WorldWideScience

Sample records for tomographic atom probe

  1. Design of a femtosecond laser assisted tomographic atom probe

    International Nuclear Information System (INIS)

    Gault, B.; Vurpillot, F.; Vella, A.; Gilbert, M.; Menand, A.; Blavette, D.; Deconihout, B.

    2006-01-01

    A tomographic atom probe (TAP) in which the atoms are field evaporated by means of femtosecond laser pulses has been designed. It is shown that the field evaporation is assisted by the laser field enhanced by the subwavelength dimensions of the specimen without any significant heating of the specimen. In addition, as compared with the conventional TAP, due to the very short duration of laser pulses, no spread in the energy of emitted ions is observed, leading to a very high mass resolution in a straight TAP in a wide angle configuration. At last, laser pulses can be used to bring the intense electric field required for the field evaporation on poor conductive materials such as intrinsic Si at low temperature. In this article, the performance of the laser TAP is described and illustrated through the investigation of metals, oxides, and silicon materials

  2. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  3. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  4. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  5. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  6. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  7. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  8. Probing the nanostructural evolution of age-hardenable Al alloys with atom-probe tomography

    International Nuclear Information System (INIS)

    Biswas, Aniruddha

    2010-01-01

    Atom Probe Tomographic (APT) Microscope is a lens-less point-projection 3-D analytical microscope that has the unique capability of (i) three-dimensional imaging at the atomic scale and (ii) compositional analysis with sub-nanometre spatial resolution and single-atom sensitivity. Modern 3-D APT microscope offers the highest the spatial resolution among all the available analytical techniques. It can simultaneously achieve a spatial resolution better than 0.3 nm in all three directions of a three-dimensional analysis-volume. As a result, 3-D APT microscopy, especially as practiced by the high speed, large field of view instruments is the most appropriate tool for studying nano-scale precipitates and their heterophase interfaces. This talk will introduce the technique, discuss its brief historical background and use examples from age-hardenable Al-alloys. The results include a detailed APT study of the compositional evolution of the nano-scale precipitates: θ and Q present in commercial age hardenable aluminium alloy, W319

  9. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  10. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Atom probe microanalysis: Principles and applications to materials problems

    International Nuclear Information System (INIS)

    Miller, M.K.; Smith, G.D.W.

    1987-01-01

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  12. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  13. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  14. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  15. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  16. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  17. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  18. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  19. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  20. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  1. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  2. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  3. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  4. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  7. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  8. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  9. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    Science.gov (United States)

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  10. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  11. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  12. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    Science.gov (United States)

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Data mining for isotope discrimination in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Scott R. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Bryden, Aaron [Ames National Laboratory, Ames, IA 50011-2230 (United States); Suram, Santosh K. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States)

    2013-09-15

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified.

  14. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  15. A computational geometry framework for the optimisation of atom probe reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen (Germany); Cairney, Julie [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-10-15

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10 nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a ‘master curve’ and correct for overall shape deviations in the data. - Highlights: • An atom probe reconstruction can be iteratively improved by using shape constraints. • An atom probe reconstruction can be inverted using barycentric coordinate transforms. • Hulls for atom probe datasets can be obtained from 2D detector outlines that are co-reconstructed with the data. • Ion trajectory compressions caused by instrument-specific residual fields in the drift tube can be corrected.

  16. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  17. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    Science.gov (United States)

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, S., E-mail: e0954@mosk.tytlabs.co.jp; Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K. [Toyota Central R and D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Isheim, D.; Seidman, D. N. [Northwestern University, Evanston, Illinois 60208-3108 (United States)

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573 K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  19. Performance and applications of the ORNL local electrode atom probe

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F.

    2004-01-01

    Full text: The commercial introduction in 2003 of the local electrode atom probe (LEAP) developed by Imago Scientific Instruments has made dramatic, orders of magnitude improvements in the data acquisition rate and the size of the analyzed volume compared to previous types of three-dimensional atom probes and other scanning atom probes. This state-of-the-art instrument may be used for the analysis of traditional needle-shaped specimens and specimens fabricated from 'flat' specimens with focused ion beam (FIB) techniques. The advantage of this local electrode configuration is that significantly lower (∼50 %) standing and pulse voltages are required to produce the field strength required to field evaporate ions from the specimen. New high speed (200 kHz) pulse generators coupled with crossed delay line detectors and faster timing systems also enable significantly faster (up to 300 times) data acquisition rates to be achieved. This new design also permits a significantly larger field of view to be analyzed and results in data sets containing up to 10 8 atoms. In the local electrode atom probe, a ∼10-50 μm diameter aperture is typically positioned approximately one aperture diameter in front of the specimen. In order to accurately align the specimen to the aperture in the funnel-shaped electrode, the specimen is mounted on a three axis nanopositioning stage. An approximate alignment is performed while viewing the relative positions of the specimen and the local electrode with a pair of low magnification video cameras and then a pair of higher magnification video cameras attached to long range microscopes. The final alignment is performed with the use of the field evaporated ions from the specimen. A discussion on the alignment of the specimen with the local electrode, the effects of the fields on the specimen, and the effects of aperture size on aperture lifetime will be presented. The performance of the ORNL local electrode atom probe will be described. The

  20. Three dimensional atom probe imaging of GaAsSb quantum rings

    International Nuclear Information System (INIS)

    Beltran, A.M.; Marquis, E.A.; Taboada, A.G.; Ripalda, J.M.; Garcia, J.M.; Molina, S.I.

    2011-01-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs x Sb 1-x quantum rings of 20-30 nm in diameter with x∼0.33. -- Highlights: → Atom-probe tomography resolves QR morphology of GaSb self-assembled GaSb buried nanostructures. → From atom-probe tomography compositional distribution has been obtained. → Strong segregation and morphological changes are observed with respect to uncapped QR.

  1. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  2. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  3. Industrial application of atom probe tomography to semiconductor devices

    NARCIS (Netherlands)

    Giddings, A.D.; Koelling, S.; Shimizu, Y.; Estivill, R.; Inoue, K.; Vandervorst, W.; Yeoh, W.K.

    2018-01-01

    Advanced semiconductor devices offer a metrology challenge due to their small feature size, diverse composition and intricate structure. Atom probe tomography (APT) is an emerging technique that provides 3D compositional analysis at the atomic-scale; as such, it seems uniquely suited to meet these

  4. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    reveal crystalline patterns from atom probe microscopy desorption maps Lan Yao Department of Materials Science and Engineering, University of Michigan, Ann...reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. Themethod filters atoms based on the time difference...between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of

  5. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  6. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  7. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  8. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  9. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  10. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  11. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  12. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  13. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  14. Max Auwaerter Price lecture: building and probing atomic structures

    International Nuclear Information System (INIS)

    Ternes, M.

    2008-01-01

    Full text: The control of the geometric, electronic, and magnetic properties of atomic-scale nanostructures is a prerequisite for the understanding and fabrication of new materials and devices. Two routes lead towards this goal: Atomic manipulation of single atoms and molecules by scanning probe microscopy, or patterning using self-assembly. Atomic manipulation has been performed since almost 20 years, but it has been difficult to answer the simple question: how much force does it take to manipulate atoms and molecules on surfaces? To address this question, we used a combined atomic force and scanning tunneling microscope to simultaneously measure the force and the current between an adsorbate and a tip during atomic manipulation. We found that the force it takes to move an atom depends crucially on the binding between adsorbate and surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Measuring the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction. Surprisingly, the potential energy barriers are comparable to diffusion barriers, which are obtained in the absence of a probe tip. Furthermore, we used the scanning tunneling microscope to assemble magnetic structures on a thin insulator. We found, that the spin of the atom is influenced by the magnetocrystalline anisotropy of the supporting surface which lifts the spin degeneracy of the ground state and enables the identification of individual atoms. The ground state of atoms with half-integer spin remains always degenerated at zero field due to Kramers theorem. We found that if these states differ by an orbital momentum of m = ±1 the localized spin is screened by the surrounding conducting electrons of the non-magnetic host and form a many-electron spin-singlet at sufficiently low temperature. (author)

  15. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  16. New approaches to nanoparticle sample fabrication for atom probe tomography

    International Nuclear Information System (INIS)

    Felfer, P.; Li, T.; Eder, K.; Galinski, H.; Magyar, A.P.; Bell, D.C.; Smith, G.D.W.; Kruse, N.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  17. New approaches to nanoparticle sample fabrication for atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Li, T. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Materials Department, The University of Oxford, Oxford (United Kingdom); Eder, K. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Galinski, H. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Magyar, A.P.; Bell, D.C. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138 (United States); Smith, G.D.W. [Materials Department, The University of Oxford, Oxford (United Kingdom); Kruse, N. [Chemical Physics of Materials (Catalysis-Tribology), Université Libre de Bruxelles, Campus Plaine, CP 243, 1050 Brussels (Belgium); Ringer, S.P.; Cairney, J.M. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2015-12-15

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  18. Investigations of oxide particles in unirradiated ODS-Eurofer by TEM and 3D atom probe methods

    International Nuclear Information System (INIS)

    Aleev, A.A.; Iskandarov, N.A.; Nikitin, A.A.; Rogizhkin, S.V.; Zaluzhny, A.G.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Vladimirov, P.

    2009-01-01

    Oxide dispersion strengthened steels possess better high-temperature creep and radiation resistance than conventionally produced ferritic/martensitic steels. This behavior is mainly caused by the presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. One of the promising oxides used for dispersion strengthening was yttria (Y 2 O 3 ), which was introduced into EUROFER by mechanical alloying followed by the hot isostatic pressing at temperature around 1000-1200 dg. C and pressure ∼100 MPa. It was found that mechanical properties were strongly depended on size and spatial distribution of the precipitates. Therefore considerable efforts are focused on the investigation of the chemical composition and orientation of precipitates with respect to the steel matrix. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS revealed the presence of high number density structural features with a size of approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (6-40 nm) Y 2 O 3 particles. In this work we tried to get a deeper inside into the nanostructure of this material by means of tomographic atom probe and to correlate the results with the picture obtained by TEM. The present investigations revealed fine (∼2 nm) enrichments containing not only yttrium and oxygen but also vanadium and nitrogen. Concentration of vanadium was found to be approximately at the same level as yttrium. Some of the enrichments contained only three or even two elements mentioned above. Estimated number density of enrichments is about (1/5) x 10 23 m -3 . We suppose that these enriched zones might be precursors of the larger precipitates observed by TEM. The thesis seems to be supported by the similarities of the chemical composition and spatial distribution of elements inside enriched zones and nano precipitates studied by atomic probe and analytical TEM methods. (author)

  19. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  20. Encapsulation method for atom probe tomography analysis of nanoparticles

    International Nuclear Information System (INIS)

    Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction. - Highlights: • Pt nanoparticles were analyzed using atom probe tomography and TEM. • The particles were prepared by encapsulation using atomic layer deposition. • Simulation of field evaporation near a void results in aberrations in ion trajectories. • Apparent differences between TEM and APT analyses are reconciled through simulation of field evaporation from a low-field matrix containing high-field NPs; ion trajectory aberrations are shown to lead to an apparent mixing of the matrix into the NPs.

  1. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  2. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  3. Atom-probe for FinFET dopant characterization

    International Nuclear Information System (INIS)

    Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.

    2011-01-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we

  4. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    International Nuclear Information System (INIS)

    Inoue, K.; Yano, F.; Nishida, A.; Takamizawa, H.; Tsunomura, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  5. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Science.gov (United States)

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  6. Developing detection efficiency standards for atom probe tomography

    Science.gov (United States)

    Prosa, Ty J.; Geiser, Brian P.; Lawrence, Dan; Olson, David; Larson, David J.

    2014-08-01

    Atom Probe Tomography (APT) is a near-atomic-scale analytical technique which, due to recent advances in instrumentation and sample preparation techniques, is being used on a variety of 3D applications. Total system detection efficiency is a key parameter for obtaining accurate spatial reconstruction of atomic coordinates from detected ions, but experimental determination of efficiency can be difficult. This work explores new ways to measure total system detection efficiency as well as the specimen characteristics necessary for such measurements. Composite specimens composed of a nickel/chromium multilayer core, National Institute of Standards and Technology Standard Reference Material 2135c, encapsulated with silver, silicon, or nickel were used to demonstrate the suitability of this approach for providing a direct measurement of APT efficiency. Efficiency measurements based on this multilayer encapsulated in nickel are reported.

  7. Atom probe characterization of yttria particles in ODS Eurofer steel

    International Nuclear Information System (INIS)

    Aleev, A.A.; Zaluzhny, A.G.; Nikitin, A.A.; Rogozhkin, S.V.; Iskandarov, N.A.; Vladimirov, P.; Moeslang, A.; Lindau, R.; Klimenkov, M.

    2009-01-01

    Oxide dispersion strengthened steels exhibit higher temperature and radiation resistance than conventionally produced ferritic/martensitic steels. Such behaviour, as believed, is mainly caused by presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. It was shown that the most promising oxide additive was yttria (Y 2 O 3 ) and as mechanical parameters were strongly depended on size and number density of formed peculiarities it is required to reduce their dimensions to few nanometers and drastically increase their number. At present, considerable effort is focused on investigation of behaviour and properties of such particles. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS and PoAS revealed the presence of high number density structural peculiarities with size approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (5-10 nm) Y 2 O 3 particles. So, the purpose of this work was to look into this material by means of tomographic atom probe and find out the chemistry and origin of peculiarities with sizes less than 5 nm. These investigations revealed fine (∼ 2 nm) particles that were enriched not only in yttrium and oxygen but also in vanadium and nitrogen. Concentration of vanadium in them is approximately at the same level as yttrium. Moreover, some particles were found to be enriched in only three or even two elements mentioned above. However, total concentration of chemical elements in these particles is considerably less than that of iron. Estimated number density for detected particles is (1 / 5) x 10 23 m -3 . (author)

  8. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  10. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  11. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  12. Theoretical study of the effect of probe shape on adhesion force between probe and substrate in atomic force microscope experiment

    OpenAIRE

    Yang, Li; Hu, Junhui; Kong, Lingjiang

    2017-01-01

    The quantitative description of adhesion force dependence on the probe shapes are of importance in many scientific and industrial fields. In order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment, we performed a theoretical study of the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity. We found that the combined action of the triple point and the Kelvin radius guiding th...

  13. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  15. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  16. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  17. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    International Nuclear Information System (INIS)

    Gemma, R.; Al-Kassab, T.; Kirchheim, R.; Pundt, A.

    2011-01-01

    Research highlights: → Deuterium distribution in V-Fe thin film was investigated by atom probe tomography. → Correct analysis was possible at analysis temperatures below 30 K. → Inhomogeneous distribution of D atoms was nevertheless observed. → This was interpreted by trapping effect at misfit dislocation. → Atom probe analysis provides detailed information on local chemistry of M-D system. - Abstract: V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations.

  18. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  19. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  20. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota; Al-Kassab, Talaat; Kirchheim, Reiner; Pundt, Astrid A.

    2012-01-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Investigation of the self tempering effect of martensite by means of atom probe tomography

    International Nuclear Information System (INIS)

    Sackl, Stephanie; Clemens, Helmut; Primig, Sophie

    2015-01-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  3. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  4. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography

    International Nuclear Information System (INIS)

    Takahashi, Jun; Kawakami, Kazuto; Kobayashi, Yukiko; Tarui, Toshimi

    2010-01-01

    For the first time ever, atomic-scale direct observation of deuterium atoms trapping at nano-sized titanium carbide (TiC) precipitates in steel was successfully achieved using atom probe tomography (APT). Deuterium gas charging into the needle specimen and subsequently quenching were conducted in our designed chamber attached to three-dimensional atom probe (3DAP). The deuterium atoms were definitely observed on the broad surface of TiC platelets, which indicated that the broad interface between the matrix and TiC was the main trapping site.

  5. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  6. New atom probe approaches to studying segregation in nanocrystalline materials

    International Nuclear Information System (INIS)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  7. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  8. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  9. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  10. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of measureme......The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory...... of measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  11. Applying computational geometry techniques for advanced feature analysis in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Ceguerra, Anna; Ringer, Simon; Cairney, Julie

    2013-01-01

    In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed. The first is the analysis of line-like-objects (i.e. dislocations) using both proxigrams and line-excess plots. The second is interfacial excess mapping of an InGaAs quantum dot. - Highlights: • Computational geometry is used to detect and analyse features within atom probe data. • Limitations of conventional feature detection are overcome by using atomic density gradients. • 0D, 1D, 2D and 3D features can be analysed by using Voronoi tessellation for spatial binning. • New, robust analysis methods are demonstrated, including line and interfacial excess mapping

  12. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  13. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  14. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  15. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  16. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    functional-based tight-binding model revealed that a stress-free single-walled (14,6) MoS2 nanotube has a torsional deformation of 0.87 °/nm. Comparison between simulated electron diffraction patterns and atomic-resolution ADF-STEM images of nanotubes with and without the small twist suggested that these experimental techniques are viable routes for detecting presence of the torsional deformation. 2. Development of theory to cast light on aspects of scattering behavior that affect STEM data.. STEM probe intensity oscillates as the probe transmits through a crystalline sample. The oscillatory behavior of the probe is extremely similar during transmission through 3-D crystals and the hypothetical structure of an isolated column of atoms, a 1-D crystal. This indicates that the physical origin of oscillation in intensity is not due to scattering of electrons away from one atomic column and subsequent scattering back from neighboring columns. It leaves in question what the physical origin or intensity oscillation is. This question was answered here by analysis of electron beam behavior in isolated atomic columns, examined via multislice-based simulations. Two physical origins, changes in angular distribution of the probe and phase shift between the angular components, were shown to cause oscillation in beam intensity. Sensitivity of frequency of oscillation to different probe and sample parameters was used to better understand the influence of the two physical origins on probe oscillation. 3. Acquisition of atomic-scale STEM data to answer specific questions about a material.. Graphene, due to its 2-Dimensionality, and due to its thermal, optical, electrical, and mechanical properties, which are conducive to providing a unique material for incorporation in devices, has gained a lot of interest in the research world and even spurred start-ups. There are several feasible routes of graphene synthesis, among which chemical exfoliation of graphite is a promising method for mass

  17. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  18. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  19. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  20. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    International Nuclear Information System (INIS)

    Han, Guebum; Ahn, Hyo-Sok

    2016-01-01

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  1. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  2. Understanding arsenic incorporation in CdTe with atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; Jayathilaka, P. A. R. D.; Edirisooriya, M.; Myers, T. H.; Zaunbrecher, K. N.; Moseley, J.; Barnes, T. M.; Gorman, B. P.

