WorldWideScience

Sample records for tomato shatterproof gene

  1. Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species.

    Science.gov (United States)

    Garceau, Danielle C; Batson, Megan K; Pan, Irvin L

    2017-08-01

    This article focuses on the role of TOMATO AGAMOUS-LIKE 1 (TAGL1) on a wide range of ripening functions in tomato. We also examine orthologs of this gene in related species that produce different fruit types and discuss some evolutionary implications. TOMATO AGAMOUS-LIKE 1 (TAGL1) is a MADS-box transcription factor gene that belongs to the PLENA (PLE) lineage within the AGAMOUS (AG) clade. The most well-studied genes in this lineage are the SHATTERPROOF (SHP) genes in Arabidopsis, known to be involved in dehiscence zone formation during silique development. In tomato, TAGL1 has been shown to control several aspects of tomato fruit ripening. Most notably, carotenoid synthesis seems to be controlled by TAGL1, likely via the ethylene synthesis and signaling pathway and in combination with RIPENING INHIBITOR (RIN). In addition, TAGL1 regulates genes involved in cell cycle regulation, flavonoid and lignin biosynthesis, and cuticle development. We discuss many of the genes in these different pathways that are likely controlled by TAGL1, directly or indirectly. We also examine the relationship of TAGL1 with known and putative interaction partners. PLE lineage genes have also been examined in other species such as Antirrhinum, Petunia, and Nicotiana and provide an interesting example of conservation and diversification of function in species that produce very different types of fleshy and dry fruits. The control of lignification may be a common mechanism for this group of genes. Lastly, we discuss future work needed to elucidate the TAGL1 regulatory pathway in tomato and to help better understand the functional diversification of genes in this lineage in related species.

  2. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... type of F. oxysporum f. sp. lycopersici observed commonly which require presence of I1 gene in tomato plant for the incompatibility ... Key words: Fusarium wilt, race, R-gene, resistance, tomato. ... MATERIALS AND METHODS.

  3. The Tomato Terpene Synthase Gene Family1[W][OA

    Science.gov (United States)

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  4. Peroxidase gene expression during tomato fruit ripening

    International Nuclear Information System (INIS)

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-01-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A) + RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L- 35 S-methionine. The 35 S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues

  5. Flexible tools for gene expression and silencing in tomato.

    Science.gov (United States)

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.

  6. Inferring the gene network underlying the branching of tomato inflorescence.

    Directory of Open Access Journals (Sweden)

    Laura Astola

    Full Text Available The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  7. Genome-Wide Identification and Analysis of Genes Encoding PHD-Finger Protein in Tomato

    International Nuclear Information System (INIS)

    Hayat, S.; Cheng, Z.; Chen, X.

    2016-01-01

    The PHD-finger proteins are conserved in eukaryotic organisms and are involved in a variety of important functions in different biological processes in plants. However, the function of PHD fingers are poorly known in tomato (Solanum lycopersicum L.). In current study, we identified 45 putative genes coding Phd finger protein in tomato distributed on 11 chromosomes except for chromosome 8. Some of the genes encode other conserved key domains besides Phd-finger. Phylogenetic analysis of these 45 proteins resulted in seven clusters. Most Phd finger proteins were predicted to PML body location. These PHD-finger genes displayed differential expression either in various organs, at different development stages and under stresses in tomato. Our study provides the first systematic analysis of PHD-finger genes and proteins in tomato. This preliminary study provides a very useful reference information for Phd-finger proteins in tomato. They will be helpful for cloning and functional study of tomato PHD-finger genes. (author)

  8. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    Science.gov (United States)

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  9. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  10. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  11. Domestication rewired gene expression and nucleotide diversity patterns in tomato.

    Science.gov (United States)

    Sauvage, Christopher; Rau, Andrea; Aichholz, Charlotte; Chadoeuf, Joël; Sarah, Gautier; Ruiz, Manuel; Santoni, Sylvain; Causse, Mathilde; David, Jacques; Glémin, Sylvain

    2017-08-01

    Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. TRL1 gene expression in tomato (Solanum lycopersicum) floral organs after γ-irradiation

    International Nuclear Information System (INIS)

    Bondarenco, V.S.; Barbacar, N.I.

    2009-01-01

    The article describes the expression patterns of a novel RAD16-like TRL1 (tomato RAD16-like 1) gene in the floral organs of tomato during anther meiosis and mature flower stages. The data on the induction of the TRL1 expression as a result of γ-irradiation is discussed. (authors)

  13. Microarray analysis of genes affected by salt stress in tomato | Zhou ...

    African Journals Online (AJOL)

    This study has provided a set of candidate genes, especially those in the regulatory machinery that can be further investigated to define salt stress in tomato and other plant species. Keywords: Antioxidants, cellular metabolism, cell wall, chaperonine, ethylene, protein kinase, tomato, transcription regulator, translation ...

  14. The incorporation gene of tomato fruit firmness (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2009-01-01

    Full Text Available Tomato fruit firmness is a polygenetic trait and depends on firmness components pericarp thickness, firmness of epidermis and firmness of flash. The accumulation of favourable traits ratio for each component (towards the increase of expression the fruit firmness can be increased. This paper deals with aspects of increasing fruit firmness by increasing firmness of epidermis and thickness of pericarp. By using genotypes with rin (ripening inhibitor gene, we were able to accomplish great firmness of fruits, especially firmness of flash. The expression of these traits cause the asynchronization of maturing process so the fruits do not over mature or soften. Genetic effects have been evaluated by researching the average values of fruit firmness in six diallel parent lines (D-150, S-49, S-35, H-52, Kg-z and SP-109 and progeny (P1, P2, F1, F2, BC1 and BC2 by applying additive dominant model with three and six parameters (Mather and Jinks, 1982. Mean values of fruit firmness for parents and progeny were significantly different. Firmness of fruits is a trait influenced first of all by additive gene since they were found in all researched combinations. Epystatic gene effect was important in inheriting process for all three two-gene interactions. The stabile duplicate type of epystsase was found, which in this case reduces the unfavourable effects of dominant genes of parents with soft fruits. .

  15. Nature of gene action for fruit quality characters of tomato (Solanum ...

    African Journals Online (AJOL)

    Prof. P. Hazra

    2013-05-15

    May 15, 2013 ... additive x additive type non-allelic interaction with negative sign for the characters, which will hinder ..... artificial gene dosage series in tomato to study the mechanisms by ... physical properties affected by food processing.

  16. Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions.

    Science.gov (United States)

    Medina, M I; Botella, M A; Quesada, M A; Valpuesta, V

    1997-05-05

    A tomato peroxidase gene, TPX2, that is only weakly expressed in the roots of young tomato seedlings is highly expressed in tomato suspension cells adapted to high external NaCl concentration. The protein encoded by this gene, with an isolectric point value of approximately 9.6, is found in the culture medium of the growing cells. Our data suggest that the expression of TPX2 in the salt-adapted cells is not the result of the elicitation imposed by the in vitro culture or the presence of high NaCl concentration in the medium.

  17. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    Science.gov (United States)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  18. Prospects: the tomato genome as a cornerstone for gene discovery

    Science.gov (United States)

    Those involved in the international tomato genome sequencing effort contributed to not only the development of an important genome sequence relevant to a major economic and nutritional crop, but also to the tomato experimental system as a model for plant biology. Without question, prior seminal work...

  19. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  20. Genome-wide identification and characterization of the bHLH gene family in tomato.

    Science.gov (United States)

    Sun, Hua; Fan, Hua-Jie; Ling, Hong-Qing

    2015-01-22

    The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. Tomato is an important vegetable crop, and its genome sequence has been published recently. However, the bHLH gene family of tomato has not been systematically identified and characterized yet. In this study, we identified 159 bHLH protein-encoding genes (SlbHLH) in tomato genome and analyzed their structures. Although bHLH domains were conserved among the bHLH proteins between tomato and Arabidopsis, the intron sequences and distribution of tomato bHLH genes were extremely different compared with Arabidopsis. The gene duplication analysis showed that 58.5% and 6.3% of SlbHLH genes belonged to low-stringency and high-stringency duplication, respectively, indicating that the SlbHLH genes are mainly generated via short low-stringency region duplication in tomato. Subsequently, we classified the SlbHLH genes into 21 subfamilies by phylogenetic tree analysis, and predicted their possible functions by comparison with their homologous genes of Arabidopsis. Moreover, the expression profile analysis of SlbHLH genes from 10 different tissues showed that 21 SlbHLH genes exhibited tissue-specific expression. Further, we identified that 11 SlbHLH genes were associated with fruit development and ripening (eight of them associated with young fruit development and three with fruit ripening). The evolutionary analysis revealed that 92% SlbHLH genes might be evolved from ancestor(s) originated from early land plant, and 8% from algae. In this work, we systematically identified SlbHLHs by analyzing the tomato genome sequence using a set of bioinformatics approaches, and characterized their chromosomal distribution, gene structures, duplication, phylogenetic relationship and expression profiles, as well predicted their possible biological functions via comparative analysis

  1. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato

    Directory of Open Access Journals (Sweden)

    Xing Ding

    2018-05-01

    Full Text Available The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6, of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA, gibberellin (GA, and salicylic acid (SA. We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.

