by the method of computer simulation, and the relationship between the number of picture elements and the number of iterations necessary for convergence was also investigated. The methods of linear programming and quadratic programming require fairly simple mathematical procedures, and strict solutions can be obtained within a finite number of iterations. Their only draw back is the requirement of a large quantity of computer memory. But this problem will be desolved by the advent of large fast memory devices in the near future. (Aoki, K.)

  10. Image guidance in trans-sphenoidal surgery for giant pituitary adenomas: Luxury or necessity?

    OpenAIRE

    Deepak Agrawal

    2012-01-01

    Background: In spite of availability of image guidance (neuronavigation) at major centers around the world, most trans-sphenoidal surgeries for pituitary adenomas continue to be done under fluoroscopic control. On the other hand, the high mortality and morbidity for giant pituitary adenomas is mainly due to inadequate tumor removal. Aims and Objectives: The objective of this study was to study to utility of image guidance in trans-sphenoidal surgeries for optimizing tumor removal in giant pit...

  11. Evaluation of Image-Guidance Strategies in the Treatment of Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Lee, Choonik; Langen, Katja M.; Zeidan, Omar A.; Manon, Rafael R.; Willoughby, Twyla R.; Meeks, Sanford L.

    2008-01-01

    Purpose: To compare different image-guidance strategies in the alignment of prostate cancer patients. Using data from patients treated using daily image guidance, the remaining setup errors for several different strategies were retrospectively calculated. Methods and Materials: The alignment data from 74 patients treated with helical tomotherapy were analyzed, resulting in a data set of 2,252 fractions during which a megavoltage computed tomography image was used for image guidance with intraprostatic metallic fiducials. Given the daily positional adjustments, a variety of protocols, differing in imaging frequency and method, were retrospectively studied. The residual setup errors were determined for each protocol. Results: As expected, the systematic errors were effectively reduced with imaging. However, the random errors were unaffected. Even when image guidance was performed every other day with a running mean of the previous displacements, residual setup errors >5 mm occurred in 24% of all fractions. This frequency increased to about 40% if setup errors >3 mm were scored. Conclusion: Setup errors increased with decreasing frequency of image guidance. However, residual errors were still significant at the 5-mm level, even with imaging was performed every other day. This suggests that localizations must be performed daily in the set up of prostate cancer patients during a course of external beam radiotherapy

  12. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  13. Image guidance in trans-sphenoidal surgery for giant pituitary adenomas: Luxury or necessity?

    Directory of Open Access Journals (Sweden)

    Deepak Agrawal

    2012-01-01

    Full Text Available Background: In spite of availability of image guidance (neuronavigation at major centers around the world, most trans-sphenoidal surgeries for pituitary adenomas continue to be done under fluoroscopic control. On the other hand, the high mortality and morbidity for giant pituitary adenomas is mainly due to inadequate tumor removal. Aims and Objectives: The objective of this study was to study to utility of image guidance in trans-sphenoidal surgeries for optimizing tumor removal in giant pituitary adenomas. Materials and Methods: This was a prospective study carried out over a two years (January 2009-December 2010 in the Department of Neurosurgery, All India Institute of Medical Sciences. Patients with giant pituitary adenomas who underwent trans-sphenoidal surgery by the author were included. All surgeries were done under image-guidance only and no fluoroscopy was employed. Trajectory was defined using the image guidance and bone work done accordingly to optimize tumor removal. All patients had a contrast CT of the head done within 48 h of surgery to see for residual tumor. Observations and Results: Sixteen patients with pituitary adenomas were operated using only image-guidance in the study period. Twelve patients had virgin tumors and four patients had recurrent/residual tumors. In four patients, noncontrast MR images were used in for image guidance and contrast CT images were used in the rest. The mean set up time for image-guidance was 11 min (range 7-15 min. The mean ′′overall accuracy of registration′′ was 1.6 mm (range 1.4-2.1 mm. The mean operating time was 72 min (range 52-96 min. In all cases, midline and the relation of the carotid artery to the sella could be confirmed using the image-guidance. There were no intraoperative complications. Postoperative scans showed residual tumor in nine patients. The residual tumor was 25% in one patient (with a fibrous recurrent/residual tumor. Conclusions: Image guidance markedly improves

  14. Assessment of Normal Eyeball Protrusion Using Computed Tomographic Imaging and Three-Dimensional Reconstruction in Korean Adults.

    Science.gov (United States)

    Shin, Kang-Jae; Gil, Young-Chun; Lee, Shin-Hyo; Kim, Jeong-Nam; Yoo, Ja-Young; Kim, Soon-Heum; Choi, Hyun-Gon; Shin, Hyun Jin; Koh, Ki-Seok; Song, Wu-Chul

    2017-01-01

    The aim of the present study was to assess normal eyeball protrusion from the orbital rim using two- and three-dimensional images and demonstrate the better suitability of CT images for assessment of exophthalmos. The facial computed tomographic (CT) images of Korean adults were acquired in sagittal and transverse views. The CT images were used in reconstructing three-dimensional volume of faces using computer software. The protrusion distances from orbital rims and the diameters of eyeballs were measured in the two views of the CT image and three-dimensional volume of the face. Relative exophthalmometry was calculated by the difference in protrusion distance between the right and left sides. The eyeball protrusion was 4.9 and 12.5 mm in sagittal and transverse views, respectively. The protrusion distances were 2.9 mm in the three-dimensional volume of face. There were no significant differences between right and left sides in the degree of protrusion, and the difference was within 2 mm in more than 90% of the subjects. The results of the present study will provide reliable criteria for precise diagnosis and postoperative monitoring using CT imaging of diseases such as thyroid-associated ophthalmopathy and orbital tumors.

  15. Comparative study of adenosine and exercise 201Tl myocardial perfusion tomographic imaging for detection of coronary heart disease

    International Nuclear Information System (INIS)

    Wang Xiong

    1997-01-01

    To compare diagnostic accuracy of adenosine and exercise 201 Tl myocardial perfusion tomographic imaging for detection of coronary heart disease (CHD) in patients with a normal rest ECG and no history of myocardial infarction, 81 patients with CHD and 10 normal control subjects underwent adenosine myocardial perfusion imaging, exercise nuclide myocardial perfusion imaging was performed in 117 patients with CHD and 16 normal control subjects, two groups also had coronary arteriography. Both exercise and adenosine testing parameters were analysed. It is shown: 1) The sensitivity and specificity for detection of CHD were 79% vs 80% for adenosine group and 81% vs 81% for exercise myocardial perfusion imaging group respectively. There was no significant difference in comparison with two matched groups (χ 2 = 1.13, χ 2 = 0.18, χ 2 = 0.12, P>0.05). 2) Side effects induced by adenosine accounted for 89% of patients, all symptoms were mild and disappeared quickly after the termination of the study except in 2 cases withdrawal of infusion needed because of severe angina pectoris. Adenosine myocardial perfusion imaging is a safe and sensitive method for detection of CHD. The diagnostic value of adenosine test is similar to that of exercise myocardial perfusion imaging and particularly useful in evaluating patients unable to perform exercise test or achieve adequate level of exercise

  16. Development and application of a tomographic model from CT images for calculating internal dose to a pregnant woman

    International Nuclear Information System (INIS)

    Shi Chengyu

    2004-01-01

    Assessment of radiation dose and possible risk to a pregnant woman and her fetus is an important task in radiation protection. Although stylized models for male and female patients of different ages have been developed, tomographic models for pregnant women have not been developed to date. This dissertation presents an effort to construct a partial-body model of a pregnant woman from a set of CT images. The patient was 30-weeks pregnant, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices, each 7 mm thick. The image resolution was 512x512 pixels in a 48 cmx48 cm field. The images were carefully segmented to identify 34 organs and tissues. It has been found that the masses are different from the Reference Woman. The characteristics of the resulting model are discussed and compared with one existing stylized mathematical model for pregnant women. Based on this tomographic model, a Monte Carlo code, EGS4-VLSI, was used to derive specific absorbed fractions. Monoenergetic and isotropic photon and electron emitters distributed in different source organs were assumed and the energies ranged from 10 keV to 4 MeV for photons and from 100 keV to 4 MeV for electrons. The results for high energy (>50 keV) photons showed general agreement with previous studies, however, the results for lower energy (<50 keV) photons showed differences of up to several hundred percent for some source and target organs. For electron results, several tens of percent differences were found. Those differences can be explained by mass differences and the relative geometry differences between source and target organs. In summary, the stylized models for pregnant women are satisfactory for a very large size patient for most of the photon energies (between 50 keV and 4 MeV). However, a tomographic model has to be used to obtain acceptable dose assessments for electrons. The newly calculated SAF data set can provide the nuclear medicine dosimetry field

  17. The 3D tomographic image reconstruction software for prompt-gamma measurement of the boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morozov, Boris; Auterinen, Iiro; Kotiluoto, Petri; Kortesniemi, Mika

    2006-01-01

    A tomographic imaging system based on the spatial distribution measurement of the neutron capture reaction during Boron Neutron Capture Therapy (BNCT) would be very useful for clinical purpose. Using gamma-detectors in a 2D-panel, boron neutron capture and hydrogen neutron capture gamma-rays emitted by the neutron irradiated region can be detected, and an image of the neutron capture events can be reconstructed. A 3D reconstruction software package has been written to support the development of a 3D prompt-gamma tomographic system. The package consists of three independent modules: phantom generation, reconstruction and evaluation modules. The reconstruction modules are based on algebraic approach of the iterative reconstruction algorithm (ART), and on the maximum likelihood estimation method (ML-EM). In addition to that, two subsets of the ART, the simultaneous iterative reconstruction technique (SIRT) and the component averaging algorithms (CAV) have been included to the package employing parallel codes for multiprocessor architecture. All implemented algorithms use two different field functions for the reconstruction of the region. One is traditional voxel function, another is, so called, blob function, smooth spherically symmetric generalized Kaiser-Bessel function. The generation module provides the phantom and projections with background by tracing the prompt gamma-rays for a given scanner geometry. The evaluation module makes statistical comparisons between the generated and reconstructed images, and provides figure-of-merit (FOM) values for the applied reconstruction algorithms. The package has been written in C language and tested under Linux and Windows platforms. The simple graphical user interface (GUI) is used for command execution and visualization purposed. (author)

  18. The effects of temporomandibular joint internal derangement and degenerative joint disease on tomographic and arthrotomographic images.

    Science.gov (United States)

    Brand, J W; Whinery, J G; Anderson, Q N; Keenan, K M

    1989-02-01

    In a blind study, 243 arthrograms were interpreted as showing normal disk position, anterior disk displacement with reduction, or anterior disk displacement without reduction. The presence or absence of a perforation of the posterior attachment or disk was recorded. Later, tomograms of the same patient were interpreted. The presence or absence of evidence of temporomandibular degenerative joint disease (TMDJD) was recorded. The condyle-to-fossa relationship was characterized as retropositioned or not retropositioned. O the 106 cases with tomographic evidence of TMDJD, 100 (94%) had arthrographic evidence of internal derangement (p less than 0.0001), whereas 47% of the cases with internal derangement (211) had evidence of TMDJD. Perforations were seen in 29 (27%) of the cases with degenerative joint disease and in none (0%) of the cases without TMDJD (p less than 0.001). In cases without TMDJD, 90% of the cases with internal derangement revealed condylar retropositioning (p less than 0.0001). With tomographic evidence of TMDJD present, the relationship between condylar position and disk position was not significant.

  19. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    , indicating the system’s ability to visualize low contrast objects 5.4 cm into a patient. PET-CT system’s performance evaluation also produced satisfactory results in accordance with set tolerances as recommended by IAEA Human Health Series 1. Computed tomography laser alignment test ensured that all CT gantry lasers were properly aligned with the patient bed. Image display width test ensured that volume of patient or organ being measured and displayed was equivalent to that selected on the CT scanner console, to a deviation of ± 1 mm. Results from CT image uniformity test showed that mean CT numbers in peripheral regions of interest deviated from the central mean to within recommended tolerance level of ± 5 HU, indicating a good level of uniformity. Computed tomographic dose indices for head and body phantoms were estimated as 44.30 mGy and 20.08 mGy, comparative to console displayed doses of 42.40 mGy and 19.49 mGy respectively. Registration accuracy for PET-CT images was to have displacements of less than 1 mm in x, y and z directions. Image quality of PET-CT images was performed to produce images simulating those obtained in a total body imaging study involving both hot and cold lesions. Percentage contrast estimates of 49.3% and 52.6% were obtained for hot spheres of diameters 1.3 cm and 2.2 cm respectively, while contrast estimates of 74.8% and 75.6% were obtained for cold spheres of diameters 2.8 cm and 3.7 cm respectively. The PET-CT system resolution was estimated as 0.5 ± 0.01 cm, indicating the system’s ability to image tumours of the size of about 5 mm. Satisfactory results from the performance evaluation of ultrasound and PET-CT systems, paved way for them to be used in acquiring prostatic images for the study. Developed MATLAB image enhancement algorithm enhanced the quality of prostatic images before fusion. The algorithm was developed by mapping the intensity values in raw images to new values in a modified image using imadjust function. Contrast

  20. The use of image-guidance during transsphenoidal pituitary surgery in the United States

    Science.gov (United States)

    Chung, Thomas K.; Riley, Kristen O.

    2015-01-01

    Background: Intraoperative image guidance is a useful modality for transsphenoidal pituitary surgery. However, the outcomes associated with this technology have not been systematically evaluated. Objective: The purpose of the study was to quantify complication rates with and without the use of image guidance during transsphenoidal pituitary surgery using a nationwide database with broadly applicable results. Methods: A retrospective analysis of the Nationwide Inpatient Sample was performed from 2007 to 2011. Transsphenoidal pituitary resections for adenomas were identified by International Classification of Diseases-9th Revision, Clinical Modification code. The effect of image guidance on cerebrospinal fluid (CSF) leak complications and cost-benefit was analyzed. Results: A total of 48,848 transsphenoidal pituitary resections were identified, of which 77.5% were partial resections and 22.5% were complete. Pathologic indications included benign (89.3%), malignant primary (0.6%), and malignant secondary (0.4%). Complications included same-stay death (0.4%), CSF leak (8.8%), postoperative CSF rhinorrhea (1.9%), diabetes insipidus (12.4%), and meningitis (0.4%). Image guidance was employed in 7% (n = 3401) of all cases. When analyzed by modality, computed tomography (CT)-assisted procedures had lower CSF rhinorrhea rates (1.1%) compared with cases with no image guidance (1.9%), whereas magnetic resonance (MR)-assisted procedures had the highest rates (2.7%, χ2 p surgery had significantly shorter length of stay (2.9 days) versus no image guidance (3.7 days, p surgery is associated with a lower rate of CSF leak, shorter length of stay, and lower cost compared with patients without image guidance. Further studies that control for severity and extent of disease are warranted to confirm this finding. PMID:25975254

  1. Influence of arm positioning on tomographic thallium-201 myocardial perfusion imaging and the effect of attenuation correction

    International Nuclear Information System (INIS)

    Prvulovich, E.M.; Jarritt, P.H.; Vorontsova, E.; Bomanji, J.B.; Ell, P.J.

    2000-01-01

    Lateral attenuation in single-photon emission tomography (SPET) myocardial perfusion imaging (MPI) has been attributed to the left arm if it is held by the patient's side during data acquisition. As a result MPI data are conventionally acquired with the arms held above the head. The aims of this study were to determine the effect of imaging arms down on reconstructed tomographic images depicting regional myocardial thallium-201 distribution and to assess whether attenuation-corrected (AC) myocardial perfusion images acquired arms down could replace uncorrected (NC) images acquired arms up for routine clinical service. Twenty-eight patients referred for routine MPI underwent sequential 180 emission/transmission imaging for attenuation correction using an L-shaped dual-headed gamma camera (GE Optima) fitted with two gadolinium-153 scanning line sources. Delay data were acquired twice: once supine with the arms up and then supine with the arms down. Detector radius of rotation (ROR) for arms up and arms-down studies was recorded. For each data set, count density was measured in 17 segments of a polar plot and segmental uptake expressed relative to study maximum. Oblique images were assessed qualitatively by two observers blinded to study type for tracer distribution and overall quality. Transmission maps were assessed for truncation. Mean detector ROR was 190 mm for arms-up studies and 232 mm for arms-down studies (P 201 Tl distribution, particularly anterolaterally. There is lateral undercorrection in approximately 10% of AC arms-down studies, possibly because of attenuation map truncation. Image quality is reduced in about one-third of AC arms-down studies compared with NC arms-up studies. These data suggest that this attenuation correction method is not sufficiently robust to allow routine acquisition of MPI data with the arms down. (orig.)

  2. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images.

    Science.gov (United States)

    Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke

    2018-03-01

    To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.

  3. A hybrid optical system for broadband imaging in guidance and control

    Science.gov (United States)

    Wu, Xiaofang; Jiang, Yuesong; Shen, Chunyan; Zhao, Yiming

    2006-11-01

    A binary optics method has been adopted to improve upon a conventional optical system in guidance and control, and a hybrid broadband imaging system that includes a binary surface is analyzed and evaluated by optical design software ZEMAX. The practical design shows that the introduction of binary optics can simplify the structure of the imaging system and reduce the size and weight of the broadband guidance and control system. Moreover, it can help to acquire images of radiation of different wavelengths from targets; hence it will result in improved overall performance of missiles in wars.

  4. Fusion imaging of computed tomographic pulmonary angiography and SPECT ventilation/perfusion scintigraphy: initial experience and potential benefit

    International Nuclear Information System (INIS)

    Harris, Benjamin; Bailey, Dale; Roach, Paul; Bailey, Elizabeth; King, Gregory

    2007-01-01

    The objective of this study was to examine the feasibility of fusing ventilation and perfusion data from single-photon emission computed tomography (SPECT) ventilation perfusion (V/Q) scintigraphy together with computed tomographic pulmonary angiography (CTPA) data. We sought to determine the accuracy of this fusion process. In addition, we correlated the findings of this technique with the final clinical diagnosis. Thirty consecutive patients (17 female, 13 male) who had undergone both CTPA and SPECT V/Q scintigraphy during their admission for investigation of potential pulmonary embolism were identified retrospectively. Image datasets from these two modalities were co-registered and fused using commercial software. Accuracy of the fusion process was determined subjectively by correlation between modalities of the anatomical boundaries and co-existent pleuro-parenchymal abnormalities. In all 30 cases, SPECT V/Q images were accurately fused with CTPA images. An automated registration algorithm was sufficient alone in 23 cases (77%). Additional linear z-axis scaling was applied in seven cases. There was accurate topographical co-localisation of vascular, parenchymal and pleural disease on the fused images. Nine patients who had positive CTPA performed as an initial investigation had co-localised perfusion defects on the subsequent fused CTPA/SPECT images. Three of the 11 V/Q scans initially reported as intermediate could be reinterpreted as low probability owing to co-localisation of defects with parenchymal or pleural pathology. Accurate fusion of SPECT V/Q scintigraphy to CTPA images is possible. This technique may be clinically useful in patients who have non-diagnostic initial investigations or in whom corroborative imaging is sought. (orig.)

  5. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  6. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  7. 256-Slice coronary computed tomographic angiography in patients with atrial fibrillation: optimal reconstruction phase and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro; Yuki, Hideaki; Kidoh, Masafumi; Utsunomiya, Daisuke; Nakaura, Takeshi; Namimoto, Tomohiro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Chuou-ku, Kumamoto (Japan); Honda, Keiichi; Yoshimura, Akira; Katahira, Kazuhiro [Kumamoto Chuo Hospital, Department of Diagnostic Radiology, Minami-ku, Kumamoto (Japan); Noda, Katsuo; Oshima, Shuichi [Kumamoto Chuo Hospital, Department of Cardiology, Minami-ku, Kumamoto (Japan)

    2016-01-15

    To assess the optimal reconstruction phase and the image quality of coronary computed tomographic angiography (CCTA) in patients with atrial fibrillation (AF). We performed CCTA in 60 patients with AF and 60 controls with sinus rhythm. The images were reconstructed in multiple phases in all parts of the cardiac cycle, and the optimal reconstruction phase with the fewest motion artefacts was identified. The coronary artery segments were visually evaluated to investigate their assessability. In 46 (76.7 %) patients, the optimal reconstruction phase was end-diastole, whereas in 6 (10.0 %) patients it was end-systole or mid-diastole, and in 2 (3.3 %) patients it was another cardiac phase. In 53 (88.3 %) of the controls, the optimal reconstruction phase was mid-diastole, whereas it was end-systole in 4 (6.7 %), and in 3 (5.0 %) it was another cardiac phase. There was a significant difference between patients with AF and the controls in the optimal phase (p < 0.01) but not in the visual image quality score (p = 0.06). The optimal reconstruction phase in most patients with AF was the end-diastolic phase. The end-systolic phase tended to be optimal in AF patients with higher average heart rates. (orig.)

  8. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    Science.gov (United States)

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation

    Science.gov (United States)

    Buchmann, N. A.; Atkinson, C.; Jeremy, M. C.; Soria, J.

    2011-04-01

    Hemodynamic forces within the human carotid artery are well known to play a key role in the initiation and progression of vascular diseases such as atherosclerosis. The degree and extent of the disease largely depends on the prevailing three-dimensional flow structure and wall shear stress (WSS) distribution. This work presents tomographic PIV (Tomo-PIV) measurements of the flow structure and WSS in a physiologically accurate model of the human carotid artery bifurcation. The vascular geometry is reconstructed from patient-specific data and reproduced in a transparent flow phantom to demonstrate the feasibility of Tomo-PIV in a complex three-dimensional geometry. Tomographic reconstruction is performed with the multiplicative line-of-sight (MLOS) estimation and simultaneous multiplicative algebraic reconstruction (SMART) technique. The implemented methodology is validated by comparing the results with Stereo-PIV measurements in the same facility. Using a steady flow assumption, the measurement error and RMS uncertainty are directly inferred from the measured velocity field. It is shown that the measurement uncertainty increases for increasing light sheet thickness and increasing velocity gradients, which are largest near the vessel walls. For a typical volume depth of 6 mm (or 256 pixel), the analysis indicates that the velocity derived from 3D cross-correlation can be measured within ±2% of the maximum velocity (or ±0.2 pixel) near the center of the vessel and within ±5% (±0.6 pixel) near the vessel wall. The technique is then applied to acquire 3D-3C velocity field data at multiple axial locations within the carotid artery model, which are combined to yield the flow field and WSS in a volume of approximately 26 mm × 27 mm × 60 mm. Shear stress is computed from the velocity gradient tensor and a method for inferring the WSS distribution on the vessel wall is presented. The results indicate the presence of a complex and three-dimensional flow structure, with

  10. Real-time image guidance in laparoscopic liver surgery

    DEFF Research Database (Denmark)

    Kenngott, Hannes G.; Wagner, Martin; Gondan, Matthias

    2014-01-01

    Background: Laparoscopic liver surgery is particularly challenging owing to restricted access, risk of bleeding and lack of haptic feedback. Navigation systems have the potential to improve information on the exact position of intrahepatic tumors, and thus facilitate oncological resection....... This study aims to evaluate the feasibility of a commercially available augmented reality (AR) guidance system employing intraoperative robotic C-arm cone-beam computed tomography (CBCT) for laparoscopic liver surgery. Methods: A human liver-like phantom with sixteen target fiducials was used to evaluate...... the Syngo iPilot® AR system. Subsequently, the system was used for the laparoscopic resection of a hepatocellular carcinoma in segment 7 of a 50-year-old male patient. Results: In the phantom experiment the AR system showed a mean target registration error of 0.96 mm ± 0.52 mm with a maximum error of 2...