    2018-08-01

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealing treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.

  3. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  4. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  5. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  6. Resolution analysis by random probing

    NARCIS (Netherlands)

    Fichtner, Andreas; van Leeuwen, T.

    2015-01-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full‐waveform

  7. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  8. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  9. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  10. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  11. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    International Nuclear Information System (INIS)

    Bach, P.W.

    1981-01-01

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  12. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben; Al-Kassab, Talaat

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic

  13. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  14. Atom-probe field-ion microscope for the study of the interaction of impurity atoms or alloying elements with defects

    International Nuclear Information System (INIS)

    Wagner, A.; Hall, T.M.; Seidman, D.N.

    1976-10-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) designed for the study of defects is described. This atom probe features: (1) a variable magnification internal-image-intensification system; (2) a liquid-helium goniometer stage; (3) a low-energy (less than or equal 3 keV) gas-ion gun for in-situ irradiations; (4) an ultra-high vacuum (approximately 3.10 -10 torr) chamber; (5) a high vacuum (approximately 10 -6 torr) specimen-exchange device; (6) a Chevron ion detector; and (7) an eight-channel digital timer with a +-10 nsec resolution for measuring the TOFs. The entire process of applying the evaporation pulse to the specimen, measuring the voltages, and analyzing the TOF data is controlled by a computer. With this system we can record and analyze 600 TOFmin. Results on unirradiated specimens of molybdenum, tungsten, W/25 at. % Re, Mo/1.0 at. % Ti, Mo/1.0 at. % Ti/0.08 at. % Zr and a special low swelling stainless steel alloy (LS1A) demonstrate the instrument's ability to quantitatively determine concentrations at the 5.10 -4 at fr level and to determine their spatial distribution with a resolution of a few angstroms

  15. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  16. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  17. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    Science.gov (United States)

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory

    Science.gov (United States)

    Liebscher, Christian H.; Yao, Mengji; Dey, Poulumi; Lipińska-Chwalek, Marta; Berkels, Benjamin; Gault, Baptiste; Hickel, Tilmann; Herbig, Michael; Mayer, Joachim; Neugebauer, Jörg; Raabe, Dierk; Dehm, Gerhard; Scheu, Christina

    2018-02-01

    Correlative scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations resolve the correlation between elastic strain fields and local impurity concentrations on the atomic scale. The correlative approach is applied to coherent interfaces in a κ -carbide strengthened low-density steel and establishes a tetragonal distortion of fcc-Fe. An interfacial roughness of ˜1 nm and a localized carbon concentration gradient extending over ˜2 -3 nm is revealed, which originates from the mechano-chemical coupling between local strain and composition.

  19. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  20. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  1. The Model Analysis of a Complex Tuning Fork Probe and Its Application in Bimodal Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Zhichao Wu

    2017-01-01

    Full Text Available A new electromechanical coupling model was built to quantitatively analyze the tuning fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the second eigenfrequency of the probe was insensitive to the effective force gradient, was found and used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively. By transforming the mechanical parameters to the electrical parameters, a monotonous and concise method without using phase to calculate the power dissipation was proposed.

  2. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due to t...

  3. Three dimensional atom probe imaging of GaAsSb quantum rings.

    Science.gov (United States)

    Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I

    2011-07-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  5. Feshbach and Efimov Resonances in A 6Li- 133Cs Atomic Mixture

    Science.gov (United States)

    Johansen, Jacob

    This thesis reports measurements of interactions in Fermi-Bose 6Li-133Cs mixtures. Precise control of this Bose-Fermi mixture allowed us to probe few-body physics in regimes which were previously inaccessible. In particular, we performed the first model-independent test of geometric scaling of Efimov physics and probed Efimov resonances farther in the weakly coupled, narrow resonance regime than previously possible. For this work, we built a new apparatus which overcomes the many challenges faced by Li-Cs mixtures. We developed several novel dipole trapping schemes which overcome the difficulties of mixing Li and Cs, including the large differences in initial trapping and cooling between these atomic species and a large differential gravitational sag. We also achieved part per million level magnetic field control near 900 G, necessary for the precise measurements near narrow Feshbach resonances undertaken in this thesis, by pioneering a tomographic magnetic field calibration technique. With this apparatus, we first probed the Feshbach resonances of the Li-Cs mixture. This is an essential first step, allowing us to understand and control the two-body interactions between our atoms. Next we began to probe Efimov physics, an important three-body phenomenon wherein an infinite series of three-body bound states arise near two-body scattering resonances, such as Feshbach resonances. We demonstrated the universal scaling expected theoretically for Efimov states near a Feshbach resonance. This task was made feasible in our system by a reduced Efimov scaling constant, yet still required precise magnetic field control. Finally, additional universal behavior of the first Efimov resonance has been observed empirically in a variety of atomic systems. While theory has explained this observed universality, predictions also indicate departures for narrow Feshbach resonances, contrary to previous experimental results. By further improving our magnetic field control to probe a very

  6. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys

    International Nuclear Information System (INIS)

    Hudson, D.; Smith, G.D.W.; Gault, B.

    2011-01-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. -- Research Highlights: → Realistic simulated mass spectra were generated so as to reproduce experimental data with a perfectly determined composition. → Several metrics were tested against these simulated mass spectra to determine an optimal methodology for ranging mass peaks in atom probe tomography. Systematic automated ranging provides a significant reduction in the deviation between true and measured concentrations compared to manual ranging by multiple users on the same data. → Experimental datasets were subsequently investigated, and Fe has been shown to be distributed as a random solid solution within the matrix of 'as-received' recrystallised ZIRLO, a zirconium alloy.

  7. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  8. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  9. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  10. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  11. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  12. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  13. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  14. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  15. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  16. Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity

    International Nuclear Information System (INIS)

    Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.

    2010-01-01

    In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T e ) α (n e ) β , in which α=0.25-0.7 and β=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity

  17. How can we probe the atom mass currents induced by synthetic gauge fields?

    Science.gov (United States)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  18. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  19. Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography

    Science.gov (United States)

    Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.

    2018-04-01

    The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.

  20. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  1. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  2. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  3. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)

    2016-11-15

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.

  4. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Kinno, T.; Akutsu, H.; Tomita, M.; Kawanaka, S.; Sonehara, T.; Hokazono, A.; Renaud, L.; Martin, I.; Benbalagh, R.; Sallé, B.; Takeno, S.

    2012-01-01

    Highlights: ► Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. ► Comparison of depth profiles of single-hit events and those of multi-hit events. ► ∼80% of Pt atoms were detected in multi-hit events. ► Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  5. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  6. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    International Nuclear Information System (INIS)

    Johnson, L.J.S.; Thuvander, M.; Stiller, K.; Odén, M.; Hultman, L.

    2013-01-01

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated

  7. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    International Nuclear Information System (INIS)

    Hatakeyama, M.; Yamagata, I.

    2013-01-01

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe 3 Cr 2 Ni 2 Mo 2 Si 2 . In a Ti-rich carbide, nominaling Fe 5 Cr 8 Ni 10 Mo 2 Ti 11 Si 2 C 6 , enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed

  9. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2012-06-15

    Radiation-induced segregation (RIS) of solute atoms at a grain boundary (GB) in 304 stainless steel (SS), neutron-irradiated to a dose of 24 dpa at 300 Degree-Sign C in the fuel wrapper plates of a commercial pressurized water reactor, was investigated using laser-assisted atom probe tomography (APT). Ni, Si, and P enrichment and Cr and Fe depletion at the GB were evident. The full-width at half-maximum of the RIS region was {approx}3 nm for the concentration profile peaks of Ni and Si. The atomic percentages of Ni, Si, and Cr at the GB were {approx}19%, {approx}7%, and {approx}14%, respectively, in agreement with previously-reported values for neutron-irradiated SS. A high number density of intra-granular Ni-Si rich precipitates formed in the matrix. A precipitate-denuded zone with a width of {approx}10 nm appeared on both sides of the GB.

  10. The mystery of missing species in atom probe tomography of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Karahka, M.; Xia, Y.; Kreuzer, H. J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-08-10

    There is a serious problem in atom probe tomography of composite materials such as oxides that even from stoichiometric samples one observes non-stoichiometric ion yields. We present a quantitative model that explains the non-stoichiometry allowing a fit to experimental data of ion yields as a function of applied field to extract activation barriers and prefactors. The numbers are confirmed by density functional theory. We also show that for oxides the missing oxygen is thermally desorbed as neutral O{sub 2}, either directly or associatively. Finally, we suggest methods to improve the experimental setup.

  11. Atom-probe field-ion-microscopy study of Fe-Ti alloys

    International Nuclear Information System (INIS)

    Pickering, H.W.; Kuk, Y.; Sakurai, T.

    1980-01-01

    A newly developed high-performance atom-probe (field ion microscope) was employed for the composition analysis of Fe-Ti alloys and their interactions with ambient gas, such as H 2 and O 2 . With a mass resolution (m/Δm) better than 2000 and a spatial resolution of a few A, all isotopes of Fe and Ti and their hydrides and other compounds are clearly resolved during the depth profile study. Some of our findings are: (1) Titanium segregated on the surface and grain boundaries upon heating (greater than or equal to 900 0 C), in the form of oxides, and (2) some Ti in the bulk forms clusters of various sizes with C, O, and/or N as nuclei

  12. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  13. Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sandra D. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Liu, Jia [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Arey, Bruce W. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Schreiber, Daniel K. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Perea, Daniel E. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

    2018-02-13

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average net adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.

  14. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations

    International Nuclear Information System (INIS)

    Song, W.; Appen, J. von; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W.

    2013-01-01

    Carbide precipitation during upper and lower bainite formation in high-carbon bearing steel 100Cr6 is characterized using transmission electron microscopy and atom probe tomography. The results reveal that both ε and θ carbides precipitate in lower bainite isothermally held at 260 °C and only θ precipitates form in upper bainite isothermally held at 500 °C. ε and θ precipitate under paraequilibrium condition at 260 °C in lower bainite and θ precipitates under negligible partitioning local equilibrium condition in upper bainite at 500 °C. In order to theoretically study ε and θ precipitation and the ε → θ transition in bainite, thermodynamic calculations have been carried out using ab initio techniques. We find that ε and θ carbides in ferrite have almost identical thermodynamic stability, and hence have similar formation probability. In austenite, however, cementite formation is clearly preferred: it is favored by 5 kJ mol −1 at room temperature and still by 4 kJ mol −1 at 500 °C. Hence, the thermodynamic predictions agree well with the atom probe tomography results

  15. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, M., E-mail: hatake@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, IMR/Tohoku University, Narita, Oarai, Ibaraki 311-1313 (Japan); Yamagata, I. [Japan Atom Energy Agency, Narita, Oarai, Ibaraki 311-1393 (Japan)

    2013-11-15

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe{sub 3}Cr{sub 2}Ni{sub 2}Mo{sub 2}Si{sub 2}. In a Ti-rich carbide, nominaling Fe{sub 5}Cr{sub 8}Ni{sub 10}Mo{sub 2}Ti{sub 11}Si{sub 2}C{sub 6}, enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed.

  16. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  17. Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS

    International Nuclear Information System (INIS)

    Bennett, S E; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A; Clifton, P H; Ulfig, R M

    2010-01-01

    P-type conducting layers are critical in GaN-based devices such as LEDs and laser diodes. Such layers are often produced by doping GaN with Mg, but the hole concentration can be enhanced using AlGaN/GaN p-type superlattices by exploiting the built-in polarisation fields. A Mg-doped AlGaN/GaN superlattice was studied using SIMS. Although the AlGaN and GaN were nominally doped to the same level, the SIMS data suggested a difference in doping density between the two materials. Atom probe tomography was then used to investigate the Mg distribution. The superlattice repeats were clearly visible, as expected and, in addition, significant Mg clustering was observed in both the GaN and AlGaN layers. There were many more Mg clusters in the AlGaN layers than the GaN layers, accounting for the difference in doping density suggested by SIMS. To evaluate the structural accuracy of the atom probe reconstruction, layer thicknesses from the atom probe were compared with STEM images. Finally, future work is proposed to investigate the Mg clusters in the TEM.

  18. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    Science.gov (United States)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  19. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  20. Cavity electromagnetically induced transparency with Rydberg atoms

    Science.gov (United States)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  1. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  2. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  3. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  4. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Analysis of medical device materials with the local electrode atom probe

    International Nuclear Information System (INIS)

    Goodman, S.L.; Mengelt, T.J.; Ali, M.; Ulfig, R.M.; Martens, R.M.; Kelly, T.F.; Kostrna, S.L.P.; Kostrna, M.S.; Carmichael, W.J.

    2004-01-01

    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  6. Comparative study of the macroscopic finding, conventional tomographic imaging, and computed tomographic imaging in locating the mandibular canal

    International Nuclear Information System (INIS)

    Choi, Hang Moon; You, Dong Soo

    1995-01-01

    The purpose of this study was comparison of conventional tomography with reformatted computed tomography for dental implant in locating the mandibular canal. Five dogs were used and after conventional tomographs and fitted computed tomographs were taken, four dentist traced all films. Mandibles were sectioned with 2 mm slice thickness and the sections were then radiographed (contact radiography). Each radiograpic image was traced and linear measurements were made from mandibular canal to alveolar crest, buccal cortex, lingual cortex, and inferior border. The following results were obtained; 1. Reformatted computed tomographs were exacter than conventional tomography by alveolar crest to canal length of -0.6 mm difference between real values and radiographs 2. The average measurements of buccal cortex to mandibular canal width and lingual cortex to mandibular canal width of conventional tomographs were exacter than reformatted computed tomographs, but standard deviations were higher than reformatted computed tomographs. 3. Standard deviations of reformatted computed tomographs were lower than conventional tomographs at all comparing sites 4. At reformatted computed tomography 62.5% of the measurements performed were within ±1 mm of the true value, and at conventional tomography 24.1% were. 5. Mandibular canal invisibility was 0.8% at reformatted computed tomography and 9.2% at conventional tomography. Reformatted computed tomography has been shown to be more useful radiographic technique for assessment of the mandibular canal than conventional tomography.