  2. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  3. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato

    OpenAIRE

    Xing Ding; Jinhua Li; Yu Pan; Yue Zhang; Lei Ni; Yaling Wang; Xingguo Zhang

    2018-01-01

    The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into s...

  4. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    Science.gov (United States)

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  5. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  6. Novel mutations detected in avirulence genes overcoming tomato Cf resistance genes in isolates of a Japanese population of Cladosporium fulvum

    NARCIS (Netherlands)

    Iida, Y.; Hof, van 't P.M.J.; Beenen, H.G.; Mesarich, C.H.; Kubota, M.; Stergiopoulos, I.; Mehrabi, A.; Notsu, A.; Fujiwara, K.; Bahkali, A.; Abd-Elsalam, K.; Collemare, J.; Wit, de P.J.G.M.

    2015-01-01

    Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction

  7. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    Science.gov (United States)

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  8. Flexible tools for gene expression and silencing in tomato

    NARCIS (Netherlands)

    Fernandez, A.I.; Viron, N.; Alhagdow, M.; Karimi, M.; Jones, M.; Amsellem, Z.; Sicard, A.; Czerednik, A.; Angenent, G.C.; Grierson, D.; May, S.; Seymour, G.; Eshed, Y.; Lemaire-Chamley, M.; Rothan, C.; Hilson, P.

    2009-01-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed

  9. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    Tomato (Solanum lycopersicum) is one of the most important vegetables in the world with significant importance for human health and nutrition. This species has long served as model system for plant genetics, development, physiology, pathology, and fleshy fruit ripening, resulting in the accumulation of many genetic and ...

  10. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Simbaqueba, Jaime; Cotes, Alba Marina; Barrero, Luz Stella

    2011-01-01

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  11. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

    Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function

  12. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  13. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    Directory of Open Access Journals (Sweden)

    Daniel Fulop

    2016-10-01

    Full Text Available Quantitative Trait Loci (QTL mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum and its more distant interfertile relatives typically follow a near isogenic line (NIL design, such as the S. pennellii Introgression Line (IL population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.

  14. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Galvez, H.F.; Narciso, J.O.; Opina, N.L.; Canama, A.O.; Colle, M.G.; Latiza, M.A.; Caspillo, C.L.; Bituin, J.L.; Frankie, R.B.; Hautea, D.M.

    2005-01-01

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  15. Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene.

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    Full Text Available Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS, ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process.

  16. Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene

    Science.gov (United States)

    Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2013-01-01

    Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759

  17. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    Science.gov (United States)

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (Plycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  18. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  19. Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro.

    Science.gov (United States)

    Ishida, B K; Jenkins, S M; Say, B

    1998-03-01

    In vitro culture of VFNT Cherry tomato sepals (calyx) at 16-21 degrees C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.

  20. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  1. Tomato Fruits Show Wide Phenomic Diversity but Fruit Developmental Genes Show Low Genomic Diversity.

    Directory of Open Access Journals (Sweden)

    Vijee Mohan

    Full Text Available Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS, carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1 involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima'D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future.

  2. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    jiahong yu

    2016-08-01

    Full Text Available The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps in plants, but little is known about this family in tomato (Solanum lycopersicum, an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20 gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83% were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root and reproductive organs (floral bud and flower, suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript

  3. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  5. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  6. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... importance for human health and nutrition. This species has ... function to genes, proteins and metabolites is still a daunting task. Major challenges ... relation of the expression pattern of genes with the accu- mulation pattern of ..... M, Gordon JS, Rose, JKC, Martin G, Tanksley SD, Bouzayen M,. Jahn MM ...

  7. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity.

    Science.gov (United States)

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization.

  8. Microarray analysis of genes affected by salt stress in tomato

    African Journals Online (AJOL)

    LANDA

    isoforms of cytochrome P450, genes for polyamine biosynthesis (putrescine and proline) ..... CAB97048 mitochondrial half-ABC transporter [Arabidopsis thaliana] up .... AAC72194 pyruvate dehydrogenase E1 beta subunit isoform 3 [Zea mays].

  9. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  10. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  11. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... approaches could be combined in order to identify candidate genes for the genetic control of ascorbic ..... applied to other traits under the complex control of many ... Engineering increased vitamin C levels in ... Chem. Biol. 13:532–538. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002). A.

  12. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  13. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  14. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Lohuis, H.; Hedil, M.; Lent, van J.W.M.; Kormelink, R.J.M.

    2013-01-01

    As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned

  15. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    Science.gov (United States)

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  16. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-08-01

    Full Text Available Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs. Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170, SlFRG12 (Solyc04g009770, SlFRG16 (Solyc10g081190, SlFRG27 (Solyc06g007510, and SlFRG37 (Solyc11g005330 were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070 and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  17. Effect of ethylene action inhibitors upon wound-induced gene expression in tomato pericarp

    International Nuclear Information System (INIS)

    Henstrand, J.M.; Handa, A.K.

    1989-01-01

    The contribution of wound-ethylene to wound-induced gene expression was investigated in unripe tomato pericarp using inhibitors of ethylene action. Wounded unripe tomato pericarp was treated with 2,5-norbornadiene or silver thiosulfate to inhibit specifically the induction of ethylene-dependent mRNA species. Poly(A) + RNAs isolated from these tissues after 12 hours of wounding were translated in vitro in a rabbit reticulocyte lysate system and [ 35 S]methionine-labeled polypeptides were compared to unwounded controls after separation by one and two-dimensional polyacrylamide gel electrophoresis. Results show that mechanical wounding induces a dramatic shift in gene expression (over 50 mRNA species) but expression of less than 15% of these genes is affected by the treatment with ethylene action inhibitors. A selective decrease in mRNAs coding for a 37 kilodalton doublet and 75 kilodalton polypeptides is observed in 2,5-norbornadiene and silver thiosulfate treated wounded pericarp. Levels of hydroxyproline-rich glycoprotein mRNAs induced in wounded tissue were not influenced by inhibitors of ethylene action

  18. Novel Mutations Detected in Avirulence Genes Overcoming Tomato Cf Resistance Genes in Isolates of a Japanese Population of Cladosporium fulvum.

    Directory of Open Access Journals (Sweden)

    Yuichiro Iida

    Full Text Available Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the virulence spectrum of 133 C. fulvum isolates collected from 22 prefectures in Japan, and subsequently sequenced the avirulence (Avr genes Avr2, Avr4, Avr4E, Avr5 and Avr9 to determine the molecular basis of overcoming Cf genes. Twelve races of C. fulvum with a different virulence spectrum were identified, of which races 9, 2.9, 4.9, 4.5.9 and 4.9.11 occur only in Japan. The Avr genes in many of these races contain unique mutations not observed in races identified elsewhere in the world including (i frameshift mutations and (ii transposon insertions in Avr2, (iii point mutations in Avr4 and Avr4E, and (iv deletions of Avr4E, Avr5 and Avr9. New races have developed by selection pressure imposed by consecutive introductions of Cf-2, Cf-4, Cf-5 and Cf-9 genes in commercially grown tomato cultivars. Our study shows that molecular variations to adapt to different Cf genes in an isolated C. fulvum population in Japan are novel but overall follow similar patterns as those observed in populations from other parts of the world. Implications for breeding of more durable C. fulvum resistant varieties are discussed.

  19. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Li Xiao Hui

    2015-09-01

    Full Text Available S-adenosylhomocysteine hydrolase (SAHH, catalyzing the reversible hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.

  20. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  1. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  2. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  3. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato.

    Science.gov (United States)

    Meng, Xia; Wang, Jie-Ru; Wang, Guo-Dong; Liang, Xiao-Qing; Li, Xiao-Dong; Meng, Qing-Wei

    2015-03-01

    LeAN2 is an anthocyanin-associated R2R3-MYB transcription factor, but little is known about its function in imparting thermo-tolerance to higher plants. To examine the function of LeAN2 in the regulation of heat stress in tomato, LeAN2 was isolated and transgenic tomato plants were obtained. Overexpression of LeAN2 under the control of the CaMV35S promoter in tomato induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway as well as anthocyanin accumulation in transgenic tomato plants. Transgenic tomato plants showed enhanced tolerance to heat stress by maintaining higher fresh weight (FW), net photosynthetic rate (Pn) and maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with wild-type (WT) plants. Furthermore, transgenic plants showed higher non-enzymatic antioxidant activity, lower levels of reactive oxygen species (ROS), and higher contents of D1 protein than that in WT plants under heat stress. These results indicate that LeAN2 had an important function in heat stress resistance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  5. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  6. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    Science.gov (United States)

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  7. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model.