  11. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  12. TU-A-201-00: Image Guidance Technologies and Management Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Recent years have seen a widespread proliferation of available in-room image guidance systems for radiation therapy target localization with many centers having multiple in-room options. In this session, available imaging systems for in-room IGRT will be reviewed highlighting the main differences in workflow efficiency, targeting accuracy and image quality as it relates to target visualization. Decision-making strategies for integrating these tools into clinical image guidance protocols that are tailored to specific disease sites like H&N, lung, pelvis, and spine SBRT will be discussed. Learning Objectives: Major system characteristics of a wide range of available in-room imaging systems for IGRT. Advantages / disadvantages of different systems for site-specific IGRT considerations. Concepts of targeting accuracy and time efficiency in designing clinical imaging protocols.

  13. Spectrometry and emission tomographic image reconstruction stimulated by neutrons via EM algorithm and Monte Carlo Method

    International Nuclear Information System (INIS)

    Viana, Rodrigo Sartorelo Salemi

    2014-01-01

    The NSECT (Neutron Stimulated Emission Computed Tomography) figures as a new spectrographic technique able to evaluate in vivo the concentration of elements using the inelastic scattering reaction (n,n'). Since its introduction, several improvements have been proposed with the aim of investigating applications for clinical diagnosis and reduction of absorbed dose associated with CT acquisition. In this context, two new diagnostic applications are presented using spectroscopic and tomographic approaches from NSECT. A new methodology has also been proposed to optimize the sinogram sampling that is directly related to the quality of the reconstruction by the irradiation protocol. The studies were developed based on simulations with MCNP5 code. Diagnosis of Renal Cell Carcinoma (RCC) and the detection of breast microcalcifications were evaluated in studies conducted using a human phantom. The obtained results demonstrate the ability of the NSECT technique to detect changes in the composition of the modeled tissues as a function of the development of evaluated pathologies. The proposed method for optimizing sinograms was able to analytically simulate the composition of the irradiated medium allowing the assessment of quality of reconstruction and effective dose in terms of the sampling rate. However, future research must be conducted to quantify the sensitivity of detection according to the selected elements. (author)

  14. Tomographic Ocean Imaging Facility: 2D and 3D Visualization of Real Marine Structures

    National Research Council Canada - National Science Library

    Ketten, Darlene

    2002-01-01

    The overall goal of this project was to develop an imaging facility which would assist multiple areas of research that depend upon high resolution imaging and, in particular, to develop new approaches...

  15. Study of the tomographic image quality provided by a conical beam system kilo voltage

    International Nuclear Information System (INIS)

    Garayoa Roca, J.; Castro Tejero, P.

    2011-01-01

    Imaging systems play an increasingly important role in radiotherapy, and to ensure the quality of the process, you must know the characteristics and limitations of available imaging systems. In this study we sought to evaluate the image quality of an IGRT system based on a kilo voltage cone beam.

  16. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies.

    Science.gov (United States)

    Häggström, Ida; Beattie, Bradley J; Schmidtlein, C Ross

    2016-06-01

    To develop and evaluate a fast and simple tool called dpetstep (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. The tool was developed in matlab using both new and previously reported modules of petstep (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). dpetstep was 8000 times faster than MC. Dynamic images from dpetstep had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dpetstep and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dpetstep images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dpetstep to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dpetstep can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.

  17. Effects of angular sampling in tomographic myocardial perfusion imaging with Tl-201

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Robilotta, C.C.

    1989-01-01

    The present work presents results of computational and experimental simulations, in order to show the influence of angular sampling in the quality of SPECT images reconstructed with the Convolution Backprojection algorithm. Geometric deformations and contrast artifacts had been produced in the incomplete sampled images. The experimental images were sampled at 32 projections over 180 0 and 64 projections over 360 0 . Attenuation correction was performed for images sampled over 360 0 . The coomputationally simulated images were sampled at both 64 and 128 projections over 360 0 . (author) [pt

  18. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  19. Off-line data processing and display for computed tomographic images (EMI brain)

    International Nuclear Information System (INIS)

    Takizawa, Masaomi; Maruyama, Kiyoshi; Yano, Kesato; Takenaka, Eiichi.

    1978-01-01

    Processing and multi-format display for the CT (EMI) scan data have been tried by using an off-line small computer and an analog memory. Four or six CT images after processing are displayed on the CRT by a small computer with a 16 kilo-words core memory and an analog memory. Multi-format display of the CT image can be selected as follows; multi-slice display, continuative multi-window display, separate multi-window display, and multi-window level display. Electronic zooming for the real size viewing can give magnified CT image with one of displayed images if necessary. Image substraction, edge enhancement, smoothing, non-linear gray scale display, and synthesized image for the plane tomography reconstracted by the normal CT scan data, have been tried by the off-line data processing. A possibility for an effective application of the data base with CT image was obtained by these trials. (auth.)

  20. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Energy Technology Data Exchange (ETDEWEB)

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  1. Guidance for Methods Descriptions Used in Preclinical Imaging Papers

    Directory of Open Access Journals (Sweden)

    David Stout

    2013-10-01

    Full Text Available Preclinical molecular imaging is a rapidly growing field, where new imaging systems, methods, and biological findings are constantly being developed or discovered. Imaging systems and the associated software usually have multiple options for generating data, which is often overlooked but is essential when reporting the methods used to create and analyze data. Similarly, the ways in which animals are housed, handled, and treated to create physiologically based data must be well described in order that the findings be relevant, useful, and reproducible. There are frequently new developments for metabolic imaging methods. Thus, specific reporting requirements are difficult to establish; however, it remains essential to adequately report how the data have been collected, processed, and analyzed. To assist with future manuscript submissions, this article aims to provide guidelines of what details to report for several of the most common imaging modalities. Examples are provided in an attempt to give comprehensive, succinct descriptions of the essential items to report about the experimental process.

  2. Echocardiographic and Fluoroscopic Fusion Imaging for Procedural Guidance: An Overview and Early Clinical Experience.

    Science.gov (United States)

    Thaden, Jeremy J; Sanon, Saurabh; Geske, Jeffrey B; Eleid, Mackram F; Nijhof, Niels; Malouf, Joseph F; Rihal, Charanjit S; Bruce, Charles J

    2016-06-01

    There has been significant growth in the volume and complexity of percutaneous structural heart procedures in the past decade. Increasing procedural complexity and accompanying reliance on multimodality imaging have fueled the development of fusion imaging to facilitate procedural guidance. The first clinically available system capable of echocardiographic and fluoroscopic fusion for real-time guidance of structural heart procedures was approved by the US Food and Drug Administration in 2012. Echocardiographic-fluoroscopic fusion imaging combines the precise catheter and device visualization of fluoroscopy with the soft tissue anatomy and color flow Doppler information afforded by echocardiography in a single image. This allows the interventionalist to perform precise catheter manipulations under fluoroscopy guidance while visualizing critical tissue anatomy provided by echocardiography. However, there are few data available addressing this technology's strengths and limitations in routine clinical practice. The authors provide a critical review of currently available echocardiographic-fluoroscopic fusion imaging for guidance of structural heart interventions to highlight its strengths, limitations, and potential clinical applications and to guide further research into value of this emerging technology. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  3. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    Science.gov (United States)

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The use of transport and diffusion equations in the three-dimensional reconstruction of computerized tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Sandrerley Ramos, E-mail: sandrerley@eee.ufg.br [Escola de Engenharia Eletrica e de Computacao - EEEC, Universidade Federal de Goias - UFG, Goiania, GO (Brazil); Flores, Edna Lucia; Pires, Dulcineia Goncalves F.; Carrijo, Gilberto Arantes; Veiga, Antonio Claudio Paschoarelli [Faculdade de Engenharia Eletrica - FEELT, Universidade Federal de Uberlandia - UFU, Uberlandia, MG (Brazil); Barcelos, Celia Aparecida Z. [Faculdade de Matematica, Universidade Federal de Uberlandia - UFU, Uberlandia, MG (Brazil)

    2012-09-15

    The visualization of a computerized tomographic (TC) exam in 3D increases the quality of the medical diagnosis and, consequently, the success probability in the treatment. To obtain a high quality image it is necessary to obtain slices which are close to one another. Motivated towards the goal of reaching an improved balance between quantity of slices and visualization quality, this research work presents a digital inpainting technique of 3D interpolation for CT slices used in the visualization of human body structures. The inpainting is carried out via non-linear partial differential equations (PDE). The PDE's have been used, in the image-processing context to fill in the damaged regions in a digital 2D image. Inspired by this idea, this article proposes an interpolation method for the filling in of the empty regions between the CT slices. To do it, considering the high similarity between two consecutive real slice, the first step of the proposed method is to create the virtual slices. The virtual slices contain all similarity between the intercalated slices and, when there are not similarities between real slices, the virtual slices will contain indefinite portions. In the second step of the proposed method, the created virtual slices will be used together with the real slices images, in the reconstruction of the structure in three dimensions, mapped onto the exam. The proposed method is capable of reconstructing the curvatures of the patient's internal structures without using slices that are close to one another. The experiments carried out show the proposed method's efficiency. (author)

  5. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    Science.gov (United States)

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  6. Tomographic imaging of the cervical spine of horses; Aspectos tomograficos da coluna cervical de equinos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, L.P.; Machado, V.M.V.; Santos, R.V.; Evangelista, F.C.; Vulcano, L.C. [Universidade Estadual Paulista, Botucatu, SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia

    2012-09-15

    The anatomy of the cervical spine of mature horses based on images obtained with a helical computed tomography examination performed on anatomic specimens was studied. Computed tomography was the diagnostic imaging method of choice and allowed three-dimensional reconstructions of images and other anatomical planes, such as coronal and sagittal. All images were acquired and evaluated in the filter and window to bone tissue. It was possible to demonstrate the anatomical differences and peculiarities of the normal vertebrae, particularly the occipito-atlantoaxial region, which has a higher incidence of changes to assist in the visualization of any change of the bone pattern on CT studies. (author)

  7. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies

    Energy Technology Data Exchange (ETDEWEB)

    Häggström, Ida, E-mail: haeggsti@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and Department of Radiation Sciences, Umeå University, Umeå 90187 (Sweden); Beattie, Bradley J.; Schmidtlein, C. Ross [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2016-06-15

    Purpose: To develop and evaluate a fast and simple tool called dPETSTEP (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. Methods: The tool was developed in MATLAB using both new and previously reported modules of PETSTEP (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). Results: dPETSTEP was 8000 times faster than MC. Dynamic images from dPETSTEP had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dPETSTEP and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dPETSTEP images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dPETSTEP images and noise properties agreed better with MC. Conclusions: The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dPETSTEP to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for

  8. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies

    International Nuclear Information System (INIS)

    Häggström, Ida; Beattie, Bradley J.; Schmidtlein, C. Ross

    2016-01-01

    Purpose: To develop and evaluate a fast and simple tool called dPETSTEP (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. Methods: The tool was developed in MATLAB using both new and previously reported modules of PETSTEP (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). Results: dPETSTEP was 8000 times faster than MC. Dynamic images from dPETSTEP had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dPETSTEP and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dPETSTEP images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dPETSTEP images and noise properties agreed better with MC. Conclusions: The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dPETSTEP to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for

  9. Clamshell tomograph

    International Nuclear Information System (INIS)

    Derenzo, S. E.; Budinger, Th. F.

    1984-01-01

    In brief, the invention is a tomograph modified to be in a clamshell configuration so that the ring or rings may be moved to multiple sampling positions. The tomograph includes an array of detectors arranged in successive adjacent relative locations along a closed curve in a first position in a selected plane, and means for securing the detectors in the relative locations in a first sampling position. The securing means is movable in the plane in two sections and pivotable at one point and only one point to enable movement of at least one of the sections to a second sampling position out of the closed curve so that the ends of the section which are opposite the point are moved apart a predetermined space

  10. Computer tomographs

    International Nuclear Information System (INIS)

    Niedzwiedzki, M.

    1982-01-01

    Physical foundations and the developments in the transmission and emission computer tomography are presented. On the basis of the available literature and private communications a comparison is made of the various transmission tomographs. A new technique of computer emission tomography ECT, unknown in Poland, is described. The evaluation of two methods of ECT, namely those of positron and single photon emission tomography is made. (author)

  11. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  12. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  13. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.

    1981-01-01

    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  14. Positron emission tomographic images and expectation maximization: A VLSI architecture for multiple iterations per second

    International Nuclear Information System (INIS)

    Jones, W.F.; Byars, L.G.; Casey, M.E.

    1988-01-01

    A digital electronic architecture for parallel processing of the expectation maximization (EM) algorithm for Positron Emission tomography (PET) image reconstruction is proposed. Rapid (0.2 second) EM iterations on high resolution (256 x 256) images are supported. Arrays of two very large scale integration (VLSI) chips perform forward and back projection calculations. A description of the architecture is given, including data flow and partitioning relevant to EM and parallel processing. EM images shown are produced with software simulating the proposed hardware reconstruction algorithm. Projected cost of the system is estimated to be small in comparison to the cost of current PET scanners

  15. Chest Computed Tomographic Image Screening for Cystic Lung Diseases in Patients with Spontaneous Pneumothorax Is Cost Effective.

    Science.gov (United States)

    Gupta, Nishant; Langenderfer, Dale; McCormack, Francis X; Schauer, Daniel P; Eckman, Mark H

    2017-01-01

    Patients without a known history of lung disease presenting with a spontaneous pneumothorax are generally diagnosed as having primary spontaneous pneumothorax. However, occult diffuse cystic lung diseases such as Birt-Hogg-Dubé syndrome (BHD), lymphangioleiomyomatosis (LAM), and pulmonary Langerhans cell histiocytosis (PLCH) can also first present with a spontaneous pneumothorax, and their early identification by high-resolution computed tomographic (HRCT) chest imaging has implications for subsequent management. The objective of our study was to evaluate the cost-effectiveness of HRCT chest imaging to facilitate early diagnosis of LAM, BHD, and PLCH. We constructed a Markov state-transition model to assess the cost-effectiveness of screening HRCT to facilitate early diagnosis of diffuse cystic lung diseases in patients presenting with an apparent primary spontaneous pneumothorax. Baseline data for prevalence of BHD, LAM, and PLCH and rates of recurrent pneumothoraces in each of these diseases were derived from the literature. Costs were extracted from 2014 Medicare data. We compared a strategy of HRCT screening followed by pleurodesis in patients with LAM, BHD, or PLCH versus conventional management with no HRCT screening. In our base case analysis, screening for the presence of BHD, LAM, or PLCH in patients presenting with a spontaneous pneumothorax was cost effective, with a marginal cost-effectiveness ratio of $1,427 per quality-adjusted life-year gained. Sensitivity analysis showed that screening HRCT remained cost effective for diffuse cystic lung diseases prevalence as low as 0.01%. HRCT image screening for BHD, LAM, and PLCH in patients with apparent primary spontaneous pneumothorax is cost effective. Clinicians should consider performing a screening HRCT in patients presenting with apparent primary spontaneous pneumothorax.

  16. Image-guided microneurosurgical management of small cerebral arteriovenous malformations: the value of navigated computed tomographic angiography

    International Nuclear Information System (INIS)

    Coenen, V.A.; Reinges, M.H.T.; Gilsbach, J.M.; Rohde, V.; Dammert, S.; Mull, M.

    2005-01-01

    In small arteriovenous malformations (AVM) with large hematomas, surgery remains the main therapeutic option. However, intraoperative identification of the AVM, feeders, and draining veins could be difficult in the environment of substantial intracerebral blood. In those selected cases, we use navigated computed tomographic angiography (CTA) for the microneurosurgical management. It is our objective to report our initial experiences. Prior to operation a conventional CTA with superficial skin fiducials placed on a patient's head was acquired for diagnostic and neuronavigation purposes. Image data were transferred to a neuronavigation device with integrated volume rendering capacities which allows a three-dimensional reconstruction of the vascular tree and the AVM to be created. In all patients the AVM was removed successfully after having been localized with CTA-based neuronavigation. Navigated CTA is helpful for the operative management of small AVMs with large hematomas. The technique allows feeding arteries to be distinguished from draining veins thereby allowing the nidus of the AVM to be identified despite the presence of substantial intracerebral blood. CTA can be easily implemented into commercial neuronavigation systems. (orig.)

  17. Potentials and limits of modern tomographic methods (CT, MR, PET) in molecular imaging

    International Nuclear Information System (INIS)

    Hentschel, M.; Paul, D.; Moser, E.; Brink, I.

    2007-01-01

    The present survey gives an introduction into the basics of computed tomography, magnetic resonance tomography and positron emission tomography. The current potentials of these methods in relation to their temporal, spatial and contrast resolutions as well as their sensitivities within clinical routine and experimental studies (in vitro, ex vivo) will be presented. Computed tomography constitutes the anatomical reference method with well defined contrast, high spatial resolution but low sensitivity (10 -2 mol/l) for functional and molecular imaging. Magnetic resonance tomography represents the anatomical method for research with variable tissue contrast, physiological image information, highest spatial resolution but moderate sensitivity (10 -3 -10 -5 mol/l) for functional and molecular imaging. Positron emission tomography offers good suitability for molecular imaging due to highest sensitivity (10 -11 -10 -12 mol/l). However, the spatial resolution of positron emission tomography is low. (orig.)

  18. Paediatric trauma imaging: Why do we need separate guidance?

    International Nuclear Information System (INIS)

    Negus, S.; Danin, J.; Fisher, R.; Johnson, K.; Landes, C.; Somers, J.; Fitzsimmons, C.; Ashford, N.; Foster, J.

    2014-01-01

    It is often assumed that the pattern of injury in children mirrors that of the adult population, but children have different anatomical proportions and the relative elasticity of their tissues results in different injury patterns. The authors of this review are members of the British Society of Paediatric Radiologists subgroup and developed the recently published 47 paediatric trauma protocols for imaging children involved in major blunt trauma. The following article has been written to bring these guidelines to the attention of the wider community of UK radiologists, and explain the rationale behind the recommendations

  19. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  20. Application of the FDK algorithm for multi-slice tomographic image reconstruction; Aplicacao do algoritmo FDK para a reconstrucao de imagens tomograficas multicortes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto, E-mail: pcosta@if.usp.b [Universidade de Sao Paulo (IFUSP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear; Araujo, Ericky Caldas de Almeida [Fine Image Technology, Sao Paulo, SP (Brazil)

    2010-08-15

    This work consisted on the study and application of the FDK (Feldkamp- Davis-Kress) algorithm for tomographic image reconstruction using cone-beam geometry, resulting on the implementation of an adapted multi-slice computed tomography system. For the acquisition of the projections, a rotating platform coupled to a goniometer, an X-ray equipment and a digital image detector charge-coupled device type were used. The FDK algorithm was implemented on a computer with a Pentium{sup R} XEON{sup TM} 3.0 processor, which was used for the reconstruction process. Initially, the original FDK algorithm was applied considering only the ideal physical conditions in the measurement process. Then some artifacts corrections related to the projections measurement process were incorporated. The implemented MSCT system was calibrated. A specially designed and manufactured object with a known linear attenuation coefficient distribution ({mu}(r)) was used for this purpose. Finally, the implemented MSCT system was used for multi-slice tomographic reconstruction of an inhomogeneous object, whose distribution {mu}(r) was unknown. Some aspects of the reconstructed images were analyzed to assess the robustness and reproducibility of the system. During the system calibration, a linear relationship between CT number and linear attenuation coefficients of materials was verified, which validate the application of the implemented multi-slice tomographic system for the characterization of linear attenuation coefficients of distinct several objects. (author)

  1. Experimental device, corresponding forward model and processing of the experimental data using wavelet analysis for tomographic image reconstruction applied to eddy current nondestructive evaluation

    International Nuclear Information System (INIS)

    Joubert, P.Y.; Madaoui, N.

    1999-01-01

    In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)

  2. Computed tomographic images using tube source of x rays: interior properties of the material

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2002-01-01

    An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.

  3. Three-dimensional Image Fusion Guidance for Transjugular Intrahepatic Portosystemic Shunt Placement.

    Science.gov (United States)

    Tacher, Vania; Petit, Arthur; Derbel, Haytham; Novelli, Luigi; Vitellius, Manuel; Ridouani, Fourat; Luciani, Alain; Rahmouni, Alain; Duvoux, Christophe; Salloum, Chady; Chiaradia, Mélanie; Kobeiter, Hicham

    2017-11-01

    To assess the safety, feasibility and effectiveness of image fusion guidance with pre-procedural portal phase computed tomography with intraprocedural fluoroscopy for transjugular intrahepatic portosystemic shunt (TIPS) placement. All consecutive cirrhotic patients presenting at our interventional unit for TIPS creation from January 2015 to January 2016 were prospectively enrolled. Procedures were performed under general anesthesia in an interventional suite equipped with flat panel detector, cone-beam computed tomography (CBCT) and image fusion technique. All TIPSs were placed under image fusion guidance. After hepatic vein catheterization, an unenhanced CBCT acquisition was performed and co-registered with the pre-procedural portal phase CT images. A virtual path between hepatic vein and portal branch was made using the virtual needle path trajectory software. Subsequently, the 3D virtual path was overlaid on 2D fluoroscopy for guidance during portal branch cannulation. Safety, feasibility, effectiveness and per-procedural data were evaluated. Sixteen patients (12 males; median age 56 years) were included. Procedures were technically feasible in 15 of the 16 patients (94%). One procedure was aborted due to hepatic vein catheterization failure related to severe liver distortion. No periprocedural complications occurred within 48 h of the procedure. The median dose-area product was 91 Gy cm 2 , fluoroscopy time 15 min, procedure time 40 min and contrast media consumption 65 mL. Clinical benefit of the TIPS placement was observed in nine patients (56%). This study suggests that 3D image fusion guidance for TIPS is feasible, safe and effective. By identifying virtual needle path, CBCT enables real-time multiplanar guidance and may facilitate TIPS placement.

  4. Three dimensional reconstruction of computed tomographic images by computer graphics method

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Kimura, Kazufumi.