  7. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  8. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  9. Atom-Probe Tomographic Investigations of a Precipitation-Strengthened HSLA-115 Steel and a Ballistic-Resistant 10 wt. % Ni Steel for Naval Applications

    Science.gov (United States)

    Jain, Divya

    High performance structural materials are needed for Naval applications which require an excellent combination of yield strength, low-temperature impact toughness, ductility, ballistic-resistance, and weldability. This research investigates precipitation-strengthened HSLA-115 steels and ballistic-resistant 10 wt. % Ni steels, which have emerged as promising alternatives to the widely used HSLA-100 steels for Naval applications. HSLA-115 is a Cu-bearing high-strength low-carbon martensitic steel and has been used in the flight deck of the recently built U.S. Navy CVN-78 aircraft carrier. It is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility at 115 ksi (793 MPa) yield strength. However, overaging of Cu precipitates limits its strength and applications. This research demonstrates that aging at 550 °C facilitates the co-precipitation of sub-nanometer sized M2C carbides and Cu precipitates in high number density (˜1023 m-3) in HSLA-115. 3-D atom-probe tomography (APT) investigation reveals that Cu precipitates form first, followed by the nucleation of M2C carbides, which are co-located with Cu precipitates and are distributed heterogeneously at lath-boundaries and dislocations, indicating heterogeneous nucleation of M2C. Carbon redistribution during quenching (following the austenitization) and subsequent aging at 550 °C is followed using APT. Segregation of C (3-6 at. % C) is observed at martensitic lath-boundaries in the as-quenched and 0.12 h aged conditions. On further aging, C redistributes, forming cementite and M 2C carbides, whose composition and morphology evolves with aging time. Precipitation kinetics of M2C carbides is intertwined with Cu precipitates; temporal evolution of Cu precipitates and M2C carbides is characterized in terms of their mean radii, number densities, and volume fractions and correlated with the bulk mechanical properties. Precipitation of M2C carbides offsets the softening

  10. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  11. Nanoprecipitates in single-crystal molybdenum-alloy nanopillars detected by TEM and atom probe tomography

    International Nuclear Information System (INIS)

    Oveisi, Emad; Bártová, Barbora; Gerstl, Stephan; Zimmermann, Julien; Marichal, Cécile; Van Swygenhoven, Helena; Hébert, Cécile

    2013-01-01

    Transmission electron microscopy (TEM) supported by various chemical analyses techniques as well as atom probe tomography is applied to characterize newly identified nanosized precipitates in Mo-alloy nanopillars that were prepared by directional solidification. It is shown that the α-Mo matrix contains Al-enriched face-centred cubic precipitates which have a 4.12 Å lattice parameter, and exhibit a Kurdjumov–Sachs crystallographic orientation relationship with the matrix. Such precipitates could be responsible for the unusual behaviour of the pillars during compression tests

  12. Wet-chemical etching of atom probe tips for artefact free analyses of nanoscaled semiconductor structures.

    Science.gov (United States)

    Melkonyan, D; Fleischmann, C; Veloso, A; Franquet, A; Bogdanowicz, J; Morris, R J H; Vandervorst, W

    2018-03-01

    We introduce an innovative specimen preparation method employing the selectivity of a wet-chemical etching step to improve data quality and success rates in the atom probe analysis of contemporary semiconductor devices. Firstly, on the example of an SiGe fin embedded in SiO 2 we demonstrate how the selective removal of SiO 2 from the final APT specimen significantly improves accuracy and reliability of the reconstructed data. With the oxide removal, we eliminate the origin of shape artefacts, i.e. the formation of a non-hemispherical tip shape, that are typically observed in the reconstructed volume of complex systems. Secondly, using the same approach, we increase success rates to ∼90% for the damage-free, 3D site-specific localization of short (250 nm), vertical Si nanowires at the specimen apex. The impact of the abrupt emitter radius change that is introduced by this specimen preparation method is evaluated as being minor using field evaporation simulation and comparison of different reconstruction schemes. The Ge content within the SiGe fin as well as the 3D boron distribution in the Si NW as resolved by atom probe analysis are in good agreement with TEM/EDS and ToF-SIMS analysis, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  14. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi; Vella, Angela; Dé conihout, Bernard; Al-Kassab, Talaat

    2011-01-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  15. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  16. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  17. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  19. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  20. Clamshell tomograph

    International Nuclear Information System (INIS)

    Derenzo, S. E.; Budinger, Th. F.

    1984-01-01

    In brief, the invention is a tomograph modified to be in a clamshell configuration so that the ring or rings may be moved to multiple sampling positions. The tomograph includes an array of detectors arranged in successive adjacent relative locations along a closed curve in a first position in a selected plane, and means for securing the detectors in the relative locations in a first sampling position. The securing means is movable in the plane in two sections and pivotable at one point and only one point to enable movement of at least one of the sections to a second sampling position out of the closed curve so that the ends of the section which are opposite the point are moved apart a predetermined space

  1. Toward electron exit wave tomography of amorphous materials at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, Konstantin B., E-mail: konstantin.borisenko@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Kirkland, Angus I., E-mail: angus.kirkland@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Van Dyck, Dirk [Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Tang, Hsin-Yu; Chen, Fu-Rong [Department of Engineering and System Science, National Tsing Hua University, Kuang-Fu Road, 300 Hsinchu, Taiwan (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We suggest a novel electron exit wave tomography approach to obtain three dimensional atomic structures of amorphous materials. Black-Right-Pointing-Pointer Theoretical tests using a model of amorphous Si doped with Au show that it is feasible to reconstruct both Si and Au atoms positions. Black-Right-Pointing-Pointer Reconstructions of the strongly scattering Au atoms positions appear to be insensitive to typical experimental errors. - Abstract: We suggest to use electron exit wave phase for tomographic reconstruction of structure of Au-doped amorphous Si with atomic resolution. In the present theoretical investigation into the approach it is found that the number of projections and the accuracy of defocus in the focal series restoration are the main factors that contribute to the final resolution. Although resolution is ultimately limited by these factors, phase shifts in the exit wave are sufficient to identify the position of Au atoms in an amorphous Si needle model, even when only 19 projections with defocus error of 4 nm are used. Electron beam damage will probably further limit the resolution of such tomographic reconstructions, however beam damage can be mitigated using lower accelerating voltages.

  2. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  3. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed

  4. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  5. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  6. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  7. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  8. Guided mass spectrum labelling in atom probe tomography

    International Nuclear Information System (INIS)

    Haley, D.; Choi, P.; Raabe, D.

    2015-01-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  9. Guided mass spectrum labelling in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D., E-mail: daniel.haley@materials.ox.ac.uk [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, P.; Raabe, D. [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany)

    2015-12-15

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  10. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  11. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  12. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  13. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  14. Reduction of multiple hits in atom probe tomography

    International Nuclear Information System (INIS)

    Thuvander, Mattias; Kvist, Anders; Johnson, Lars J.S.; Weidow, Jonathan; Andrén, Hans-Olof

    2013-01-01

    The accuracy of compositional measurements using atom probe tomography is often reduced because some ions are not recorded when several ions hit the detector in close proximity to each other and within a very short time span. In some cases, for example in analysis of carbides, the multiple hits result in a preferential loss of certain elements, namely those elements that frequently field evaporate in bursts or as dissociating molecules. In this paper a method of reducing the effect of multiple hits is explored. A fine metal grid was mounted a few millimeters behind the local electrode, effectively functioning as a filter. This resulted in a decrease in the overall detection efficiency, from 37% to about 5%, but also in a decrease in the fraction of multiple hits. In an analysis of tungsten carbide the fraction of ions originating from multiple hits decreased from 46% to 10%. As a result, the measured carbon concentration increased from 48.2 at%to 49.8 at%, very close to the expected 50.0 at%. The characteristics of the multiple hits were compared for analyses with and without the grid filter. - Highlights: ► APT experiments have been performed with a reduced amount of multiple hits. ► The multiple hits were reduced by placing a grid behind the electrode. ► This resulted in improved carbon measurement of WC

  15. Probe Knots and Hopf Insulators with Ultracold Atoms

    Science.gov (United States)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  16. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Balog, Richard

    2012-01-01

    The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... against CO is observed at CO pressures below 106 mbar. However, at higher pressures CO is observed to intercalate under the graphene coating layer, thus lifting the reconstruction. The limitations of the coating effect are further tested by exposure to hot atomic hydrogen. While the coating can withstand...... these extreme conditions for a limited amount of time, after substantial exposure, the Pt(100) reconstruction is lifted. Annealing experiments and density functional theory calculations demonstrate that the basal plane of the graphene stays intact and point to a graphene-mediated mechanism for the H...

  17. Tomographical properties of uniformly redundant arrays

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1978-01-01

    Recent work in coded aperture imaging has shown that the uniformly redundant array (URA) can image distant planar radioactive sources with no artifacts. The performance of two URA apertures when used in a close-up tomographic imaging system is investigated. It is shown that a URA based on m sequences is superior to one based on quadratic residues. The m sequence array not only produces less obnoxious artifacts in tomographic imaging, but is also more resilient to some described detrimental effects of close-up imaging. It is shown that in spite of these close-up effects, tomographic depth resolution increases as the source is moved closer to the detector

  18. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  19. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  20. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  1. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  2. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  3. Emerging tomographic methods within the petroleum industry

    International Nuclear Information System (INIS)

    Johansen, Geir Anton

    2013-01-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  5. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  6. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  7. Computer tomographic diagnosis of echinococcosis

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, M.; Fretz, C.; Fuchs, W.A.

    1980-08-01

    The computer tomographic appearances and differential diagnosis in 22 patients with echinococcosis are described; of these, twelve were of the cystic and ten of the alveolar type. The computer tomographic appearances are characterised by the presence of daughter cysts (66%) within the sharply demarkated parasitic cyst of water density. In the absence of daughter cysts, a definite aetiological diagnosis cannot be made, although there is a tendency to clasification of the occassionally multiple echinococcus cysts. The computer tomographic appearances of advanced alveolar echinococcosis are characterised by partial collequative necrosis, with clacification around the necrotic areas (90%). The absence of CT evidence of partial necrosis and calsification of the pseudotumour makes it difficult to establish a specific diagnosis. The conclusive and non-invasive character of the procedure and its reproducibility makes computer tomography the method of choice for the diagnosis and follow-up of echinococcosis.

  8. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1983-01-01

    The role of lasers in nuclear physics research is discussed including nuclear structure experiments involving the measurement of isotope shifts and hyperfine splitting in atomic energy levels in unstable nuclei by resonance fluorescence spectroscopy and the ultra sensitive detection of isotopic element abundances. (U.K.)

  9. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  10. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops

    Science.gov (United States)

    Peterman, Emily M.; Reddy, Steven M.; Saxey, David W.; Snoeyenbos, David R.; Rickard, William D. A.; Fougerouse, Denis; Kylander-Clark, Andrew R. C.

    2016-01-01

    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The 207Pb/206Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages. PMID:27617295

  11. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  12. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.; Li, Yujiao; Boll, Torben; Borchers, Christine; Choi, Pyuckpa; Al-Kassab, Talaat; Raabe, Dierk; Kirchheim, Reiner

    2013-01-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  15. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  16. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  17. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  18. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  19. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  20. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  1. Precision tomographic analysis of reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Lee, Chang Hee; Kim, Jong Soo; Jeong, Jwong Hwan; Nam, Ki Yong

    2001-03-01

    For the tomographical assay, search of current status, analysis of neutron beam characteristics, MCNP code simulation, sim-fuel fabrication, neutron experiment for sim-fuel, multiaxes operation system design were done. In sensitivity simulation, the reconstruction results showed the good agreement. Also, the scoping test at ANL was very helpful for actual assay. Therefore, the results are applied for HANARO tomographical system setup and consecutive next research.

  2. Precision tomographic analysis of reactor fuels

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Lee, Chang Hee; Kim, Jong Soo; Jeong, Jwong Hwan; Nam, Ki Yong

    2001-03-01

    For the tomographical assay, search of current status, analysis of neutron beam characteristics, MCNP code simulation, sim-fuel fabrication, neutron experiment for sim-fuel, multiaxes operation system design were done. In sensitivity simulation, the reconstruction results showed the good agreement. Also, the scoping test at ANL was very helpful for actual assay. Therefore, the results are applied for HANARO tomographical system setup and consecutive next research

  3. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    Science.gov (United States)

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  4. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  5. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  6. Tomographic visualization of stress corrosion cracks in tubing

    International Nuclear Information System (INIS)

    Morris, R.A.; Kruger, R.P.; Wecksung, G.W.

    1979-06-01

    A feasibility study was conducted to determine the possibility of detecting and sizing cracks in reactor cooling water tubes using tomographic techniques. Due to time and financial constraints, only one tomographic reconstruction using the best technique available was made. The results indicate that tomographic reconstructions can, in fact, detect cracks in the tubing and might possibly be capable of measuring the depth of the cracks. Limits of detectability and sensitivity have not been determined but should be investigated in any future work

  7. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  8. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    Science.gov (United States)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  9. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  10. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    International Nuclear Information System (INIS)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-01-01

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering

  11. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  12. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Xu, Hongwu [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zhu, Jinlong [High Pressure Science and Engineering Center, Department of Physics and Astronomy, The University of Nevada, Las Vegas, Nevada 89154, USA and National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Page, Katharine, E-mail: pagekl@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  13. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.

    1981-01-01

    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  14. Attachment of carbon nanotubes to atomic force microscope probes

    International Nuclear Information System (INIS)

    Gibson, Christopher T.; Carnally, Stewart; Roberts, Clive J.

    2007-01-01

    In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20 nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM)

  15. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  16. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    International Nuclear Information System (INIS)

    Tcherdyntsev, V.V.; Aleev, A.A.; Churyukanova, M.N.; Kaloshkin, S.D.; Medvedeva, E.V.; Korchuganova, O.A.; Zhukova, V.; Zhukov, A.P.

    2014-01-01

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon

  17. Dynamical energy loss as a novel Quark–Gluon Plasma tomographic tool

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Magdalena

    2016-12-15

    High momentum suppression of light and heavy flavor observables is considered to be an excellent probe of jet-medium interactions in QCD matter created at RHIC and LHC. Utilizing this tool requires accurate suppression predictions for different experiments, probes and experimental conditions, and their unbiased comparison with experimental data. With this goal, we developed the dynamical energy loss formalism towards generating predictions for non-central collisions; the formalism takes into account both radiative and collisional energy loss computed within the same theoretical framework, dynamical (as opposed to static) scattering centers, finite magnetic mass, running coupling and uses no free parameters in comparison with experimental data. Within this formalism, we provided predictions, and a systematic comparison with experimental data, for a diverse set of suppression data: all available light and heavy flavor probes, lower and high momentum ranges, various centrality ranges and various collision energies at RHIC and LHC. We here also provide clear qualitative and quantitative predictions for soon to become available LHC experimental data. Comprehensive agreement between our predictions and experimental results provides a good deal of confidence that our dynamical energy loss formalism can well explain the jet-medium interactions in QGP, which will be further tested by the obtained predictions for the upcoming data. Application of this model, as a novel high-precision tomographic tool of QGP medium, are also discussed.

  18. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    KAUST Repository

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  19. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  20. 'Big Bang' tomography as a new route to atomic-resolution electron tomography.

    Science.gov (United States)

    Van Dyck, Dirk; Jinschek, Joerg R; Chen, Fu-Rong

    2012-06-13

    Until now it has not been possible to image at atomic resolution using classical electron tomographic methods, except when the target is a perfectly crystalline nano-object imaged along a few zone axes. The main reasons are that mechanical tilting in an electron microscope with sub-ångström precision over a very large angular range is difficult, that many real-life objects such as dielectric layers in microelectronic devices impose geometrical constraints and that many radiation-sensitive objects such as proteins limit the total electron dose. Hence, there is a need for a new tomographic scheme that is able to deduce three-dimensional information from only one or a few projections. Here we present an electron tomographic method that can be used to determine, from only one viewing direction and with sub-ångström precision, both the position of individual atoms in the plane of observation and their vertical position. The concept is based on the fact that an experimentally reconstructed exit wave consists of the superposition of the spherical waves that have been scattered by the individual atoms of the object. Furthermore, the phase of a Fourier component of a spherical wave increases with the distance of propagation at a known 'phase speed'. If we assume that an atom is a point-like object, the relationship between the phase and the phase speed of each Fourier component is linear, and the distance between the atom and the plane of observation can therefore be determined by linear fitting. This picture has similarities with Big Bang cosmology, in which the Universe expands from a point-like origin such that the distance of any galaxy from the origin is linearly proportional to the speed at which it moves away from the origin (Hubble expansion). The proof of concept of the method has been demonstrated experimentally for graphene with a two-layer structure and it will work optimally for similar layered materials, such as boron nitride and molybdenum disulphide.

  1. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  2. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  3. Precision of quantum tomographic detection of radiation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy) Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, I-27100, Pavia (Italy)); Macchiavello, Chiara (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy)); Paris, M.G.A. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy))

    1994-11-21

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  4. Precision of quantum tomographic detection of radiation

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Macchiavello, Chiara; Paris, M.G.A.

    1994-01-01

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  5. Characterization of microstructural evolution in Fe-C(-Mn) alloys during early stages of ageing using atom probe

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Tran, P.; Pereloma, E.; Ringer, S.P.

    2004-01-01

    Full text: Extensive studies on the effect of ageing treatment on the micro structure and mechanical properties of most commercial ferritic (a) Fe-C(-X) alloys reveal age-hardening characteristics that involve a monotonic increase towards a peak hardness after several hours of ageing. Peak hardness is always associated with the formation of precipitate particles (e.g: MnC 3 ). However, there is relatively little systematic work on the very early stages of ageing using direct nanostructural analysis and many questions remain on the potential for clustering of interstitial C atoms prior to the precipitation reaction. In this experimental work, we report a small but significant hardness peak within 300 sec during ageing at 550 deg C. High resolution transmission electron microscopy (HRTEM) observations did not show any microstructural change during this early stage of ageing. In order to understand the microstructural evolution in ultra-low carbon a-Fe-C(-Mn) alloys during these early stages of ageing, 3-dimensional atom probe (3DAP) has been used to examine the C atom distribution and possible segregation of C and Mn atoms in these alloys. In this report, the 3DAP analyses and HRTEM observations of Fe-C and Fe-C-Mn alloys are correlated with age hardening measurements and possible mechanisms of the initial hardening phenomenon will be discussed

  6. Implementation of 3D tomographic visualisation through planar ICT data from experimental gamma-ray tomographic system

    International Nuclear Information System (INIS)

    Umesh Kumar; Singh, Gursharan; Ravindran, V.R.

    2001-01-01

    Industrial Computed Tomography (ICT) is one of the latest methods of non-destructive testing and examination. Different prototypes of Computed Industrial Tomographic Imaging System (CITIS) have been developed and experimental data have been generated in Isotope Applications Division. The experimental gamma-rays based tomographic imaging system comprises of beam generator containing approx. 220 GBq (6 Curies) of 137 Cs, a single NaI(Tl) -PMT integral assembly in a thick shielding and associated electronics, stepper motor controlled mechanical manipulator, collimators and required software. CITIS data is normally acquired in one orientation of the sample. It may be sometimes required to view a tomographic plane in a different orientation. Also, 3D visualization may be required with the available 2D data set. All these can be achieved by processing the available data. We have customized some of the routines for this purpose provided IDL (Integrated Data Language) package to suit our requirements. The present paper discusses methodology adopted for this purpose with an illustrative example. (author)

  7. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  8. Atom probe microscopy investigation of Mg site occupancy within δ′ precipitates in an Al–Mg–Li alloy

    International Nuclear Information System (INIS)

    Gault, Baptiste; Cui, Xiang Yuan; Moody, Michael P.; De Geuser, Frederic; Sigli, Christophe; Ringer, Simon P.; Deschamps, Alexis

    2012-01-01

    The composition and site occupancy of Mg within ordered δ′ precipitates in a model Al–Mg–Li alloy have been characterized by atom probe microscopy and first-principles simulations. The concentration in the precipitates is found to be almost the same as that of the matrix; however, we show evidence that Mg partitions to the sites normally occupied by Li in the L1 2 structure. Density functional calculations demonstrate that this partitioning is energetically favorable, in agreement with experimental results.