    Science.gov (United States)

    Wu, Jian; Peng, Zhen; Liu, Songyu; He, Yanjun; Cheng, Lin; Kong, Fuling; Wang, Jie; Lu, Gang

    2012-04-01

    Auxin plays key roles in a wide variety of plant activities, including embryo development, leaf formation, phototropism, fruit development and root initiation and development. Auxin/indoleacetic acid (Aux/IAA) genes, encoding short-lived nuclear proteins, are key regulators in the auxin transduction pathway. But how they work is still unknown. In order to conduct a systematic analysis of this gene family in Solanaceae species, a genome-wide search for the homologues of auxin response genes was carried out. Here, 26 and 27 non redundant AUX/IAAs were identified in tomato and potato, respectively. Using tomato as a model, a comprehensive overview of SlIAA gene family is presented, including the gene structures, phylogeny, chromosome locations, conserved motifs and cis-elements in promoter sequences. A phylogenetic tree generated from alignments of the predicted protein sequences of 31 OsIAAs, 29 AtIAAs, 31 ZmIAAs, and 26 SlIAAs revealed that these IAAs were clustered into three major groups and ten subgroups. Among them, seven subgroups were present in both monocot and dicot species, which indicated that the major functional diversification within the IAA family predated the monocot/dicot divergence. In contrast, group C and some other subgroups seemed to be species-specific. Quantitative real-time PCR (qRT-PCR) analysis showed that 19 of the 26 SlIAA genes could be detected in all tomato organs/tissues, however, seven of them were specifically expressed in some of tomato tissues. The transcript abundance of 17 SlIAA genes were increased within a few hours when the seedlings were treated with exogenous IAA. However, those of other six SlIAAs were decreased. The results of stress treatments showed that most SIIAA family genes responded to at least one of the three stress treatments, however, they exhibited diverse expression levels under different abiotic stress conditions in tomato seedlings. SlIAA20, SlIAA21 and SlIAA22 were not significantly influenced by stress

  8. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    Science.gov (United States)

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b 6 /f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (F v /F m , rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Science.gov (United States)

    Bargsten, Joachim W; Folta, Adam; Mlynárová, Ludmila; Nap, Jan-Peter

    2013-01-01

    As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  10. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Directory of Open Access Journals (Sweden)

    Joachim W Bargsten

    Full Text Available As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes. The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  11. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.

    Science.gov (United States)

    Huang, Zejun; Van Houten, Jason; Gonzalez, Geoffrey; Xiao, Han; van der Knaap, Esther

    2013-04-01

    Members of the plant-specific gene families IQD/SUN, OFP and YABBY are thought to play important roles in plant growth and development. YABBY family members are involved in lateral organ polarity and growth; OFP members encode transcriptional repressors, whereas the role of IQD/SUN members is less clear. The tomato fruit shape genes SUN, OVATE, and FASCIATED belong to IQD/SUN, OFP and the YABBY gene family, respectively. A gene duplication resulting in high expression of SUN leads to elongated fruit, whereas a premature stop codon in OVATE and a large inversion within FASCIATED control fruit elongation and a flat fruit shape, respectively. In this study, we identified 34 SlSUN, 31 SlOFP and 9 SlYABBY genes in tomato and identified their position on 12 chromosomes. Genome mapping analysis showed that the SlSUN, SlOFP, and SlYABBY genes were enriched on the top and bottom segments of several chromosomes. In particular, on chromosome 10, a cluster of SlOFPs were found to originate from tandem duplication events. We also constructed three phylogenetic trees based on the protein sequences of the IQ67, OVATE and YABBY domains, respectively, from members of these families in Arabidopsis and tomato. The closest putative orthologs of the Arabidopsis and tomato genes were determined by the position on the phylogenetic tree and sequence similarity. Furthermore, expression analysis showed that some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Also, certain family members overlapped with known QTLs controlling fruit shape in Solanaceous plants. Combined, these results may help elucidate the roles of SUN, OFP and YABBY family members in plant growth and development.

  12. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real

  13. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    Science.gov (United States)

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-01-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant. PMID:7896694

  14. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    Science.gov (United States)

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-04-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant.

  15. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  16. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ishibashi

    Full Text Available During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV, and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on

  17. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2016-08-01

    Full Text Available Diallyl disulfide (DADS is a volatile organosulfur compound derived from garlic (Allium sativum L., and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L. seed germination, root growth, mitotic index and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs, auxin transport genes (SlPINs and expansin genes (EXPs in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM. This result suggests that tomato root growth

  18. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  19. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk.In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA or most (GA photoreceptor genes is down regulated by these hormones.Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.

  20. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  1. Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato

    Institute of Scientific and Technical Information of China (English)

    ZHAO Baimei; CAO Haipeng; DUAN Junjie; YANG Wencai

    2015-01-01

    Three crosses,Hawaii7981×PI128216,Hawaii7981×LA1589,and PI128216×LA1589,were made to develop F2 populations for testing allelism among three genes Xv3,Rx4,and RxLA1589 conferring resistance to bacterial spot caused by Xanthomonas perforans race T3 in tomato. Each population consisted of 535–1 655 individuals. An infiltration method was used to inoculate the leaves of the parental and F2 plants as well as the susceptible control OH88119 for detecting hypersensitive resistance(HR). The results showed that all the tomato plants except OH88119 had HR to race T3,indicating that Xv3,Rx4,and RxLA1589 were allelic genes. Genomic DNA fragments of the Rx4 alleles from Hawaii7981,PI128216,and LA1589 were amplified using gene-specific primers and sequenced. No sequence variation was observed in the coding region of Rx4 in the three resistant lines. Based on the published map positions of these loci as well as the allelic tests and sequence data obtained in this study,we speculated that Xv3,Rx4,and RxLA1589 were the same gene. The results will provide useful information for understanding the mechanism of resistance to race T3 and developing resistant tomato varieties.

  2. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C₂H₂ zinc finger transcription factor.

    Science.gov (United States)

    Rai, Avinash Chandra; Singh, Major; Shah, Kavita

    2013-01-01

    Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C₂H₂ zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T₀ tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T₂ generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H₂O₂ level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception

    NARCIS (Netherlands)

    Husaineid, S.H.; Kok, R.A.; Schreuder, M.E.L.; Plas, van der L.H.W.; Krol, van der A.R.

    2007-01-01

    Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling

  4. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    Science.gov (United States)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  5. Virus-induced Gene Silencing-based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-08-01

    Full Text Available Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst DC3000 as well as to defense signaling hormones (e.g. salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4 or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7 or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7 and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  6. Regulation of Expression of the prb-1b / ACC Deaminase gene by UV-B in Transgenic tomatoes

    International Nuclear Information System (INIS)

    Tamot, B.K.; Pauls, K.P.; Glick, R.

    2003-01-01

    Transgenic tomato plants with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene from Enterobacter cloacae UWA4 under the control of a pathogenesis-related promoter (prb-1b) from tobacco were challenged by abiotic stresses to determine the expression patterns of the transgene. No ACC deaminase RNA or protein was detected bu RT-PCR and in western blots prepared from leaf proteins of transgenic plants after wounding or treatment with alpha-amino butyric acid, xylanase, ethephon, salicylic acid, jasmonic acid , ethylene, or ethylene plus jasmonic acid. However, expression of the ACC deaminase transgene was observed in leaves and roots of transformed tomato lines exposed to UV light. The UV response required a minimum of 48 h of exposure and was specific to UV-B light

  7. Comparative profiling of miRNAs and target gene identification in distant-grafting between tomato and Lycium (goji berry

    Directory of Open Access Journals (Sweden)

    A B M Khaldun

    2016-10-01

    Full Text Available Local translocation of small RNAs between cells is proved. Long distance translocation between rootstock and scion is also well documented in the homo-grafting system, but the process in distant-grafting is widely unexplored where rootstock and scion belonging to different genera. Micro RNAs are a class of small, endogenous, noncoding, gene silencing RNAs that regulate target genes of a wide range of important biological pathways in plants. In this study, tomato was grafted onto goji (Lycium chinense Mill. to reveal the insight of miRNAs regulation and expression patterns within a distant-grafting system. Goji is an important traditional Chinese medicinal plant with enriched phytochemicals. Illumina sequencing technology has identified 68 evolutionary known miRNAs of 37 miRNA families. Moreover, 168 putative novel miRNAs were also identified. Compared with control tomato, 43 (11 known and 32 novels and 163 (33 known and 130 novels miRNAs were expressed significantly different in shoot and fruit of grafted tomato, respectively. The fruiting stage was identified as the most responsive in the distant-grafting approach and 123 miRNAs were found as up-regulating in the grafted fruit which is remarkably higher compare to the grafted shoot tip (28. Potential targets of differentially expressed miRNAs were found to be involved in diverse metabolic and regulatory pathways. ADP binding activities, molybdopterin synthase complex and RNA helicase activity were found as enriched terms in GO (Gene Ontology analysis. Additionally, ‘metabolic pathways’ was revealed as the most significant pathway in KEGG (Kyoto Encyclopedia of Genes and Genomes analysis. The information of the small RNA transcriptomes that are obtained from this study might be the first miRNAs elucidation for a distant-grafting system, particularly between goji and tomato. The results from this study will provide the insights into the molecular aspects of miRNA-mediated regulation in the

  8. Microarray analysis of gene expression patterns of high lycopene tomato generated from seeds after long-term space flight

    Science.gov (United States)

    Lu, Jinying; Ren, Chunxiao; Pan, Yi; Nechitailo, Galina S.; Liu, Min

    Lycopene content is a most vital trait of tomatoes due to the role of lycopene in reducing the risk of some kinds of cancers. In this experiment, we gained a high lycopene (hl) tomato (named HY-2), after seven generations of self-cross selection, from seeds Russian MNP-1 carried in Russia MIR space station for six years. HPLC result showed that the lycopene content was 1.6 times more than that in Russian MNP-1 (the wild type). Microarray analysis presented the general profile of differential expressed genes at the tomato developmental stage of 7DPB (days post breaker). One hundred and forty three differential expression genes were identified according to the following criterion: the average changes were no less than 1.5 folds with q-value (similar to FDR) less than 0.05 or changes were no less than 1.5 folds in all three biological replications. Most of the differential expressed genes were mainly involved in metabolism, response to stimulus, biosynthesis, development and regulation. Particularly, we discussed the genes involved in protein metabolism, response to unfolded protein, carotenoid biosynthesis and photosynthesis that might be related to the fruit development and the accumulation of lycopene. What's more, we conducted QRT-PCR validation of five key genes (Fps, CrtL-b, CrtR-b, Zep and Nxs) in the lycopene biosynthesis pathway through time courses and that provided the direct molecular evidence for the hl phenotype. Our results demonstrate that long-term space flight, as a rarely used tool, can positively cause some beneficial mutations in the seeds and thus to help to generate a high quality variety, combined with ground selections.