    1986-01-01

    A three dimensional computer reconstruction system for CT images has been developed in a commonly used radionuclide data processing system using a computer graphics technique. The three dimensional model was constructed from organ surface information of CT images (slice thickness: 5 or 10 mm). Surface contours of the organs were extracted manually from a set of parallel transverse CT slices in serial order and stored in the computer memory. Interpolation was made between a set of the extracted contours by cubic spline functions, then three dimensional models were reconstructed. The three dimensional images were displayed as a wire-frame and/or solid models on the color CRT. Solid model images were obtained as follows. The organ surface constructed from contours was divided into many triangular patches. The intensity of light to each patch was calculated from the direction of incident light, eye position and the normal to the triangular patch. Firstly, this system was applied to the liver phantom. Reconstructed images of the liver phantom were coincident with the actual object. This system also has been applied to human various organs such as brain, lung, liver, etc. The anatomical organ surface was realistically viewed from any direction. The images made us more easily understand the location and configuration of organs in vivo than original CT images. Furthermore, spacial relationship among organs and/or lesions was clearly obtained by superimposition of wire-frame and/or different colored solid models. Therefore, it is expected that this system is clinically useful for evaluating the patho-morphological changes in broad perspective. (author)

  5. Spiral (Helical) computed tomographic imaging for the diagnosis of bile duct cancer. Vascular and pancreatic invasions

    International Nuclear Information System (INIS)

    Kon, Masanori

    1997-01-01

    The development of several imaging techniques for diagnosing bile duct cancer have improved, however, its diagnosis at the early stage is still difficult. We discuss the significance of the spiral (helical) computed tomography (SCT) imaging for the diagnosis of bile duct cancer at an early stage. We performed, as a preoperative examination, SCT under intravenous angiography (IV-SCT) for all cases, which included 233 cases of benign bile duct diseases, 42 cases of gallbladder cancer and 22 cases of bile duct cancer. The accuracy rate of diagnosis ability of 42 cases of gallbladder cancer by IV-SCT was 91%, and that of portal vein invasion was 91%. In the cases of bile duct cancer, IV-SCT showed destructive images of the bile duct wall and the tumor images invaded into the pancreatic parenchyma, in the cases of invasion at the splenic vein and confluence site of the portal vein, IV-SCT gave clearer 3D images than conventional angiography. The accuracy rate of diagnosing pancreatic invasion in bile duct cancer by IV-SCT was 80%. However, it is still difficult to determine completely the layer structures of the bile duct and the invasion into the walls along the long axis. As the future development of SCT for the diagnosis of bile duct cancer, we expect further progression of diagnosis ability of bile duct cancer and the invasion level by the applying high resolution thin-section CT images or endoscopical images of the luminal organs in examining the bile duct. (K.H.)

  6. Advertising, patient decision making, and self-referral for computed tomographic and magnetic resonance imaging.

    Science.gov (United States)

    Illes, Judy; Kann, Dylan; Karetsky, Kim; Letourneau, Phillip; Raffin, Thomas A; Schraedley-Desmond, Pamela; Koenig, Barbara A; Atlas, Scott W

    Self-referred imaging is one of the latest health care services to be marketed directly to consumers. Most aspects of these services are unregulated, and little is known about the messages in advertising used to attract potential consumers. We conducted a detailed analysis of print advertisements and informational brochures for self-referred imaging with respect to themes, content, accuracy, and emotional valence. Forty print advertisements from US newspapers around the country and 20 informational brochures were analyzed by 2 independent raters according to 7 major themes: health care technology; emotion, empowerment, and assurance; incentives; limited supporting evidence; popular appeal; statistics; and images. The Fisher exact test was used to identify significant differences in information content. Both the advertisements and the brochures emphasized health care and technology information and provided assurances of good health and incentives to self-refer. These materials also encouraged consumers to seek further information from company resources; virtually none referred to noncomplying sources of information or to the risks of having a scan. Images of people commonly portrayed European Americans. We found statistical differences between newspaper advertisements and mailed brochures for references to "prevalence of disease" (Padvertisements (n = 15) and 25% of the brochures (n = 5). Direct-to-consumer marketing of self-referred imaging services, in both print advertisements and informational brochures, fails to provide prospective consumers with comprehensive balanced information vital to informed autonomous decision making. Professional guidelines and oversight for advertising and promotion of these services are needed.

  7. Analysis of stability of tomographic reconstruction of x-ray medical images

    Directory of Open Access Journals (Sweden)

    Л. А. Булавін

    2017-09-01

    Full Text Available Slice reconstruction in X-ray computed tomography is reduced to the solution of integral equations, or a system of algebraic equations in discrete case. It is considered to be an ill-posed problem due to the inconsistencies in the number of equations and variables and due to errors in the experimental data. Therefore, determination of the best method of the slice reconstruction is of great interest. Furthermore, all available methods give approximate results. The aim of this article was two-fold: i to compare two methods of image reconstruction, viz. inverse projection and variation, using the numerical experiment; ii to obtain the relationship between image accuracy and experimental error. It appeared that the image obtained by inverse projection is unstable: there was no convergence of the approximate image to the accurate one, when the experimental error reached zero. In turn, the image obtained by variational method was accurate at zero experimental error. Finally, the latter showed better slice reconstruction, despite the low number of projections and the experimental errors.

  8. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    International Nuclear Information System (INIS)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-01-01

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximization (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts

  9. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  10. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    Science.gov (United States)

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  11. A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region -

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Nakagawa, S.; Ishikawa, M.; Sato, H.; Kasahara, K.; Kimura, H.; Honda, R.

    2012-12-01

    region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Rock velocity data reveals that subducting PSP crust transforms from blueschists to amphibolites at depth of 30km and amphibolites to eclogites at depth of 50km, which suggest that dehydration reactions occurs in subducting crust of basaltic compositions during prograde metamorphism and water is released from the subducting PSP crust. Tomograms show evidence for a low-velocity zone (LVZ) beneath the area just north of Tokyo bay. We interpret the LVZ as a serpentinized region in the forearc mantle of Honshu arc, resulting from hydration by water derived from subducting PSP crust. The P- and S-wave velocities within the serpentinized zone represent a degree of serpentinization as high as 10-40% for the LVZ with 20-km-long in noth-south and 90-km-long in east-west just above PSP, which is approximately eastern half or less of the previously estimated serpentinized area (Kamiya and Kobayashi, 2000). Because strength of the serpentinized preidotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrusting fault on the upper surface of PSP can be larger than previously thought.

  12. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    Science.gov (United States)

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  13. Roentgen and X-ray computerized tomographic (CT) imaging of cysts in the maxilla

    International Nuclear Information System (INIS)

    Rahmatulla, M

    1999-01-01

    Two cysts in the maxilla were subjected to routine roentgen imaging followed by CT scanning. Roentgen investigation included periapical, occlusal, and panoramic views. CT imaging included axial and coronal scans. While roentgen views were adequate in establishing the diagnosis of the cystic lesions, CT scan was useful in understanding the precise antero-posterior expansion and depth of the lesion. Interpretation of CT scan of cystic jaw lesions without con-ventional radiographs can be misleading. Hence, the CT procedure may be used only as supplement to the routine radiographic investigations particularly in cystic lesions of the jaws. (author)

  14. Diffusion in Altered Tonalite Sample Using Time Domain Diffusion Simulations in Tomographic Images Combined with Lab-scale Diffusion Experiments

    Science.gov (United States)

    Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.

    2010-12-01

    In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous

  15. Computed tomographic, magnetic resonance imaging, and cross-sectional anatomic features of the manus in a normal American black bear (Ursus americanus).

    Science.gov (United States)

    Ober, C P; Freeman, L E

    2010-06-01

    The purpose of this study was to provide a detailed description of cross-sectional anatomic structures of the manus of a black bear cadaver and correlate anatomic findings with corresponding features in computed tomographic (CT) and magnetic resonance (MR) images. CT, MR imaging, and transverse sectioning were performed on the thoracic limb of a cadaver female black bear which had no evidence of lameness or thoracic limb abnormality prior to death. Features in CT and MR images corresponding to clinically important anatomic structures in anatomic sections were identified. Most of the structures identified in transverse anatomic sections were also identified using CT and MR imaging. Bones, muscles and tendons were generally easily identified with both imaging modalities, although divisions between adjacent muscles were rarely visible with CT and only visible sometimes with MR imaging. Vascular structures could not be identified with either imaging modality.

  16. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    Science.gov (United States)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  17. Device for generation of transversal tomographic images of a body by penetrating radiation

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1980-01-01

    An improvement of equipment for the examination of patients using penetrating radiation (e.g. gamma or X-ray radiation) is proposed, in particular of equipment as under US patent 3778614, which avoids undesirable patterns on the reconstructed image. The invention is explained by several models. (orig./PW)

  18. MRS Symposium on Advanced Tomographic Imaging Methods for the Analysis of Materials

    Science.gov (United States)

    1991-08-01

    ISBN: 1-55899-104-2 Volume 213-High Temperature Ordered Intermetallic Alloys IV, L. Johnson, D.P. Pope, J.O. Stiegler , 1991, ISBN: 1-55899-105-0 Volume...Universit6 Claude Bernard LYON I, 69622 VILLEURANNE d Universit6 Paris Sud, IEF, CNRS URA 22, 91405 ORSAY (FRANCE) ABSTRACT We have applied NMR Imaging and

  19. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    Science.gov (United States)

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.

  20. Visual tracking for multi-modality computer-assisted image guidance

    Science.gov (United States)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  1. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  2. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  3. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  4. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  5. Evaluation of tomographic-image based geometries with PENELOPE Monte Carlo

    International Nuclear Information System (INIS)

    Kakoi, A.A.Y.; Galina, A.C.; Nicolucci, P.

    2009-01-01

    The Monte Carlo method can be used to evaluate treatment planning systems or for the determination of dose distributions in radiotherapy planning due to its accuracy and precision. In Monte Carlo simulation packages typically used in radiotherapy, however, a realistic representation of the geometry of the patient can not be used, which compromises the accuracy of the results. In this work, an algorithm for the description of geometries based on CT images of patients, developed to be used with Monte Carlo simulation package PENELOPE, is tested by simulating the dose distribution produced by a photon beam of 10 MV. The geometry simulated was based on CT images of a planning of prostate cancer. The volumes of interest in the treatment were adequately represented in the simulation geometry, allowing the algorithm to be used in verification of doses in radiotherapy treatments. (author)

  6. Development of NMR tomographs for dedicated applications - Dedicated NMR Imaging Systems (DIS)

    International Nuclear Information System (INIS)

    Mueller, W.; Knuettel, B.

    1989-12-01

    For the application of MR in medicine three different magnet systems have been developed. a) A superconducting magnet system with a field strength of 3 Tesla and a room temperature bore diameter of 600 mm. b) A resistive magnet system with a field strength of 0.35 Tesla and a free access of 480 mm. c) A resistive magnet with a field strength of 0.47 Tesla and a free access of 140 mm. The superconducting magnet system is capable of performing spectroscopy as well as imaging. The resistive magnet systems are basically suited for imaging, whereby the system with a free access of 140 mm can be used especially for orthopaedic studies. (orig.) [de

  7. Deep Interior: Radio Reflection Tomographic Imaging of Earth-Crossing Asteroids

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Safaeinili, A.; Klaasen, K.; Ostro, S.; Yeomans, D.; Plaut, J.

    2004-12-01

    Near-Earth Objects (NEOs) present an important scientific question and an intriguing space hazard. They are scrutinized by a number of large, dedicated groundbased telescopes, and their diverse compositions are represented by thousands of well-studied meteorites. A successful program of NEO spacecraft exploration has begun, and we are proposing Deep Interior as the next logical step. Our mission objective is to image the deep interior structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Asteroid Interiors. Our mission's RRT technique is like a CAT scan from orbit. Closely sampled radar echoes yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. Exteriors. We use color imaging to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Diversity. We first visit a common, primitive, S-type asteroid. We next visit an asteroid that was perhaps blasted from the surface of a differentiated asteroid. We attain an up-close and inside look at two taxonomic archetypes spanning an important range of NEO mass and spin rate. Scientific focus is achieved by keeping our payload simple: Radar. A 30-m (tip-to-tip) cross-dipole antenna system operates at 5 and 15-MHz, with electronics heritage from JPL's MARSIS contribution to Mars Express, and antenna heritage from IMAGE and LACE. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few 100 m or more. They bracket the diversity of solar system materials that we are likely to

  8. Contribution of the time of flight information to the positron tomographic imaging

    International Nuclear Information System (INIS)

    Laval, M.; Allemand, R.; Campagnolo, R.; Garderet, P.; Gariod, R.; Guinet, P.; Moszinski, M.; Tournier, E.; Vacher, J.

    1982-09-01

    The TOF measurement enables positrons to be localized along the line joining two detectors. The accuracy of this measurement is mainly controled by the scintillator performances: light yield, and decay time constant are the key parameters. The main advantage of using the TOF information can be expressed in terms of sensitivity gain: for example the ratio of the required total counts to obtain the same random noise in a positron image without and with the TOF information. This gain ranges from 1 to more than 10, depending on the TOF performance but also on the activity distribution. Other advantages are inherent on the TOF method: - the very high count rate capabilities of the detectors enables fast dymanic studies with for example O 15 ; - the random coincidences to be found in an imaged object are the lowest that can be achieved; - a small amount of radiation scattered by the object is rejected outside of the field of reconstruction

  9. Computed tomographic and magnetic resonance imaging of ameloblastoma: 2 case reports

    International Nuclear Information System (INIS)

    Oder, P.; Royster, A.; Gibbons, D.; Mulligan, N.; Kavanagh, P.; Eustace, S.

    1999-01-01

    Cysts of the mandible are uncommon. Most arise from epithelium lining the alveolus or root of the tooth (tooth derivatives), and the rest arise from the cortical and cancellous osseous matrix of the mandible. Of cysts arising from the alveolus (odontogenic epithelium), radicular cysts are the most common, accounting for almost 90% of cases. They are almost always found either in association with a dental cavity or at the base of a devitalized, amalgam-filled tooth. Of the remaining 10% of cases, most are dentigerous cysts, arising from the outer epithelial lining of the developing tooth, which is displaced to the base of the cyst as the lesion grows. Ameloblastoma, which also arises from odontogenic epithelium, accounts for less than 1% of cases. In this case report, we review the imaging appearance, histology and management of this uncommon tumour. In doing so, we highlight signal characteristics on magnetic resonance imaging (MRI) that may allow noninvasive characterization of ameloblastoma before surgical resection. (author)

  10. Technetium-99m high resolution tomographic imaging in the thyroid gland diseases

    Energy Technology Data Exchange (ETDEWEB)

    Reitblat, A; Ben-Horin, C [Barzilai Nedical Center, Ashkelon (Israel)

    1996-12-01

    In the experiments with the thyroid phantom and first studies of patients with hyperthyroidism it was proved that in combining SPECT imaging technique and high resolution ability of pinhole collimator (commonly used for conventional scintigraphy of the thyroid) it is possible to obtain quantitative information concerning the structure and unhomogenities of the thyroid tissue , not available tom the planar imaging. The following applications of the the method are expected: 1) Estimation of the thyroid dimensions and volume for the accurate dosimetry of the following Iodine-131 - therapy. 2) Determination of the location of the thyroid in the neck , occurrences of the retrotracheal, retrolaryngeal and retrostemal extension of the goiter. 3) Estimation of the structure and unhomogenities of the thyroid gland . 4) Locations and dimensions of cold nodules in the thyroid tissue . Some of these applications are illustrated in our studies of the patients with different thyroid gland diseases (authors).

  11. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  12. Tomographic reconstruction of storm time RC ion distribution from ENA images on board multiple spacecraft

    Science.gov (United States)

    Ma, Shu-Ying; Yan, Wei-Nan; Xu, Liang

    2015-11-01

    A quantitative retrieval of 3-D distribution of energetic ions as energetic neutral atoms (ENA) sources is a challenging task. In this paper the voxel computerized tomography (CT) method is initially applied to reconstruct the 3-D distribution of energetic ions in the magnetospheric ring current (RC) region from ENA emission images on board multiple spacecraft. To weaken the influence of low-altitude emission (LAE) on the reconstruction, the LAE-associated ENA intensities are corrected by invoking the thick-target approximation. To overcome the divergence in iteration due to discordant instrument biases, a differential ENA voxel CT method is developed. The method is proved reliable and advantageous by numerical simulation for the case of constant bias independent of viewing angle. Then this method is implemented with ENA data measured by the Two Wide-angle Imaging Neutral-atom Spectrometers mission which performs stereoscopic ENA imaging. The 3-D spatial distributions and energy spectra of RC ion flux intensity are reconstructed for energies of 4-50 keV during the main phase of a major magnetic storm. The retrieved ion flux distributions seem to correspond to an asymmetric partial RC, located mainly around midnight favoring the postmidnight with L = 3.5-7.0 in the equatorial plane. The RC ion distributions with magnetic local time depend on energy, with major equatorial flux peak for lower energy located east of that for higher energy. In comparison with the ion energy spectra measured by Time History of Events and Macroscale Interactions during Substorms-D satellite flying in the RC region, the retrieved spectrum from remotely sensed ENA images are well matched with the in situ measurements.

  13. Three-Dimensional Segmentation of the Tumor in Computed Tomographic Images of Neuroblastoma

    OpenAIRE

    Deglint, Hanford J.; Rangayyan, Rangaraj M.; Ayres, Fábio J.; Boag, Graham S.; Zuffo, Marcelo K.

    2006-01-01

    Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, and normal tissue are often intermixed. Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative ...

  14. Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging

    Science.gov (United States)

    Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.

    2018-02-01

    Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.

  15. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    International Nuclear Information System (INIS)

    N'Diaye, Mambaye; Degeratu, Cristinel; Bouler, Jean-Michel; Chappard, Daniel

    2013-01-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials

  16. MRT letter: Contrast-enhanced computed tomographic imaging of soft callus formation in fracture healing.

    Science.gov (United States)

    Hayward, Lauren Nicole Miller; de Bakker, Chantal Marie-Jeanne; Lusic, Hrvoje; Gerstenfeld, Louis Charles; Grinstaff, Mark W; Morgan, Elise Feng-I

    2012-01-01

    Formation of a cartilaginous soft callus at the site of a bone fracture is a pivotal stage in the healing process. Noninvasive, or even nondestructive, imaging of soft callus formation can be an important tool in experimental and pre-clinical studies of fracture repair. However, the low X-ray attenuation of cartilage renders the soft callus nearly invisible in radiographs. This study utilized a recently developed, cationic, iodinated contrast agent in conjunction with micro-computed tomography to identify cartilage in fracture calluses in the femora of C57BL/6J and C3H/HeJ mice. Fracture calluses were scanned before and after incubation in the contrast agent. The set of pre-incubation images was registered against and then subtracted from the set of post-incubation images, resulting in a three-dimensional map of the locations of cartilage in the callus, as labeled by the contrast agent. This map was then compared to histology from a previous study. The results showed that the locations where the contrast agent collected in relatively high concentrations were similar to those of the cartilage. The contrast agent also identified a significant difference between the two strains of mice in the percentage of the callus occupied by cartilage, indicating that this method of contrast-enhanced computed tomography may be an effective technique for nondestructive, early evaluation of fracture healing. Copyright © 2011 Wiley Periodicals, Inc.

  17. Evaluation of scintillator afterglow for use in a combined optical and PET imaging tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Douraghy, Ali [Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA School of Medicine, A136, 700 Westwood Plaza, Los Angeles, CA 90095-1770 (United States)]. E-mail: adouraghy@mednet.ucla.edu; Prout, David L. [Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA School of Medicine, A136, 700 Westwood Plaza, Los Angeles, CA 90095-1770 (United States); Silverman, Robert W. [Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA School of Medicine, A136, 700 Westwood Plaza, Los Angeles, CA 90095-1770 (United States); Chatziioannou, Arion F. [Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA School of Medicine, A136, 700 Westwood Plaza, Los Angeles, CA 90095-1770 (United States)

    2006-12-20

    The design of a dual modality imaging system for small animal optical and positron emission tomography imaging (OPET) is underway. Its detector must be capable of imaging high energy {gamma}-rays from PET while also resolving optical wavelength photons from bioluminescence. GSO, high purity GSO, BGO, LSO, LYSO, and LaBr scintillators were investigated for their use in the OPET detector. Of specific interest were scintillators with low afterglow, since afterglow photons in the decay of the larger {gamma}-ray events are indistinguishable from the photons generated by bioluminescence. Samples from these crystals were coupled to a photomultiplier tube (PMT) and produced scintillation light from {gamma}-ray events originating from a positron source. The PMT output was directed to a special signal processing circuit that allowed measurement of single photons at different times in the decay of the scintillation. GSO and BGO exhibited optimal performance for use in the OPET system due to their low afterglow. LSO, LYSO, and LaBr were determined unsuitable for use with the current OPET design due to their significant afterglow components. The effect of the afterglow of GSO on the detection of the bioluminescence signal-to-noise ratio (SNR) was evaluated for the OPET system.

  18. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  19. Three-dimensional segmentation of the tumor mass in computed tomographic images of neuroblastoma

    Science.gov (United States)

    Deglint, Hanford J.; Rangayyan, Rangaraj M.; Boag, Graham S.

    2004-05-01

    Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, fibrosis, and normal tissue are often intermixed. Rather than attempt to separate these tissue types into distinct regions, we propose to explore methods to delineate the normal structures expected in abdominal CT images, remove them from further consideration, and examine the remaining parts of the images for the tumor mass. We explore the use of fuzzy connectivity for this purpose. Expert knowledge provided by the radiologist in the form of the expected structures and their shapes, HU values, and radiological characteristics are also incorporated in the segmentation algorithm. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative assessment of the response to chemotherapy and in the planning of delayed surgery for resection of the tumor. The performance of the algorithm is evaluated using cases acquired from the Alberta Children's Hospital.

  20. Improving appropriate use of echocardiography and single-photon emission computed tomographic myocardial perfusion imaging: a continuous quality improvement initiative.