  9. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  10. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  11. FRIGG '95. ABB Atom's upgraded T/H loop

    International Nuclear Information System (INIS)

    Noren, T.

    1995-01-01

    The FRIGG '95 project is an upgrading and modernization of the FRIGG loop, ABB Atom's fuel test rig with BWR operating conditions. The current FRIGG loop with test section and heater rods is described, together with the modifications involved in the FRIGG '95 project, including the new unique tomographic void measuring system to be installed. Finally CFD (Computational Fluid Dynamics) is introduced. (orig) (8 refs., 10 figs.)

  12. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  13. Computer tomographs

    International Nuclear Information System (INIS)

    Niedzwiedzki, M.

    1982-01-01

    Physical foundations and the developments in the transmission and emission computer tomography are presented. On the basis of the available literature and private communications a comparison is made of the various transmission tomographs. A new technique of computer emission tomography ECT, unknown in Poland, is described. The evaluation of two methods of ECT, namely those of positron and single photon emission tomography is made. (author)

  14. Jets as a probe of dense matter at RHIC

    International Nuclear Information System (INIS)

    Filimonov, Kirill

    2004-01-01

    Jet quenching in the matter created in high energy nucleus-nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are reviewed. Jet properties in p+p and d+Au collisions have been measured, establishing the baseline for studying jet modification in heavy-ion collisions. Current progress on detailed studies of high transverse momentum production in Au+Au collisions is discussed, with an emphasis on dihadron correlation measurements

  15. Localization of a two-level atom via the absorption spectrum

    International Nuclear Information System (INIS)

    Xu, Jun; Hu, Xiang-Ming

    2007-01-01

    We show that it is possible to localize a two-level atom as it passes through a standing-wave field by measuring the probe-field absorption. There is 50% detecting probability of the atom at the nodes of the standing-wave field in the subwavelength domain when the probe field is tuned resonant with the atomic transition

  16. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  17. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  18. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  19. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  20. A positron emission tomograph designed for 3/4 mm resolution

    International Nuclear Information System (INIS)

    McInytre, J.A.; Allen, R.D.; Aguiar, J.; Paulson, J.T.

    1995-01-01

    Two factors of the design for a positron tomograph affect the magnitude of the tomograph spatial resolution: the gamma ray detector width and the analogue measurement of the scintillator location. In the tomograph design reported here the analogue measurement is eliminated and the detector transaxial width factor is reduced to 3/4 mm. The analogue measurement is eliminated by transmitting the scintillation light from each individual scintillator through optical fibers to four photo-multipliers (PMT's); the identities of the PMT's then provide a digital address for the scintillation location. Plastic scintillators are used to provide enough scintillation light for transmission through the optical fibers. Bonuses from the use of plastic scintillators are first, the reduction of the scintillator dead time to about 10 nsec, second, a large reduction of cross-talk between neighboring scintillators, third, the reduction of resolution loss from off-axis gamma rays and, fourth, the ability to sample the axial image at one-eighth the axial resolution distance of 2.5 mm. The designed tomograph incorporates 20 rings. Two of the 32 tomograph 20-ring modules have been constructed to measure the resolution and other characteristics of the tomographs

  1. Tomographic anthropomorphic models. Pt. 2. Organ doses from computed tomographic examinations in paediatric radiology

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1993-11-01

    This report provides a catalogue of organ dose conversion factors resulting from computed tomographic (CT) examinations of children. Two radiation qualities and two exposure geometries were simulated as well as the use of asymmetrical beams. The use of further beam shaping devices was not considered. The organ dose conversion factors are applicable to babies at the age of ca. 2 months and to children between 5 and 7 years but can be used for other ages as well with the appropriate adjustments. For the calculations, the patients were represented by the GSF tomographic anthropomorphic models BABY and CHILD. The radiation transport in the body was simulated using a Monte Carlo method. The doses are presented as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per scanned body section of 1 cm height. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contributions to the organ dose from all relevant sections. To facilitate the selection of the appropriate sections, a table is given which relates the tomographic models' coordinates to certain anatomical landmarks in the human body. (orig.)

  2. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2.

    Science.gov (United States)

    Fugel, Malte; Jayatilaka, Dylan; Hupf, Emanuel; Overgaard, Jacob; Hathwar, Venkatesha R; Macchi, Piero; Turner, Michael J; Howard, Judith A K; Dolomanov, Oleg V; Puschmann, Horst; Iversen, Bo B; Bürgi, Hans-Beat; Grabowsky, Simon

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r ( X -H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r ( X -H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro-carbon rubrene (orthorhombic 5,6,11,12-tetra-phenyl-tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched

  3. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2

    Directory of Open Access Journals (Sweden)

    Malte Fugel

    2018-01-01

    Full Text Available Hirshfeld atom refinement (HAR is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM, such as too short element–hydrogen distances, r(X—H, or too large atomic displacement parameters (ADPs. This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X—H values obtained from HAR. These quantities are compared and found to agree with those obtained from (i accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii multipole modelling (MM, an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydrocarbon rubrene (orthorhombic 5,6,11,12-tetraphenyltetracene, a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa, and the salt potassium hydrogen oxalate (KHOx. The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element–hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily

  4. Introduction to curved rotary tomographic apparatus 'TOMOREX'

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Shinojima, Masayasu; Kohirasawa, Hideo; Tokui, Mitsuru

    1980-01-01

    In recent years, panorama X-ray photographic method is widely used for the X-ray diagnosis of teeth, jawbones and faces. One type based on the principle of tomography is curved surface rotary tomographic method utilizing fine-gap X-ray beam. With the synchronous rotation of an X-ray tube and a photographic film around a face, describing a U-shaped tomographic plane along a dental arch, an upper or lower jawbone is photographed. In the ''TOMOREX'' belonging to this type, is different tomographic planes are available, so that by selecting any position in advance, the part can be photographed. Furthermore, patients can be subjected to examination as laid on a stretcher. The mechanism and equipment, and the photographic method for eye sockets, cheekbones, upper jaw cavities and stereoscopic images are described. (J.P.N.)

  5. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-01-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes. (paper)

  6. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    Science.gov (United States)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  7. Atomic four-level N systems

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2004-01-01

    We investigate the atomic four-level N configuration both analytically and numerically, for various pump and probe intensities, with and without transfer of coherence (TOC) and Doppler broadening, and compare the results obtained to those of realistic atomic systems. We find that TOC affects the whole spectrum, in addition to producing an electromagnetically induced absorption (EIA) peak at line center. We show that the EIA peak splits as the pump intensity increases. These results are compared with those of realistic systems. When the pump is σ + polarized and the probe is π polarized, the results are similar to those of the N configuration. When the pump and probe polarizations are both linear with perpendicular polarizations, various N-like subsystems contribute to the spectrum. Consequently, the splitting of the EIA peak only occurs at very high pump intensities. We also discuss the influence of the probe on the pump absorption and refraction and find that both the pump and probe show EIA peaks when the pump intensity is low, and complementary behavior when the pump is intense. At both low and high pump intensity, the pump and probe dispersions are of opposite sign

  8. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing

    Science.gov (United States)

    Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo

    2017-10-01

    We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

  9. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  10. SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and practical characteristics

    Science.gov (United States)

    Pain, F.; Laniece, P.; Mastrippolito, R.; Charon, Y.; Comar, D.; Leviel, V.; Pujol, J. F.; Valentin, L.

    2000-02-01

    Although high-resolution tomographs provide a new approach that strongly simplifies the measurement of in vivo tracer biodistribution and kinetics in small animals, they suffer from an important drawback: the need for animal anesthesia or immobilization, which restricts the neurophysiological investigations. Furthermore, quantitative in vivo experiments realized on the brain sometimes only require a simple measurement of the radioactivity achieved on a few local points and do not necessarily imply the use of a tomograph, which is a detector of high cost. These constraints led the authors to develop an interacerebral /spl beta/ sensitive probe, sonde intracerebrate (SIC) (French acronym of intracerebral probe) that will allow chronic measurements of the neurophysiological activity in awake and unrestrained small animals. The volume to which the probe is sensitive and the noise contributions to the relevant signal have been evaluated through Monte Carlo simulations. Characterizations of a first prototype based on a small piece of scintillating fiber (500-/spl mu/m diameter and 1-mm length) fused to a same diameter optical fiber coupled in turn to a photomultiplier are also presented. A first configuration of the detector is finally proposed.

  11. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well......-defined aspect ratio, this technique provides an excellent z-calibration standard for the atomic force microscope....

  12. Bichromatic electromagnetically induced transparency in cold rubidium atoms

    International Nuclear Information System (INIS)

    Wang, J.; Jiang, K.J.; Zhan, M.S.; Zhu Yifu

    2003-01-01

    In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2δ, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation δ. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities for probe photons at multiple frequencies separated by δ. We report an experimental study in such a bichromatically coupled three-level Λ system in cold 87 Rb atoms. The multiple-peaked probe absorption spectra under various experimental conditions have been observed and compared with the theoretical calculations

  13. Atomic probe Wigner tomography of a nanomechanical system

    International Nuclear Information System (INIS)

    Singh, Swati; Meystre, Pierre

    2010-01-01

    We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.

  14. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  15. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  16. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  17. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  18. Control of Goos-Hänchen shift via input probe field intensity

    Science.gov (United States)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-11-01

    We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.

  19. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  20. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  1. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  2. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  3. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.

    2011-05-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  4. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  5. Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution

    International Nuclear Information System (INIS)

    Liang Wen-Ye; Yin Zhen-Qiang; Chen Hua; Li Hong-Wei; Chen Wei; Han Zheng-Fu; Wen Hao

    2015-01-01

    At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. (paper)

  6. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  7. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  8. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  9. First experience with a mobile computed tomograph in the USSR

    International Nuclear Information System (INIS)

    Portnoj, L.M.

    1989-01-01

    Utilization experience of mobile computerized tomograph mounted in the bus is presented. Problems concerning staff, selection of medical base institutes etc are considered. Efficiency of mobile computerized tomographes in revealing different diseases is pointed out

  10. Using muonium to probe the kinetics of the reaction between the H atom and OH"- in superheated water

    International Nuclear Information System (INIS)

    Ghandi, K.; Alcorn, C.; Brodovitch, J.-C.; Driedger, E.; Mozafari, M.; Percival, P.W.

    2011-01-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  11. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  12. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  13. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  14. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, L., E-mail: viskari@chalmers.se [Chalmers University of Technology, Gothenburg (Sweden); Stiller, K. [Chalmers University of Technology, Gothenburg (Sweden)

    2011-05-15

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening {gamma}' Ni{sub 3}(Al,Nb) precipitates on the obtained results is discussed. -- Research highlights: {yields} Laser pulsed APT is shown to be a good method for analysis of Ni-based superalloys. {yields} The evaporation field is shown to be different for different phases which affects reconstructions. {yields} B and P are shown to segregate to grain boundaries. {yields} Initial results of {delta}-phase analysed by APT are shown.

  15. Computed tomographic findings of intracranial pyogenic abscess

    International Nuclear Information System (INIS)

    Kim, S. J.; Suh, J. H.; Park, C. Y.; Lee, K. C.; Chung, S. S.

    1982-01-01

    The early diagnosis and effective treatment of brain abscess pose a difficult clinical problem. With the advent of computed tomography, however, it appears that mortality due to intracranial abscess has significantly diminished. 54 cases of intracranial pyogenic abscess are presented. Etiologic factors and computed tomographic findings are analyzed and following result are obtained. 1. The common etiologic factors are otitis media, post operation, and head trauma, in order of frequency. 2. The most common initial computed tomographic findings of brain abscess is ring contrast enhancement with surrounding brain edema. 3. The most characteristic computed tomographic finding of ring contrast enhancement is smooth thin walled ring contrast enhancement. 4. Most of thick irregular ring contrast enhancement are abscess associated with cyanotic heart disease or poor operation. 5. The most common findings of epidural and subdural empyema is crescentic radiolucent area with thin wall contrast enhancement without surrounding brain edema in convexity of brain

  16. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    International Nuclear Information System (INIS)

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe-field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis

  17. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  18. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  19. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  20. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Chang, Day-Bin

    2011-01-01

    We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies. For tapping mode probes, the probe tip apex achieved a 10 nm radius of curvature without additional sharpening steps; tilt-compensated probes were also fabricated for better scanning performance. This method provides AFM users improved probe quality and practical guidelines for customized probes, which can support the development of novel scanning probe microscopy (SPM) applications. -- Research highlights: → We developed a design-simulation-fabrication strategy for customized AFM/SPM probes and demonstrated the results of tipless cantilever, sharpened probe tip, and tilt-compensated probe. → This simulation-aided method improved the geometry control and performance prediction of AFM probes; the error in resonant frequency was reduced to ∼2%. → Integration of simulation in design and fabrication of AFM probes expedites development of new probes and consequently promotes novel SPM applications.

  1. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  2. Giant atoms cast long shadow

    International Nuclear Information System (INIS)

    Amato, I.

    1996-01-01

    Atoms swollen with energy can serve as supersensitive detectors. They also probe the shadow realm where the quantum world of the atom gives way to the familiar classical world. Created in the laboratory, where they live for a few milliseconds inside vacuum chambers, Rydberg atoms acquire their girth when one or sometimes two of their electrons are excited to very high energy levels, displacing them far from the nuclear core. This article describes the atoms, the history of their identification, and future possibilities. 2 figs

  3. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka

    1980-01-01

    The authors constructed a Multiple Pinhole Coded Aperture (MPCA) and developed related decoding software. When simple coordinate transformation was performed, omission of points and shifting of counts occurred. By selecting various tomographic planes and collecting count for each tomographic depth from the shadowgram, a solution to these problems was found. The counts from the central portion of the tomographic image from the MPCA were incorrectly high, this was rectified by a correction function to improve the uniformity correction program of the γ-camera. Depth resolution of the tomographic image improved in proportion to the area encompassed by the pinhole configuration. An MPCA with a uniform arrangement of pinholes (e, g, pinholes in an arrangement parallel to the X-axis or the Y-axis) yielded decoded tomographic images of inferior quality. Optimum results were obtained with a ring-shaped arrangement yielding clinically applicable tomographic images even for large objects. (author)

  4. Estimation of spatial uncertainties of tomographic velocity models

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.; Du, Z.; Querendez, E. [SINTEF Petroleum Research, Trondheim (Norway)

    2012-12-15

    This research project aims to evaluate the possibility of assessing the spatial uncertainties in tomographic velocity model building in a quantitative way. The project is intended to serve as a test of whether accurate and specific uncertainty estimates (e.g., in meters) can be obtained. The project is based on Monte Carlo-type perturbations of the velocity model as obtained from the tomographic inversion guided by diagonal and off-diagonal elements of the resolution and the covariance matrices. The implementation and testing of this method was based on the SINTEF in-house stereotomography code, using small synthetic 2D data sets. To test the method the calculation and output of the covariance and resolution matrices was implemented, and software to perform the error estimation was created. The work included the creation of 2D synthetic data sets, the implementation and testing of the software to conduct the tests (output of the covariance and resolution matrices which are not implicitly provided by stereotomography), application to synthetic data sets, analysis of the test results, and creating the final report. The results show that this method can be used to estimate the spatial errors in tomographic images quantitatively. The results agree with' the known errors for our synthetic models. However, the method can only be applied to structures in the model, where the change of seismic velocity is larger than the predicted error of the velocity parameter amplitudes. In addition, the analysis is dependent on the tomographic method, e.g., regularization and parameterization. The conducted tests were very successful and we believe that this method could be developed further to be applied to third party tomographic images.

  5. Generalized Row-Action Methods for Tomographic Imaging

    DEFF Research Database (Denmark)

    Andersen, Martin Skovgaard; Hansen, Per Christian

    2014-01-01

    Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast...... initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow...

  6. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui, E-mail: xiehui@hit.edu.cn; Hussain, Danish; Yang, Feng [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Sun, Lining [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Robotics and Microsystems Center, Soochow University, 215021 Suzhou (China)

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  7. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  8. Tomographs based on non-conventional radiation sources and methods

    International Nuclear Information System (INIS)

    Barbuzza, R.; Fresno, M. del; Venere, Marcelo J.; Clausse, Alejandro; Moreno, C.

    2000-01-01

    Computer techniques for tomographic reconstruction of objects X-rayed with a compact plasma focus (PF) are presented. The implemented reconstruction algorithms are based on stochastic searching of solutions of Radon equation, using Genetic Algorithms and Monte Carlo methods. Numerical experiments using actual projections were performed concluding the feasibility of the application of both methods in tomographic reconstruction problem. (author)

  9. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  10. Radiographic and tomographic study of the elbow joint in dogs

    International Nuclear Information System (INIS)

    Sendyk-Grunkraut, Alessandra; Martin, Claudia M.; Souza, Alexandre N.A.; Patricio, Geni Cristina F.; Lorigados, Carla A.B.; Matera, Julia M.; Fonseca-Pinto, Ana C.B.C.