  9. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    Science.gov (United States)

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system.

    Science.gov (United States)

    Dahan-Meir, Tal; Filler-Hayut, Shdema; Melamed-Bessudo, Cathy; Bocobza, Samuel; Czosnek, Henryk; Aharoni, Asaph; Levy, Avraham A

    2018-04-18

    Current breeding relies mostly on random mutagenesis and recombination to generate novel genetic variation. However, targeted genome editing is becoming an increasingly important tool for precise plant breeding. Using the CRISPR-Cas system combined with the bean yellow dwarf virus rolling circle replicon we optimized a method for targeted mutagenesis and gene replacement in tomato. The carotenoid isomerase (CRTISO) and phytoene synthase 1 (PSY1) genes from the carotenoid biosynthesis pathway were chosen as targets due to their easily detectable change of phenotype. We took advantage of the geminiviral replicon amplification as a mean to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double strand break (DSB) in the target gene, via homologous recombination. Mutagenesis experiments, performed in the Micro-Tom variety achieved precise modification of the CRTISO and PSY1 loci at an efficiency of up to 90%. In the gene targeting experiments, our target was a fast-neutron-induced crtiso allele that contained a 281bp deletion. This deletion was repaired with the wildtype sequence through homologous recombination between the CRISPR-Cas-induced DSB in the crtiso target and the amplified donor in 25% of the plants transformed. This shows that efficient gene targeting can be achieved in the absence of selection markers or reporters using a single and modular construct that is adaptable to other tomato targets and other crops. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit.

    Science.gov (United States)

    Hovav, Ran; Chehanovsky, Noam; Moy, Michal; Jetter, Reinhard; Schaffer, Arthur A

    2007-11-01

    One of the most intriguing phenomena of fleshy fruit is the ability to maintain high water content at maturity, even following harvest. This is accomplished by a fruit cuticle that is highly impermeable to water diffusion. In this paper, we report on a novel genotype of tomato, developed via introgression from the wild species Solanum habrochaites, which is characterized by microfissuring of the fruit cuticle and dehydration of the mature fruit. The microfissure/dehydration phenotype is inherited as a single gene, termed Cwp1 (cuticular water permeability). The gene was fine mapped, and its identity was determined by map-based cloning and differential expression analysis in near-isogenic lines. Causality of the Cwp1 gene was shown by the heterologous transgenic expression of the gene in the cultivated tomato, which caused a microfissured fruit cuticle leading to dehydrated fruit. Cwp1 encodes for a protein of unidentified function in the DUF833 domain family. The gene is expressed in the fruit epidermis of the dehydrating genotype harbouring the wild-species introgression, but not in the cultivated tomato. It is expressed only in the primitive green-fruited wild tomato species, but is not expressed in the cultivated Solanum lycopersicum and the closely related Solanum cheesmaniae and Solanum pimpinellifolium, indicating a pre-adaptive role for Cwp1 silencing in the evolution and domestication of the cultivated tomato.

  12. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato.

    Science.gov (United States)

    Liu, Taibo; Huang, Binbin; Chen, Lin; Xian, Zhiqiang; Song, Shiwei; Chen, Riyuan; Hao, Yanwei

    2018-06-30

    Polyamines (PAs), including putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine (T-Spm), play key roles in plant development, including fruit setting and ripening, morphogenesis, and abiotic/biotic stress. Their functions appear to be intimately related to their synthesis, which occurs via arginine/ornithine decarboxylase (ADC/ODC), Spd synthase (SPDS), Spm synthase (SPMS), and Acaulis5 (ACL5), respectively. Unfortunately, the expression and function of these PA synthesis-relate genes during specific developmental process or under stress have not been fully elucidated. Here, we present the results of a genome-wide analysis of the PA synthesis genes (ADC, ODC, SPDS, SPMS, ACL5) in the tomato (Solanum lycopersicum). In total, 14 PA synthesis-related genes were identified. Further analysis of their structures, conserved domains, phylogenetic trees, predicted subcellular localization, and promoter cis-regulatory elements were analyzed. Furthermore, we also performed experiments to evaluate their tissue expression patterns and under hormone and various stress treatments. To our knowledge, this is the first study to elucidate the mechanisms underlying PA function in this variety of tomato. Taken together, these data provide valuable information for future functional characterization of specific genes in the PA synthesis pathway in this and other plant species. Although additional research is required, the insight gained by this and similar studies can be used to improve our understanding of PA metabolism ultimately leading to more effective and consistent plant cultivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An in vitro method for screening for the presence of thepat-2 gene in tomatoes (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Young, T E; Juvik, J A; Sullivan, J G; Skirvin, R M

    1990-01-01

    Under field conditions,pat-2, the gene which conditions parthenocarpy in tomatoes, is recessive. A simple method has been devised for distinguishing the heterozygote from the two homozygotes using tissue culture. Ovaries of plants segregating for thepat-2 gene were excised and cultured on a medium containing 100 ppm gibberellic acid. After three weeks in culture, three distinct ovary sizes could be seen. It was shown, using F 3 progeny tests, that the largest ovaries corresponded to those plants homozygous for thepat-2 gene, the smallest ovaries corresponded to those plants homozygous for the wild type allele, and the intermediate sized ovaries were the heterozygotes. The ability to identify the heterozygote would greatly simplify a backcross breeding program aimed at incorporating thepat-2 gene into commercial cultivars by eliminating the need for an F 3 progeny test to determine the genotype of a plant.

  15. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers

    NARCIS (Netherlands)

    Gorguet, B.J.M.; Schipper, E.H.; Heusden, van A.W.; Lindhout, P.

    2006-01-01

    Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order

  16. The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis.

    Science.gov (United States)

    Martín-Pozuelo, Gala; Navarro-González, Inmaculada; González-Barrio, Rocío; Santaella, Marina; García-Alonso, Javier; Hidalgo, Nieves; Gómez-Gallego, Carlos; Ros, Gaspar; Periago, María Jesús

    2015-09-01

    Tomato products are a dietary source of natural antioxidants, especially lycopene, which accumulates in the liver, where it exerts biological effects. Taking into consideration this fact, the aim of the present study was to ascertain the effect of tomato consumption on biomarkers and gene expression related to lipid metabolism in rats with induced steatosis. Adult male Sprague-Dawley rats (8 weeks old) were randomly grouped (n = 6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high fat diet and water) and HL (high fat diet and tomato juice). After 7 weeks, rats were euthanized, and plasma, urine, feces and liver were sampled to analyze the biomarkers related to lipid metabolism, inflammation and oxidative stress. The H diet induced steatosis (grade II) in the HA and HL groups, which was confirmed by the levels of alanine aminotransferase and aspartate aminotransferase, histological examination and the presence of dyslipidemia. The intake of tomato juice led to an accumulation of all-E and Z-lycopene and its metabolites in the livers of these animals; levels were higher in HL than in NL, apparently due to higher absorption (63.07 vs. 44.45%). A significant improvement in the plasma level of high-density lipoprotein was observed in the HL group compared with HA animals, as was an alleviation of oxidative stress through reduction of isoprostanes in the urine. In relation to fatty acid gene expression, an overexpression of several genes related to fatty acid transport, lipid hydrolysis and mitochondrial and peroxisomal β-fatty acid oxidation was observed in the HL group. The consumption of tomato juice and tomato products reduced hallmarks of steatosis, plasmatic triglycerides and very low-density lipoproteins, and increased lipid metabolism by inducing an overexpression of genes involved in more efficient fatty acid oxidation.

  17. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs.

    Science.gov (United States)

    Święcicka, Magdalena; Skowron, Waldemar; Cieszyński, Piotr; Dąbrowska-Bronk, Joanna; Matuszkiewicz, Mateusz; Filipecki, Marcin; Koter, Marek Daniel

    2017-04-01

    Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato.