    Science.gov (United States)

    Johnson, Thomas V; Rose, Geoffrey A; Fenner, Deborah J; Rozario, Nigel L

    2014-07-01

    Appropriate use criteria for cardiovascular imaging have been published, but compliance in practice has been incomplete, with persistent high rates of inappropriate use. The aim of this study was to show the efficacy of a continuous quality improvement (CQI) initiative to favorably influence the appropriate use of outpatient transthoracic echocardiography and single-photon emission computed tomographic (SPECT) myocardial perfusion imaging (MPI) in a large cardiovascular practice. In this prospective study, a multiphase CQI initiative was implemented, and its impact on ordering patterns for outpatient transthoracic echocardiography and SPECT MPI was assessed. Between November and December 2010, a baseline analysis of the application of appropriate use criteria to indications for outpatient transthoracic echocardiographic studies (n = 203) and SPECT MPI studies (n = 205) was performed, with studies categorized as "appropriate," "inappropriate," "uncertain," or "unclassified." The CQI initiative was then begun, with (1) clinician education, including didactic lectures and case-based presentations with audience participation; (2) system changes in ordering processes, with redesigned image ordering forms; and (3) peer review and feedback. A follow-up analysis was then performed between June and August 2012, with categorization of indications for transthoracic echocardiographic studies (n = 206) and SPECT MPI studies (n = 206). At baseline, 73.9% of echocardiographic studies were categorized as appropriate, 16.7% as inappropriate, 5.9% as uncertain, and 3.4% as unclassified. Similarly, for SPECT MPI studies 71.7% were categorized as appropriate, 18.5% as inappropriate, 7.8% as uncertain, and 1.9% as unclassified. Separate analysis of the two most important categories, appropriate and inappropriate, demonstrated a significant improvement after the CQI initiative, with a 63% reduction in inappropriate echocardiographic studies (18.5% vs 6.9%, P = .0010) and a 46% reduction

  1. Tomographical properties of uniformly redundant arrays

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1978-01-01

    Recent work in coded aperture imaging has shown that the uniformly redundant array (URA) can image distant planar radioactive sources with no artifacts. The performance of two URA apertures when used in a close-up tomographic imaging system is investigated. It is shown that a URA based on m sequences is superior to one based on quadratic residues. The m sequence array not only produces less obnoxious artifacts in tomographic imaging, but is also more resilient to some described detrimental effects of close-up imaging. It is shown that in spite of these close-up effects, tomographic depth resolution increases as the source is moved closer to the detector

  2. Image quality on dual-source computed-tomographic coronary angiography

    International Nuclear Information System (INIS)

    Rixe, Johannes; Rolf, Andreas; Conradi, Guido; Elsaesser, Albrecht; Moellmann, Helge; Nef, Holger M.; Hamm, Christian W.; Dill, Thorsten; Bachmann, Georg

    2008-01-01

    Multi-detector CT reliably permits visualization of coronary arteries, but due to the occurrence of motion artefacts at heart rates >65 bpm caused by a temporal resolution of 165 ms, its utilisation has so far been limited to patients with a preferably low heart rate. We investigated the assessment of image quality on computed tomography of coronary arteries in a large series of patients without additional heart rate control using dual-source computed tomography (DSCT). DSCT (Siemens Somatom Definition, 83-ms temporal resolution) was performed in 165 consecutive patients (mean age 64±11.4 years) after injection of 60-80 ml of contrast. Data sets were reconstructed in 5% intervals of the cardiac cycle and evaluated by two readers in consensus concerning evaluability of the coronary arteries and presence of motion and beam-hardening artefacts using the AHA 16-segment coronary model. Mean heart rate during CT was 65±10.5 bpm; visualisation without artefacts was possible in 98.7% of 2,541 coronary segments. Only two segments were considered unevaluable due to cardiac motion; 30 segments were unassessable due to poor signal-to-noise ratio or coronary calcifications (both n=15). Data reconstruction at 65-70% of the cardiac cycle provided for the best image quality. For heart rates >85 bpm, a systolic reconstruction at 45% revealed satisfactory results. Compared with earlier CT generations, DSCT provides for non-invasive coronary angiography with diagnostic image quality even at heart rates >65 bpm and thus may broaden the spectrum of patients that can be investigated non-invasively. (orig.)

  3. Tomographic imaging of 12 fracture samples selected from Olkiluoto deep drillholes

    International Nuclear Information System (INIS)

    Kuva, J.; Voutilainen, M.; Timonen, J.; Aaltonen, I.

    2010-06-01

    Rock samples from Olkiluoto were imaged with X-ray tomography to analyze distributions of mineral components and alteration of rock around different fracture types. Twelve samples were analyzed, which contained three types of fractures, and each sample was scanned with two different resolutions. Three dimensional reconstructions of the samples with four or five distinct mineral components displayed changes in the mineral distribution around previously water conducting fractures, which extended to a depth of several millimeters away from fracture surfaces. In addition, structure of fracture filling minerals is depicted. (orig.)

  4. Limited data tomographic image reconstruction via dual formulation of total variation minimization

    Science.gov (United States)

    Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong

    2011-03-01

    The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.

  5. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  6. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  7. Frequency-domain optical tomographic image reconstruction algorithm with the simplified spherical harmonics (SP3) light propagation model.

    Science.gov (United States)

    Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H

    2017-06-01

    We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .

  8. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine

  9. Correlation between computed tomographic and magnetic resonance imaging findings of parenchymal lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Miriam Menna; Rafful, Patricia Piazza [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Rodrigues, Rosana Souza [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); D’Or Institute for Research and Education, Rio de Janeiro, RJ (Brazil); Zanetti, Gláucia [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Hochhegger, Bruno [Complexo Hospitalar Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS (Brazil); Souza, Arthur Soares [Department of Radiology, Medical School of Rio Preto (FAMERP) and Ultra X, São José do Rio Preto, SP (Brazil); Guimarães, Marcos Duarte [Department of Imaging, Hospital AC Camargo, São Paulo, SP (Brazil); Marchiori, Edson, E-mail: edmarchiori@gmail.com [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2013-09-15

    Computed tomography (CT) is considered to be the gold standard method for the assessment of morphological changes in the pulmonary parenchyma. Although its spatial resolution is lower than that of CT, MRI offers the advantage of characterizing different aspects of tissue based on the degree of contrast on T1-weighted image (WI) and T2-WI. In this article, we describe and correlate the MRI and CT features of several common patterns of parenchymal lung disease (air trapping, atelectasis, bronchiectasis, cavitation, consolidation, emphysema, ground-glass opacities, halo sign, interlobular septal thickening, masses, mycetoma, nodules, progressive massive fibrosis, reverse halo sign and tree-in-bud pattern). MRI may be an alternative modality for the collection of morphological and functional information useful for the management of parenchymal lung disease, which would help reduce the number of chest CT scans and radiation exposure required in patients with a variety of conditions.

  10. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Kevin [4Quant Ltd., Switzerland & Institute for Biomedical Engineering at University and ETH Zurich (Switzerland); Stampanoni, Marco [Institute for Biomedical Engineering at University and ETH Zurich, Switzerland & Swiss Light Source at Paul Scherrer Institut, Villigen (Switzerland)

    2016-01-28

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  11. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    International Nuclear Information System (INIS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures

  12. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  13. Tomographic reconstruction of tokamak plasma light emission from single image using wavelet-vaguelette decomposition

    International Nuclear Information System (INIS)

    Nguyen van yen, R.; Farge, M.; Fedorczak, N.; Monier-Garbet, P.; Brochard, F.; Bonhomme, G.; Schneider, K.

    2012-01-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  14. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  15. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance

    International Nuclear Information System (INIS)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-01-01

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s -1 ) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s -1 ) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s -1 ) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm -1 of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  16. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance.

    Science.gov (United States)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-12-07

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s(-1)) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s(-1)) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s(-1)) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm(-1) of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  17. Quantitative and morphological analysis of the computed tomographic images in experimental myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Yasuaki

    1984-12-01

    Experimental myocardial infarction in the dog was evaluated by the cardiac scan system developed together by the Department of Radiology, Dokkyo University Hospital, and Toshiba Co. Ltd. Analysis of the CT image of myocardial infarction treated by ligating the coronary arteries demonstrated the following: 1) In perfusion phase representing initial 4 min after injection of the contrast material, infarcted areas were shown as areas of low density. Pattern of these low dense areas appeared homogeneous and correlated quite well with the infarcted areas proved on necropsy. 2) In delayed scan performed between 8-12 min after the infusion of the contrast material, delayed enhancement occurred, for which visual pattern was quite variable from case to case. 3) In gated scan, time-related to ECG cycle, pictures of end-diastole (ED) and end-systole (ES) in cardiac cycle were aquired. And alteration rates of endocardial space, (ED-ES/ED) x 100%, were obtained by dividing CT sliced endocardial space into 16 segments. By using these rates, abnormal motion of the infarcted area and compensatory motion of the normal myocardium were analyzed quantitatively. (author).

  18. Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa

    Science.gov (United States)

    Kuroda, Masako; Hirami, Yasuhiko; Hata, Masayuki; Mandai, Michiko; Takahashi, Masayo; Kurimoto, Yasuo

    2014-01-01

    Background The purpose of this study was to observe the characteristic findings of spectral-domain optical coherence tomography (SD-OCT) images in the retinas of patients with retinitis pigmentosa and to evaluate their distribution patterns in the early and advanced stages of the disease. Methods A total of 184 patients (368 eyes) with retinitis pigmentosa were observed using SD-OCT. We studied the presence or absence of continuous inner/outer segment (IS/OS) lines, presence of thinning of the retinal pigment epithelium-Bruch’s membrane complex, and distribution patterns of hyperreflective foci in the inner and outer nuclear layers (INL and ONL). Results The IS/OS junction had partially disappeared in 275 eyes, which were at the early stage of retinitis pigmentosa (group X), whereas the junction had totally disappeared in 93, which were at the advanced stage of retinitis pigmentosa (group Y). Hyperreflective foci in the INL were observed in a significantly larger proportion of the eyes in group X than in group Y (90% versus 61%, Pretinitis pigmentosa and hyperreflective foci in the ONL were more frequently observed in the advanced stage. Hyperreflective foci may be indicative of changes in the retinal structure at each stage of retinitis pigmentosa. PMID:24591813

  19. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  20. What is the value of Image guidance in external beam radiotherapy?

    International Nuclear Information System (INIS)

    Kron, Tomas

    2010-01-01

    Full text: Image guided radiation therapy (lGRT) has become available in many radiotherapy centres in Australia. It is intuitive that frequent imaging of the patient with a modality that identifies the target directly at the time of treatment delivery should benefit patients. However, TGRT is also associated with increased cost for equipment, associated training, quality assurance and imaging time. The Trans Tasman Radiation Oncology Group (TROG) has been contracted by the Australian Commonwealth Department of Health and Ageing (DoHA) to investigate a framework that could be applied to establish a cost/utility assessment of IGRT. The present work aims to develop a study that can test this for daily image guidance of prostate cancer patients. Approach Thirty intermediate risk prostate cancer patients treated at ten or more radiotherapy centres in Australia will be invited to participate. Their treatment as per local practice will not be modified; however two additional treatment plans will be created with margins that would reflect a typical margin appropriate for a treatment delivery with and without daily image guidance. Patients will be stratified for volumetric versus planar orthogonal imaging and for IMRT or conformal approaches. The outcome will be a comparison of dose volume histograms for critical structures based on equal target coverage in all plans.

  1. Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography.

    Science.gov (United States)

    Kligerman, Seth; Mehta, Dhruv; Farnadesh, Mahmmoudreza; Jeudy, Jean; Olsen, Kathryn; White, Charles

    2013-01-01

    To determine whether an iterative reconstruction (IR) technique (iDose, Philips Healthcare) can reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography (CTPA). The study was Health Insurance Portability and Accountability Act compliant and approved by our institutional review board. A total of 33 obese patients (average body mass index: 42.7) underwent CTPA studies following standard departmental protocols. The data were reconstructed with filtered back projection (FBP) and 3 iDose strengths (iDoseL1, iDoseL3, and iDoseL5) for a total of 132 studies. FBP data were collected from 33 controls (average body mass index: 22) undergoing CTPA. Regions of interest were drawn at 6 identical levels in the pulmonary artery (PA), from the main PA to a subsegmental branch, in both the control group and study groups using each algorithm. Noise and attenuation were measured at all PA levels. Three thoracic radiologists graded each study on a scale of 1 (very poor) to 5 (ideal) by 4 categories: image quality, noise, PA enhancement, and "plastic" appearance. Statistical analysis was performed using an unpaired t test, 1-way analysis of variance, and linear weighted κ. Compared with the control group, there was significantly higher noise with FBP, iDoseL1, and iDoseL3 algorithms (Pnoise in the control group and iDoseL5 algorithm in the study group. Analysis within the study group showed a significant and progressive decrease in noise and increase in the contrast-to-noise ratio as the level of IR was increased (Pnoise and PA enhancement with increasing levels of iDose. The use of an IR technique leads to qualitative and quantitative improvements in image noise and image quality in obese patients undergoing CTPA.

  2. Imaging in blunt cardiac injury: Computed tomographic findings in cardiac contusion and associated injuries.

    Science.gov (United States)

    Hammer, Mark M; Raptis, Demetrios A; Cummings, Kristopher W; Mellnick, Vincent M; Bhalla, Sanjeev; Schuerer, Douglas J; Raptis, Constantine A

    2016-05-01

    Blunt cardiac injury (BCI) may manifest as cardiac contusion or, more rarely, as pericardial or myocardial rupture. Computed tomography (CT) is performed in the vast majority of blunt trauma patients, but the imaging features of cardiac contusion are not well described. To evaluate CT findings and associated injuries in patients with clinically diagnosed BCI. We identified 42 patients with blunt cardiac injury from our institution's electronic medical record. Clinical parameters, echocardiography results, and laboratory tests were recorded. Two blinded reviewers analyzed chest CTs performed in these patients for myocardial hypoenhancement and associated injuries. CT findings of severe thoracic trauma are commonly present in patients with severe BCI; 82% of patients with ECG, cardiac enzyme, and echocardiographic evidence of BCI had abnormalities of the heart or pericardium on CT; 73% had anterior rib fractures, and 64% had pulmonary contusions. Sternal fractures were only seen in 36% of such patients. However, myocardial hypoenhancement on CT is poorly sensitive for those patients with cardiac contusion: 0% of right ventricular contusions and 22% of left ventricular contusions seen on echocardiography were identified on CT. CT signs of severe thoracic trauma are frequently present in patients with severe BCI and should be regarded as indirect evidence of potential BCI. Direct CT findings of myocardial contusion, i.e. myocardial hypoenhancement, are poorly sensitive and should not be used as a screening tool. However, some left ventricular contusions can be seen on CT, and these patients could undergo echocardiography or cardiac MRI to evaluate for wall motion abnormalities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. TH-AB-209-05: Validating Hemoglobin Saturation and Dissolved Oxygen in Tumors Using Photoacoustic Computed Tomographic Spectroscopic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, J; Sick, J; Liu, B [Purdue University, West Lafayette, IN (United States); Cao, N [University of Washington Medical Center, Seattle, WA (United States); Nakshatri, H; Mendonca, M [Indiana University - Purdue University Indianapolis, Indianapolis, IN (United States); Stantz, K [Purdue University, West Lafayette, IN (United States); Indiana University - Purdue University Indianapolis, Indianapolis, IN (United States)

    2016-06-15

    Purpose: Photoacoustic computed tomographic spectroscopy (PCT-S) provides intra-tumor measurements of oxygenation with high spatial resolution (0.2mm) and temporal fidelity (1–2 minutes) without the need for exogenous agents or ionizing radiation, thus providing a unique in vivo assay to measure SaO{sub 2} and investigate acute and chronic forms of hypoxia. The goal of this study is to validate in vivo SaO{sub 2} levels within tail artery of mice and the relationship between SaO{sub 2} and pO{sub 2} within subcutaneous breast tumors using PCT-S imaging, pulse oximetry and an OxyLite probe. Methods: A closed circuit phantom was fabricated to control blood oxygenation levels, where SaO{sub 2} was measured using a co-oximeter and pO{sub 2} using an Oxylite probe. Next, SaO{sub 2} levels within the tail arteries of mice (n=3) were measured using PCT-S and pulse oximetry while breathing high-to-low oxygen levels (6-cycles). Finally, PCT-S was used to measure SaO{sub 2} levels in MCF-7, MCF-7-VEGF165, and MDA-MB-231 xenograft breast tumors and compared to Oxylite pO{sub 2} levels values. Results: SaO{sub 2} and pO{sub 2} data obtained from the calibration phantom was fit to Hill’s equation: aO{sub 2} levels between 88 and 52% demonstrated a linear relationship (r2=0.96) and a 3.2% uncertainty between PCT-S values relative to pulse oximetry. Scatter plots of localized PCT-S measured SaO2 and Oxylite pO{sub 2} levels in MCF-7/MCF-7-VEGF165 and MDA-MD-231 breast tumors were fit to Hill’s equation: P50=17.2 and 20.7mmHg, and n=1.76 and 1.63. These results are consistent with sigmoidal form of Hill’s equation, where the lower P{sub 50} value is indicative of an acidic tumor microenvironment. Conclusion: The results demonstrate photoacoustic imaging can be used to measure SaO{sub 2} cycling and intra-tumor oxygenation, and provides a powerful in vivo assay to investigate the role of hypoxia in radiation, anti-angiogenic, and immunotherapies.

  4. Condylar guidance: correlation between protrusive interocclusal record and panoramic radiographic image: a pilot study.

    Science.gov (United States)

    Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B

    2012-04-01

    The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used in programming semi-adjustable articulators. © 2012

  5. First use of a truly-hybrid x-ray/MR imaging system for guidance of brain biopsy

    International Nuclear Information System (INIS)

    Fahrig, R.; Daniel, B.L.; Butts, K.; Pelc, N.J.; Heit, G.; Wen, Z.

    2003-01-01

    The use of a new hybrid imaging system for guidance of a brain biopsy is described. The system combines the strengths of MRI (soft-tissue contrast, arbitrary plane selection) with those of x-ray fluoroscopy (high-resolution real-time projection images, clear portrayal of bony structures) and allows switching between the imaging modalities without moving the patient. The biopsy was carried out using x-ray guidance for direction of the needle through the foramen ovale and MR guidance to target the soft-tissue lesion. Appropriate samples were acquired. The system could be particularly effective for guidance of those cases where motion, swelling, resection and other intra-operative anatomical changes cannot be accounted for using traditional stereotactic-based imaging approaches. (author)

  6. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients

    DEFF Research Database (Denmark)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte Eklund

    2012-01-01

    The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population....

  7. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    Science.gov (United States)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between

  8. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance

  9. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance.

  10. Caveats on tomographic images

    DEFF Research Database (Denmark)

    Foulger, Gillian R.; Panza, Giuliano F.; Artemieva, Irina

    2014-01-01

    )CNR – Istituto di Geologia Ambientale e Geoingegneria (IGAG) c/o Dipartimento di Scienze della Terra, Università degliStudi di Roma La Sapienza, Rome, Italy, (10) Dept. Physics of the Earth, Sankt-Petersburg State University, Sankt-Petersburg,RussiaGeological models of the mantle and its geodynamic...

  11. Same day injections of Tc-99m methoxy isobutyl isonitrile (hexamibi) for myocardial tomographic imaging: Comparison between rest-stress and stress-rest injection sequences

    International Nuclear Information System (INIS)

    Taillefer, R.; Gagnon, A.; Laflamme, L.; Leveille, J.; Phaneuf, D.C.

    1989-01-01

    It has been shown that both rest and stress 99m Tc-hexamibi myocardial perfusion imaging can be performed on the same day using two different doses injected within few h (the first one at rest followed by a second at stress). In order to evaluate and compare 2 sequences (rest-stress and stress-rest) of 99m Tc-hexamibi injections performed the same day, 18 patients with either abnormal 201 Tl myocardial scan or abnormal coronary angiography were studied with 2 99m Tc-hexamibi injections protocols. The rest-stress study was performed as follows: 7 mCi 99m Tc-hexamibi was injected at rest. Single photon emission computed tomography (SPECT) was performed 60 min later. Immediately after the rest study, patients were injected at peak stress with 25 mCi 99m Tc-hexamibi. Tomographic imaging was repeated 1 h later. Patients were submitted to the stress-rest protocol within 3 days. Tomographic imaging was done 1 h after a 7 mCi injection at stress. This study was followed by an injection of 25 mCi 99m Tc-hexamibi at rest, a tomographic study was performed 60 min later. Myocardial sections were reconstructed in horizontal long, vertical long, and short axes. Data analysis also included polar map representation. A total of 324 segments were interpreted blind by 3 observers, there was an agreement in 283/324 (87.3%) segments between the 2 protocols. However, 24 segments (7.4%) judged ischemic on rest-stress were called scars on stress-rest. In three patients, myocardial segments were judged normal on the rest image of the rest-stress protocol while they were found abnormal (false positive images) on the stress-rest sequence. Stress images from both protocols were judged similar in 17 patients. In conclusion, when using a short time interval (less than 2 h) between two 99m Tc-hexamibi injections, it is preferable to do a rest-stress sequence since the rest image performed initially represents a true rest study, which is not necessarily the case with the stress-rest sequence

  12. Tomographic methods in nuclear medicine

    International Nuclear Information System (INIS)

    Ahluwalia, B.D.

    1989-01-01

    This book is a review of the various approaches to tomographic imaging that have been pursued in nuclear medicine. The evolution of single photon emission computed tomography (SPECT) is discussed in detail, and the major classes of instrumentation are represented. A section on positron emission tomography is also included, but is rather brief and may serve only as a general introduction

  13. Evaluation of image-guidance protocols in the treatment of head and neck cancers

    International Nuclear Information System (INIS)

    Zeidan, Omar A.; Langen, Katja M.; Meeks, Sanford L.; Manon, Rafael R.; Wagner, Thomas H.; Willoughby, Twyla R.; Jenkins, D. Wayne; Kupelian, Patrick A.

    2007-01-01

    Purpose: The aim of this study was to assess the residual setup error of different image-guidance (IG) protocols in the alignment of patients with head and neck cancer. The protocols differ in the percentage of treatment fractions that are associated with image guidance. Using data from patients who were treated with daily IG, the residual setup errors for several different protocols are retrospectively calculated. Methods and Materials: Alignment data from 24 patients (802 fractions) treated with daily IG on a helical tomotherapy unit were analyzed. The difference between the daily setup correction and the setup correction that would have been made according to a specific protocol was used to calculate the residual setup errors for each protocol. Results: The different protocols are generally effective in reducing systematic setup errors. Random setup errors are generally not reduced for fractions that are not image guided. As a consequence, if every other treatment is image guided, still about 11% of all treatments (IG and not IG) are subject to three-dimensional setup errors of at least 5 mm. This frequency increases to about 29% if setup errors >3 mm are scored. For various protocols that require 15% to 31% of the treatments to be image guided, from 50% to 60% and from 26% to 31% of all fractions are subject to setup errors >3 mm and >5 mm, respectively. Conclusion: Residual setup errors reduce with increasing frequency of IG during the course of external-beam radiotherapy for head-and-neck cancer patients. The inability to reduce random setup errors for fractions that are not image guided results in notable residual setup errors

  14. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    Science.gov (United States)

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  15. The establishment of enteral nutrition with minimally-invasive interventional procedure under endoscopic or imaging guidance

    International Nuclear Information System (INIS)

    Li Feng; Cheng Yingsheng

    2010-01-01

    For patients unable to get the necessary nutrition orally, a variety of techniques,including surgical way, to make gastrostomy with tube placement have been employed. For recent years, gastrostomy and tube placement with the help of endoscopic guidance or percutaneous interventional management has been developed, which is superior to surgical procedure in minimizing injuries, decreasing cost and reducing complications. In certain clinical situations, both endoscopic method and interventional method can be employed. This paper aims to make a comprehensive review of the indications, techniques and skills, advantages and disadvantages of both the endoscopy-guided and the imaging-guided percutaneous gastrojejunostomy for the establishment of enteral nutrition. (authors)

  16. Evaluation of tomographic image quality of extended and conventional parallel hole collimators using maximum likelihood expectation maximization algorithm by Monte Carlo simulations.

    Science.gov (United States)

    Moslemi, Vahid; Ashoor, Mansour

    2017-10-01

    One of the major problems associated with parallel hole collimators (PCs) is the trade-off between their resolution and sensitivity. To solve this problem, a novel PC - namely, extended parallel hole collimator (EPC) - was proposed, in which particular trapezoidal denticles were increased upon septa on the side of the detector. In this study, an EPC was designed and its performance was compared with that of two PCs, PC35 and PC41, with a hole size of 1.5 mm and hole lengths of 35 and 41 mm, respectively. The Monte Carlo method was used to calculate the important parameters such as resolution, sensitivity, scattering, and penetration ratio. A Jaszczak phantom was also simulated to evaluate the resolution and contrast of tomographic images, which were produced by the EPC6, PC35, and PC41 using the Monte Carlo N-particle version 5 code, and tomographic images were reconstructed by using maximum likelihood expectation maximization algorithm. Sensitivity of the EPC6 was increased by 20.3% in comparison with that of the PC41 at the identical spatial resolution and full-width at tenth of maximum here. Moreover, the penetration and scattering ratio of the EPC6 was 1.2% less than that of the PC41. The simulated phantom images show that the EPC6 increases contrast-resolution and contrast-to-noise ratio compared with those of PC41 and PC35. When compared with PC41 and PC35, EPC6 improved trade-off between resolution and sensitivity, reduced penetrating and scattering ratios, and produced images with higher quality. EPC6 can be used to increase detectability of more details in nuclear medicine images.