    2017-01-01

    Elbow dysplasia disease includes an united anconeal process, fragmented medial coronoid process, osteochondrosis of humeral trochlea, articular incongruity and degenerative joint disease. The aim of this study was to present detailed morphologic and morphometric aspects of the elbow joint in dog in clinical and correlate with radiographic and tomographic (CT) exam. Inter-observer variation for articular incongruity measurements by CT, comparative analysis in the radiographic exam, angle in ulnar notch and its comparative analysis between radiographic and tomographic agreement examination in 44 elbow of dogs with different ages were evaluated. The statistics analyses included the kappa coefficient and interclass correlation and Fischer's test and McNemar's test. It was evidenced that individual performance of each radiographic incidence had poor agreement with the tomographic exam, suggesting that the accomplishment of more than two radiograph views are needed. There was no agreement between the three evaluators in the ulnar notch angle at radiographic and tomographic exams. However, there was good/moderate agreement for articular incongruity measurement in the sagittal plane between evaluators. It was possible to conclude that none of the five radiographic incidences was better than the others for radiographic analysis because each incidence had a better identification of a particular elbow compartment; measurements at the tomographic exam to evaluate radioulnar incongruity had no reproductiveness in the frontal plane, but in sagittal plan had a good/moderate agreement between observers and the angle in ulnar notch presented no repeatability at radiographic exam and no reproductiveness at tomographic exam. (author)

  11. Construction of tomographic head model using sectioned photographic images of cadaver

    International Nuclear Information System (INIS)

    Lee, Choon Sik; Lee, Jai Ki; Park, Jin Seo; Chung, Min Suk

    2004-01-01

    Tomographic models are currently the most complete, developed and realistic models of the human anatomy. They have been used to estimate organ doses for diagnostic radiation examination and radiotherapy treatment planning, and radiation protection. The quality of original anatomic images is a key factor to build a quality tomographic model. Computed tomography (CT) and magnetic resonance imaging (MRI) scan, from which most of current tomographic models are constructed, have their inherent shortcomings. In this study, a tomographic model of Korean adult male head was constructed by using serially sectioned photographs of cadaver. The cadaver was embedded, frozen, serially sectioned and photographed by high resolution digital camera at 0.2 mm interval. The contours of organs and tissues in photographs were segmented by several trained anatomists. The 120 segmented images of head at 2mm interval were converted into binary files and ported into Monte Carlo code to perform an example calculation of organ dose. Whole body tomographic model will be constructed by using the procedure developed in this study

  12. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  13. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  14. Using muonium to probe the kinetics of the reaction between the H atom and OH{sup -} in superheated water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Alcorn, C. [Mount Allison Univ., Sackville, NB (Canada); Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, BC (Canada); Driedger, E. [Mount Allison Univ., Sackville, NB (Canada); Mozafari, M. [Simon Fraser Univ., Burnaby, BC (Canada); Percival, P.W. [Simon Fraser Univ., Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada)

    2011-07-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  15. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Rogers, J.G.; Atkins, M.S.

    1989-01-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. the data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition system. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events which are 64 bits wide

  16. Status Summary of FY16 Atom Probe Tomography Studies on UCSB ATR-2 Irradiated RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Odette, G. Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    The University of California Santa Barbara-2 RPV Steel Irradiation experiment was awarded in 2010 by the Nuclear Science User Facility (formerly ATR NSUF) through a competitive peer review proposal process. The experiment involved irradiation of nearly 1300 samples distributed over 13 capsules. The major objective of this experiment was to better understand embrittlement behavior of reactor pressure steels at doses beyond which available data exists yet may be achieved if reactor operating licenses are extended beyond 60 years. The experiment was instrumented during irradiation and active temperature control was used to maintain the temperature at the design temperature. Six samples were selected from a large matrix of materials to perform atom probe tomography (APT) to look at formation of high dose phases. The nature and formation behavior of these phases is discussed.

  17. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    Science.gov (United States)

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.

  18. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  19. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  20. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  1. Construction of a positron emission tomograph with 2.4 mm detectors

    International Nuclear Information System (INIS)

    McIntyre, J.A.; Sprosst, R.L.; Wang, K.

    1986-01-01

    One-quarter of one ring of a positron tomograph has been constructed. The positron annihilation gamma rays are detected by polished plastic scintillators which direct scintillation light by internal reflection to optical fibers for transmission to the photo-multiplier tubes. By viewing each scintillator with four sets of optical fibers, the number of photomultipliers required for an eight ring tomograph with 1024 detectors per ring (2.4 mm wide detectors) can be reduced from 8192 to 288, and the cost of the tomograph reduced accordingly

  2. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated

  3. Dynamic of cold-atom tips in anharmonic potentials

    Science.gov (United States)

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  4. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  5. Experience of computed tomographic myelography and discography in cervical problem

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Shigeru; Yamamoto, Masayuki; Uratsuji, Masaaki; Suzuki, Kunio; Matsui, Eigo [Hyogo Prefectural Awaji Hospital, Sumoto, Hyogo (Japan); Kurihara, Akira

    1983-06-01

    CTM (computed tomographic myelography) was performed on 15 cases of cervical lesions, and on 5 of them, CTD (computed tomographic discography) was also made. CTM revealed the intervertebral state, and in combination with CTD, providing more accurate information. The combined method of CTM and CTD was useful for soft disc herniation.

  6. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients.

    Science.gov (United States)

    de Souza Giassi, Karina; Costa, Andre Nathan; Apanavicius, Andre; Teixeira, Fernando Bin; Fernandes, Caio Julio Cesar; Helito, Alfredo Salim; Kairalla, Ronaldo Adib

    2014-11-25

    Toxoplasmosis is one of the most common human zoonosis, and is generally benign in most of the individuals. Pulmonary involvement is common in immunocompromised subjects, but very rare in immunocompetents and there are scarce reports of tomographic findings in the literature. The aim of the study is to describe three immunocompetent patients diagnosed with acute pulmonary toxoplasmosis and their respective thoracic tomographic findings. Acute toxoplasmosis was diagnosed according to the results of serological tests suggestive of recent primary infection and the absence of an alternative etiology. From 2009 to 2013, three patients were diagnosed with acute respiratory failure secondary to acute toxoplasmosis. The patients were two female and one male, and were 38, 56 and 36 years old. Similarly they presented a two-week febrile illness and progressive dyspnea before admission. Laboratory tests demonstrated lymphocytosis, slight changes in liver enzymes and high inflammatory markers. Tomographic findings were bilateral smooth septal and peribronchovascular thickening (100%), ground-glass opacities (100%), atelectasis (33%), random nodules (33%), lymph node enlargement (33%) and pleural effusion (66%). All the patients improved their symptoms after treatment, and complete resolution of tomographic findings were found in the followup. These cases provide a unique description of the presentation and evolution of pulmonary tomographic manifestations of toxoplasmosis in immunocompetent patients. Toxoplasma pneumonia manifests with fever, dyspnea and a non-productive cough that may result in respiratory failure. In animal models, changes were described as interstitial pneumonitis with focal infiltrates of neutrophils that can finally evolve into a pattern of diffuse alveolar damage with focal necrosis. The tomographic findings are characterized as ground glass opacities, smooth septal and marked peribronchovascular thickening; and may mimic pulmonary congestion

  7. Construction of Korean male tomographic model segmented from PET-CT data

    International Nuclear Information System (INIS)

    Lee, Choon Sik; Park, Sang Kyun; Lee, Jai Ki

    2004-01-01

    Tomographic human models provide currently the most realistic representation of human anatomy for radiation dosimetry calculation. Most of the models have been constructed by using computed tomographic (CT) or magnetic resonance (MR) images obtained from a single individual. Each scan has its inherent advantages and disadvantages. CT scan gives a considerable radiation dose to a subject, and MR scan takes too long time to get clear images of an immobile subject. An emerging source of medical images for the construction of tomographic models is PET-CT, which is performed when looking for cancer. In this study, a tomographic model of Korean adult male was developed by processing whole-body CT images of a PET-CT-scanned healthy volunteer. The 343 slices of the CT images were semi-automatically segmented layer by layer using a graphic software and screen digitizer. The 3rd Korean tomographic model, named KRMAN-2, consisting of 300x150x344 voxels of a size of 2x2x5mm 3 , was constructed. Examples of application to Monte Carlo radiation dosimetry calculation in idealized whole-body irradiations were given and discussed

  8. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  9. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  10. Atom probe tomography of the evolution of the nanostructure of oxide dispersion strengthened steels under ion irradiation

    Science.gov (United States)

    Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, Ya.; Möslang, A.; Vladimirov, P.

    2017-09-01

    The atom probe tomography of the nanostructure evolution in ODS1 Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti steels under heavy ion irradiation at 300 and 573 K is performed. The samples were irradiated by 5.6 MeV Fe2+ ions and 4.8 MeV Ti2+ ions to a fluence of 1015 cm-2. It is shown that the number of nanoclusters increases by a factor of 2-3 after irradiation. The chemical composition of the clusters in the steels changes after irradiation at 300 K, whereas the chemical composition of the clusters in the 13.5Cr-0.3Ti ODS steel remains the same after irradiation at 573 K.

  11. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed

    2012-01-01

    A next nearest neighbor evaluation procedure of atom probe tomography data provides distributions of the distances between atoms. The width of these distributions for metallic glasses studied so far is a few Angstrom reflecting the spatial resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons are characterized this way in the as quenched state and for a state heat treated at 350 °C for 1 h revealing a change in the structure on the sub-nanometer scale. By applying the statistical tool of the χ2 test a slight deviation from a random distribution of B-atoms in the as quenched sample is perceived, whereas a pronounced elemental inhomogeneity of boron is detected for the annealed state. In addition, the distance distribution of the first fifteen atomic neighbors is determined by using this algorithm for both annealed and as quenched states. The next neighbor evaluation algorithm evinces a steric periodicity of the atoms when the next neighbor distances are normalized by the first next neighbor distance. A comparison of the nearest neighbor atomic distribution for as quenched and annealed state shows accumulation of Ni and B. Moreover, it also reveals the tendency of Fe and B to move slightly away from each other, an incipient step to Ni rich boride formation. © 2011 Elsevier B.V.

  12. Resting-state functional connectivity assessed with two diffuse optical tomographic systems.

    Science.gov (United States)

    Niu, Haijing; Khadka, Sabin; Tian, Fenghua; Lin, Zi-Jing; Lu, Chunming; Zhu, Chaozhe; Liu, Hanli

    2011-04-01

    Functional near-infrared spectroscopy (fNIRS) is recently utilized as a new approach to assess resting-state functional connectivity (RSFC) in the human brain. For any new technique or new methodology, it is necessary to be able to replicate similar experiments using different instruments in order to establish its liability and reproducibility. We apply two different diffuse optical tomographic (DOT) systems (i.e., DYNOT and CW5), with various probe arrangements to evaluate RSFC in the sensorimotor cortex by utilizing a previously published experimental protocol and seed-based correlation analysis. Our results exhibit similar spatial patterns and strengths in RSFC between the bilateral motor cortexes. The consistent observations are obtained from both DYNOT and CW5 systems, and are also in good agreement with the previous fNIRS study. Overall, we demonstrate that the fNIRS-based RSFC is reproducible by various DOT imaging systems among different research groups, enhancing the confidence of neuroscience researchers and clinicians to utilize fNIRS for future applications.

  13. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  14. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  15. Diagnostic accuracy of multi-slice computed tomographic angiography in the detection of cerebral aneurysms

    International Nuclear Information System (INIS)

    Haghighatkhah, H. R.; Sabouri, S.; Borzouyeh, F.; Bagherzadeh, M. H.; Bakhshandeh, H.; Jalali, A. H.

    2008-01-01

    Multislice computed tomographic angiography is a rapid and minimally invasive method for the detection of intracranial aneurysms. The purpose of this study was to compare Multislice computed tomographic angiography with digital subtraction angiography In the diagnosis of cerebral aneurysms. Patients and Methods: In this cross sectional study we evaluated 111 consecutive patients [42(37.8%) male and 69(62.2%) female], who were admitted under clinical symptoms and signs. suggestive of harboring an intracranial aneurysm by using a four detector Multislice computed tomographic angiography. Then we compared results of Multislice computed tomographic angiography with digital subtraction angiography results as a gold standard method. Digital subtraction angiography was performed by bilateral selective common carotid artery injections and either unilateral or bilateral vertebral artery injections, as necessary. Multislice computed tomographic angiography images were interpreted by one radiologist and digital subtraction angiography was performed by another radiologist who was blinded to the interpretation of the Multislice computed tomographic angiograms. Results: The mean ±S D age of the patients was 49.1±13.6 years (range: 12-84 years). We performed Multislice computed tomographic in 111 and digital subtraction angiography in 85 patients. The sensitivity, specificity, positive predictive value, negative predictive value, positive and negative likelihood ratio of Multislice computed tomographic angiography, when compared with digital subtraction angiography as the gold standard, were 100%, 90%, 87.5%, 100%, 10 and 0, respectively. Conclusion: Multislice computed tomographic angiography seems to be an accurate and noninvasive imaging modality in the diagnosis of intracranial aneurysms

  16. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357

    International Nuclear Information System (INIS)

    Hall, T.M.; Wagner, A.; Berger, A.S.; Seidman, D.N.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10 -6 torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450 0 K. Specimens can also be irradiated in-situ with any low-energy (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s -1 . In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy

  17. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  18. Influence of the atomic structure on the quantum state of sputtered Ir atoms

    International Nuclear Information System (INIS)

    Bastiaansen, J.; Philipsen, V.; Lievens, P.; Silverans, R.E.; Vandeweert, E.

    2004-01-01

    The probability of the ejection of a neutral atom in a specific quantum state after keV-ion beam sputtering is often interpreted in terms of the interaction between the atomic states of the escaping atom and the electronic states of the solid. In this work, we examined this interplay in the sputtering of iridium as this element has--unlike the elements employed in previous investigations--a complex atomic structure due to strong configuration interactions. Double-resonant two-photon laser ionization is used to probe the sputtered Ir atoms yielding information about the probability for an ejected atom to populate a specific atomic state and its escape velocity. The qualitative features of the corresponding population partition and state-selective velocity distributions show the influence of the excitation energy and the electronic structure of the different atomic states. A comparison is made between the experimental data and predictions from the resonant electron transfer description

  19. Semiconductor studies by radioactive probe atoms

    International Nuclear Information System (INIS)

    Wichert, Thomas

    2003-01-01

    There are a growing number of experimental techniques that have in common the usage of radioactive isotopes for the characterization of semiconductors. These techniques deliver atomistic information about identity, formation, lattice environment, and electronic structure, as well as dynamics of defects and defect complexes. The results obtained by different hyperfine techniques are discussed in context with the study of intrinsic and extrinsic defects, i.e. of vacancies or self-interstitials and dopant or impurity atoms, respectively. In addition, the employment of electrical and optical techniques in combination with radioactive isotopes is presented

  20. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    Directory of Open Access Journals (Sweden)

    Moskal P.

    2016-01-01

    Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  1. Computed tomographic findings of intracranial gliosis

    International Nuclear Information System (INIS)

    Weisberg, L.

    1981-01-01

    The clinical and computed tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis are analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions. (orig.)

  2. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, X.Y., E-mail: xiangyuan.xiong@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Monash University, Vic. 3800 (Australia); Department of Materials Engineering, Monash University, Vic. 3800 (Australia); Rong, C.B. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Rubanov, S. [Electron Microscopy Unit, Bio21 Institute, University of Melbourne, Vic. 3052 (Australia); Zhang, Y. [Division of Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, J.P. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2011-11-15

    The microstructure and compositions of the bulk nanocomposite SmCo/Fe permanent magnet were studied using transmission electron microscopy and 3-dimensional atom probe techniques. The excellent magnetic properties were related to the uniform nanocomposite structure with nanometer {alpha}-Fe particles uniformly distributed in the SmCo phase matrix. The {alpha}-Fe phase contained {approx}26 at% Co, and the SmCo phase contained {approx}19 at% Fe, confirming that the interdiffusion of Fe and Co atoms between the two phases occurred. The formation of the {alpha}-Fe(Co) phase explained why the saturation magnetization of the nanocomposite permanent magnet was higher than that expected from the original pure {alpha}-Fe and SmCo{sub 5} powders, which enhanced further the maximum energy product of the nanocomposite permanent magnet. - Highlights: > A uniform nanocomposite SmCo/{alpha}-Fe permanent magnet with high performance obtained. > The first quantitative analyses of interdiffusion of Fe and Co between the two phases presented. > The saturation magnetization of the nanocomposite enhanced by the resulting {alpha}-Fe(Co) phase.

  3. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    OpenAIRE

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field o...

  4. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  5. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    Science.gov (United States)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  6. Original circuitry for TOHR tomograph

    International Nuclear Information System (INIS)

    Cuzon, J.C.; Pinot, L.