    Science.gov (United States)

    Zhang, Zhenzhu; Chen, Xiuling; Guan, Xin; Liu, Yang; Chen, Hongyu; Wang, Tingting; Mouekouba, Liana Dalcantara Ongouya; Li, Jingfu; Wang, Aoxue

    2014-01-01

    Homeodomain-leucine zipper (HD-Zip) proteins are a kind of transcriptional factors that play a vital role in plant growth and development. However, no detailed information of HD-Zip family in tomato has been reported till now. In this study, 51 HD-Zip genes (SlHZ01-51) in this family were identified and categorized into 4 classes by exon-intron and protein structure in tomato (Solanum lycopersicum) genome. The synthetical phylogenetic tree of tomato, Arabidopsis and rice HD-Zip genes were established for an insight into their evolutionary relationships and putative functions. The results showed that the contribution of segmental duplication was larger than that of tandem duplication for expansion and evolution of genes in this family of tomato. The expression profile results under abiotic stress suggested that all SlHZ I genes were responsive to cold stress. This study will provide a clue for the further investigation of functional identification and the role of tomato HD-Zip I subfamily in plant cold stress responses and developmental events.

  19. Identification of a Candidate Gene in Solanum habrochaites for Resistance to a Race 1 Strain of Pseudomonas syringae pv. tomato

    Directory of Open Access Journals (Sweden)

    Zhilong Bao

    2015-11-01

    Full Text Available Bacterial speck disease caused by pv. ( is a persistent problem on tomato ( L.. Resistance against race 0 strains is conferred by the Pto protein, which recognizes either of two pathogen effectors: AvrPto or AvrPtoB. However, current tomato varieties do not have resistance to the increasingly common race 1 strains, which lack these effectors. We identified accessions of S. Knapp & D. M. Spooner that are resistant to the race 1 strain T1. Genome sequence comparisons of T1 and two strains that are virulent on these accessions suggested that known microbe-associated molecular patterns (MAMPs or effectors are not involved in the resistance. We developed an F population from a cross between one T1-resistant accession, LA2109, and a susceptible tomato cultivar to investigate the genetic basis of this resistance. Linkage analysis using whole-genome sequence of 58 F plants identified quantitative trait loci (QTL, , in a 5.8-Mb region on chromosome 2, and , in a 52.4-Mb region on chromosome 8, which account for 24 and 26% of the phenotypic variability, respectively. High-resolution mapping of confirmed it contributed to T1 resistance and delimited it to a 1060-kb region containing 139 genes, including three encoding receptor-like proteins (RLPs and 17 encoding receptor-like protein kinases (RLKs. One RLK gene, Solyc02g072470, is a promising candidate for , as it is highly expressed in LA2109 and induced on treatment with MAMPs. might be useful for enhancing resistance to race 1 strains and its future characterization could provide insights into the plant immune system.

  20. Cytogenetic and molecular studies on tomato chromosomes using diploid tomato and tomato monosomic additions in tetraploid potato

    NARCIS (Netherlands)

    Chang, S.B.

    2004-01-01

    Geneticists have studied the tomato, Lycopersicon esculentum, for several decades and now obtained a saturated linkage map on which numerous genes controlling morphological traits and disease resistances, and molecular markers have been positioned. They also investigated the chromosomes of tomato,

  1. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    Czech Academy of Sciences Publication Activity Database

    Albacete, A.; Cantero-Navarro, E.; Grosskinsky, D. K.; Arias, M.L.; Balibrea, M. E.; Bru, R.; Fragner, L.; Ghanem, M. E.; de la Cruz Gonzalez, M.; Hernández, J. A.; Martínez-Andújar, C.; van der Graaff, E.; Weckwerth, W.; Zellnig, G.; Pérez-Alfocea, F.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 3 (2015), s. 863-878 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Cell wall invertase * cytokinins * drought stress * ethylene * source–sink relationships * tomato Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  2. Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots.

    Science.gov (United States)

    Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat

    2012-11-01

    The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in

  3. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression

    Directory of Open Access Journals (Sweden)

    Merino Fuencisla

    2010-10-01

    Full Text Available Abstract Background Verticillium dahliae is a fungal pathogen that infects a wide range of hosts. The only known genes for resistance to Verticillium in the Solanaceae are found in the tomato (Solanum lycopersicum Ve locus, formed by two linked genes, Ve1 and Ve2. To characterize the resistance response mediated by the tomato Ve gene, we inoculated two nearly isogenic tomato lines, LA3030 (ve/ve and LA3038 (Ve/Ve, with V. dahliae. Results We found induction of H2O2 production in roots of inoculated plants, followed by an increase in peroxidase activity only in roots of inoculated resistant plants. Phenylalanine-ammonia lyase (PAL activity was also increased in resistant roots 2 hours after inoculation, while induction of PAL activity in susceptible roots was not seen until 48 hours after inoculation. Phenylpropanoid metabolism was also affected, with increases in ferulic acid, p-coumaric acid, vanillin and p-hydroxybenzaldehyde contents in resistant roots after inoculation. Six tomato PAL cDNA sequences (PAL1 - PAL6 were found in the SolGenes tomato EST database. RT-PCR analysis showed that these genes were expressed in all organs of the plant, albeit at different levels. Real-time RT-PCR indicated distinct patterns of expression of the different PAL genes in V. dahliae-inoculated roots. Phylogenetic analysis of 48 partial PAL cDNAs corresponding to 19 plant species grouped angiosperm PAL sequences into four clusters, suggesting functional differences among the six tomato genes, with PAL2 and PAL6 presumably involved in lignification, and the remaining PAL genes implicated in other biological processes. An increase in the synthesis of lignins was found 16 and 28 days after inoculation in both lines; this increase was greater and faster to develop in the resistant line. In both resistant and susceptible inoculated plants, an increase in the ratio of guaiacyl/syringyl units was detected 16 days after inoculation, resulting from the lowered amount

  4. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    Science.gov (United States)

    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expressio...

  5. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition

    Directory of Open Access Journals (Sweden)

    O'Brien Kimberly

    2008-06-01

    Full Text Available Abstract Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC clone library (87 Mb and sequencing of 22 potato BAC clones (2.9 Mb. The GC content of potato is very similar to Solanum lycopersicon (tomato and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that

  6. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  7. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2018-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  8. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    Directory of Open Access Journals (Sweden)

    Aliza Hariton Shalev

    2016-07-01

    Full Text Available The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV, in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector.

  9. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population.

    Science.gov (United States)

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2016-06-02

    Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population

    Science.gov (United States)

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2016-01-01

    Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat. PMID:27189991

  11. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour

    NARCIS (Netherlands)

    Ballester, A.R.; Molthoff, J.W.; Vos, de C.H.; Lintel Hekkert, B.; Orzaez, D.; Fernandez-Moreno, J.P.; Tripodi, S.; Grandillo, S.; Martin, C.; Heldens, J.; Ykema, M.; Granell, A.; Bovy, A.G.

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines

  12. Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato

    Czech Academy of Sciences Publication Activity Database

    Balarynová, Jana; Danihlík, J.; Fellner, Martin

    2018-01-01

    Roč. 40, č. 2 (2018), č. článku 27. ISSN 0137-5881 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : male-sterile mutant * arabidopsis-thaliana * seed-germination * abscisic-acid * solanum-lycopersicon * nitric-oxide * 7b-1 * protein * hypocotyl * responses * Tomato * Seed * Aquaporins * Blue light * 7B-1 mutant * Mannitol * PIPs Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.364, year: 2016

  13. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    OpenAIRE

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-01-01

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m l...

  14. Age-related Resistance and the Defense Signaling Pathway of Ph-3 Gene Against Phytophthora infestans in Tomatoes

    Directory of Open Access Journals (Sweden)

    Sayed Rashad Ali Shah

    2015-09-01

    Full Text Available Resistance (R genes against plant pathogens often have age-related resistance (ARR effects. However, the mechanism involved in this phenomenon remains unknown. In this paper, Solanum lycopersicum ‘CLN2037B’ and S. pimpinellifolium ‘L3708’ harboring the Ph-3 gene, as well as S. habrochaites ‘LA2099’, ‘LA1777’ and ‘LA1033’ harboring quantitative trait loci (QTLs, were tested to investigate age-related resistance against late blight (LB; caused by Phytophthora infestans in the three-leaf stage of the plants. The results demonstrated that the QTL-related LB resistance showed the same age-related resistance as the Ph-3-mediated resistance at the six- and nine-leaf stages compared with the three-leaf stage. This indicated that there is a common defense mechanism in tomatoes against P. infestans via ARR. In addition, we combined ethylene (ET, salicylic acid (SA and jasmonic acid (JA mutants with virus-induced gene silencing (VIGS to study the Ph-3-dependent resistance signaling pathway. The results showed that ethylene and salicylic acid, but not jasmonic acid, are involved in the LB resistance mediated by the Ph-3 gene.

  15. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes.