  17. Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations

    International Nuclear Information System (INIS)

    Shi Chengyu; Xu, X. George

    2004-01-01

    Assessment of radiation dose and risk to a pregnant woman and her fetus is an important task in radiation protection. Although tomographic models for male and female patients of different ages have been developed using medical images, such models for pregnant women had not been developed to date. This paper reports the construction of a partial-body model of a pregnant woman from a set of computed tomography (CT) images. The patient was 30 weeks into pregnancy, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices. The thickness for each slice is 7 mm, and the image resolution is 512x512 pixels in a 48 cmx48 cm field; thus, the voxel size is 6.15 mm 3 . The images were segmented to identify 34 major internal organs and tissues considered sensitive to radiation. Even though the masses are noticeably different from other models, the three-dimensional visualization verified the segmentation and its suitability for Monte Carlo calculations. The model has been implemented into a Monte Carlo code, EGS4-VLSI (very large segmented images), for the calculations of radiation dose to a pregnant woman. The specific absorbed fraction (SAF) results for internal photons were compared with those from a stylized model. Small and large differences were found, and the differences can be explained by mass differences and by the relative geometry differences between the source and the target organs. The research provides the radiation dosimetry community with the first voxelized tomographic model of a pregnant woman, opening the door to future dosimetry studies

  18. Utility of cervical spinal and abdominal computed tomography in diagnosing occult pneumothorax in patients with blunt trauma: Computed tomographic imaging protocol matters.

    Science.gov (United States)

    Akoglu, Haldun; Akoglu, Ebru Unal; Evman, Serdar; Akoglu, Tayfun; Denizbasi, Arzu; Guneysel, Ozlem; Onur, Ozge; Onur, Ender

    2012-10-01

    Small pneumothoraces (PXs), which are not initially recognized with a chest x-ray film and diagnosed by a thoracic computed tomography (CT), are described as occult PX (OCPX). The objective of this study was to evaluate cervival spine (C-spine) and abdominal CT (ACT) for diagnosing OCPX and overt PX (OVPX). All patients with blunt trauma who presented consecutively to the emergency department during a 26-months period were included. Among all the chest CTs (CCTs) (6,155 patients) conducted during that period, 254 scans were confirmed to have a true PX. The findings in their C-spine CT and ACT were compared with the findings in CCTs. Among these patients, 254 had a diagnosis of PX confirmed with CCT. OCPXs were identified on the chest computed tomographic scan of 128 patients (70.3%), whereas OVPXs were evident in 54 patients (29.7%). Computed tomographic imaging of the C-spine was performed in 74% of patients with OCPX and 66.7% of patients with OVPX trauma. Only 45 (35.2%) cases of OCPX and 42 (77.8%) cases of OVPX were detected by C-spine CT. ACT was performed in almost all patients, and 121 (95.3%) of 127 of these correctly identified an existing OCPX. Sensitivity of C-spine CT and ACT was 35.1% and 96.5%, respectively; specificity was 100% and 100%, respectively. Almost all OCPXs, regardless of intrathoracic location, could be detected by ACT or by combining C-spine and abdominal computed tomographic screening for patients. If the junction of the first and second vertebra is used as the caudad extent, C-spine CT does not have sufficient power to diagnose more than a third of the cases. Diagnostic study, level III.

  19. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Eccles, Cynthia; Bissonnette, Jean-Pierre; Brock, Kristy K.

    2005-01-01

    Purpose: A six-fraction, high-precision radiotherapy protocol for unresectable liver cancer has been developed in which active breathing control (ABC) is used to immobilize the liver and daily megavoltage (MV) imaging and repositioning is used to decrease geometric uncertainties. We report the accuracy of setup in the first 20 patients consecutively treated using this approach. Methods and materials: After setup using conventional skin marks and lasers, orthogonal MV images were acquired with the liver immobilized using ABC. The images were aligned to reference digitally reconstructed radiographs using the diaphragm for craniocaudal (CC) alignment and the vertebral bodies for anterior-posterior (AP) and mediolateral (ML) alignment. Adjustments were made for positioning errors >3 mm. Verification imaging was repeated after repositioning to assess for residual positioning error. Offline image matching was conducted to determine the setup accuracy using this approach compared with the initial setup error before repositioning. Real-time beam's-eye-view MV movies containing an air-diaphragm interface were also evaluated. Results: A total of 405 images were evaluated from 20 patients. Repositioning occurred in 109 of 120 fractions because of offsets >3 mm. Three to eight beam angles, with up to four segments per field, were used for each isocenter. Breath holds of up to 27 s were used for imaging and treatment. The average time from the initial verification image to the last treatment beam was 21 min. Image guidance and repositioning reduced the population random setup errors (σ) from 6.5 mm (CC), 4.2 mm (ML), and 4.7 mm (AP) to 2.5 mm (CC), 2.8 mm (ML), and 2.9 mm (AP). The average individual random setup errors (σ) were reduced from 4.5 mm (CC), 3.2 mm (AP), and 2.5 mm (ML) to 2.2 mm (CC), 2.0 mm (AP), and 2.0 mm (ML). The standard deviation of the distribution of systematic deviations (Σ) was also reduced from 5.1 mm (CC), 3.4 mm (ML), and 3.1 mm (AP) to 1.4 mm (CC

  20. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  1. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  2. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  3. Image guidance quality assurance of a G4 CyberKnife robotic stereotactic radiosurgery system

    International Nuclear Information System (INIS)

    Pantelis, E; Antypas, C; Petrokokkinos, L

    2009-01-01

    The image guidance of a CyberKnife robotic radiosurgery system was quality controlled, including the overall performance of the target locating subsystem and the performance of the x-ray generators and flat panel digital cameras subcomponents. Accuracy and precision of the kV and exposure time settings of the x-ray generators, linearity of the x-ray output, spatial resolution and geometrical distortion of the acquired x-ray images were measured. Total accuracy and precision of the target locating subsystem in defining the position of an anthropomorphic head and neck phantom placed on treatment couch was also measured. Accuracy and precision of the kV as well as exposure time settings and linearity of the x-ray output were found within the acceptance limits suggested in diagnostic radiology. The acquired x-ray images were found to depict the shapes of the imaging objects without any geometrical distortion, being able to resolve differences in the features of imaging objects with critical frequency of 1.3 lp/mm and 1.5 lp/mm for camera A and B, respectively. Total target locating system accuracy was found within 0.2 mm and 0.2 deg. in translations and rotations, respectively. Corresponding precision was found lower than 0.5%. These findings render the target locating subsystem of the CyberKnife capable of accurately registering the patient to treatment position and monitoring patient's movement during treatment delivery.

  4. Tomographic bremsstrahlung imaging with yttrium-90 in the context of radioembolisation of liver tumors; Tomografische Bildgebung mit Yttrium-90-Bremsstrahlung im Rahmen der Radioembolisation von Lebertumoren

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver Stephan

    2013-04-12

    Establish tomographic Bremsstrahlung SPECT imaging (BSPECT) for the clinical validation of Selective Internal Radiotherapy (SIRT) with Yttrium-90 ({sup 90}Y) labelled microspheres. Various energy ranges (75 ± 3.8 keV; 135 ± 6.8 keV; 167 ± 8.4 keV) and the summation window were studied to see if they were suitable for BSPECT. To this end, clinically available reconstruction techniques were analysed for their suitability for BSPECT. The tomographic examinations were performed on a cylindrical phantom filled with spheres of different diameters d = [28; 35; 40; 50; 60] mm in a non-active waterfilled background. The spheres were filled with identical {sup 90}Y activity concentration (AC). Measurements were conducted at AC = [14.58; 5.20; 1.98; 0.66] MBq/cm{sup 3}. The BSPECT were reconstructed with filtered back-projection (FBP), a 2D Ordered-Subset Expectation Maximisation Algorithm (2D-OSEM) and a 3D Geometric Mean Algorithm (3D-GMA). Evaluation was made visually and on the basis of objective performance parameters such as contrast, signal-to-noise ratio (SNR) and image noise. While the 75 keV ± 3.8 keV window was identified as suitable for the BSPECT, limitations were revealed as to use of different implementations of the Point Spread Function (PSF). It was found for all reconstruction techniques that, at a given sphere diameter, there existed a linear relationship between the AC in the spheres and the reconstructed pulse rate per volume element. The recovery effect was verified for small spheres. The iterative techniques were found to be suitable for the BSPECT at all AC. At low AC, the 3D-GMA exhibited the least noise and the highest SNR. The FBP turned out to be entirely inappropriate for the BSPECT. The narrow energy window in which the bremsstrahlung interferes with the characteristic X-radiation of lead can be used for BSPECT. In this approach, the tomographic data reconstructed with different algorithms exhibited a varying image quality, with the iterative

  5. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    Science.gov (United States)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error

  6. A multimodal imaging framework for enhanced robot-assisted partial nephrectomy guidance

    Science.gov (United States)

    Halter, Ryan J.; Wu, Xiaotian; Hartov, Alex; Seigne, John; Khan, Shadab

    2015-03-01

    Robot-assisted laparoscopic partial nephrectomies (RALPN) are performed to treat patients with locally confined renal carcinoma. There are well-documented benefits to performing partial (opposed to radical) kidney resections and to using robot-assisted laparoscopic (opposed to open) approaches. However, there are challenges in identifying tumor margins and critical benign structures including blood vessels and collecting systems during current RALPN procedures. The primary objective of this effort is to couple multiple image and data streams together to augment visual information currently provided to surgeons performing RALPN and ultimately ensure complete tumor resection and minimal damage to functional structures (i.e. renal vasculature and collecting systems). To meet this challenge we have developed a framework and performed initial feasibility experiments to couple pre-operative high-resolution anatomic images with intraoperative MRI, ultrasound (US) and optical-based surface mapping and kidney tracking. With these registered images and data streams, we aim to overlay the high-resolution contrast-enhanced anatomic (CT or MR) images onto the surgeon's view screen for enhanced guidance. To date we have integrated the following components of our framework: 1) a method for tracking an intraoperative US probe to extract the kidney surface and a set of embedded kidney markers, 2) a method for co-registering intraoperative US scans with pre-operative MR scans, and 3) a method for deforming pre-op scans to match intraoperative scans. These components have been evaluated through phantom studies to demonstrate protocol feasibility.

  7. Planning, guidance, and quality assurance of pelvic screw placement using deformable image registration

    Science.gov (United States)

    Goerres, J.; Uneri, A.; Jacobson, M.; Ramsay, B.; De Silva, T.; Ketcha, M.; Han, R.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-12-01

    Percutaneous pelvic screw placement is challenging due to narrow bone corridors surrounded by vulnerable structures and difficult visual interpretation of complex anatomical shapes in 2D x-ray projection images. To address these challenges, a system for planning, guidance, and quality assurance (QA) is presented, providing functionality analogous to surgical navigation, but based on robust 3D-2D image registration techniques using fluoroscopy images already acquired in routine workflow. Two novel aspects of the system are investigated: automatic planning of pelvic screw trajectories and the ability to account for deformation of surgical devices (K-wire deflection). Atlas-based registration is used to calculate a patient-specific plan of screw trajectories in preoperative CT. 3D-2D registration aligns the patient to CT within the projective geometry of intraoperative fluoroscopy. Deformable known-component registration (dKC-Reg) localizes the surgical device, and the combination of plan and device location is used to provide guidance and QA. A leave-one-out analysis evaluated the accuracy of automatic planning, and a cadaver experiment compared the accuracy of dKC-Reg to rigid approaches (e.g. optical tracking). Surgical plans conformed within the bone cortex by 3-4 mm for the narrowest corridor (superior pubic ramus) and  >5 mm for the widest corridor (tear drop). The dKC-Reg algorithm localized the K-wire tip within 1.1 mm and 1.4° and was consistently more accurate than rigid-body tracking (errors up to 9 mm). The system was shown to automatically compute reliable screw trajectories and accurately localize deformed surgical devices (K-wires). Such capability could improve guidance and QA in orthopaedic surgery, where workflow is impeded by manual planning, conventional tool trackers add complexity and cost, rigid tool assumptions are often inaccurate, and qualitative interpretation of complex anatomy from 2D projections is prone to trial

  8. SU-E-I-39: Combining Conventional Tomographic Imaging Strategy and Interior Tomography for Low Dose Dual-Energy CT (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xiong, G; Elmore, K; Min, J [Dalio Institute of Cardiovascular Imaging, New York- Presbyterian Hospital and Weill Cornell Medical College, New York, NY (United States)

    2015-06-15

    Purpose: Dual-energy CT (DECT) affords quantitative information of tissue density and provides a new dimension for disease diagnosis and treatment planning. The technique, however, increases the imaging dose because of the doubled scans, and thus hinders its widespread clinical applications. The purpose of this work is to develop a novel hybrid DECT image acquisition and reconstruction strategy, in which one of the energies is dealt by interior tomography while the other one is obtained using conventional tomography approach. Methods: In the proposed hybrid imaging strategy, the projection data of one of the energies (e.g., high-energy) were acquired and processed in an interior scanning model, whereas the other energy in the conventional tomographic approach. It known that, if the ROI is piecewise constant or polynomial, the interior ROI can be reconstructed with TV or HOT minimization. Here we extend the TV based interior reconstruction method into dual-energy situation. The ROI images so obtained were overlaid in the context of conventional CT of the companion energy. A material based composition in ROI was used in the proposed reconstruction framework. Results: In the simulation experiment with a diagnostic DECT geometry and energies, we were able to derive the densities of soft-tissues and bones in the ROI with high fidelity. In the experimental CBCT study, both kV and MV data were collected using the on-board kV and MV imaging system. The MV data were truncated only across the ROI. Using the interior tomography reconstruction above, we were able to obtain the ROI images as that obtained using un-truncated MV data with known tissue densities. Conclusion: The proposed DECT imaging strategy provides an effective way to extract tissue density information in the ROI and in the context of anatomical images of CT imaging, with much reduced imaging dose.

  9. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  10. A tomographic image of upper crustal structure using P and S wave seismic refraction data in the southern granulite terrain (SGT), India

    Science.gov (United States)

    Rajendra Prasad, B.; Behera, Laxmidhar; Rao, P. Koteswara

    2006-07-01

    We present a 2-D tomographic P and S wave velocity (Vp and Vs) image with Vp/Vs ratios along N-S trending 220 km long deep seismic profile acquired in 2005, which traverses across major shear and tectonically disturbed zones in southern granulite terrain (SGT), India. The 2-D velocity model constrained down to maximum 8 km depth shows velocity anomalies (>0.2 km/s) beneath major shear zones with good spatial resolution (>0.05 km/s). The presence of high Vp (6.3-6.5 km/s), Vs (3.5-3.8 km/s), Vp/Vs (>1.75) and Poisson's ratio (0.25-0.29) indicate significant compositional changes of rocks at shallow depths (0.5 to 8 km) reveal rapid crustal exhumation of mid to lower crustal rocks. This crustal exhumation could be responsible due to Pan-African tectonothermal activity during Neoproterozoic period.

  11. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  12. Feasibility of photon-counting K-edge imaging in X-ray and computed tomographic systems: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2011-01-01

    Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.

  13. An image guidance system for positioning robotic cochlear implant insertion tools

    Science.gov (United States)

    Bruns, Trevor L.; Webster, Robert J.

    2017-03-01

    Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.

  14. Computerized tomographic system

    International Nuclear Information System (INIS)

    Godbarsen, R.; Barrett, D.M.; Garrott, P.M.; Foley, L.E.; Redington, R.W.; Lambert, T.W.; Edelheit, L.S.

    1981-01-01

    A computerized tomographic system for examining human breasts is described in detail. Conventional X-ray scanning apparatus has difficulty in achieving the levels of image definition and examination speeds required for mass screening. A novel method of scanning successive layers of the breast with a rotating X-ray beam is discussed and details of the control circuitry and sequence steps are given. The method involves immersing the breast in an inner fluid (e.g. water) filled container which is stationary during an examination and is surrounded by a large outer container which is also filled with the fluid; the inner and outer containers are always maintained at a constant height and the X-ray absorption across the fan-shaped beam is as close as possible to constant. (U.K.)

  15. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  16. Impact of Image Guidance on Outcomes After External Beam Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Reddy, Chandana A.; Klein, Eric A.; Mahadevan, Arul

    2008-01-01

    Purpose: To verify whether rectal distention at the time of planning impacts outcomes in patients with localized prostate cancer treated with daily image guidance. Methods and Materials: Between 1998 and 2002, a total of 488 prostate cancer patients were treated with intensity-modulated radiotherapy. The radiation dose was 70 Gy delivered at 2.5 Gy per fraction in all cases. All cases were treated with a 4-mm margin posteriorly. In all cases the total rectal volume documented on the CT scan was used for treatment planning. No special bowel preparation instructions were given, either for the simulation or the daily treatments. Before each daily treatment, alignment of the prostate was performed with the B-mode acquisition and targeting (BAT) transabdominal ultrasound system. The median follow-up for all 488 patients was 60 months (range, 24-96 months). Results: For all patients the biochemical relapse-free survival (bRFS) rate at 5 years was 86%. The 5-year bRFS rate for the rectal distention 3 , 50 to 3 , and ≥100 cm 3 groups was 90%, 83%, and 85%, respectively (p = 0.18). To adjust for other potential variables affecting bRFS rates, a multivariate time-to-failure analysis using the Cox proportional hazards model was performed. Rectal distention was not an independent predictor of biochemical failure on multivariate analysis (p = 0.80). Rectal distention was not a predictor of rectal or urinary toxicity. Conclusion: The use of daily image guidance eliminates errors such as rectal distention at the initial planning stage that can affect outcomes after radiotherapy for localized prostate cancer

  17. Tomographic imaging of Central Java, Indonesia: Preliminary result of joint inversion of the MERAMEX and MCGA earthquake data

    International Nuclear Information System (INIS)

    Rohadi, Supriyanto; Widiyantoro, Sri; Nugraha, Andri Dian; Masturyono

    2013-01-01

    The realization of local earthquake tomography is usually conducted by removing distant events outside the study region, because these events may increase errors. In this study, tomographic inversion has been conducted using the travel time data of local and regional events in order to improve the structural resolution, especially for deep structures. We used the local MERapi Amphibious EXperiments (MERAMEX) data catalog that consists of 292 events from May to October 2004. The additional new data of regional events in the Java region were taken from the Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesia, which consist of 882 events, having at least 10 recording phases at each seismographic station from April 2009 to February 2011. We have conducted joint inversions of the combined data sets using double-difference tomography to invert for velocity structures and to conduct hypocenter relocation simultaneously. The checkerboard test results of Vp and Vs structures demonstrate a significantly improved spatial resolution from the shallow crust down to a depth of 165 km. Our tomographic inversions reveal a low velocity anomaly beneath the Lawu - Merapi zone, which is consistent with the results from previous studies. A strong velocity anomaly zone with low Vp, low Vs and low Vp/Vs is also identified between Cilacap and Banyumas. We interpret this anomaly as a fluid content material with large aspect ratio or sediment layer. This anomaly zone is in a good agreement with the existence of a large dome containing sediment in this area as proposed by previous geological studies. A low velocity anomaly zone is also detected in Kebumen, where it may be related to the extensional oceanic basin toward the land

  18. Tomographic imaging of Central Java, Indonesia: Preliminary result of joint inversion of the MERAMEX and MCGA earthquake data

    Energy Technology Data Exchange (ETDEWEB)

    Rohadi, Supriyanto [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No.10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No.2, Kemayoran, Jakarta (Indonesia); Widiyantoro, Sri; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No.10, Bandung 40132 (Indonesia); Masturyono [Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No.2, Kemayoran, Jakarta Pusat (Indonesia)

    2013-09-09

    The realization of local earthquake tomography is usually conducted by removing distant events outside the study region, because these events may increase errors. In this study, tomographic inversion has been conducted using the travel time data of local and regional events in order to improve the structural resolution, especially for deep structures. We used the local MERapi Amphibious EXperiments (MERAMEX) data catalog that consists of 292 events from May to October 2004. The additional new data of regional events in the Java region were taken from the Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesia, which consist of 882 events, having at least 10 recording phases at each seismographic station from April 2009 to February 2011. We have conducted joint inversions of the combined data sets using double-difference tomography to invert for velocity structures and to conduct hypocenter relocation simultaneously. The checkerboard test results of Vp and Vs structures demonstrate a significantly improved spatial resolution from the shallow crust down to a depth of 165 km. Our tomographic inversions reveal a low velocity anomaly beneath the Lawu - Merapi zone, which is consistent with the results from previous studies. A strong velocity anomaly zone with low Vp, low Vs and low Vp/Vs is also identified between Cilacap and Banyumas. We interpret this anomaly as a fluid content material with large aspect ratio or sediment layer. This anomaly zone is in a good agreement with the existence of a large dome containing sediment in this area as proposed by previous geological studies. A low velocity anomaly zone is also detected in Kebumen, where it may be related to the extensional oceanic basin toward the land.

  19. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  20. Computed tomography guidance for skeletal biopsy

    International Nuclear Information System (INIS)

    Frager, D.H.; Goldman, M.J.; Elkin, C.M.; Cynamon, J.; Leeds, N.E.; Seimon, L.P.; Habermann, E.T.; Schreiber, K.; Freeman, L.M.

    1987-01-01

    Computed tomographic (CT) guided biopsy and abscess drainage of multiple organ systems have been well described. Reports of spinal and skeletal applications have been less common. This study describes the use of CT guidance in the biopsy of various skeletal lesions in 46 patients. Forty-one patients had skinny needle aspirations (18 or 22 gauge) and 23 patients had trephine core biopsies. Sites of the lesions included: thoracic spine - 15 patients, lumbosacral spine - 17 patients, bony pelvis - 6 patients, rib - 2 patients, and long bones - 6 patients. Fast scanners capable of rapid image reconstruction have overcome many constraints. With CT guidance, the physician who performs the procedure receives virtually no ionizing radiation. The exact location of the needle tip is accurately visualized in relation to the lesion being biopsied and to the vital organs. (orig.)

  1. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.; Uneri, A.; Stayman, J. W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Khanna, A. J.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen (Germany); Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21239 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-08-15

    Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter

  2. Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L. [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and Nova Scotia Cancer Centre, QEII Health Science Centre, Halifax, Nova Scotia B3H 2Y9 (Canada)

    2016-05-15

    Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmable translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three

  3. Use of a Diagnostic Score to Prioritize Computed Tomographic (CT Imaging for Patients Suspected of Ischemic Stroke Who May Benefit from Thrombolytic Therapy.