    1999-01-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors)

  7. Tomographic PIV: principles and practice

    International Nuclear Information System (INIS)

    Scarano, F

    2013-01-01

    A survey is given of the major developments in three-dimensional velocity field measurements using the tomographic particle image velocimetry (PIV) technique. The appearance of tomo-PIV dates back seven years from the present review (Elsinga et al 2005a 6th Int. Symp. PIV (Pasadena, CA)) and this approach has rapidly spread as a versatile, robust and accurate technique to investigate three-dimensional flows (Arroyo and Hinsch 2008 Topics in Applied Physics vol 112 ed A Schröder and C E Willert (Berlin: Springer) pp 127–54) and turbulence physics in particular. A considerable number of applications have been achieved over a wide range of flow problems, which requires the current status and capabilities of tomographic PIV to be reviewed. The fundamental aspects of the technique are discussed beginning from hardware considerations for volume illumination, imaging systems, their configurations and system calibration. The data processing aspects are of uppermost importance: image pre-processing, 3D object reconstruction and particle motion analysis are presented with their fundamental aspects along with the most advanced approaches. Reconstruction and cross-correlation algorithms, attaining higher measurement precision, spatial resolution or higher computational efficiency, are also discussed. The exploitation of 3D and time-resolved (4D) tomographic PIV data includes the evaluation of flow field pressure on the basis of the flow governing equation. The discussion also covers a-posteriori error analysis techniques. The most relevant applications of tomo-PIV in fluid mechanics are surveyed, covering experiments in air and water flows. In measurements in flow regimes from low-speed to supersonic, most emphasis is given to the complex 3D organization of turbulent coherent structures. (topical review)

  8. Probing and Manipulating the Interfacial Defects of InGaAs Dual-Layer Metal Oxides at the Atomic Scale.

    Science.gov (United States)

    Wu, Xing; Luo, Chen; Hao, Peng; Sun, Tao; Wang, Runsheng; Wang, Chaolun; Hu, Zhigao; Li, Yawei; Zhang, Jian; Bersuker, Gennadi; Sun, Litao; Pey, Kinleong

    2018-01-01

    The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO 2 films on Al 2 O 3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen-atom conduction-band wavefunctions are resolved. This study unearths the fundamental defect-driven interfacial electric structure of III-V semiconductor materials and paves the way to future high-speed and high-reliability devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Probing Efimov discrete scaling in an atom-molecule collision

    Science.gov (United States)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Garrido, E.; Tomio, Lauro; Frederico, T.

    2018-01-01

    The discrete Efimov scaling behavior, well known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of an atom-molecule elastic cross section in mass-imbalanced systems. That happens in the collision of a heavy atom with mass mH with a weakly bound dimer formed by the heavy atom and a lighter one with mass mL≪mH . Approaching the heavy-light unitary limit, the s -wave elastic cross section σ will present a sequence of zeros or minima at collision energies following closely the Efimov geometrical law. Our results, obtained with Faddeev calculations and supplemented by a Born-Oppenheimer analysis, open a perspective to detecting the discrete scaling behavior from low-energy scattering data, which is timely in view of the ongoing experiments with ultracold binary mixtures having strong mass asymmetries, such as lithium and cesium or lithium and ytterbium.

  10. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Atkins, M.S.; Wilkinson, N.A.; Rogers, J.G.

    1988-11-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. The data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition systems. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events per second for raw events which are 64 bits wide. Real-time data acquisition and pre-processing requirements can be met by about forty 20 MHz Motorola 68020/68881 processors

  11. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  12. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  13. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  14. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  15. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  16. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the

  17. Tomographic findings of lobar consolidation in primary pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Pereira, Bruno Alberto Falcao; Macedo, Solange Goncalves David de; Penna, Claudia Renata Rezende

    2009-01-01

    Objective: To describe tomographic findings of lobar consolidation as early manifestation of primary pulmonary tuberculosis. Materials and methods: The present study was developed at Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil, in the period between 2002 and 2006, retrospectively evaluating tomographic findings in four children aged from 3 to 14 months with lobar consolidation as an early manifestation of primary pulmonary tuberculosis. Results: The most frequently found radiological pattern was lobar consolidation with calcifications, cavitation and intermingle necrotic areas, associated with bulging fissure. Signs of bronchogenic dissemination and lymph node enlargement were observed in all of the four children. Consolidation with a pseudotumor aspect and masslike effect was observed in one case. Conclusion: The cases included in the present study have demonstrated that primary pulmonary tuberculosis manifested as lobar consolidation presents typical tomographic images such as cavitation, hypodense areas and calcifications intermingled with consolidation. The association with lymph node enlargement with central necrosis and signs of bronchogenic dissemination reinforce the diagnosis of tuberculosis. (author)

  18. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  19. Present state and development of positron tomographs

    International Nuclear Information System (INIS)

    Allemand, R.; Gariod, R.; Laval, M.; Tournier, F.

    1979-01-01

    This document presents the main characteristics of positron tomographs and analyses the relative importance of the parameters to be taken into consideration in the design of a tomograph: on the one hand, the physical parameters linked to the measurement of the annihilation photons by time coincidence and, on the other, the geometrical and technological parameters of prime importance in minimizing the many spurious effects. The last part endeavours to show this sort of instrumentation has evolved. Using the results obtained in our laboratory by mathematical simulation, the expected advantages are presented on the picture quality of the time of flight measurement of annihilation photons. Where the physical aspects of this method are concerned, the advantage of using cesium fluoride as scintillator is demonstrated [fr

  20. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  1. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  2. Absorption spectrum of a V-type three-level atom driven by a coherent field

    International Nuclear Information System (INIS)

    Dong Po; Tang, S.H.

    2002-01-01

    We examine the absorption of a weak probe beam by a laser driven V-type atom with a pair of closely lying excited levels, where both the driving and probe lasers interact simultaneously with the two transitions. The effects of quantum interference among decay channels on the absorption spectra are also investigated. We introduce dipole moments in the dressed-state representation and the Hamiltonian in terms of the dressed states describing the interaction between the probe and the atom. In the degenerate case, features similar to that of a driven two-level atomic system are found due to some dark transitions in the spontaneous emission and the fact that the probe beam only detects certain transitions. In the nondegenerate case, the absorption spectrum is strongly influenced by the degree of quantum interference, resulting in different line shapes for emission peaks, absorption peaks, and dispersionlike profiles. The effect of probe polarization on the absorption spectrum is also investigated

  3. Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, I., E-mail: isabelle.abraham@cea.fr [CEA Ile de France (France); Abraham, R., E-mail: romain.abraham@univ-orleans.fr; Bergounioux, M., E-mail: maitine.bergounioux@univ-orleans.fr [Université d’Orléans, UFR Sciences, MAPMO, UMR 7349 (France); Carlier, G., E-mail: carlier@ceremade.dauphine.fr [CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de Tassigny (France)

    2017-02-15

    In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.

  4. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  5. Reconstruction of tomographic image from x-ray projections of a few views

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    Computer tomographs have progressed rapidly, and in the latest high performance types, the photographing time has been shortened to less than 5 sec, but the clear images of hearts have not yet been obtained. The X-ray tomographs used so far irradiate X-ray from many directions and measure the projected data, but by limiting projection direction to a small number, it was planned to shorter the X-ray photographing time and to reduce X-ray exposure as the objective of this study. In this paper, a method is proposed, by which tomographic images are reconstructed from projected data in a small number of direction by generalized inverse matrix penalty method. This method is the calculation method newly devised by the authors for this purpose. It is a kind of the nonlinear planning method added with the restrictive condition using a generalized inverse matrix, and it is characterized by the simple calculation procedure and rapid convergence. Moreover, the effect on reconstructed images when errors are included in projected data was examined. Also, the simple computer simulation to reconstruct tomographic images using the projected data in four directions was performed, and the usefulness of this method was confirmed. It contributes to the development of superhigh speed tomographs in future. (Kako, I.)

  6. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  7. High sensitivity probe absorption technique for time-of-flight ...

    Indian Academy of Sciences (India)

    Abstract. We report on a phase-sensitive probe absorption technique with high sen- sitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms.

  8. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  9. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    International Nuclear Information System (INIS)

    Rademacher, Thomas; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D0 3 ordered Fe 3 Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. -- Research highlights: → APT measurements of Fe 3 Al-Cr are systematically analysed to study ordering. → APT measurements are simulated using EAM to calculate binding energies. → Cr occupies next nearest neighbour sites of aluminium with at least 83% ordering. → Aluminium ordering is at least 92%

  10. Tomographic ventricular reconstruction using multiple view first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Lacy, J.L.; Ball, M.E.; Verani, M.S.; Wiles, H.; Roberts, R.

    1985-01-01

    In first-pass radionuclide angiography (FPRA) images of both left and right ventricles are uncontaminated by adjacent structures. Thus, the problem of tomographic reconstruction is vastly simplified compared to equilibrium blood pool imaging in which all structures are imaged simultaneously. Tomographic reconstruction from a limited number of views may thus be possible. A simple filtered interpolative back-projection reconstruction technique was employed. In this technique interpolation was used between sectional distributions at successive angles. Interpolations yielding 9 and 13 back projection angles of 22.5 0 and 15 0 were evaluated. Ventricular borders were obtained in each back-projected tomographic slice by location of the intensity level which provided correct total ventricular volume. Cast cross sections were quantitatively well represented by these borders. This ventricular border definition algorithm forms the basis for applications of the technique in animals and humans

  11. MOTRIMS as a generalized probe of AMO processes

    International Nuclear Information System (INIS)

    Bredy, R.; Nguyen, H.; Camp, H.; Flechard, X.; De Paola, B.D.

    2003-01-01

    Magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) is one of the newest offshoots of the generalized TRIMS approach to ion-atom collisions. By using lasers instead of the more usual supersonic expansion to cool the target, MOTRIMS has demonstrated two distinct advantages over conventional TRIMS. The first is better resolution, now limited by detectors instead of target temperature. The second is its suitability for use in the study of laser-excited targets. In this presentation we will present a third advantage: The use of MOTRIMS as a general-purpose probe of AMO processes in cold atomic clouds of atoms and molecules. Specifically, the projectile ion beam can be used as a probe of processes as diverse as target dressing by femtosecond optical pulses, photo-association (laser-assisted cold collisions) photo-ionization, and electromagnetically-induced transparency. We will present data for the processes we have investigated, and speculations on what we expect to see for the processes we plan to investigate in the future

  12. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  13. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  14. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    Andrade, M.A.; Silva, A.M. Marques da

    2004-01-01

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  15. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  16. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  17. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  18. Probing new intra-atomic force with isotope shifts

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Kyoko; Tanaka, Minoru [Osaka University, Department of Physics, Graduate School of Science, Toyonaka, Osaka (Japan); Yamamoto, Yasuhiro [Yonsei University, Department of Physics and IPAP, Seoul (Korea, Republic of)

    2017-12-15

    In the development of atomic clocks, some atomic transition frequencies are measured with remarkable precision. These measured spectra may include the effects of a new force mediated by a weakly interacting boson. Such effects might be distilled out from possible violation of a linear relation in isotope shifts between two transitions, as known as King's linearity, with relatively suppressed theoretical uncertainties. We discuss the experimental sensitivity to a new force in the test of the linearity as well as the linearity violation owing to higher-order effects within the Standard Model. The sensitivity to new physics is limited by such effects. We have found that, for Yb{sup +}, the higher-order effect is in the reach of future experiments. The sensitivity to a heavy mediator is also discussed. It is analytically clarified that the sensitivity becomes weaker than that in the literature. Our numerical results of the sensitivity are compared with other weak force search experiments. (orig.)

  19. Pressure spectra from single-snapshot tomographic PIV

    Science.gov (United States)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV

  20. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.

    Science.gov (United States)

    Rashidi, Mohammad; Wolkow, Robert A

    2018-05-23

    Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.

  1. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  2. The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes.

    Science.gov (United States)

    Khare, H S; Burris, D L

    2013-05-01

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS2 to demonstrate the technique. Carbon and single crystal MoS2 had friction coefficients of μ = 0.20 ± 0.04 and μ = 0.006 ± 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS2 had a friction coefficient of μ = 0.005 ± 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  3. Positioning of Nuclear Fuel Assemblies by Means of Image Analysis on Tomographic Data

    International Nuclear Information System (INIS)

    Troeng, Mats

    2005-06-01

    A tomographic measurement technique for nuclear fuel assemblies has been developed at the Department of Radiation Sciences at Uppsala University. The technique requires highly accurate information about the position of the measured nuclear fuel assembly relative to the measurement equipment. In experimental campaigns performed earlier, separate positioning measurements have therefore been performed in connection to the tomographic measurements. In this work, another positioning approach has been investigated, which requires only the collection of tomographic data. Here, a simplified tomographic reconstruction is performed, whereby an image is obtained. By performing image analysis on this image, the lateral and angular position of the fuel assembly can be determined. The position information can then be used to perform a more accurate tomographic reconstruction involving detailed physical modeling. Two image analysis techniques have been developed in this work. The stability of the two techniques with respect to some central parameters has been studied. The agreement between these image analysis techniques and the previously used positioning technique was found to meet the desired requirements. Furthermore, it has been shown that the image analysis techniques offer more detailed information than the previous technique. In addition, its off-line analysis properties reduce the need for valuable measurement time. When utilizing the positions obtained from the image analysis techniques in tomographic reconstructions of the rod-by-rod power distribution, the repeatability of the reconstructed values was improved. Furthermore, the reconstructions resulted in better agreement to theoretical data

  4. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  5. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  6. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  7. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  8. Tomographic methods in nuclear medicine

    International Nuclear Information System (INIS)

    Ahluwalia, B.D.

    1989-01-01

    This book is a review of the various approaches to tomographic imaging that have been pursued in nuclear medicine. The evolution of single photon emission computed tomography (SPECT) is discussed in detail, and the major classes of instrumentation are represented. A section on positron emission tomography is also included, but is rather brief and may serve only as a general introduction

  9. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  10. Computerized tomographic in non-destructive testing

    International Nuclear Information System (INIS)

    Lopes, R.T.

    1988-01-01

    The process of computerized tomography has been developed for medical imaging purposes using tomographs with X-ray, and little attention has been given to others possibles applications of technique, because of its cost. As an alternative for the problem, we constructed a Tomographic System (STAC-1), using gamma-rays, for nonmedical applications. In this work we summarize the basic theory of reconstructing images using computerized tomography and we describe the considerations leading to the development of the experimental system. The method of reconstruction image implanted in the system is the filtered backprojection or convolution, with a digital filters system to carried on a pre-filtering in the projections. The experimental system is described, with details of control and the data processing. An alternative and a complementary system, using film as a detector is shown in preliminary form . This thesis discuss and shows the theorical and practical aspects, considered in the construction of the STAC-1, and also its limitations and apllications [pt

  11. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  12. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  13. Evidence for atomic scale disorder in indium nitride from perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R; Shrestha, S K; Byrne, A P; Ridgway, M C; Edge, A V J; Vianden, R; Penner, J; Timmers, H

    2005-01-01

    The crystal lattice of bulk grains and state-of-the-art films of indium nitride was investigated at the atomic scale with perturbed angular correlation spectroscopy using the 111 In/Cd radioisotope probe. The probe was introduced during sample synthesis, by diffusion and by ion implantation. The mean quadrupole interaction frequency ν Q = 28 MHz was observed at the indium probe site in all types of indium nitride samples with broad frequency distributions. The observed small, but non-zero, asymmetry parameter indicates broken symmetry around the probe atoms. Results have been compared with theoretical calculations based on the point charge model. The consistency of the experimental results and their independence of the preparation technique suggest that the origin of the broad frequency distribution is inherent to indium nitride, indicating a high degree of disorder at the atomic scale. Due to the low dissociation temperature of indium nitride, furnace and rapid thermal annealing at atmospheric pressure reduce the lattice disorder only marginally

  14. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Interaction of GaN epitaxial layers with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  16. Interaction of GaN epitaxial layers with atomic hydrogen

    International Nuclear Information System (INIS)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  17. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  18. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  19. Computed-tomographic determination of mineral content of bones

    International Nuclear Information System (INIS)

    Delov, I.; Tabakov, S.

    1988-01-01

    The problem of precise computed-tomographic densitometry of the mineral content of bones is pointed out. A method is proposed including the use of standard density and observance of definite radiation, scanning and image estimation parameters. A good correlation of the results obtained for the mineral content of the lumbar vertebrae with literature data are reported. A method is also described for determining the mineral content of tubular bones based on densiprofile check-up of the computed-tomographic density. The procedure takes 10-15 minutes and includes 1 or 2 scans. It might therefore gain wide acceptance for the diagnosis and tracing of osteoporosis and other osteopathies associated with distrorted calcium metabolism

  20. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  1. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  2. Data and Analysis from a Time-Resolved Tomographic Optical Beam Diagnostic

    International Nuclear Information System (INIS)

    Frayer, Daniel K.; Johnson, Douglas; Ekdahl, Carl

    2010-01-01

    An optical tomographic diagnostic instrument developed for the acquisition of high-speed time-resolved images has been fielded at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory. The instrument was developed for the creation of time histories of electron-beam cross section through the collection of Cerenkov light. Four optical lines of sight optically collapse an image and relay projections via an optical fiber relay to recording instruments; a tomographic reconstruction algorithm creates the time history. Because the instrument may be operated in an adverse environment, it may be operated, adjusted, and calibrated remotely. The instrument was operated over the course of various activities during and after DARHT commissioning, and tomographic reconstructions reported verifiable beam characteristics. Results from the collected data and reconstructions and analysis of the data are discussed.