    Science.gov (United States)

    Wang, Lin; Zhao, Yu; Reiter, Russel J; He, Changjiu; Liu, Guoshi; Lei, Qiong; Zuo, Bixiao; Zheng, Xiao Dong; Li, Qingtian; Kong, Jin

    2014-03-01

    In animals, the melatonin biosynthesis pathway has been well defined after the isolation and identification of the four key genes that are involved in the conversion of tryptophan to melatonin. In plants, there are special alternative catalyzing steps, and plant genes share very low homology with the animal genes. It was of interest to examine the phenotype of transgenic Micro-Tom tomato plants overexpressing the homologous sheep oAANAT and oHIOMT genes responsible for the last two steps of melatonin synthesis. The oAANAT transgenic plants have higher melatonin levels and lower indoleacetic acid (IAA) contents than control due to the competition for tryptophan, the same precursor for both melatonin and IAA. Therefore, the oAANAT lines lose the 'apical dominance' inferring that melatonin likely lacks auxin activity. The significantly higher melatonin content in oHIOMT lines than oAANAT lines provides new proof for the important role of ASMT in plant melatonin synthesis. In addition, the enhanced drought tolerance of oHIOMT lines will also be an important contribution for plant engineering. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    Science.gov (United States)

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Science.gov (United States)

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto

  18. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense.

    Directory of Open Access Journals (Sweden)

    Anja C Hörger

    Full Text Available Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors and host resistance genes such as the major histocompatibility complex (MHC in mammals or resistance (R genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards" can sense modification of target molecules in the host (the "guardees" by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3 and its guard (Cf-2. We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in

  19. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle

    Science.gov (United States)

    2013-01-01

    Background Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. Results Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle Conclusions Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics. PMID:23799990

  20. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.

    Science.gov (United States)

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria

    2016-08-12

    To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the

  1. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number.

    Science.gov (United States)

    Khuong, Thi Thu Huong; Crété, Patrice; Robaglia, Christophe; Caffarri, Stefano

    2013-09-01

    An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.

  2. Mi-1.2, an R gene for aphid resistance in tomato, has direct negative effects on a zoophytophagous biocontrol agent, Orius insidiosus.

    Science.gov (United States)

    Pallipparambil, Godshen R; Sayler, Ronald J; Shapiro, Jeffrey P; Thomas, Jean M G; Kring, Timothy J; Goggin, Fiona L

    2015-02-01

    Mi-1.2 is a single dominant gene in tomato that confers race-specific resistance against certain phloem-feeding herbivores including aphids, whiteflies, psyllids, and root-knot nematodes. Few prior studies have considered the potential non-target effects of race-specific resistance genes (R genes), and this paper evaluates the compatibility of Mi-mediated resistance in tomato with a beneficial zoophytophagous predator, Orius insidiosus (Say). In addition to preying on aphids and other pests, this piercing-sucking insect also feeds from the xylem, epidermis, and/or mesophyll, and oviposits within plant tissues. Comparison of O. insidiosus confined to isogenic tomato plants with and without Mi-1.2 revealed that immatures of O. insidiosus had lower survival on resistant plants even when the immatures were provisioned with prey that did not feed on the host plant. Molecular gut content analysis confirmed that adults and immatures of O. insidiosus feed on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, and bioassays suggest that resistance does not affect oviposition rates, plant sampling, or prey acceptance by O. insidiosus adults. These results demonstrate a direct negative impact of R-gene-mediated host plant resistance on a non-target beneficial species, and reveal that Mi-mediated resistance can impact organisms that do not feed on phloem sap. Through laser capture microdissection and RT-PCR, Mi-1.2 transcripts were detected in the epidermis and mesophyll as well as the phloem of tomato plants, consistent with our observations that Mi-mediated resistance is active outside the phloem. These results suggest that the mode of action and potential ecological impacts of Mi-mediated resistance are broader than previously assumed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    International Nuclear Information System (INIS)

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-01-01

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  4. Tomato Preserves.

    Science.gov (United States)

    Stevens, Wendy Tessman

    1996-01-01

    Describes a project in which students selected seeds from two heirloom varieties of tomatoes, sowed the seeds, harvested the tomatoes, and fermented the seeds. Details are provided for each step of the project and the school address is included so that other students can begin similar projects. (DDR)

  5. Nucleocapsid Gene-Mediated Transgenic Resistance Provides Protection Against Tomato spotted wilt virus Epidemics in the Field.

    Science.gov (United States)

    Herrero, S; Culbreath, A K; Csinos, A S; Pappu, H R; Rufty, R C; Daub, M E

    2000-02-01

    ABSTRACT Transformation of plants with the nucleocapsid (N) gene of Tomato spotted wilt tospovirus (TSWV) provides resistance to disease development; however, information is lacking on the response of plants to natural inoculum in the field. Three tobacco cultivars were transformed with the N gene of a dahlia isolate of TSWV (TSWV-D), and plants were evaluated over several generations in the greenhouse. The resistant phenotype was more frequently observed in 'Burley 21' than in 'KY-14' or 'K-326', but highly resistant 'Burley 21' transgenic lines were resistant to only 44% of the heterologous TSWV isolates tested. Advanced generation (R(3) and R(4)) transgenic resistant lines of 'Burley 21' and a 'K-326' F(1) hybrid containing the N genes of two TSWV isolates were evaluated in the field near Tifton, GA, where TSWV is endemic. Disease development was monitored by symptom expression and enzyme-linked immunosorbent assay (ELISA) analysis. Whereas incidence of TSWV infection in 'Burley 21' susceptible controls was 20% in 1996 and 62% in 1997, the mean incidence in transgenic lines was reduced to 4 and 31%, respectively. Three transgenic 'Burley 21' lines were identified that had significantly lower incidence of disease than susceptible controls over the two years of the study. In addition, the rate of disease increase at the onset of the 1997 epidemic was reduced for all the 'Burley 21' transgenic lines compared with the susceptible controls. The 'K-326' F(1) hybrid was as susceptible as the 'K-326' nontransformed control. ELISA analysis demonstrated that symptomless plants from the most resistant 'Burley 21' transgenic lines accumulated detectable nucleocapsid protein, whereas symptomless plants from more susceptible lines did not. We conclude that transgenic resistance to TSWV is effective in reducing incidence of the disease in the field, and that accumulation of transgene protein may be important in broad-spectrum resistance.

  6. Genome-Wide Study of the Tomato SlMLO Gene Family and Its Functional Characterization in Response to the Powdery Mildew Fungus Oidium neolycopersici.

    Science.gov (United States)

    Zheng, Zheng; Appiano, Michela; Pavan, Stefano; Bracuto, Valentina; Ricciardi, Luigi; Visser, Richard G F; Wolters, Anne-Marie A; Bai, Yuling

    2016-01-01

    The MLO (Mildew Locus O) gene family encodes plant-specific proteins containing seven transmembrane domains and likely acting in signal transduction in a calcium and calmodulin dependent manner. Some members of the MLO family are susceptibility factors toward fungi causing the powdery mildew disease. In tomato, for example, the loss-of-function of the MLO gene SlMLO1 leads to a particular form of powdery mildew resistance, called ol-2, which arrests almost completely fungal penetration. This type of penetration resistance is characterized by the apposition of papillae at the sites of plant-pathogen interaction. Other MLO homologs in Arabidopsis regulate root response to mechanical stimuli (AtMLO4 and AtMLO11) and pollen tube reception by the female gametophyte (AtMLO7). However, the role of most MLO genes remains unknown. In this work, we provide a genome-wide study of the tomato SlMLO gene family. Besides SlMLO1, other 15 SlMLO homologs were identified and characterized with respect to their structure, genomic organization, phylogenetic relationship, and expression profile. In addition, by analysis of transgenic plants, we demonstrated that simultaneous silencing of SlMLO1 and two of its closely related homologs, SlMLO5 and SlMLO8, confer higher level of resistance than the one associated with the ol-2 mutation. The outcome of this study provides evidence for functional redundancy among tomato homolog genes involved in powdery mildew susceptibility. Moreover, we developed a series of transgenic lines silenced for individual SlMLO homologs, which lay the foundation for further investigations aimed at assigning new biological functions to the MLO gene family.

  7. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    Science.gov (United States)

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  8. Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Rosa Lozano-Durán

    2013-03-01

    Full Text Available The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R, the other susceptible (S to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the

  9. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit

    Science.gov (United States)

    Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed ...

  10. β-Carotene-9′,10′-Oxygenase Status Modulates the Impact of Dietary Tomato and Lycopene on Hepatic Nuclear Receptor–, Stress-, and Metabolism-Related Gene Expression in Mice123

    Science.gov (United States)

    Tan, Hsueh-Li; Moran, Nancy E.; Cichon, Morgan J.; Riedl, Ken M.; Schwartz, Steven J.; Erdman, John W.; Pearl, Dennis K.; Thomas-Ahner, Jennifer M.; Clinton, Steven K.

    2014-01-01

    Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9′,10′-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2−/− mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder–containing, or 0.25% lycopene beadlet–containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2−/− mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6′-, apo-8′-, and apo-12′-lycopenal concentrations. Hepatic expression of β-carotene-15,15’-monooxygenase was increased in Bco2−/− mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid

  11. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

    Science.gov (United States)

    Domínguez, Sara; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  12. Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene

    Directory of Open Access Journals (Sweden)

    Sara Domínguez

    2016-08-01

    Full Text Available Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in T. harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by i enhanced growth, ii increased carbon and nitrogen levels and iii a

  13. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene.