    Directory of Open Access Journals (Sweden)

    Wen Yea Hwong

    Full Text Available A shortage of computed tomographic (CT machines in low and middle income countries often results in delayed CT imaging for patients suspected of a stroke. Yet, time constraint is one of the most important aspects for patients with an ischemic stroke to benefit from thrombolytic therapy. We set out to assess whether application of the Siriraj Stroke Score is able to assist physicians in prioritizing patients with a high probability of having an ischemic stroke for urgent CT imaging.From the Malaysian National Neurology Registry, we selected patients aged 18 years and over with clinical features suggesting of a stroke, who arrived in the hospital 4.5 hours or less from ictus. The prioritization of receiving CT imaging was left to the discretion of the treating physician. We applied the Siriraj Stroke Score to all patients, refitted the score and defined a cut-off value to best distinguish an ischemic stroke from a hemorrhagic stroke.Of the 2176 patients included, 73% had an ischemic stroke. Only 33% of the ischemic stroke patients had CT imaging within 4.5 hours. The median door-to-scan time for these patients was 4 hours (IQR: 1;16. With the recalibrated score, it would have been possible to prioritize 95% (95% CI: 94%-96% of patients with an ischemic stroke for urgent CT imaging.In settings where CT imaging capacity is limited, we propose the use of the Siriraj Stroke Score to prioritize patients with a probable ischemic stroke for urgent CT imaging.

  4. Voxel-based model construction from colored tomographic images; Construcao de simuladores baseados em elementos de volume a partir de imagens tomograficas coloridas

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  5. New tomographic images of P- , S- wave velocity and Q on the Philippine Sea Slab beneath Tokyo: Implication to seismotectonics and seismic hazard in the Tokyo metropolitan region

    Science.gov (United States)

    Hirata, Naoshi; Sakai, Shin'ichi; Nakagawa, Shigeki; Panayotopoulos, Yannis; Ishikawa, Masahiro; Sato, Hiroshi; Kasahara, Keiji; Kimura, Hisanor; Honda, Ryou

    2013-04-01

    The Central Disaster Management Council of Japan estimates the next great M7+ earthquake in the Tokyo metropolitan region will cause 11,000 fatalities and 112 trillion yen (1 trillion US) economic loss at worst case if it occur beneath northern Tokyo bay with M7.3. However, the estimate is based on a source fault model by conventional studies about the PSP geometry. To evaluate seismic hazard due to the great quake we need to clarify the geometry of PSP and also the Pacific palate (PAP) that subducs beneath PSP. We identify those plates with use of seismic tomography and available deep seismic reflection profiling and borehole data in southern Kanto area. We deployed about 300 seismic stations in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area. We obtain clear P- and S- wave velocity (Vp and Vs) and Q tomograms which show a clear image of PSP and PAP. A depth to the top of PSP, 20 to 30 kilometer beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Rock velocity data reveals that subducting PSP crust transforms from blueschists to amphibolites at depth of 30km and amphibolites to eclogites at depth of 50km, which suggest that dehydration reactions occurs in subducting crust of basaltic compositions during prograde metamorphism and water is released from the subducting PSP crust. Tomograms show evidence for a low-velocity zone (LVZ) beneath the area just north of Tokyo bay. A Q tomogram show a low Q zone in PSP slab. We interpret the LVZ as a

  6. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  7. Iodine-123 N-methyl-4-iododexetimide: a new radioligand for single-photon emission tomographic imaging of myocardial muscarinic receptors

    International Nuclear Information System (INIS)

    Hicks, R.J.; Kassiou, M.; Eu, P.; Katsifis, A.G.; Garra, M.; Power, J.; Najdovski, L.; Lambrecht, R.M.

    1995-01-01

    Cardiac muscarinic receptor ligands suitable for positron emission tomography have previously been characterised. Attempts to develop radioligands of these receptors suitable for single-photon emission tomographic (SPET) imaging have not been successful due to high lung retention and high non-specific binding of previously investigated potential tracers. The purpose of this study was to evaluate the biodistribution and in vivo imaging characteristics of a new radiopharmaceutical, [ 123 I]N-methyl-4-iododexetimide. Biodistribution studies performed in rats showed high cardiac uptake (2.4% ID/g) 10 min after injection with a heart to lung activity ratio of 5:1. Specificity and stereoselectivity of cardiac binding were demonstrated using blocking experiments in rats. Dynamic imaging studies in anaesthetised greyhounds demonstrated rapid and high myocardial uptake and low lung binding with stable heart to lung activity ratios of >2.5:1 between 10 and 30 min, making SPET imaging feasible. Administration of an excess of an unlabelled muscarinic antagonist, methyl-quinuclidinyl benzylate rapidly displaced myocardial activity to background levels and the pharmacologically inactive enantiomer, [ 123 I]N-methyl-4-iodolevetimide, had no detectable cardiac uptake, indicating specific and stereoselective muscarinic receptor binding. SPET revealed higher activity in the inferior than in the anterior wall, this being consistent with previously described regional variation of cardiac parasympathetic innervation. [ 123 I]N-methyl-4-iododexetimide shows promise as an imaging agent for muscarinic receptor distribution in the heart and may be helpful in evaluating diverse cardiac diseases associated with altered muscarinic receptor function, including heart failure and diabetic heart disease. (orig.)

  8. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

    Science.gov (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2005-04-01

    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  9. Accuracy of cranial coplanar beam therapy using an oblique, stereoscopic x-ray image guidance system

    International Nuclear Information System (INIS)

    Vinci, Justin P.; Hogstrom, Kenneth R.; Neck, Daniel W.

    2008-01-01

    A system for measuring two-dimensional (2D) dose distributions in orthogonal anatomical planes in the cranium was developed and used to evaluate the accuracy of coplanar conformal therapy using ExacTrac image guidance. Dose distributions were measured in the axial, sagittal, and coronal planes using a CIRS (Computerized Imaging Reference Systems, Inc.) anthropomorphic head phantom with a custom internal film cassette. Sections of radiographic Kodak EDR2 film were cut, processed, and digitized using custom templates. Spatial and dosimetric accuracy and precision of the film system were assessed. BrainScan planned a coplanar-beam treatment to conformally irradiate a 2-cm-diameterx2-cm-long cylindrical planning target volume. Prior to delivery, phantom misalignments were imposed in combinations of ±8 mm offsets in each of the principal directions. ExacTrac x-ray correction was applied until the phantom was within an acceptance criteria of 1 mm/1 deg. (first two measurement sets) or 0.4 mm/0.4 deg. (last two measurement sets). Measured dose distributions from film were registered to the treatment plan dose calculations and compared. Alignment errors, displacement between midpoints of planned and measured 70% isodose contours (Δc), and positional errors of the 80% isodose line were evaluated using 49 2D film measurements (98 profiles). Comparison of common, but independent measurements of Δc showed that systematic errors in the measurement technique were 0.2 mm or less along all three anatomical axes and that random error averaged (σ±σ σ ) 0.29±0.06 mm for the acceptance criteria of 1 mm/1 deg. and 0.15±0.02 mm for the acceptance criteria of 0.4 mm/0.4 deg. . The latter was consistent with independent estimates that showed the precision of the measurement system was 0.3 mm (2σ). Values of Δc were as great as 0.9, 0.3, and 1.0 mm along the P-A, R-L, and I-S axes, respectively. Variations in Δc along the P-A axis were correlated to misalignments between laser

  10. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    Science.gov (United States)

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  11. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  12. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  13. On-line cone beam CT image guidance for vocal cord tumor targeting

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  14. Added Value of Contrast-Enhanced Ultrasound on Biopsies of Focal Hepatic Lesions Invisible on Fusion Imaging Guidance.

    Science.gov (United States)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun

    2017-01-01

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5-1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  15. Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Chunan (Korea, Republic of)

    2016-12-15

    This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

  16. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    International Nuclear Information System (INIS)

    Liu, Y; Campbell, J

    2015-01-01

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  17. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    Science.gov (United States)

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  18. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    International Nuclear Information System (INIS)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  19. Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and Image Guidance Considerations

    International Nuclear Information System (INIS)

    Louie, Alexander V.; Senan, Suresh; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2014-01-01

    tumors with image guidance, and excellent local control

  20. 99mTc-DMSA renal uptake in urological diseases measured from renal tomographic images using single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Oishi, Yukihiko; Tashiro, Kazuya; Kishimoto, Koichi; Wada, Tetsuro; Torii, Shinichiro; Yoshigoe, Fukuo; Machida, Toyohei; Yamada, Hideo; Toyama, Hinako.

    1987-01-01

    To determine renal function, 99m Tc-DMSA renal uptake was measured from renal tomographic images obtained by single photon emission computed tomography (SPECT). A total of 77 tests was conducted on 73 patients with various diseases in the kidneys and urinary tract to determine renal uptake. The correlation coefficient(r) between total renal volume and total renal uptake was 0.3509 and that between renal volume and uptake of 143 kidneys was 0.5433. In 62 patients whose creatinine clearance could be measured, the correlation coefficient between creatinine clearance and total renal volume was 0.2352, and that between creatinine clearance and total renal uptake was 0.8854, that is, creatinine clearance correlated well with renal uptake. Renal volume and uptake determined in 10 normal male and 10 normal female adults were 220 ml and 26.8 % for the right kidney and 239 ml and 27.6 % for the left kidney for the males and 206 ml and 26.4 % (right) and 237 ml and 27.9 % (left) for the females. This method, which requires no blood or urine collection, is very useful as an individual kidney function test to evaluate individual kidney function and to understand kidney function before and after operation in patients with renal and urinary diseases. (author)

  1. Implementation of vibration correction schemes to the evaluation of a turbulent flow in an open channel by tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Earl, T A; Thomas, L; David, L; Cochard, S; Tremblais, B

    2015-01-01

    The aim of this paper is to investigate and quantify the effect of vibration on experimental tomographic particle image velocimetry (TPIV) measurements. The experiment consisted of turbulence measurements in an open channel flow. Specifically, five trash rack assemblies, composed of regular grids, divided a 5 m long flume into four sequential, identical pools. This set-up established a globally stationary flow, with each pool generating a controlled amount of turbulence that is reset at every trash rack. TPIV measurements were taken in the central pool. To eliminate the vibration from the measurements, three vibration correction regimes are proposed and compared to a global volume self-calibration (Wieneke 2008 Exp. Fluids 45 549–56), a now standard calibration procedure in TPIV. As the amplitude of the vibrations was small, it was possible to extract acceptable reconstruction re-projection qualities (Q I  > 75%) and velocity fields from the standard treatment. This paper investigates the effect of vibration on the cross-correlation signal and turbulence statistics, and shows the improvement to velocity field data by several correction schemes. A synthetic model was tested that simulated camera vibration to demonstrate its effects on key velocity parameters and to observe the effects on reconstruction and cross-correlation metrics. This work has implications for experimental measurements where vibrations are unavoidable and seemingly undetectable such as those in large open channel flows. (paper)

  2. Biodistribution and radiation dosimetry of a positron emission tomographic ligand, 18F-SP203, to image metabotropic glutamate subtype 5 receptors in humans

    International Nuclear Information System (INIS)

    Kimura, Yasuyuki; Simeon, Fabrice G.; Pike, Victor W.; Innis, Robert B.; Fujita, Masahiro; Hatazawa, Jun; Mozley, P.D.

    2010-01-01

    A new PET ligand, 3-fluoro-5-(2-(2- 18 F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ( 18 F-SP203), is a positron emission tomographic radioligand selective for metabotropic glutamate subtype 5 receptors. The purposes of this study were to estimate the radiation-absorbed doses of 18 F-SP203 in humans and to determine from the distribution of radioactivity in bone structures with various proportions of bone and red marrow whether 18 F-SP203 undergoes defluorination. Whole-body images were acquired for 5 h after injecting 18 F-SP203 in seven healthy humans. Urine was collected at various time points. Radiation-absorbed doses were estimated by the Medical Internal Radiation Dose scheme. After injecting 18 F-SP203, the two organs with highest radiation exposure were urinary bladder wall and gallbladder wall, consistent with both urinary and fecal excretion. In the skeleton, most of the radioactivity was in bone structures that contain red marrow and not in those without red marrow. Although the dose to red marrow (30.9 μSv/MBq) was unusually high, the effective dose (17.8 μSv/MBq) of 18 F-SP203 was typical of that of other 18 F radiotracers. 18 F-SP203 causes an effective dose in humans typical of several other 18 F radioligands and undergoes little defluorination. (orig.)

  3. Mandibular canal branches supplying the mandibular third molar observed on cone beam computed tomographic images: Reports of four cases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Seo; Yoon, Suk Ja; Kang, Byung Cheol [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of)

    2009-12-15

    Bifid mandibular canal can be an anatomic variation. This condition can lead to complication when performing mandibular anesthesia or during extraction of lower third molar, placement of implants and surgery in the mandible. Four patients underwent preoperative imaging for extraction of third molars using CBCT (CB Mercuray, Hitachi, Japan). The axial images were processed with CBworks program 2.1 (CyberMed Inc., Seoul, Korea). The branches for supplying the lower third molar were identified mainly on cross-sectional and panoramic images of CBCT. Since the location and configuration of mandibular canal variations are important in any mandibular surgical procedures, we report 4 cases of bifid mandibular canal with panoramic and the CBCT images.

  4. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy.

    Science.gov (United States)

    Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi

    2015-01-01

    Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

  5. A Test of the Transdiagnostic Dopamine Hypothesis of Psychosis Using Positron Emission Tomographic Imaging in Bipolar Affective Disorder and Schizophrenia.

    Science.gov (United States)

    Jauhar, Sameer; Nour, Matthew M; Veronese, Mattia; Rogdaki, Maria; Bonoldi, Ilaria; Azis, Matilda; Turkheimer, Federico; McGuire, Philip; Young, Allan H; Howes, Oliver D

    2017-12-01

    The dopamine hypothesis suggests that dopamine abnormalities underlie psychosis, irrespective of diagnosis, implicating dopamine dysregulation in bipolar affective disorder and schizophrenia, in line with the research domain criteria approach. However, this hypothesis has not been directly examined in individuals diagnosed with bipolar disorder with psychosis. To test whether dopamine synthesis capacity is elevated in bipolar disorder with psychosis and how this compares with schizophrenia and matched controls and to examine whether dopamine synthesis capacity is associated with psychotic symptom severity, irrespective of diagnostic class. This cross-sectional case-control positron emission tomographic study was performed in the setting of first-episode psychosis services in an inner-city area (London, England). Sixty individuals participated in the study (22 with bipolar psychosis [18 antipsychotic naive or free], 16 with schizophrenia [14 antipsychotic naive or free], and 22 matched controls) and underwent fluorodihydroxyphenyl-l-alanine ([18F]-DOPA) positron emission tomography to examine dopamine synthesis capacity. Standardized clinical measures, including the Positive and Negative Syndrome Scale, Young Mania Rating Scale, and Global Assessment of Functioning, were administered. The study dates were March 2013 to November 2016. Dopamine synthesis capacity (Kicer) and clinical measures (Positive and Negative Syndrome Scale, Young Mania Rating Scale, and Global Assessment of Functioning). The mean (SD) ages of participants were 23.6 (3.6) years in 22 individuals with bipolar psychosis (13 male), 26.3 (4.4) years in 16 individuals with schizophrenia (14 male), and 24.5 (4.5) years in controls (14 male). There was a significant group difference in striatal dopamine synthesis capacity (Kicer) (F2,57 = 6.80, P = .002). Kicer was significantly elevated in both the bipolar group (mean [SD], 13.18 [1.08] × 10-3 min-1; P = .002) and the schizophrenia

  6. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    to 600MHz (the frequency range of the antennas used). The 2-dimensional plots were formed into a 3-dimensional cube and time slices extracted, on the basis of maximum signal return, at 16ns, 25ns and 29ns. In this work, we show the reprocessing of the GPR data via a microwave tomographic approach based on a linear approximation of the inverse scattering problem [4]. In particular, the effectiveness of this approach ensures a reliable and high resolution representation/visualization of the scene very large in terms of probing wavelength. This has been made possible thanks to the adoption of the approach presented in [5] where the 3D representation was achieved by performing 2D reconstruction and after obtaining the 3D Cube from these 2D reconstructed profiles. In particular, the re-examination of GPR data using microwave tomography has allowed to improve definition of the villa outline and to detect earlier prehistoric remains. [1] Rudling, D., & Butler, C. "Roundhouse to Villa" in Sussex Past & Present 95, pp 6 - 7, 2001. [2] Utsi, E., Wortley Villa paper currently in preparation of EAGE special issue. [3] Utsi, E., & Alani, A. "Barcombe Roman Villa: An Exercise in GPR Time Slicingand Comparative Geophysics", in Koppenjan, S., & Hua, L. (eds) Proceedings of the Ninth International Conference on Ground Penetrating Radar, 2002. [4] F. Soldovieri, R. Persico, E. Utsi, V. Utsi, "The application of inverse scattering techniques with ground penetrating radar to the problem of rebar location in concrete", NDT & E International, Vol. 39, Issue 7, October 2006, Pages 602-607. [5] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish", Journal of Geophysics and Engineering, vol.7, no. 2, pp. 164-173, June 2010

  7. Image Guidance Based on Prostate Position for Prostate Cancer Proton Therapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Indelicato, Daniel; Fryer, Amber; Horne, David; Chellini, Angela; McKenzie, Craig; Lawlor, Paula; Mahajan, Chaitali; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the target coverage for proton therapy with and without image guidance and daily prebeam reorientation. Methods and Materials: A total of 207 prostate positions were analyzed for 9 prostate cancer patients treated using our low-risk prostate proton therapy protocol (University of Florida Proton Therapy Institute 001). The planning target volume was defined as the prostate plus a 5-mm axial and 8-mm superoinferior extension. The prostate was repositioned using 5- and 10-mm shifts (anteriorly, inferiorly, posteriorly, and superiorly) and for Points A-D using a combination of 10-mm multidimensional movements (anteriorly or inferiorly; posteriorly or superiorly; and left or right). The beams were then realigned using the new prostate position. The prescription dose was 78 Gray equivalent (GE) to 95% of the planning target volume. Results: For small movements in the anterior, inferior, and posterior directions within the planning target volume (≤5 mm), treatment realignment demonstrated small, but significant, improvements in the clinical target volume (CTV) coverage to the prescribed dose (78 GE). The anterior and posterior shifts also significantly increased the minimal CTV dose (Δ +1.59 GE). For prostate 10-mm movements in the inferior, posterior, and superior directions, the beam realignment produced larger and significant improvements for both the CTV V 78 (Δ +6.4%) and the CTV minimal dose (Δ +8.22 GE). For the compounded 10-mm multidimensional shifts, realignment significantly improved the CTV V 78 (Δ +11.8%) and CTV minimal dose (Δ +23.6 GE). After realignment, the CTV minimal dose was >76.6 GE (>98%) for all points (A-D). Conclusion: Proton beam realignment after target shift will enhance CTV coverage for different prostate positions

  8. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Science.gov (United States)

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  9. Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Csaba Juhász

    2014-08-01

    Full Text Available Positron emission tomography (PET is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (L-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-L- dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-L-tryptophan [AMT] most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-D-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  11. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  12. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  13. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    Science.gov (United States)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  14. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Tomographic PIV: principles and practice

    International Nuclear Information System (INIS)

    Scarano, F

    2013-01-01

    A survey is given of the major developments in three-dimensional velocity field measurements using the tomographic particle image velocimetry (PIV) technique. The appearance of tomo-PIV dates back seven years from the present review (Elsinga et al 2005a 6th Int. Symp. PIV (Pasadena, CA)) and this approach has rapidly spread as a versatile, robust and accurate technique to investigate three-dimensional flows (Arroyo and Hinsch 2008 Topics in Applied Physics vol 112 ed A Schröder and C E Willert (Berlin: Springer) pp 127–54) and turbulence physics in particular. A considerable number of applications have been achieved over a wide range of flow problems, which requires the current status and capabilities of tomographic PIV to be reviewed. The fundamental aspects of the technique are discussed beginning from hardware considerations for volume illumination, imaging systems, their configurations and system calibration. The data processing aspects are of uppermost importance: image pre-processing, 3D object reconstruction and particle motion analysis are presented with their fundamental aspects along with the most advanced approaches. Reconstruction and cross-correlation algorithms, attaining higher measurement precision, spatial resolution or higher computational efficiency, are also discussed. The exploitation of 3D and time-resolved (4D) tomographic PIV data includes the evaluation of flow field pressure on the basis of the flow governing equation. The discussion also covers a-posteriori error analysis techniques. The most relevant applications of tomo-PIV in fluid mechanics are surveyed, covering experiments in air and water flows. In measurements in flow regimes from low-speed to supersonic, most emphasis is given to the complex 3D organization of turbulent coherent structures. (topical review)

  16. Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Liji; Breithaupt, Mathies; Peter, Joerg [Division of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: l.cao@dkfz.de

    2010-03-21

    A mathematical approach for geometric co-calibration of a dual-modal small-animal imaging system is presented. The system comprises an optical imaging setup for in vivo bioluminescence and fluorescence detection, as well as an x-ray CT, both mounted on a common rotatable gantry enabling fully simultaneous imaging at axially overlapping fields-of-view. Geometric co-calibration is performed once by imaging a single cylindrical light-emitting source with both modalities over 360 deg. at two axial positions, respectively. Given the three-dimensional coordinates of the source positions in the reconstructed CT volume data along with their two-dimensional locations projected at the optical detector plane, the following intrinsic system parameters are calculated: (i) the intrinsic geometric parameters of the optical detection system-five parameters for each view and (ii) the relative positional relationship between the optical and CT systems-two parameters for each view. After co-calibration is performed, experimental studies using phantoms demonstrate the high degree of intrinsic positional accuracy between the optical and CT measurements. The most important advantage of this approach is that dual-modal data fusion is accomplished without any post-registration strategies.

  17. The extent of the Cratonic keel underneath the Southern African region: A 3D image using Finite-Frequency Tomograph

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Bezada, Max; Thybo, Hans

    2010-01-01

    We have re-examined the P body wave data from the South Africa Seismic Experiment (Carlson et al, EOS 77, 1996) across the Kaapvaal and Zimbabwe cratons and the Bushveld complex. Using finite-frequency kernels, we inverted the P-wave delay times to obtain 3-D images of compressional velocity...