  3. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    Science.gov (United States)

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  4. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  5. Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Nandasiri, Manjula; Devaraj, Arun, E-mail: arun.devaraj@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Xu, Zhijie [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Thevuthasan, Suntharampillai [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2015-08-31

    The experimental atom probe tomography (APT) results from two different specimen orientations (top-down and sideways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was compared with level-set method based field evaporation simulations for the same specimen orientations. This experiment-simulation comparison explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction, leading to inaccurate estimation of interfacial intermixing. This study highlights the importance of comparing experimental results with field evaporation simulations when using APT to study oxide heterostructure interfaces.

  6. Probing the quantum analog of chaos with atoms in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gay, J C; Delande, D

    1987-01-01

    For a few years, considerable interest arose in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, the authors demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. Finally the authors indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials. 21 refs.; 8 figs.

  7. Registration of synthetic tomographic projection data sets using cross-correlation

    International Nuclear Information System (INIS)

    Fitchard, E.E.; Aldridge, J.S.; Reckwerdt, P.J.; Mackie, T.R.

    1998-01-01

    Tomographic registration, a method that makes possible accurate patient registration directly from projection data, consists of three processing steps: (i) manual coarse positioning, (ii) tomographic projection set acquisition, and (iii) computer mediated refined positioning. In the coarse positioning stage, the degree of patient alignment is comparable with that achieved with the standard radiotherapy set-up. However, the accuracy requirements are somewhat more relaxed in that meticulous alignment of the patient using external laser indicators is not necessary. Instead, tomographic projection sets are compared with planning CTs in order to achieve improved patient set-up. The projection sets are cross-correlated to obtain the best-fit translation and rotation offsets. The algorithm has been tested on synthetic data with the incorporation of varying amounts of Gaussian pseudo-random noise. These tests demonstrate the algorithm's stability and also confirm that alignment can be achieved with an accuracy of less than one projection pixel. (author)

  8. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  9. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    Science.gov (United States)

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  10. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  11. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  12. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  13. 3D velocity measurements in a premixed flame by tomographic PIV

    International Nuclear Information System (INIS)

    Tokarev, M P; Sharaborin, D K; Lobasov, A S; Chikishev, L M; Dulin, V M; Markovich, D M

    2015-01-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV. (paper)

  14. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  15. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  16. Pressure spectra from single-snapshot tomographic PIV

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Avallone, F.; Pröbsting, S.; Ragni, D.; Scarano, F.

    2018-01-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor’s hypothesis (TH) of frozen turbulence and

  17. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  19. Computed tomographic findings of traumatic intracranial lesions

    International Nuclear Information System (INIS)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu

    1985-01-01

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor

  20. Computed tomographic findings of traumatic intracranial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu [Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    1985-10-15

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor.

  1. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  2. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka; Akagi, Kiyoshi; Uehata, Hiroshi

    1981-01-01

    In order to obtain a radioisotope (RI) tomographic image, there are various, methods, including the RCT method, Time Modulate method, and Multiple Pinhole Coded Aperture (MPCA) method and others. The MPCA method has several advantages. Using the MPCA method, there is no need to move either the detector or the patient, Furthermore, the generally used γ-camera may be used without any alterations. Due to certain problems in reconstructing the tomographic image, the use of the MPCA method in clinical practice is limited to representation of small organs (e.g. heart) using the 7-Pinhole collimator. This research presents an experimental approach to overcome the problems in reconstruction of tomographic images of large organs (organs other than the heart, such as the brain, liver, lung etc.) by introducing a reconstruction algorithm and correction software into the MPCA method. There are 2 main problems in MPCA image reconstruction: (1) Due to the rounding-off procedure, there is both point omission and shifting of point coordinates. (2) The central portion is characterized by high-counts. Both of these problems were solved by incorporating a reconstruction algorithm and a correction function. The resultant corrected tomographic image was processed using a filter derived from subjecting a PSF to a Fourier transform. Thus, it has become possible to obtain a high-quality tomographic image of large organs for clinical use. (author)

  3. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  4. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  5. Computed tomographic appearances of sternocostoclavicular hyperostosis

    Energy Technology Data Exchange (ETDEWEB)

    Chigira, Masaki; Shimizu, Toru (Gunma Univ. (Japan). Dept. of Orthopaedic Surgery)

    1989-08-01

    Computed tomographical analysis of sternocostoclavicular hyperostosis was performed in 27 patients. In the earliest stage hyperostosis occurred around the cartilaginous portion of the first ribs. The sternoclavicular joint space was preserved even in the late stage III of the disorder. It is also suggested that perichondritis and periostitis play important roles in the etiology of this disorder. (orig./GDG).

  6. Computed tomographic appearances of sternocostoclavicular hyperostosis

    International Nuclear Information System (INIS)

    Chigira, Masaki; Shimizu, Toru

    1989-01-01

    Computed tomographical analysis of sternocostoclavicular hyperostosis was performed in 27 patients. In the earliest stage hyperostosis occurred around the cartilaginous portion of the first ribs. The sternoclavicular joint space was preserved even in the late stage III of the disorder. It is also suggested that perichondritis and periostitis play important roles in the etiology of this disorder. (orig./GDG)

  7. Segmentation-DrivenTomographic Reconstruction

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas

    such that the segmentation subsequently can be carried out by use of a simple segmentation method, for instance just a thresholding method. We tested the advantages of going from a two-stage reconstruction method to a one stage segmentation-driven reconstruction method for the phase contrast tomography reconstruction......The tomographic reconstruction problem is concerned with creating a model of the interior of an object from some measured data, typically projections of the object. After reconstructing an object it is often desired to segment it, either automatically or manually. For computed tomography (CT...

  8. Comparative validation of the radiographic and tomographic measurement of patellar height

    Directory of Open Access Journals (Sweden)

    Marco Antonio Schueda

    2013-09-01

    Full Text Available OBJECTIVE: To evaluate and validate the radiographic measurement of patellar height with computerized tomography scans. METHODS: Measured the patellar height through the lateral radiographic image supported by one foot and sagittal tomographic view of the knee in extension, flexion of 20°, and quadriceps contraction of 40 patients (80 knees, asymptomatic and no history of knee injuries using Insall-Salvati index. There were 20 adult females and 20 adult males. RESULTS: The height patellar index was higher in women of all images taken, in proportion. There was no statistical difference of patellar height index between the radiographics and tomographics images. CONCLUSION: The Insall-Salvati index in females was higher in all cases evaluated. Furthermore, it is possible to measure the patellar height index during tomographic study without distorting the results obtained, using to define the presence of patella alta or patella baja.

  9. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  10. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  11. Computed tomographic appearances of cherubism

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, S D; Boccardi, A; Mela, F; Romagnoli, R

    1987-01-01

    The computed tomographic (CT) aspects of six cases of cherubism are described. Through its optimal representation of the lesions, CT enabled certain characteristics of this disease to be substantiated, namely, limitation of the process to the bones of the jaw and primarily superficial development of the mandibular lesions, coupled with an unusual mandibular condylar impairment. Moreover, the composition of this series permitted investigation of the condition in its several stages of progression.

  12. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  13. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  14. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined instrument

  15. Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms

    International Nuclear Information System (INIS)

    Bhattacharyya, Dipankar; Ray, Biswajit; Ghosh, Pradip N

    2007-01-01

    We report theoretical studies of a Λ-type five-level atomic system. The density matrix equations are set up and solved numerically to obtain the probe absorption line shape of Rb D 2 transitions for cold (Doppler-free) and room temperature (Doppler-broadened) atoms. Simulated spectra for Doppler-broadened systems lead to four velocity-selective dips along with an electromagnetic induced transparency (EIT) peak as observed earlier from the co-propagating pump-probe spectroscopy of Rb D 2 transitions. Effects of pump power and spontaneous decay rate from the upper levels on the simulated spectra are also studied. For cold atoms a very pronounced EIT peak is observed when the pump frequency is on resonance with one allowed transition. We find that lower pump power leads to a much sharper EIT signal in this case. A simulated dispersion curve shows a rapid variation of the refractive index that may lead to a sharp reduction of the group velocity of photons

  16. Emission computed tomograph

    International Nuclear Information System (INIS)

    Hirose, Y.; Kanno, I.; Koga, K.; Miura, S.; Uemura, K.

    1981-01-01

    Emission computed tomograph wherein a pluralty of detectors surround an object to be examined so as to detect x- or gamma radiation emitted by said object. In front of each of said detectors there is provided a collimator which comprises a pair of main plates and a subsidiary plate interposed therebetween. The plates are made of a material capable of blocking penetration of the radiation therethrough and so supported as to be swingable over an angle sufficient to cover the whole of said object. The plates of all the collimators are simultaneously swung to the same side and at the same angular speed thereby to change the direction of incidence of said radiation on each of said detectors

  17. Case Report: Unusual computed tomographic features of ...

    African Journals Online (AJOL)

    A case report of a 57-year old woman who presented with signs and symptoms of intracranial mass. Computed tomographic (CT) and clinical features were unusual and suggestive of a parasaggital Meningioma. However an accurate diagnosis of a tuberculoma was made at surgery and histopathological examination.

  18. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  19. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  20. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  1. Development of a computerized tomographic system based on the FAN-BEAM technique

    International Nuclear Information System (INIS)

    Junqueira, M.M.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory, at COPPE/UFRJ, concentrates its researches in the development of computerized tomographic systems, looking for applications in industrial and medical non destructive analysing techniques. In this work we have projected and constructed a tomographic prototype, based on the FAN-BEAM technique for irradiating the object under analysis. An algorithm previously developed to analyse parallel beams, was modified and adapted to the FAN-BEAM geometry. (Author) [pt

  2. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  3. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    Science.gov (United States)

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  4. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  5. An introduction to the tomographic picture of quantum mechanics

    International Nuclear Information System (INIS)

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F

    2009-01-01

    Starting from the famous Pauli problem on the possibility of associating quantum states with probabilities, the formulation of quantum mechanics in which quantum states are described by fair probability distributions (tomograms, i.e. tomographic probabilities) is reviewed in a pedagogical style. The relation between the quantum state description and the classical state description is elucidated. The difference between those sets of tomograms is described by inequalities equivalent to a complete set of uncertainty relations for the quantum domain and to non-negativity of probability density on phase space in the classical domain. The intersection of such sets is studied. The mathematical mechanism that allows us to construct different kinds of tomographic probabilities like symplectic tomograms, spin tomograms, photon number tomograms, etc is clarified and a connection with abstract Hilbert space properties is established. The superposition rule and uncertainty relations in terms of probabilities as well as quantum basic equations like quantum evolution and energy spectra equations are given in an explicit form. A method to check experimentally the uncertainty relations is suggested using optical tomograms. Entanglement phenomena and the connection with semigroups acting on simplexes are studied in detail for spin states in the case of two-qubits. The star-product formalism is associated with the tomographic probability formulation of quantum mechanics.

  6. Field experience with a mobile tomographic nondestructive assay system

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Betts, S.E.; Taggart, D.P.; Estep, R.J.; Nicholas, N.J.; Lucas, M.C.; Harlan, R.A.

    1995-01-01

    A mobile tomographic gamma-ray scanner (TGS) developed by Los Alamos National Laboratory was recently demonstrated at the Rocky Flats Environmental Technology Site and is currently in use at Los Alamos waste storage areas. The scanner was developed to assay radionuclides in low-level, transuranic, and mixed waste in containers ranging in size from 2 ft 3 boxes to 83-gallon overpacks. The tomographic imaging capability provides a complete correction for source distribution and matrix attenuation effects, enabling accurate assays of Pu-239 and other gamma-ray emitting isotopes. In addition, the system can reliably detect self-absorbing material such as plutonium metal shot, and can correct for bias caused by self-absorption. The system can be quickly configured to execute far-field scans, segmented gamma-ray scans, and a host of intermediate scanning protocols, enabling higher throughput (up to 20 drums per 8-hour shift). In this paper, we will report on the results of field trials of the mobile system at Rocky Flats and Los Alamos. Assay accuracy is confirmed for cases in which TGS assays can be compared with assays (e.g. with calorimetry) of individual packages within the drums. The mobile tomographic technology is expected to considerably reduce characterization costs at DOE production and environmental technology sites

  7. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  8. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  9. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  10. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  11. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    International Nuclear Information System (INIS)

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  12. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  13. Direct manipulation of intracellular stress fibres using a hook-shaped AFM probe

    International Nuclear Information System (INIS)

    Machida, Shinichi; Watanabe-Nakayama, Takahiro; Harada, Ichiro; Afrin, Rehana; Nakayama, Tomonobu; Ikai, Atsushi

    2010-01-01

    Atomic force microscopy (AFM) is a highly successful technique for imaging nanometre-sized samples and measuring pico- to nano-newton forces acting between atoms and molecules. When it comes to the manipulation of larger samples with forces of tens and hundreds of nano-newtons, however, the present chemistry-based modification protocols for functionalizing AFM cantilevers to achieve the formation of covalent/non-covalent linkages between the AFM probe and the sample surface do not produce strong enough bonds. For the purpose of measuring the fracture strength and other mechanical properties of stress fibres (SFs) in living as well as semi-intact fibroblast cells, we fabricated an AFM probe with a hooking function by focused ion beam technology and used the AFM probe hook to capture, pull and eventually sever a chosen SF labelled with green or red fluorescent protein.

  14. The use of tomographic techniques in the mineral processing Industry. A review

    International Nuclear Information System (INIS)

    Witika, L.K.; Jere, E.H.

    2002-01-01

    Process tomographic techniques may be used to analyse the internal state of most of the multiphase process engineering systems such as material segregation in a reactor multiphase flow in pipes and the spatial resolution of mineral grains in multiphase particles. These techniques include radiation computed tomography (X-ray or ray), electrical methods(capacitance, impedance and inductive tomography) positron emission tomography,optical tomography, microwave tomography, acoustic tomographical methods and many more. Many potential applications exist for process tomographic instrumentation for quantitative analysis and fault-detection purposes. Amongst these, electrical methods are widely used for those mineral processes deserving particular attention such as dense-medium separation, hydro cyclones, flotation cells and columns, gas-liquid absorbers, solvent extraction and other liquid-liquid processes, filtration and other solid-liquid processes, grinding mills (both dry and wet, conveyors and hoppers). Development in on-line measurement instrumentation now allow direct observation of the behaviour of fluids inside mineral separation equipment. This offers the possibility to acquire process data to enable models to be devised, to verify theoretical computational fluid dynamics predictions and control of various unit processes. In this review, the most important tomographic sensing methods are reviewed. Examples of the implementation of some electrical methods are illustrated. (authors)

  15. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Computed tomographic study of 50 patients with hypodense hepatic injuries in childhood

    International Nuclear Information System (INIS)

    Pereira, Ines Minniti Rodrigues; Alvares, Beatriz Regina; Baracat, Jamal; Martins, Daniel Lahan; Pereira, Ricardo Minniti Rodrigues

    2006-01-01

    Objective: To describe the different tomographic findings in hypodense hepatic lesions in children and its differential diagnosis. Materials and methods: computed tomographic studies were obtained from 50 patients (age range: 0-16 years) with low-density liver lesions previously diagnosed by ultrasound. Images were made before and after administration of intravenous contrast medium. Image findings were analyzed and afterwards correlated with anatomopathological diagnosis. Results: forty-seven of 50 cases were confirmed, 30 by anatomopathological diagnosis. Most of then were benign lesions, hemangioma in 20%. Such lesions presented a homogeneous contrast absorption, mainly at the delayed phase, differing from malignant lesions. Metastasis was the most frequently found malignant lesion (18%). Conclusion: computed tomographic study is of great value in complementing the diagnosis of hypodense hepatic lesions in children, and must follow ultrasound diagnosis as a routine procedure. (author)

  17. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  18. A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology

    International Nuclear Information System (INIS)

    Staton, R J; Pazik, F D; Nipper, J C; Williams, J L; Bolch, W E

    2003-01-01

    Establishment of organ doses from diagnostic and interventional examinations is a key component to quantifying the radiation risks from medical exposures and for formulating corresponding dose-reduction strategies. Radiation transport models of human anatomy provide a convenient method for simulating radiological examinations. At present, two classes of models exist: stylized mathematical models and tomographic voxel models. In the present study, organ dose comparisons are made for projection radiographs of both a stylized and a tomographic model of the newborn patient. Sixteen separate radiographs were simulated for each model at x-ray technique factors typical of newborn examinations: chest, abdomen, thorax and head views in the AP, PA, left LAT and right LAT projection orientation. For AP and PA radiographs of the torso (chest, abdomen and thorax views), the effective dose assessed for the tomographic model exceeds that for the stylized model with per cent differences ranging from 19% (AP abdominal view) to 43% AP chest view. In contrast, the effective dose for the stylized model exceeds that for the tomographic model for all eight lateral views including those of the head, with per cent differences ranging from 9% (LLAT chest view) to 51% (RLAT thorax view). While organ positioning differences do exist between the models, a major factor contributing to differences in effective dose is the models' exterior trunk shape. In the tomographic model, a more elliptical shape is seen thus providing for less tissue shielding for internal organs in the AP and PA directions, with corresponding increased tissue shielding in the lateral directions. This observation is opposite of that seen in comparisons of stylized and tomographic models of the adult

  19. X-ray Tomographic Microscopy at TOMCAT

    Energy Technology Data Exchange (ETDEWEB)

    Marone, F; Hintermueller, C; McDonald, S; Abela, R; Mikuljan, G; Isenegger, A; Stampanoni, M, E-mail: federica.marone@psi.c [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2009-09-01

    Synchrotron-based X-ray Tomographic Microscopy is a powerful technique for fast non-destructive, high resolution quantitative volumetric investigations on diverse samples. At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline at the Swiss Light Source, synchrotron light is delivered by a 2.9 T superbend. The main optical component, a Double Crystal Multilayer Monochromator, covers an energy range between 8 and 45 keV. The standard TOMCAT detector offers field of views ranging from 0.75x0.75 mm{sup 2} up to 12.1x12.1 mm{sup 2} with a pixel size of 0.37 {mu}m and 5.92 {mu}m, respectively. In addition to routine measurements, which exploit the absorption contrast, the high coherence of the source also enables phase contrast tomography, implemented with two complementary techniques (Modified Transport of Intensity approach and Grating Interferometry). Typical acquisition times for a tomogram are in the order of few minutes, ensuring high throughput and allowing for semi-dynamical investigations. Raw data are automatically post-processed online and full reconstructed volumes are available shortly after a scan with minimal user intervention.