    Science.gov (United States)

    Domínguez, Sara; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  14. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato

    Directory of Open Access Journals (Sweden)

    Shuangchen Chen

    2017-06-01

    Full Text Available Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS or reactive nitrogen species (RNS metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, O2.−, MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP. The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA–GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop

  15. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    Science.gov (United States)

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  16. Data mining and influential analysis of gene expression data for plant resistance gene identification in tomato (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Francisco Torres-Avilés

    2014-03-01

    Conclusion: Application of different statistical analyses to detect potential resistance genes reliably has shown to conduct interesting results that improve knowledge on molecular mechanisms of plant resistance to pathogens.

  17. Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein[W][OA

    Science.gov (United States)

    Kahlau, Sabine; Bock, Ralph

    2008-01-01

    Plastid genes are expressed at high levels in photosynthetically active chloroplasts but are generally believed to be drastically downregulated in nongreen plastids. The genome-wide changes in the expression patterns of plastid genes during the development of nongreen plastid types as well as the contributions of transcriptional versus translational regulation are largely unknown. We report here a systematic transcriptomics and translatomics analysis of the tomato (Solanum lycopersicum) plastid genome during fruit development and chloroplast-to-chromoplast conversion. At the level of RNA accumulation, most but not all plastid genes are strongly downregulated in fruits compared with leaves. By contrast, chloroplast-to-chromoplast differentiation during fruit ripening is surprisingly not accompanied by large changes in plastid RNA accumulation. However, most plastid genes are translationally downregulated during chromoplast development. Both transcriptional and translational downregulation are more pronounced for photosynthesis-related genes than for genes involved in gene expression, indicating that some low-level plastid gene expression must be sustained in chromoplasts. High-level expression during chromoplast development identifies accD, the only plastid-encoded gene involved in fatty acid biosynthesis, as the target gene for which gene expression activity in chromoplasts is maintained. In addition, we have determined the developmental patterns of plastid RNA polymerase activities, intron splicing, and RNA editing and report specific developmental changes in the splicing and editing patterns of plastid transcripts. PMID:18441214

  18. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  19. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  20. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  1. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape-gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    Simbaqueba, Jaime; Catanzariti, Ann-Maree; González, Carolina; Jones, David A

    2018-05-22

    RNAseq reads from cape-gooseberry plants (Physalis peruviana) infected with Fusarium oxysporum f. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporum f. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1 (designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1 were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12 genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1b were tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant has reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither, SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3. These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1 undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3 could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph. Alternatively, cape gooseberry germplasm could be explored for I-3 homologues capable of providing resistance to Foph. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  2. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray.

    Science.gov (United States)

    Samolski, Ilanit; de Luis, Alberto; Vizcaíno, Juan Antonio; Monte, Enrique; Suárez, M Belén

    2009-10-13

    It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as

  3. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    Science.gov (United States)

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  4. High-Flavonol Tomatoes Through Heterologous Expression of the Maize Transcription Factor Genes LC and C1

    NARCIS (Netherlands)

    Bovy, A.; Vos, de R.; Kemper, M.; Schijlen, E.; Almenar Pertejo, M.; Muir, S.; Collins, G.; Robinson, S.; Verhoeyen, M.; Hughes, S.; Santos-Buelga, C.; Tunen, van A.

    2002-01-01

    Flavonoids are a group of polyphenolic plant secondary metabolites important for plant biology and human nutrition. In particular flavonols are potent antioxidants, and their dietary intake is correlated with a reduced risk of cardiovascular diseases. Tomato fruit contain only in their peel small

  5. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate.

    Science.gov (United States)

    Palomares-Rius, Juan Emilio; Hedley, Pete; Cock, Peter J A; Morris, Jenny A; Jones, John T; Blok, Vivian C

    2016-01-01

    Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

  6. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Directory of Open Access Journals (Sweden)

    Juan Emilio Palomares-Rius

    2016-02-01

    Full Text Available Plant-parasitic nematodes (PPN need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN (Globodera pallida and G. rostochiensis are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium, while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules.

  7. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  8. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato.

    Science.gov (United States)

    Chen, Aiqun; Chen, Xiao; Wang, Huimin; Liao, Dehua; Gu, Mian; Qu, Hongye; Sun, Shubin; Xu, Guohua

    2014-03-11

    Phosphorus (P) deficiency is one of the major nutrient stresses limiting plant growth. The uptake of P by plants is well considered to be mediated by a number of high-affinity phosphate (Pi) transporters belonging to the Pht1 family. Although the Pht1 genes have been extensively identified in several plant species, there is a lack of systematic analysis of the Pht1 gene family in any solanaceous species thus far. Here, we report the genome-wide analysis, phylogenetic evolution and expression patterns of the Pht1 genes in tomato (Solanum lycopersicum). A total of eight putative Pht1 genes (LePT1 to 8), distributed on three chromosomes (3, 6 and 9), were identified through extensive searches of the released tomato genome sequence database. Chromosomal organization and phylogenetic tree analysis suggested that the six Pht1 paralogues, LePT1/3, LePT2/6 and LePT4/5, which were assigned into three pairs with very close physical distance, were produced from recent tandem duplication events that occurred after Solanaceae splitting with other dicot families. Expression analysis of these Pht1 members revealed that except LePT8, of which the transcript was undetectable in all tissues, the other seven paralogues showed differential but partial-overlapping expression patterns. LePT1 and LePT7 were ubiquitously expressed in all tissues examined, and their transcripts were induced abundantly in response to Pi starvation; LePT2 and LePT6, the two paralogues harboring identical coding sequence, were predominantly expressed in Pi-deficient roots; LePT3, LePT4 and LePT5 were strongly activated in the roots colonized by arbuscular mycorrhizal fungi under low-P, but not high-P condition. Histochemical analysis revealed that a 1250-bp LePT3 promoter fragment and a 471-bp LePT5 promoter fragment containing the two elements, MYCS and P1BS, were sufficient to direct the GUS reporter expression in mycorrhizal roots and were limited to distinct cells harboring AM fungal structures

  9. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  10. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Zhengkun Qiu

    Full Text Available Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF gene, which corresponds to the ah (Hoffman's anthocyaninless locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  11. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    Science.gov (United States)

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  12. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid.

    Science.gov (United States)

    Chen, Lei; Meng, Jun; Zhai, Junmiao; Xu, Pinsan; Luan, Yushi

    2017-12-01

    Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Philadelphia and the Tomato.

    Science.gov (United States)

    Smith, Andrew F.; Kling, Tatiana

    This booklet describes for elementary students the many contributions of people, traveling many places, over many years to bring the tomato to Philadelphia. The booklet includes the following: (1) "Introduction to the Tomato"; (2) "Where Does the Tomato Come From?"; (3) "The Spanish Tomato"; (4) "The Philadelphia…

  15. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene.

    Science.gov (United States)

    Sobczak, Miroslaw; Avrova, Anna; Jupowicz, Justyna; Phillips, Mark S; Ernst, Karin; Kumar, Amar

    2005-02-01

    The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.

  16. Tomato protoplast DNA transformation : physical linkage and recombination of exogenous DNA sequences

    NARCIS (Netherlands)

    Jongsma, Maarten; Koornneef, Maarten; Zabel, Pim; Hille, Jacques

    1987-01-01

    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There

  17. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  18. The arms race between tomato and Fusarium oxysporum

    NARCIS (Netherlands)

    Takken, F.; Rep, M.

    2010-01-01

    The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to

  19. Dissecting a QTL into Candidate Genes Highlighted the Key Role of Pectinesterases in Regulating the Ascorbic Acid Content in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Valentino Ruggieri

    2015-07-01

    Full Text Available Tomato ( is a crucial component of the human diet because of its high nutritional value and the antioxidant content of its fruit. As a member of the Solanaceae family, it is considered a model species for genomic studies in this family, especially since its genome has been completely sequenced. Among genomic resources available, introgression lines represent a valuable tool to mine the genetic diversity present in wild species. One introgression line, IL12-4, was previously selected for high ascorbic acid (AsA content, and a transcriptomic analysis indicated the involvement of genes controlling pectin degradation in AsA accumulation. In this study the integration of data from different “omics” platforms has been exploited to identify candidate genes that increase AsA belonging to the wild region 12-4. Thirty-two genes potentially involved in pathways controlling AsA levels were analyzed with bioinformatic tools. Two hundred-fifty nonsynonymous polymorphisms were detected in their coding regions, and 11.6% revealed deleterious effects on predicted protein function. To reduce the number of genes that had to be functionally validated, introgression sublines of the region 12–4 were selected using species-specific polymorphic markers between the two species. Four sublines were obtained and we demonstrated that a subregion of around 1 Mbp includes 12 candidate genes potentially involved in AsA accumulation. Among these, only five exhibited structural deleterious variants, and one of the 12 was differentially expressed between the two species. We have highlighted the role of three polymorphic pectinesterases and inhibitors of pectinesterases that merit further investigation.