  18. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  19. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Shinichi; Shirato, Hiroki; Kagei, Kenji; Nishioka, Takeshi; Bo Xo; Dosaka-Akita, Hirotoshi; Hashimoto, Seiko; Aoyama, Hidefumi; Tsuchiya, Kazuhiko; Miyasaka, Kazuo

    2000-01-01

    Purpose: Three-dimensional (3D) treatment planning has often been performed while patients breathe freely, under the assumption that the computed tomography (CT) images represent the average position of the tumor. We investigated the impact of respiratory movement on the free-breathing CT images of small lung tumors using sequential CT scanning at the same table position. Methods: Using a preparatory free-breathing CT scan, the patient's couch was fixed at the position where each tumor showed its maximum diameter on image. For 16 tumors, over 20 sequential CT images were taken every 2 s, with a 1-s acquisition time occurring during free breathing. For each tumor, the distance between the surface of the CT table and the posterior border of the tumor was measured to determine whether the edge of the tumor was sufficiently included in the planning target volume (PTV) during normal breathing. Results: In the sequential CT scanning, the tumor itself was not visible in the examination slice in 21% (75/357) of cases. There were statistically significant differences between lower lobe tumors (39.4%, 71/180) and upper lobe tumors (0%, 0/89) (p < 0.01) and between lower lobe tumors and middle lobe tumor (8.9%, 4/45) (p < 0.01) in the incidence of the disappearance of the tumor from the image. The mean difference between the maximum and minimum distances between the surface of the CT table and the posterior border of the tumor was 6.4 mm (range 2.1-24.4). Conclusion: Three-dimensional treatment planning for lung carcinoma would significantly underdose many lesions, especially those in the lower lobe. The excess 'safety margin' might call into question any additional benefit of 3D treatment. More work is required to determine how to control respiratory movement

  20. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Directory of Open Access Journals (Sweden)

    W. Matthew Leevy

    2013-05-01

    Full Text Available X-ray Computed Tomography (CT is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.

  1. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  2. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  3. Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Cases1

    Science.gov (United States)

    Zhu, Quing; Huang, Minming; Chen, NanGuang; Zarfos, Kristen; Jagjivan, Bipin; Kane, Mark; Hedge, Poornima; Kurtzman, H. Scott

    2003-01-01

    Abstract The diagnosis of solid benign and malignant tumors presents a unique challenge to all noninvasive imaging modalities. Ultrasound is used in conjunction with mammography to differentiate simple cysts from solid lesions. However, the overlapping appearances of benign and malignant lesions make ultrasound less useful in differentiating solid lesions, resulting in a large number of benign biopsies. Optical tomography using near-infrared diffused light has great potential for imaging functional parameters of 1) tumor hemoglobin concentration, 2) oxygen saturation, and 3) metabolism, as well as other tumor distinguishing characteristics. These parameters can differentiate benign from malignant lesions. However, optical tomography, when used alone, suffers from low spatial resolution and target localization uncertainty due to intensive light scattering. Our aim is to combine diffused light imaging with ultrasound in a novel way for the detection and diagnosis of solid lesions. Initial findings of two earlystage invasive carcinomas, one combined fibroadenoma and fibrocystic change with scattered foci of lobular neoplasia/lobular carcinoma in situ, and 16 benign lesions are reported in this paper. The invasive cancer cases reveal about two-fold greater total hemoglobin concentration (mean 119 µmol) than benign cases (mean 67 µmol), and suggest that the discrimination of benign and malignant breast lesions might be enhanced by this type of achievable optical quantification with ultrasound localization. Furthermore, the small invasive cancers are well localized and have wavelength-dependent appearance in optical absorption maps, whereas the benign lesions appear diffused and relatively wavelength-independent. PMID:14670175

  4. Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Cases

    Directory of Open Access Journals (Sweden)

    Quing Zhu

    2003-09-01

    Full Text Available The diagnosis of solid benign and malignant tumors presents a unique challenge to all noninvasive imaging modalities. Ultrasound is used in conjunction with mammography to differentiate simple cysts from solid lesions. However, the overlapping appearances of benign and malignant lesions make ultrasound less useful in differentiating solid lesions, resulting in a large number of benign biopsies. Optical tomography using near-infrared diffused light has great potential for imaging functional parameters of 1 tumor hemoglobin concentration, 2 oxygen saturation, 3 metabolism, as well as other tumor distinguishing characteristics. These parameters can differentiate benign from malignant lesions. However, optical tomography, when used alone, suffers from low spatial resolution and target localization uncertainty due to intensive light scattering. Our aim is to combine diffused light imaging with ultrasound in a novel way for the detection and diagnosis of solid lesions. Initial findings of two earlystage invasive carcinomas, one combined fibroadenoma and fibrocystic change with scattered foci of lobular neoplasia/lobular carcinoma in situ, 16 benign lesions are reported in this paper. The invasive cancer cases reveal about two-fold greater total hemoglobin concentration (mean 119 μmol than benign cases (mean 67 μmol, suggest that the discrimination of benign and malignant breast lesions might be enhanced by this type of achievable optical quantification with ultrasound localization. Furthermore, the small invasive cancers are well localized and have wavelength-dependent appearance in optical absorption maps, whereas the benign lesions appear diffused and relatively wavelength-independent.

  5. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    International Nuclear Information System (INIS)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  6. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  7. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  8. Emerging tomographic methods within the petroleum industry

    International Nuclear Information System (INIS)

    Johansen, Geir Anton

    2013-01-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  9. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  10. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun

    2017-01-01

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making

  11. Photon emission tomographic apparatus and method

    International Nuclear Information System (INIS)

    Blum, A.S.

    1983-01-01

    Tomographic imaging system employs large area, collimated scintillation detector rotated around radiation emitting subject. Detector support rotates with an inner ring inside a stationary outer ring. Counterbalanced detector support arm is forced by spring action to cause collimator face to follow body contour as detector rotates around the body, thereby reducing collimator to subject distance to improve system resolution. Includes adjustable subject support system

  12. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  13. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T; Yue, N; Jabbour, S; Zhang, M [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  14. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    International Nuclear Information System (INIS)

    Chen, T; Yue, N; Jabbour, S; Zhang, M

    2016-01-01

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  15. Quantification of normative ranges and baseline predictors of aortoventricular interface dimensions using multi-detector computed tomographic imaging in patients without aortic valve disease

    International Nuclear Information System (INIS)

    Gooley, Robert P.; Cameron, James D.; Soon, Jennifer; Loi, Duncan; Chitale, Gauri; Syeda, Rifath; Meredith, Ian T.

    2015-01-01

    Highlights: • MDCT imaging of the aortoventricular interface is increasingly common. • We present normative ranges for aortoventricular interface dimensions. • Such techniques and ranges should be used to standardise reporting and research. - Abstract: Background: Multidetector computed tomographic (MDCT) assessment of the aortoventricular interface has gained increased importance with the advent of minimally invasive treatment modalities for aortic and mitral valve disease. This has included a standardised technique of identifying a plane through the nadir of each coronary cusp, the basal plane, and taking further measurements in relation to this plane. Despite this there is no published data defining normal ranges for these aortoventricular metrics in a healthy cohort. This study seeks to quantify normative ranges for MDCT derived aortoventricular dimensions and evaluate baseline demographic and anthropomorphic associates of these measurements in a normal cohort. Methods: 250 consecutive patients undergoing MDCT coronary angiography were included. Aortoventricular dimensions at multiple levels of the aortoventricular interface were assessed and normative ranges quantified. Multivariate linear regression was performed to identify baseline predictors of each metric. Results: The mean age was 59 ± 12 years. The basal plane was eccentric (EI = 0.22 ± 0.06) while the left ventricular outflow tract was more eccentric (EI = 0.32 ±0.06), with no correlation to gender, age or hypertension. Male gender, height and body mass index were consistent independent predictors of larger aortoventricular dimensions at all anatomical levels, while age was predictive of supra-annular measurements. Conclusions: Male gender, height and BMI are independent predictors of all aortoventricular dimensions while age predicts only supra-annular dimensions. Use of defined metrics such as the basal plane and formation of normative ranges for these metrics allows reference for clinical

  16. Quantification of normative ranges and baseline predictors of aortoventricular interface dimensions using multi-detector computed tomographic imaging in patients without aortic valve disease

    Energy Technology Data Exchange (ETDEWEB)

    Gooley, Robert P., E-mail: robert.gooley@monashhealth.org [MonashHeart, Monash Health, Melbourne 3168 (Australia); Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Cameron, James D., E-mail: james.cameron@monash.edu [MonashHeart, Monash Health, Melbourne 3168 (Australia); Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Soon, Jennifer, E-mail: jenn.sa@gmail.com [MonashHeart, Monash Health, Melbourne 3168 (Australia); Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Loi, Duncan, E-mail: dloi2@student.monash.edu [Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Chitale, Gauri, E-mail: gchi21@student.monash.edu [Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Syeda, Rifath, E-mail: rssye1@student.monash.edu [Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia); Meredith, Ian T., E-mail: ian.meredith@myheart.id.au [MonashHeart, Monash Health, Melbourne 3168 (Australia); Monash Cardiovascular Research Centre, Department of Medicine (MMC), Monash University, Melbourne 3168 (Australia)

    2015-09-15

    Highlights: • MDCT imaging of the aortoventricular interface is increasingly common. • We present normative ranges for aortoventricular interface dimensions. • Such techniques and ranges should be used to standardise reporting and research. - Abstract: Background: Multidetector computed tomographic (MDCT) assessment of the aortoventricular interface has gained increased importance with the advent of minimally invasive treatment modalities for aortic and mitral valve disease. This has included a standardised technique of identifying a plane through the nadir of each coronary cusp, the basal plane, and taking further measurements in relation to this plane. Despite this there is no published data defining normal ranges for these aortoventricular metrics in a healthy cohort. This study seeks to quantify normative ranges for MDCT derived aortoventricular dimensions and evaluate baseline demographic and anthropomorphic associates of these measurements in a normal cohort. Methods: 250 consecutive patients undergoing MDCT coronary angiography were included. Aortoventricular dimensions at multiple levels of the aortoventricular interface were assessed and normative ranges quantified. Multivariate linear regression was performed to identify baseline predictors of each metric. Results: The mean age was 59 ± 12 years. The basal plane was eccentric (EI = 0.22 ± 0.06) while the left ventricular outflow tract was more eccentric (EI = 0.32 ±0.06), with no correlation to gender, age or hypertension. Male gender, height and body mass index were consistent independent predictors of larger aortoventricular dimensions at all anatomical levels, while age was predictive of supra-annular measurements. Conclusions: Male gender, height and BMI are independent predictors of all aortoventricular dimensions while age predicts only supra-annular dimensions. Use of defined metrics such as the basal plane and formation of normative ranges for these metrics allows reference for clinical

  17. Radioiodinated diacylglycerol analogue: a potential imaging agent for single-photon emission tomographic investigations of cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Y. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Imahori, Y. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ueda, S. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Fujii, R. [Nishijin Hospital, Kyoto (Japan); Wakita, K. [Nishijin Hospital, Kyoto (Japan); Inoue, M. [Daiichi Radioisotope Laboratories, Chiba (Japan); Tazawa, S. [Daiichi Radioisotope Laboratories, Chiba (Japan)

    1996-03-01

    Phospholipid metabolism is closely related to membrane perturbation in cerebral ischaemia. We investigated in vivo topographical lipid metabolism using an iodine-123-labelled diacylglycerol analogue, (1-(15-(4-iodine-123-iodophenyl)-pentadecanoyl)-2-stearoyl-rac-glycerol) ({sup 123}I-labelled DAG), in a middle cerebral artery (MCA) occlusion model with the aim of positive imaging of ischaemic insult. Sprague-Dawley rats underwent coagulation of the MCA to induce permanent occlusion. MCA occlusion times prior to injection of {sup 123}I-labelled DAG ranged from 15 min to 14 days. Each rat was injected with 11-37 MBq of {sup 123}I-labelled DAG. After 30 min, in vivo autoradiographs were reconstructed. Scanning of the living rat brain in this MCA occlusion model was performed. Cerebral infarctions were recognized in the frontal cortex, the parietal cortex and the lateral portion of the caudate-putamen by 2, 3, 5-triphenyltetrazolium hydrochloride staining. In infarcted regions (region 1), {sup 123}I-labelled DAG incorporation showed a decrease up to 12 h; it then increased up to 6 days and decreased thereafter. In peri-infarcted regions (region 2), the incorporation showed almost no change up to 12 h, then increased up to 5-6 days and decreased thereafter. In other regions (region 3), the incorporation showed no change. Lipid analysis showed that {sup 123}I-labelled DAG was metabolized to 15-(4-iodine-123-iodophenyl)-pentadecanoic acid by DAG lipase and to {sup 123}I-labelled phosphatidylcholine. Scanning of the ischaemic region showed higher accumulation than on the non-lesioned side. We established a method to visualize ischaemic foci as positive images. The early changes in {sup 123}I-labelled DAG incorporation were related to DAG lipase, which degraded the accumulated intrinsic DAG, and increased {sup 123}I-labelled DAG incorporation in the chronic stage involves several aspects of neural destruction in the process of autolysis.

  18. Comparison of computed tomographic urography, magnetic resonance urography and the combination of diffusion weighted imaging in diagnosis of upper urinary tract cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guang-yu; Lu, Qing; Wu, Lian-ming [Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 1630, Dongfang Road, Pudong, Shanghai 200120 (China); Zhang, Jin [Department of Urinary Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 1630, Dongfang Road, Pudong, Shanghai 200120 (China); Chen, Xiao-xi [Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 1630, Dongfang Road, Pudong, Shanghai 200120 (China); Xu, Jian-rong, E-mail: renjixujr@163.com [Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 1630, Dongfang Road, Pudong, Shanghai 200120 (China)

    2014-06-15

    Purpose: To evaluate the performance of computed tomographic urography (CTU), static-fluid magnetic resonance urography (static-fluid MRU) and combinations of CTU, static-fluid MRU and diffusion weighted imaging (DWI) in the diagnosis of upper urinary tract cancer. Material and Methods: Between January 2010 and June 2011, patients with suspected UUT cancer underwent CTU, static-fluid MRU and DWI (b = 1000 s/mm{sup 2}) within a 1-week period. The diagnostic performances of CTU, static-fluid MRU and combinations of CTU, static-fluid MRU and DWI for upper urinary tract cancer were prospectively evaluated. The ureteroscopic and histopathologic findings were compared with the imaging findings. Results: Compared to static-fluid MRU alone (sensitivity: 76/75%, reader 1/reader 2), combining DWI with MRI can increase the sensitivity (sensitivity: 84/84%, p = 0.031/p = 0.016) of upper urinary tract cancer diagnosis. CTU had greater sensitivity (95/94%) and accuracy (92/91%) than both static-fluid MRU (sensitivity: p < 0.001/p < 0.001 and accuracy: 83/81%, p = 0.001/p < 0.001) and static-fluid MRU with DWI (sensitivity: p = 0.023/p = 0.039 and accuracy: 87/85%, p = 0.042/p = 0.049) for the diagnosis of upper urinary tract cancers. Compared with CTU alone, CTU with DWI did not significantly increase sensitivity, specificity or accuracy. However, the diagnostic confidence was improved when the combined technique was used (p = 0.031/p = 0.024). Moreover, there was no significant change in sensitivity, specificity, accuracy or diagnostic confidence when static-fluid MRU was used in combination with CTU and DWI. Conclusion: Although there is a potential role for static-fluid MRU and static-fluid MRU with DWI in urinary tract imaging, CTU is still the better choice for the diagnosis of upper urinary tract cancer. Combining DWI with CTU can help improve confidence in upper urinary tract cancer diagnoses.

  19. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  20. Introduction to curved rotary tomographic apparatus 'TOMOREX'

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Shinojima, Masayasu; Kohirasawa, Hideo; Tokui, Mitsuru

    1980-01-01

    In recent years, panorama X-ray photographic method is widely used for the X-ray diagnosis of teeth, jawbones and faces. One type based on the principle of tomography is curved surface rotary tomographic method utilizing fine-gap X-ray beam. With the synchronous rotation of an X-ray tube and a photographic film around a face, describing a U-shaped tomographic plane along a dental arch, an upper or lower jawbone is photographed. In the ''TOMOREX'' belonging to this type, is different tomographic planes are available, so that by selecting any position in advance, the part can be photographed. Furthermore, patients can be subjected to examination as laid on a stretcher. The mechanism and equipment, and the photographic method for eye sockets, cheekbones, upper jaw cavities and stereoscopic images are described. (J.P.N.)

  1. Radioiodinated diacylglycerol analogue: a potential imaging agent for single-photon emission tomographic investigations of cerebral ischaemia

    International Nuclear Information System (INIS)

    Ohmori, Y.; Imahori, Y.; Ueda, S.; Fujii, R.; Wakita, K.; Inoue, M.; Tazawa, S.

    1996-01-01

    Phospholipid metabolism is closely related to membrane perturbation in cerebral ischaemia. We investigated in vivo topographical lipid metabolism using an iodine-123-labelled diacylglycerol analogue, (1-(15-(4-iodine-123-iodophenyl)-pentadecanoyl)-2-stearoyl-rac-glycerol) ( 123 I-labelled DAG), in a middle cerebral artery (MCA) occlusion model with the aim of positive imaging of ischaemic insult. Sprague-Dawley rats underwent coagulation of the MCA to induce permanent occlusion. MCA occlusion times prior to injection of 123 I-labelled DAG ranged from 15 min to 14 days. Each rat was injected with 11-37 MBq of 123 I-labelled DAG via a tail vein. After 30 min, in vivo autoradiographs were reconstructed. Scanning of the living rat brain in this MCA occlusion model was performed using a gamma camera with a pinhole collimator. Cerebral infarctions were recognized in the frontal cortex, the parietal cortex and the lateral portion of the caudate-putamen by 2, 3, 5-triphenyltetrazolium hydrochloride staining. In infarcted regions (region 1), 123 I-labelled DAG incorporation showed a slight decrease up to 12 h; it then increased up to 6 days and decreased thereafter. In peri-infarcted regions (region 2), the incorporation showed almost no change up to 12 h, then increased up to 5-6 days and decreased thereafter. In other regions (region 3), the incorporation showed no change. Lipid analysis showed that 123 I-labelled DAG was metabolized to 15-(4-iodine-123-iodophenyl)-pentadecanoic acid by DAG lipase and to 123 I-labelled phosphatidylcholine. Scanning of the ischaemic region showed higher accumulation than on the non-lesioned side. We established a method to visualize ischaemic foci as positive images. The early changes in 123 I-labelled DAG incorporation were closely related to DAG lipase, which degraded the accumulated intrinsic DAG, and increased 123 I-labelled DAG incorporation in the chronic stage involves several aspects of neural destruction in the process of

  2. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs

  3. Positron emission tomography/computed tomographic and magnetic resonance imaging in a murine model of progressive atherosclerosis using (64)Cu-labeled glycoprotein VI-Fc.

    Science.gov (United States)

    Bigalke, Boris; Phinikaridou, Alkystis; Andia, Marcelo E; Cooper, Margaret S; Schuster, Andreas; Schönberger, Tanja; Griessinger, Christoph M; Wurster, Thomas; Onthank, David; Ungerer, Martin; Gawaz, Meinrad; Nagel, Eike; Botnar, Rene M

    2013-11-01

    (-1); P=0.028). (64)Cu-GPVI-Fc positron emission tomographic imaging allows identification of exposed subendothelial collagen in injured WT and high-fat diet-fed ApoE(-/-) mice.

  4. A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Woo Seok; Kim, Soo Mee; Park, Min Jae; Lee, Dong Soo; Lee, Jae Sung [Seoul National University, Seoul (Korea, Republic of)

    2009-10-15

    The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 sec, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 sec, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries

  5. A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems

    International Nuclear Information System (INIS)

    Ha, Woo Seok; Kim, Soo Mee; Park, Min Jae; Lee, Dong Soo; Lee, Jae Sung

    2009-01-01

    The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 sec, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 sec, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries

  6. Cone beam computed tomography and its image guidance technology during percutaneous nucleoplasty procedures at L5/S1 lumbar level

    Energy Technology Data Exchange (ETDEWEB)

    Ierardi, Anna Maria; Piacentino, Filippo; Giorlando, Francesca [University of Insubria, Unit of Interventional Radiology, Department of Radiology, Varese (Italy); Magenta Biasina, Alberto; Carrafiello, Gianpaolo [University of Milan, San Paolo Hospital, Department of Diagnostic and Interventional Radiology, Milan (Italy); Bacuzzi, Alessandro [University of Insubria, Anaesthesia and Palliative Care, Varese (Italy); Novario, Raffaele [University of Insubria, Medical Physics Department, Varese (Italy)

    2016-12-15

    To demonstrate the feasibility of percutaneous nucleoplasty procedures at L5/S1 level using cone beam CT (CBCT) and its associated image guidance technology for the treatment of lumbar disc herniation (LDH). We retrospectively reviewed 25 cases (20 men, 5 women) of LDH at L5/S1 levels. CBCT as guidance imaging was chosen after a first unsuccessful fluoroscopy attempt that was related to complex anatomy (n = 15), rapid pathological changes due to degenerative diseases (n = 7) or both (n = 3). Technical success, defined as correct needle positioning in the target LDH, and safety were evaluated; overall procedure time and radiation dose were registered. A visual analog scale (VAS) was used to evaluate pain and discomfort pre-intervention after 1 week and 1, 3, and 6 months after the procedure. Technical success was 100 %; using CBCT as guidance imaging the needle was correctly positioned at the first attempt in 20 out of 25 patients. Neither major nor minor complications were registered during or after the procedure. The average procedure time was 11 min and 56 s (range, 9-15 min), whereas mean procedural radiation dose was 46.25 Gy.cm{sup 2} (range 38.10-52.84 Gy.cm{sup 2}), and mean fluoroscopy time was 5 min 34 s (range 3 min 40 s to 6 min 55 s). The VAS pain score decreased significantly from 7.6 preoperatively to 3.9 at 1 week, 2.8 at 1 month, 2.1 at 3 months, and 1.6 at 6 months postoperatively. CBCT-guided percutaneous nucleoplasty is a highly effective technique for LDH with acceptable procedure time and radiation dose. (orig.)

  7. Prototype volumetric ultrasound tomography image guidance system for prone stereotactic partial breast irradiation: proof-of-concept

    Science.gov (United States)

    Chiu, Tsuicheng D.; Parsons, David; Zhang, Yue; Hrycushko, Brian; Zhao, Bo; Chopra, Rajiv; Kim, Nathan; Spangler, Ann; Rahimi, Asal; Timmerman, Robert; Jiang, Steve B.; Lu, Weiguo; Gu, Xuejun

    2018-03-01

    Accurate dose delivery in stereotactic partial breast irradiation (S-PBI) is challenging because of the target position uncertainty caused by breast deformation, the target volume changes caused by lumpectomy cavity shrinkage, and the target delineation uncertainty on simulation computed tomography (CT) images caused by poor soft tissue contrast. We have developed a volumetric ultrasound tomography (UST) image guidance system for prone position S-PBI. The system is composed of a novel 3D printed rotation water tank, a patient-specific resin breast immobilization cup, and a 1D array ultrasound transducer. Coronal 2D US images were acquired in 5° increments over a 360° range, and planes were acquired every 2 mm in elevation. A super-compounding technique was used to reconstruct the image volume. The image quality of UST was evaluated with a BB-1 breast phantom and BioZorb surgical marker, and the results revealed that UST offered better soft tissue contrast than CT and similar image quality to MR. In the evaluated plane, the size and location of five embedded objects were measured and compared to MR, which is considered as the ground truth. Objects’ diameters and the distances between objects in UST differ by approximately 1 to 2 mm from those in MR, which showed that UST offers the image quality required for S-PBI. In future work we will develop a robotic system that will be ultimately implemented in the clinic.