  20. MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Gardner, R.P.; Verghese, K.

    1990-01-01

    MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)

  1. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  2. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  3. Photon emission tomographic apparatus and method

    International Nuclear Information System (INIS)

    Blum, A.S.

    1983-01-01

    Tomographic imaging system employs large area, collimated scintillation detector rotated around radiation emitting subject. Detector support rotates with an inner ring inside a stationary outer ring. Counterbalanced detector support arm is forced by spring action to cause collimator face to follow body contour as detector rotates around the body, thereby reducing collimator to subject distance to improve system resolution. Includes adjustable subject support system

  4. Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song; Ying, Puyou [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The close association between the Ω precipitation and various Ag additions is systematically investigated by quantitative transmission electron microscopy and atom probe tomography analysis. Our results suggest that the precipitation of Ω phase is strongly dependent on Ag variations. Increasing the bulk Ag content favors a denser Ω precipitation and hence leads to a greater age-hardening response of Al-Cu-Mg-Ag alloy. This phenomenon, as proposed by proximity histograms, is directly related to the greater abundance of Ag solutes within Ω precursors. This feature lowers its nucleation barrier and increases the nucleation rate of Ω phase, finally contributes to the enhanced Ω precipitation. Also, it is noted that increasing Ag remarkably restricts the precipitation of θ' phase.

  5. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity

  6. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  7. Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain

    International Nuclear Information System (INIS)

    Lü De-Sheng; Qu Qiu-Zhi; Wang Bin; Zhao Jian-Bo; Liu Liang; Wang Yu-Zhu

    2011-01-01

    The time-of-flight (TOF) method is one of the most common ways to measure the temperature of cold atoms. In the cold atomic fountain setup, the geometry of the probe beam will introduce the measurement errors to the spatial distribution of cold atomic cloud, which will lead to the measurement errors on atomic temperature. Using deconvolution, we recover the atomic cloud profile from the TOF signal. Then, we use the recovered signals other than the TOF signals to obtain a more accurate atomic temperature. This will be important in estimating the effects of cold atom collision shift and the shift due to transverse cavity phase distribution on an atomic fountain clock. (atomic and molecular physics)

  8. Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eric Ferreira de

    2016-07-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  9. Electromagnetically induced transparency in thermal Rydberg atoms: superatom model with finite Doppler broadening

    Science.gov (United States)

    Bai, Si-Yin; Bao, Qian-Qian; Tian, Xue-Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2018-04-01

    We study the steady optical responses of a cold atomic ensemble driven into the three-level ladder configuration involving a Rydberg state at finite temperatures. By improving the superatom model with thermal movement included, we calculate relevant atomic coherence effects and find that the residual Doppler broadening at the mK-K temperatures will weaken the nonclassical properties of transmitted probe photons. Furthermore, propagation directions of the probe and coupling fields have a great influence on various properties related to electromagnetically induced transparency. That is, the residual Doppler effect is more destructive to relevant atomic coherence effects in the co-propagation case but can be partially eliminated in the counter-propagation case.

  10. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions

    International Nuclear Information System (INIS)

    Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W.

    2015-01-01

    Atom probe tomography (APT) analysis and hardness measurements have been used to characterise the early stages of precipitation in three Al–Mg–Si alloys with different Cu contents (Al–0.51 at.%Mg–0.94 at.%Si, with 0.01 at.%, 0.06 at.%, or 0.34 at.% Cu). A range of single and multi- stage heat treatments were chosen to evaluate the changes in precipitation processes. Three ageing temperatures were investigated, 298 K (natural ageing), 353 K (pre-ageing) and 453 K (automotive paint-bake conditions). The Cu content had significant effects on the microstructural evolution within the alloy. Formation of clusters which can act as precursors of elongated precipitates during paint-baking was found to be enhanced with increasing Cu content. This improved the paint-bake hardening response and mitigated the deleterious effects of natural ageing. Cu was present in all precipitates in the highest Cu-containing alloy. These precipitates were believed to be precursors to the Q′ phase. Mechanisms for the effects of Cu on precipitation kinetics are proposed.

  11. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hund, Markus; Herold, Hans

    2007-01-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film

  12. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  13. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  14. Tomographic thallium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilation with intravenous dipyridamole: comparison of qualitative and quantitative approaches

    International Nuclear Information System (INIS)

    Francisco, D.A.; Collins, S.M.; Go, R.T.; Ehrhardt, J.C.; Van Kirk, O.C.; Marcus, M.L.

    1982-01-01

    Eighty-six patients had thallium-201 ( 201 Tl) myocardial perfusion scintigrams after intense coronary artery dilation with i.v. dipyridamole. Tomographic and planar 201 Tl scintigrams were obtained in each patient. Tomographic scintigrams were interpreted using quantitative or visual criteria; planar scintigrams were assessed using visual criteria only. When visual criteria were used, interobserver variability was 40% for tomographic scintigrams and 44% for planar scintigrams. In the 24 patients with normal or nonsignificant CAD, quantitative analysis of the tomograms (range approach) indicated that one of 24 (4%) had a positive image (specificity 96%%); in contrast, when visual criteria were used to interpret the tomographic or planar 201 Tl scintigrams, eight of 24 (33%) had positive scintigrams (specificity 67%). In the 51 abnormal patients, the sensitivity of detecting CAD was 46 of 51 (90%) for tomographic scintigrams interpreted quantitatively, 39 of 51 (76%) for tomographic scintigrams interpreted visually and 41 of 51 (80%) for planar scintigrams assessed visually. The tomographic imaging procedure (quantitative interpretation) also demonstrated a high sensitivity (89%) and specificity (100%) in 28 patients (10 normal and 18 CAD), with a clinical diagnosis of unstable angina pectoris. Overall, the predictive accuracy of an abnormal scintigram with quantitative tomographic imaging (98%) was significantly better (p<0.05) than either qualitative planar or pinhole imaging

  15. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  16. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    Science.gov (United States)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  17. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  18. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  19. High-throughput full-automatic synchrotron-based tomographic microscopy

    International Nuclear Information System (INIS)

    Mader, Kevin; Marone, Federica; Hintermueller, Christoph; Mikuljan, Gordan; Isenegger, Andreas; Stampanoni, Marco

    2011-01-01

    At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 (micro)m to 7.4 (micro)m, full tomographic datasets are typically acquired in 5 to 10 min. To exploit the speed of the system and enable high-throughput studies to be performed in a fully automatic manner, a package of automation tools has been developed. The samples are automatically exchanged, aligned, moved to the correct region of interest, and scanned. This task is accomplished through the coordination of Python scripts, a robot-based sample-exchange system, sample positioning motors and a CCD camera. The tools are suited for any samples that can be mounted on a standard SEM stub, and require no specific environmental conditions. Up to 60 samples can be analyzed at a time without user intervention. The throughput of the system is dependent on resolution, energy and sample size, but rates of four samples per hour have been achieved with 0.74 (micro)m voxel size at 17.5 keV. The maximum intervention-free scanning time is theoretically unlimited, and in practice experiments have been running unattended as long as 53 h (the average beam time allocation at TOMCAT is 48 h per user). The system is the first fully automated high-throughput tomography station: mounting samples, finding regions of interest, scanning and reconstructing can be performed without user intervention. The system also includes many features which accelerate and simplify the process of tomographic microscopy.

  20. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  1. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  3. X-ray tomographic apparatus

    International Nuclear Information System (INIS)

    Walters, R.G.

    1982-01-01

    An x-ray tomographic system consists of a radiation source such as gamma or x radiation which produces a fan-shaped beam. The fan is wide enough to encompass the patient circle. The system further includes means for rotating the radiation source about the patient for less than a full rotation, and detectors for detecting the radiation at positions that surround the patient by 180 0 plus the angle of the fan beam plus the angle between adjacent fan detectors. Attenuation data from the detectors is sorted into detector fans of attenuation data, then processed. The convolved data is back-projected into an image memory and displayed on a video monitor

  4. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    International Nuclear Information System (INIS)

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  5. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  6. Computerized tomographic system

    International Nuclear Information System (INIS)

    Godbarsen, R.; Barrett, D.M.; Garrott, P.M.; Foley, L.E.; Redington, R.W.; Lambert, T.W.; Edelheit, L.S.

    1981-01-01

    A computerized tomographic system for examining human breasts is described in detail. Conventional X-ray scanning apparatus has difficulty in achieving the levels of image definition and examination speeds required for mass screening. A novel method of scanning successive layers of the breast with a rotating X-ray beam is discussed and details of the control circuitry and sequence steps are given. The method involves immersing the breast in an inner fluid (e.g. water) filled container which is stationary during an examination and is surrounded by a large outer container which is also filled with the fluid; the inner and outer containers are always maintained at a constant height and the X-ray absorption across the fan-shaped beam is as close as possible to constant. (U.K.)

  7. Automated angular and translational tomographic alignment and application to phase-contrast imaging

    DEFF Research Database (Denmark)

    Cunha Ramos, Tiago Joao; Jørgensen, Jakob Sauer; Andreasen, Jens Wenzel

    2017-01-01

    X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object po...... improvement in the reconstruction resolution. A MATLAB implementation is made publicly available and will allow robust analysis of large volumes of phase-contrast tomography data.......X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object...... reconstruction artifacts and limit the attained resolution in the final tomographic reconstruction. Alignment algorithms that require manual interaction impede data analysis with ever-increasing data acquisition rates, supplied by more brilliant sources. We present in this paper an iterative reconstruction...

  8. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  9. Tomographic local 2D analyses of the WISExSuperCOSMOS all-sky galaxy catalogue

    Science.gov (United States)

    Novaes, C. P.; Bernui, A.; Xavier, H. S.; Marques, G. A.

    2018-05-01

    The recent progress in obtaining larger and deeper galaxy catalogues is of fundamental importance for cosmological studies, especially to robustly measure the large scale density fluctuations in the Universe. The present work uses the Minkowski Functionals (MF) to probe the galaxy density field from the WISExSuperCOSMOS (WSC) all-sky catalogue by performing tomographic local analyses in five redshift shells (of thickness δz = 0.05) in the total range of 0.10 methodology reveals 1 - 3 regions of the GNC maps in each redshift shell with an uncommon behaviour (extreme regions), i.e., p-value < 1.4%. Indeed, the resulting MF curves show signatures that suggest the uncommon behaviour to be associated with the presence of over- or under-densities there, but contamination due to residual foregrounds is not discarded. Additionally, even though our analyses indicate a good agreement among data and simulations, we identify 1 highly extreme region, seemingly associated to a large clustered distribution of galaxies. Our results confirm the usefulness of the MF to analyse GNC maps from photometric galaxy datasets.

  10. Characterization of tomographically faithful states in terms of their Wigner function

    International Nuclear Information System (INIS)

    D'Ariano, G M; Sacchi, M F

    2005-01-01

    A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries complete information about the operation itself. Tomographically faithful states are a necessary ingredient for the tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes

  11. Bone densitometry with the computer tomograph

    International Nuclear Information System (INIS)

    Weiss, T.

    1978-01-01

    This work tests the usefulness of the EMI head scanner MARK I for a quantitative detection of ossary mineral content. Twenty-three concentration levels of a aqueous K 2 HPO 4 -solution were positioned by means of a special clamping device at the EMI-scanner and examined at tubevoltages of 100, 120 and 140 kV. This produces an almost linear dependence between CT-unit and sample concentration, whereby it shows that the measured special element densities of samples with the same densities vary in dependence with the voltage. The examination of an anotomical fore-arm preperate served as a statement for the reproductability of computer tomographic densitometry at non-moving biological objects. The test of reproductability of bone densitometry measurements under clinical conditions was made on the occation of the six time examinations of the right hand fore-arm bone of a young dummy. Furthermore densitometric examination were made at the fore-arm shelton of 40 long-time dialysis patients in the age levels between 17 and 67 years. The reproductability of the technique presented here is at least not better with the EMI-head-scanner MARK I used here. A change is possible by using the new whole body tomographs. (orig./MG) [de

  12. Parallel Low-Loss Measurement of Multiple Atomic Qubits.

    Science.gov (United States)

    Kwon, Minho; Ebert, Matthew F; Walker, Thad G; Saffman, M

    2017-11-03

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is state is preserved with >98% probability.

  13. Tomographic evaluation of a dual-head positron emission tomography system

    International Nuclear Information System (INIS)

    Efthimiou, N; Maistros, S; Tripolitis, X; Panayiotakis, G; Samartzis, A; Loudos, G

    2011-01-01

    In this paper we present the performance evaluation results, in the planar and tomographic modes, of a low-cost positron emission tomography camera dedicated to small-animal imaging. The system consists of two pixelated Lu 2 SiO 5 crystals, two Hamamatsu H8500 position sensitive photomultiplier tubes, fast amplification electronics and an FPGA-USB-based read-out system. The parameters that have been studied are (i) saturation as a function of the head distance and photon acceptance angle, (ii) effect of the number of projections and half or complete head's rotation, (iii) spatial resolution as a function of the head distance, (iv) spatial resolution as a function of acceptance angle, (v) system's sensitivity as a function of these parameters and (vi) performance in small mice imaging. Image reconstruction has been carried out using open source software developed by our group (QSPECT), which is designed mainly for SPECT imaging. The results indicate that the system has a linear response for activities up to at least 2 MBq, which are typical in small-animal imaging. Best tomographic spatial resolution was measured to be ∼2 mm. The system has been found suitable for imaging of small mice both in the planar and tomographic modes

  14. Atomic-level studies of superconducting YBa2Cu3O/sub 7-x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The transmission electron microscope, field ion microscope, and imaging atom-probe mass spectrometer have been used to examine the structure and composition of field-emitter ''tips'' prepared from hot-pressed samples of YBa 2 Cu 3 O/sub 7-x/. Transmission electron microscope images of the tip apex clearly show periodic defect structures which are interpreted as twins boundaries. Field ion microscope images reveal the structure of the samples in atomic resolution and indicate that the material can be field evaporated in a uniform, layer-by-layer fashion. Imaging atom-probe mass spectra contain signals corresponding to all of the constituent elements with intensities fairly consistent with the 1-2-3 ratio of the metals, but highly deficient in oxygen

  15. Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM

    KAUST Repository

    Cong, Chunxiao

    2013-02-01

    In-plane and out-of-plane arrangements of carbon atoms in graphene layers play critical roles in the fundamental physics and practical applications of these novel two-dimensional materials. Here, we report initial results on the edge/crystal orientations and stacking orders of bi-and tri-layer graphene (BLG and TLG) from Raman spectroscopy and transmission electron microscopy (TEM) experiments performed on the same sample. We introduce a new method of transferring graphene flakes onto a normal TEM grid. Using this novel method, we probed the BLG and TLG flakes that had been previously investigated by Raman scattering with high-resolution (atomic) TEM.

  16. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...... over 300-μm-wide apertures, where the membranes are stable toward hundreds of nanoindentations without breakage. © 2010 American Chemical Society....

  17. Performance of analytical methods for tomographic gamma scanning

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Mercer, D.J.

    1997-01-01

    The use of gamma-ray computerized tomography for nondestructive assay of radioactive materials has led to the development of specialized analytical methods. Over the past few years, Los Alamos has developed and implemented a computer code, called ARC-TGS, for the analysis of data obtained by tomographic gamma scanning (TGS). ARC-TGS reduces TGS transmission and emission tomographic data, providing the user with images of the sample contents, the activity or mass of selected radionuclides, and an estimate of the uncertainty in the measured quantities. The results provided by ARC-TGS can be corrected for self-attenuation when the isotope of interest emits more than one gamma-ray. In addition, ARC-TGS provides information needed to estimate TGS quantification limits and to estimate the scan time needed to screen for small amounts of radioactivity. In this report, an overview of the analytical methods used by ARC-TGS is presented along with an assessment of the performance of these methods for TGS

  18. The computed tomographic appearances of cherubism

    International Nuclear Information System (INIS)

    Bianchi, S.D.; Boccardi, A.; Mela, F.; Romagnoli, R.

    1987-01-01

    The computed tomographic (CT) aspects of six cases of cherubism are described. Through its optimal representation of the lesions, CT enabled certain characteristics of this disease to be substantiated, namely, limitation of the process to the bones of the jaw and primarily superficial development of the mandibular lesions, coupled with an unusual mandibular condylar impairment. Moreover, the composition of this series permitted investigation of the condition in its several stages of progression. (orig.)

  19. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    Science.gov (United States)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  20. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.