  8. Respiration-Correlated Image Guidance Is the Most Important Radiotherapy Motion Management Strategy for Most Lung Cancer Patients

    International Nuclear Information System (INIS)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte; Brink, Carsten; Juhler-Nøttrup, Trine

    2012-01-01

    Purpose: The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population. Materials and Methods: Images were acquired from 46 lung cancer patients participating in four separate protocols at three institutions in Europe and the United States. Seven patients were imaged using fluoroscopy, and 39 patients were imaged using 4DCT. The magnitude of respiratory tumor motion was measured. The required treatment field margins were calculated using a statistical recipe (van Herk M, et al. Int J Radiat Oncol Biol Phys 2000;474:1121–1135), with magnitudes of all uncertainties, except respiratory peak-to-peak displacement, the same for all patients, taken from literature. Required margins for respiratory motion management were calculated using the residual respiratory tumor motion for each patient for various motion management strategies. Margin reductions for respiration management were calculated using 4DCT, 4D-IG, and gated beam delivery. Results: The median tumor motion magnitude was 4.4 mm for the 46 patients (range 0–29.3 mm). This value corresponded to required treatment field margins of 13.7 to 36.3 mm (median 14.4 mm). The use of 4DCT, 4D-IG, and beam gating required margins that were reduced by 0 to 13.9 mm (median 0.5 mm), 3 to 5.2 mm (median 5.1 mm), and 0 to 7 mm (median 0.2 mm), respectively, to a total of 8.5 to 12.4 mm (median 8.6 mm). Conclusion: A respiratory management strategy for lung cancer radiotherapy including planning on 4DCT scans and daily image guidance provides a potential reduction of 37% to 47% in treatment field margins. The 4D image guidance strategy was the most effective strategy for >85% of the patients.

  9. The optimal monochromatic spectral computed tomographic imaging plus adaptive statistical iterative reconstruction algorithm can improve the superior mesenteric vessel image quality

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiao-Ping; Zuo, Zi-Wei; Xu, Ying-Jin; Wang, Jia-Ning [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Liu, Huai-Jun, E-mail: hebeiliu@outlook.com [Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000 (China); Liang, Guang-Lu [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Gao, Bu-Lang, E-mail: browngao@163.com [Department of Medical Research, Shijiazhuang First Hospital, Shijiazhuang, Hebei, 050011 (China)

    2017-04-15

    Objective: To investigate the effect of the optimal monochromatic spectral computed tomography (CT) plus adaptive statistical iterative reconstruction on the improvement of the image quality of the superior mesenteric artery and vein. Materials and methods: The gemstone spectral CT angiographic data of 25 patients were reconstructed in the following three groups: 70 KeV, the optimal monochromatic imaging, and the optimal monochromatic plus 40%iterative reconstruction mode. The CT value, image noises (IN), background CT value and noises, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image scores of the vessels and surrounding tissues were analyzed. Results: In the 70 KeV, the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group, the mean scores of image quality were 3.86, 4.24 and 4.25 for the superior mesenteric artery and 3.46, 3.78 and 3.81 for the superior mesenteric vein, respectively. The image quality scores for the optimal monochromatic and the optimal monochromatic plus 40% iterative reconstruction groups were significantly greater than for the 70 KeV group (P < 0.05). The vascular CT value, image noise, background noise, CNR and SNR were significantly (P < 0.001) greater in the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group than in the 70 KeV group. The optimal monochromatic plus 40% iterative reconstruction group had significantly (P < 0.05) lower image and background noise but higher CNR and SNR than the other two groups. Conclusion: The optimal monochromatic imaging combined with 40% iterative reconstruction using low-contrast agent dosage and low injection rate can significantly improve the image quality of the superior mesenteric artery and vein.

  10. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  11. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  12. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  13. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy.

    Science.gov (United States)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja

    2018-04-01

    Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].

  14. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  15. Cervix Motion in 50 Cervical Cancer Patients Assessed by Daily Cone Beam Computed Tomographic Imaging of a New Type of Marker

    Energy Technology Data Exchange (ETDEWEB)

    Langerak, Thomas, E-mail: t.langerak@erasmusmc.nl; Mens, Jan Willem; Quint, Sandra; Bondar, Luiza; Heijkoop, Sabrina; Heijmen, Ben; Hoogeman, Mischa

    2015-11-01

    Purpose: To evaluate a new type of marker and a new method of marker implantation and to assess interfraction cervix motion for a large population of patients with locally advanced cervical cancer by daily cone beam computed tomographic (CBCT) imaging. Methods and Materials: We investigated the position of markers in 50 patients treated in prone position during at least 23 fractions. To reduce streaking artifacts in the planning CT scan, a new type of polymeric marker was used and compared with conventional gold markers. In addition, a new method of implantation was used in an attempt to reduce marker loss. In each fraction, a CT scan was acquired before dose delivery and aligned to the bony anatomy of the planning CT scan, simulating the clinical setup protocol. First, sufficient visibility of the markers was verified. Then, systematic and random displacement of the marker centroids was recorded and analyzed in 3 directions with regard to the planning CT and the first CBCT (to evaluate the presence of a vaginal catheter in the planning CT). Streaking artifacts were quantified with the standard deviation of the mean squared intensity difference in a radius around the marker. Results: Marker loss was minimal during treatment: in only 3 of the 50 patients 1 marker was lost. Streaking artifacts for the new markers were reduced compared with conventional gold markers. For the planning CT, M/Σ/σ were 0.4/3.4/2.2 mm, 1.0/5.5/4.5 mm, and −3.9/5.1/3.6 mm for the left-right, anterior-posterior, and cranial-caudal directions, respectively. With regard to the first CBCT scan, M/Σ/σ were 0.8/2.8/2.1, 0.6/4.4/4.4, and −1.3/4.5/3.6 mm. Conclusions: A new type of marker and implantation method was shown to have significantly reduced marker loss and streaking artifacts compared with gold fiducial markers. The recorded marker displacement confirms results reported in the existing literature but for a larger dataset.

  16. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  17. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D [Stanford University Cancer Center, Palo Alto, CA (United States)

    2016-06-15

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  18. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    International Nuclear Information System (INIS)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D

    2016-01-01

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  19. Achievement report on research and development of medical and welfare equipment technology. Optical tomographic imaging method; Iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Hikari danso imaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The aim is to develop a method of processing oxygen concentration distribution in human organs into an image by computed tomography using near infrared rays capable of transmitting through living tissues. Since the photoabsorption spectra of hemoglobin etc. in blood vary according to the degree of their oxidation, an oxygen concentration level is determined by measuring the magnitude of the variation. In the imaging method named in the title, the object is irradiated with picosecond-level near infrared pulses from all directions successively, the pulses after transmission through the object are measured at all directions at a picosecond-level time resolution, and the distribution of pulse scattering and absorption characteristics are subjected to algorithmic calculation, the outcome is converted into oxygen concentration levels, and an image is obtained. A 64-channel time resolution measurement system is constructed, and is applied to living tissue models (phantoms) and animals, and an image is obtained and evaluated. On the basis of the result, a patient is examined for clinical evaluation, and an image reflecting the distribution of variations in hemoglobin oxygen concentration is obtained for the head of the adult patient. A spatial resolution of 1cm is achieved in case of a phantom 10cm in diameter. In the case of 64 channels, measurement takes approximately 20 minutes and mapping image data measurement takes approximately 7 minutes. (NEDO)

  20. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance; Um sistema dedicado a visualizacao e manipulacao de imagens tomograficas obtidas por ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Slaets, Joan F.W.; Almeida, Lirio O.B. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica; Traina, Agma J.M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas

    1992-12-31

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in `C` language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author) 9 refs., 2 figs., 1 photo; e-mail: jan, agma and lirio at uspfsc.ifqsc..usp.ansp.br

  1. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance; Um sistema dedicado a visualizacao e manipulacao de imagens tomograficas obtidas por ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Slaets, Joan F.W.; Almeida, Lirio O.B. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica; Traina, Agma J.M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas

    1993-12-31

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in `C` language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author) 9 refs., 2 figs., 1 photo; e-mail: jan, agma and lirio at uspfsc.ifqsc..usp.ansp.br

  2. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca [Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada); Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-04-15

    Purpose: The focus of this work is the development of a novel blade collimation system enabling volume of interest (VOI) CBCT with tube current modulation using the kV image guidance source on a linear accelerator. Advantages of the system are assessed, particularly with regard to reduction and localization of dose and improvement of image quality. Methods: A four blade dynamic kV collimator was developed to track a VOI during a CBCT acquisition. The current prototype is capable of tracking an arbitrary volume defined by the treatment planner for subsequent CBCT guidance. During gantry rotation, the collimator tracks the VOI with adjustment of position and dimension. CBCT image quality was investigated as a function of collimator dimension, while maintaining the same dose to the VOI, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Dose distributions were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field CBCT distributions to quantify dose reduction and localization to the target volume. A novel method of optimizing x-ray tube current during CBCT acquisition was developed and assessed with regard to contrast-to-noise ratio (CNR) and imaging dose. Results: Measurements show that the VOI CBCT method using the dynamic blade system yields an increase in contrast-to-noise ratio by a factor of approximately 2.2. Depending upon the anatomical site, dose was reduced to 15%–80% of the full-field CBCT value along the central axis plane and down to less than 1% out of plane. The use of tube current modulation allowed for specification of a desired SNR within projection data. For approximately the same dose to the VOI, CNR was further increased by a factor of 1.2 for modulated VOI CBCT, giving a combined improvement of 2.6 compared to full-field CBCT. Conclusions: The present dynamic blade system provides significant improvements in CNR for the same

  3. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  4. X-ray tomographic apparatus

    International Nuclear Information System (INIS)

    Walters, R.G.

    1982-01-01

    An x-ray tomographic system consists of a radiation source such as gamma or x radiation which produces a fan-shaped beam. The fan is wide enough to encompass the patient circle. The system further includes means for rotating the radiation source about the patient for less than a full rotation, and detectors for detecting the radiation at positions that surround the patient by 180 0 plus the angle of the fan beam plus the angle between adjacent fan detectors. Attenuation data from the detectors is sorted into detector fans of attenuation data, then processed. The convolved data is back-projected into an image memory and displayed on a video monitor

  5. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  6. Tips and Tricks of Percutaneous Gastrostomy Under Image Guidance in Patients with Limited Access

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Pierre-Yves; Figl, Andrea; Thariat, Juliette [Sophia Antipolis University, Nice cedex (France); Lacout, Alexis [Centre Me' dico-Chirurgical, Aurillac (France)

    2011-10-15

    We read with great interest the article by Chan et al. (1) in the March issue of Korean Journal of Radiology on their experience of modified radiology-guided percutaneous gastrostomy (MRPG). The authors proposed a technique to access the stomach in patients with upper digestive tract obstruction (UDTO). Following marking a patient's left liver inferior margin and room air-colonography, the authors punctured the gastric area using a 21G fine needle under X-ray guidance and withdrew their syringe gradually while injecting contrast medium. We noted that the gastrostomy may be performed using a 0.0035-inch hydrophilic guide wire and a 6.5-Fr angled catheter in almost 100% of patients contraindicated for endoscopy gastrostomy, including those with tortuous or tight cervical stenosis (2). In patients with a collapsed stomach, orally administered effervescent sodium bicarbonate powder can produce sufficient gas in the stomach to allow for a percutaneous needle puncture. In UDTO patients, diatrizoate meglumine can be directly injected into the gastric lumen under ultrasound (US) guidance, as reported by Pugash et al. (3) in 1995. Since the stomach appears collapsed with apposed multi-layer walls and virtual lumen on US, the needle tip is hardly seen. In such circumstances, after having transfixed the stomach with a 21G Chiba needle, further gradual needle withdrawing is performed under fluoroscopic guidance while injecting small amounts of diatrizoate meglumine until a ruga pattern is seen. Moreover, a cancer patient's subcutaneous fat is often absent and the anterior gastric wall is close to the abdominal wall. High frequency US monitoring does improve needle visualization in such a circumstance. Conversely, in obese patients, back- and forth motions of the needle stylet under Doppler color US guidance clearly improves needle visualization. We noted that by using this technique we successfully performed percutaneous fluoroscopy gastrostomy (PFG) in two partially

  7. Tips and Tricks of Percutaneous Gastrostomy Under Image Guidance in Patients with Limited Access

    International Nuclear Information System (INIS)

    Marcy, Pierre-Yves; Figl, Andrea; Thariat, Juliette; Lacout, Alexis

    2011-01-01

    We read with great interest the article by Chan et al. (1) in the March issue of Korean Journal of Radiology on their experience of modified radiology-guided percutaneous gastrostomy (MRPG). The authors proposed a technique to access the stomach in patients with upper digestive tract obstruction (UDTO). Following marking a patient's left liver inferior margin and room air-colonography, the authors punctured the gastric area using a 21G fine needle under X-ray guidance and withdrew their syringe gradually while injecting contrast medium. We noted that the gastrostomy may be performed using a 0.0035-inch hydrophilic guide wire and a 6.5-Fr angled catheter in almost 100% of patients contraindicated for endoscopy gastrostomy, including those with tortuous or tight cervical stenosis (2). In patients with a collapsed stomach, orally administered effervescent sodium bicarbonate powder can produce sufficient gas in the stomach to allow for a percutaneous needle puncture. In UDTO patients, diatrizoate meglumine can be directly injected into the gastric lumen under ultrasound (US) guidance, as reported by Pugash et al. (3) in 1995. Since the stomach appears collapsed with apposed multi-layer walls and virtual lumen on US, the needle tip is hardly seen. In such circumstances, after having transfixed the stomach with a 21G Chiba needle, further gradual needle withdrawing is performed under fluoroscopic guidance while injecting small amounts of diatrizoate meglumine until a ruga pattern is seen. Moreover, a cancer patient's subcutaneous fat is often absent and the anterior gastric wall is close to the abdominal wall. High frequency US monitoring does improve needle visualization in such a circumstance. Conversely, in obese patients, back- and forth motions of the needle stylet under Doppler color US guidance clearly improves needle visualization. We noted that by using this technique we successfully performed percutaneous fluoroscopy gastrostomy (PFG) in two partially

  8. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  9. Investigation of variability in image acquisition and contouring during 3D ultrasound guidance for partial breast irradiation

    International Nuclear Information System (INIS)

    Landry, Anthony; Olivotto, Ivo; Beckham, Wayne; Berrang, Tanya; Gagne, Isabelle; Popescu, Carmen; Mitchell, Tracy; Vey, Hazel; Sand, Letricia; Soh, Siew Yan; Wark, Jill

    2014-01-01

    Three-dimensional ultrasound (3DUS) at simulation compared to 3DUS at treatment is an image guidance option for partial breast irradiation (PBI). This study assessed if user dependence in acquiring and contouring 3DUS (operator variability) contributed to variation in seroma shifts calculated for breast IGRT. Eligible patients met breast criteria for current randomized PBI studies. 5 Operators participated in this study. For each patient, 3 operators were involved in scan acquisitions and 5 were involved in contouring. At CT simulation (CT1), a 3DUS (US1) was performed by a single radiation therapist (RT). 7 to 14 days after CT1 a second CT (CT2) and 3 sequential 3DUS scans (US2a,b,c) were acquired by each of 3 RTs. Seroma shifts, between US1 and US2 scans were calculated by comparing geometric centers of the seromas (centroids). Operator contouring variability was determined by comparing 5 RT’s contours for a single image set. Scanning variability was assessed by comparing shifts between multiple scans acquired at the same time point (US1-US2a,b,c). Shifts in seromas contoured on CT (CT1-CT2) were compared to US data. From an initial 28 patients, 15 had CT visible seromas, met PBI dosimetric constraints, had complete US data, and were analyzed. Operator variability contributed more to the overall variability in seroma localization than the variability associated with multiple scan acquisitions (95% confidence mean uncertainty of 6.2 mm vs. 1.1 mm). The mean standard deviation in seroma shift was user dependent and ranged from 1.7 to 2.9 mm. Mean seroma shifts from simulation to treatment were comparable to CT. Variability in shifts due to different users acquiring and contouring 3DUS for PBI guidance were comparable to CT shifts. Substantial inter-observer effect needs to be considered during clinical implementation of 3DUS IGRT

  10. Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image Guidance

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Meyer, Jeffrey; Fuller, Jessica; Godfrey, Devon; Wang Zhiheng; Zhang Junan; Yin Fangfang

    2011-01-01

    Purpose: Breath-hold (BH) treatment minimizes internal target volumes (ITV) when treating sites prone to motion. Digital tomosynthesis (DTS) imaging has advantages over cone-beam CT (CBCT) for BH imaging: BH-DTS scan can be completed during a single breath-hold, whereas BH-CBCT is usually acquired by parsing the gantry rotation into multiple BH segments. This study evaluates the localization accuracy of DTS for BH treatment of liver tumors. Methods: Both planning CT and on-board DTS/CBCT images were acquired under BH, using the planning CT BH window as reference. Onboard imaging data sets included two independent DTS orientations (coronal and sagittal), and CBCT images. Soft tissue target positioning was measured by each imaging modality and translated into couch shifts. Performance of the two DTS orientations was evaluated by comparing target positioning with the CBCT benchmark, determined by two observers. Results: Image data sets were collected from thirty-eight treatment fractions (14 patients). Mean differences between the two DTS methods and the CBCT method were <1 mm in all directions (except the lateral direction with sagittal-DTS: 1.2 mm); the standard deviation was in the range of 2.1-3.5 mm for all techniques. The Pearson correlation showed good interobserver agreement for the coronal-DTS (0.72-0.78). The interobserver agreement for the sagittal-DTS was good for the in-plane directions (0.70-0.82), but poor in the out-of-plane direction (lateral, 0.26). Conclusions: BH-DTS may be a simpler alternative to BH-CBCT for onboard soft tissue localization of the liver, although the precision of DTS localization appears to be somewhat lower because of the presence of subtle out-of-plane blur.

  11. Experimental results and first {sup 22}Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gallin-Martel, M.-L., E-mail: mlgallin@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France); Grondin, Y. [Laboratoire TIMC/IMAG, CNRS et Universite Joseph Fourier, Pavillon Taillefer 38706 La Tronche Cedex (France); Gac, N. [Laboratoire L2S, UMR 8506 CNRS - SUPELEC - Univ Paris-Sud, Gif sur Yvette F-91192 (France); Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France)

    2012-08-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a {sup 22}Na source placed in the experimental setup.

  12. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    Gallin-Martel, M.-L.; Grondin, Y.; Gac, N.; Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F.

    2012-01-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22 Na source placed in the experimental setup.

  13. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-01-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  14. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    DEFF Research Database (Denmark)

    Keall, Paul J.; Aun Ng, Jin; O'Brien, Ricky

    2015-01-01

    on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging...... system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal......, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After...

  15. Intraoperative Image Guidance in Neurosurgery: Development, Current Indications, and Future Trends

    International Nuclear Information System (INIS)

    Schulz, Ch.; Mauer, U.M.; Waldeck, S.

    2012-01-01

    Introduction. As minimally invasive surgery becomes the standard of care in neurosurgery, it is imperative that surgeons become skilled in the use of image-guided techniques. The development of image-guided neurosurgery represents a substantial improvement in the microsurgical treatment of tumors, vascular malformations, and other intracranial lesions. Objective. There have been numerous advances in neurosurgery which have aided the neurosurgeon to achieve accurate removal of pathological tissue with minimal disruption of surrounding healthy neuronal matter including the development of microsurgical, endoscopic, and endovascular techniques. Neuro navigation systems and intraoperative imaging should improve success in cranial neurosurgery. Additional functional imaging modalities such as PET, SPECT, DTI (for fiber tracking), and fMRI can now be used in order to reduce neurological deficits resulting from surgery; however the positive long-term effect remains questionable for many indications. Method. Pub Med database search using the search term “image guided neurosurgery.” More than 1400 articles were published during the last 25 years. The abstracts were scanned for prospective comparative trials. Results and Conclusion. 14 comparative trials are published. To date significant data amount show advantages in intraoperative accuracy influencing the perioperative morbidity and long-term outcome only for cerebral glioma surgery.

  16. Technical guidance for the development of a solid state image sensor for human low vision image warping

    Science.gov (United States)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  17. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model.

    Science.gov (United States)

    Debie, Pieterjan; Vanhoeij, Marian; Poortmans, Natalie; Puttemans, Janik; Gillis, Kris; Devoogdt, Nick; Lahoutte, Tony; Hernot, Sophie

    2017-10-31

    Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. 0.5 × 10 6 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.

  18. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Zhang, Xingming; Le, Tuan-Anh; Yoon, Jungwon

    2017-01-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  19. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingming [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, Shandong (China); School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Le, Tuan-Anh [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Yoon, Jungwon, E-mail: jwyoon@gnu.ac.kr [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2017-04-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  20. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  1. Integration of image guidance and rapid prototyping technology in craniofacial surgery.

    Science.gov (United States)

    Bullock, P; Dunaway, D; McGurk, L; Richards, R

    2013-08-01

    This technical note demonstrates the benefits of preoperative planning, involving the use of rapid prototype models and rehearsal of the surgical procedure, using image-guided navigational surgery. Optimum reconstruction of large defects can be achieved with this technique. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  3. Improving CT quality with optimized image parameters for radiation treatment planning and delivery guidance

    Directory of Open Access Journals (Sweden)

    Guang-Pei Chen

    2017-10-01

    Conclusion: CT image quality can be improved with the IQE protocols created in this study, to provide better soft tissue contrast, which would be beneficial for use in radiation therapy, e.g., for planning data acquisition or for IGRT for hypo-fractionated treatments.

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  5. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance

    Directory of Open Access Journals (Sweden)

    Schreiner L

    2009-01-01

    Full Text Available The advances in modern radiation therapy with techniques such as intensity-modulated radiation therapy and image-guid-ed radiation therapy (IMRT and IGRT have been limited almost exclusively to linear accel-erators. Investigations of modern Cobalt-60 (Co-60 radiation delivery in the context of IMRT and IGRT have been very sparse, and have been limited mainly to computer-modeling and treatment-planning exercises. In this paper, we report on the results of experiments using a tomotherapy benchtop apparatus attached to a conventional Co-60 unit. We show that conformal dose delivery is possible and also that Co-60 can be used as the radiation source in megavoltage computed tomography imaging. These results complement our modeling studies of Co-60 tomotherapy and provide a strong motivation for continuing development of modern Cobalt-60 treatment devices.

  6. Image Processing in Optical Guidance for Autonomous Landing of Lunar Probe

    OpenAIRE

    Meng, Ding; Yun-feng, Cao; Qing-xian, Wu; Zhen, Zhang

    2008-01-01

    Because of the communication delay between earth and moon, the GNC technology of lunar probe is becoming more important than ever. Current navigation technology is not able to provide precise motion estimation for probe landing control system Computer vision offers a new approach to solve this problem. In this paper, author introduces an image process algorithm of computer vision navigation for autonomous landing of lunar probe. The purpose of the algorithm is to detect and track feature poin...

  7. Proton therapy for prostate cancer treatment employing online image guidance and an action level threshold.

    Science.gov (United States)

    Vargas, Carlos; Falchook, Aaron; Indelicato, Daniel; Yeung, Anamaria; Henderson, Randall; Olivier, Kenneth; Keole, Sameer; Williams, Christopher; Li, Zuofeng; Palta, Jatinder

    2009-04-01

    The ability to determine the accuracy of the final prostate position within a determined action level threshold for image-guided prot