  20. Superfamily of ankyrin repeat proteins in tomato.

    Science.gov (United States)

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    OpenAIRE

    Atarés Huerta, Alejandro; Moyano, Elena; Morales, Belén; Schleicher, Peter; García Abellán, José Osvaldo; ANTÓN MARTÍNEZ, MARÍA TERESA; García Sogo, Begoña; Pérez Martin, Fernando; Lozano, Rafael; Borja Flores, Francisco; Moreno Ferrero, Vicente; BOLARIN JIMENEZ, MARIA DEL CARMEN; Pineda Chaza, Benito José

    2011-01-01

    [EN] Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this en...

  2. Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Plas, van der L.H.W.; Woltering, E.J.

    2002-01-01

    Treatment of tomato fruit (Lycopersicon esculentum L. cv Prisca) with 1-methylcyclopropene (1-MCP), a potent inhibitor of ethylene action, delayed colour development, softening, and ethylene production in tomato fruit harvested at the mature green breaker, and orange stages. 1-MCP treatment also

  3. Small RNAs were involved in homozygous state-associated silencing of a marker gene (Neomycin phosphotransferase II: nptII) in transgenic tomato plants.

    Science.gov (United States)

    Deng, Lei; Pan, Yu; Chen, Xuqing; Chen, Guoping; Hu, Zongli

    2013-07-01

    Homozygous state-associated co-suppression is not a very common phenomenon. In our experiments, two transgenic plants 3A29 and 1195A were constructed by being transformed with the constructs pBIN-353A and pBIN119A containing nptII gene as a marker respectively. The homozygous progeny from these two independent transgenic lines 3A29 and 1195A, displayed kanamycin-sensitivity and produced a short main root without any lateral roots as untransformed control (wild-type) seedlings when germinated on kanamycin media. For the seedlings derived from putative hemizygous plants, the percentage of the seedlings showing normal growth on kanamycin media was about 50% and lower than the expected percentage (75%). Southern analysis of the genomic DNA confirmed that the homozygous and hemizygous plants derived from the same lines contained the same multiple nptII transgenes, which were located on the same site of chromosome. Northern analysis suggested that the marker nptII gene was expressed in the primary and the hemizygous transformants, but it was silenced in the homozygous transgenic plants. Further Northern analysis indicated that antisense and sense small nptII-derived RNAs were present in the transgenic plants and the blotting signal of nptII-derived small RNA was much higher in the homozygous transgenic plants than that of hemizygous transgenic plants. Additionally, read-through transcripts from the TRAMP gene to the nptII gene were detected. These results suggest that the read-through transcripts may be involved in homozygous state-associated silencing of the nptII transgene in transgenic tomato plants and a certain threshold level of the nptII-derived small RNAs is required for the homozygous state-associated co-suppression of the nptII transgene. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    Science.gov (United States)

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-07-01

    Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal

  5. Zesty Tomato Soup

    Science.gov (United States)

    ... https://medlineplus.gov/recipe/zestytomatosoup.html Zesty Tomato Soup To use the sharing features on this page, ... Number of Servings: 4 Not your traditional tomato soup, this quick-cooking dish can be a side ...

  6. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  7. Evaluation of the CBL family gene expression under drought stress and virus attack in two susceptible and drought tolerant tomato cultivars using semi-quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    Peyman Aghaie

    2017-08-01

    Full Text Available Eleven genes encoding Calcineurin B-Like proteins with a high degree of sequence conservation were identified using bioinformatics approaches in tomato. These proteins classified into five clusters including SlCBL1, SlCBL3, SlCBL4, SlCBL8 and SlCBL10 using orthology-based method of nomenclature. Sequence analysis showed that all five members of SlCBL1 and SlCBL4 contained a myristoylation conserved motif (MGXXXS/T at their N-terminals. Semi-quantitative RT-PCR showed that among the SlCBL1 members, SlCBL1-3 up-regulated under both drought and virus stresses, as well as the combined treatment. Although, both SlCBL3-1 and SlCBL3-2 up-regulated under both drought and virus stresses in both susceptive and resistant cultivars, the combined stress did not have any additional effect on the expression. Among SlCBL4 members, only SlCBL4-1 up-regulated under drought or virus attack. There was a diverse pattern of expression between the two SlCBL8 members under different stresses in both cultivars. SlCBL10 showed no change in expression pattern under drought or virus stresses in susceptive cultivar and this gene showed to be up-regulated under drought in resistant cultivar. Overall, it was concluded that changes in the expression pattern of CBL genes under biotic and abiotic stresses seemingly induced various CBL/CIPK patways in suseptive or resistant plants.

  8. Molecular marker screening of tomato, ( solanum lycopersicum L ...

    African Journals Online (AJOL)

    Tomato is one of the crops in which genetic resistance has specially been effective against root-knot nematodes. In this study, molecular screening was done on some tomato germplasm to detect markers for the gene that confers resistance (Mi) with specific primer (Mi23/F//Mi23/R). The cultivars; VFNT, FLA 505-BL 1172, ...

  9. Methyl salicylate production in tomato affects biotic interactions

    NARCIS (Netherlands)

    Ament, K.; Krasikov, V.; Allmann, S.; Rep, M.; Takken, F.L.W.; Schuurink, R.C.

    2010-01-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene

  10. The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato

    NARCIS (Netherlands)

    Ma, L.; Houterman, P.M.; Gawehns, F.; Cao, L.; Sillo, F.; Richter, H.; Clavijo-Ortiz, M.J.; Schmidt, S.M.; Boeren, S.; Vervoort, J.; Cornelissen, B.J.C.; Rep, M.; Takken, F.L.W.

    2015-01-01

    Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called 'effectors'. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared

  11. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  12. The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato

    NARCIS (Netherlands)

    Ma, L.; Houterman, P.M.; Gawehns, F.; Cao, L.; Sillo, F.; Richter, H.; Clavijo-Ortiz, M.J.; Schmidt, S.M.; Boeren, J.A.; Vervoort, J.J.M.; Cornelissen, B.J.C.; Rep, M.; Takken, F.L.W.

    2015-01-01

    •Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called ‘effectors’. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared

  13. Influencia de genes exóticos sobre la vida en estantería y el peso del fruto de tomate Influence of exotic genes on tomato fruit shelf life and weight

    Directory of Open Access Journals (Sweden)

    J.H. Pereira da Costa

    2009-06-01

    Full Text Available Una característica importante en tomate cultivado (Solanum lycopersicum es la vida en estantería de los frutos (VE, que puede ser incrementada por incorporación de genes exóticos. Esta alternativa, sin embargo, implica una reducción en el peso (Pe. El objetivo de este trabajo fue analizar la herencia de ambos caracteres en un cruzamiento interespecífico, para aplicar luego esta información básica al delineamiento de estrategias de mejoramiento genético. Se utilizaron la cultivar Caimanta, la accesión exótica LA722 (S. pimpinellifolium y las generaciones F1, F2, BC I.1 (F1 x LA722 y BC I.2 (Caimanta x F1. Se calcularon el grado de dominancia (d/a, la heredabilidad en sentido amplio (H² y la heredabilidad en sentido estricto (h² para Pe y VE, así como las correlaciones fenotípica (r f y genética (r g entre ellos. El d/a fue -1 y -0,86; H², 0,35 y 0,45; y h², 0 y 0,52, para Pe y VE respectivamente. La r f fue 0,36 (p Fruit shelf life (SL is an important trait in the cultivated tomato (Solanum lycopersicum that might be increased by introgressing exotic genes. However, this approach causes a reduction in fruit weight (W. The objective of this research was to analyse the inheritance patterns of both traits in an interspecific cross, in order to subsequently design the appropriate breeding strategy. Plant material included cv. Caimanta, accession LA722 of the exotic S. pimpinellifolium, and their F1, F2, BC I.1 (F1 x LA722 and BC I.2 (Caimanta x F1 generations. The genetic parameters, degree of dominance (d/a, broad sense heritability (H², and narrow sense heritability (h² were estimated for SL and W, and the phenotypic (r p and the genetic (r g correlations among them were calculated. The d/a were -1 and -0.86, H² were 0.35 and 0.45, and h² were 0 and 0.52, for W and SL respectively. The r p was 0.36 (p < 0.01 and r g was - 0.86. Genetic variance was generated for both fruit weight and shelf life from this interspecific tomato

  14. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    OpenAIRE

    Gomes, Eriston V.; Ulhoa, Cirano J.; Cardoza, Rosa E.; Silva, Roberto N.; Guti?rrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum stra...

  15. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  16. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum cultivar in response to infection by tomato yellow leaf curl virus.

    Directory of Open Access Journals (Sweden)

    Tianzi Chen

    Full Text Available Tomato yellow leaf curl virus (TYLCV threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S. The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs in the R tomato line (58.37% was higher than that in the S line (9.17%. Gene ontology (GO analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management.

  17. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes

    OpenAIRE

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, S?ren; Rudzka, Justyna; Szcz?sny, Pawe?; Antosiewicz, Danuta Maria

    2016-01-01

    Background To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, thos...

  18. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-07-01

    Full Text Available Tomato yellow leaf curly virus (TYLCV, transmitted by the whitefly (, causes leaf curling and yellowing, plant dwarfism, and growth inhibition in tomato ( L.. The APETALA2 (AP2 and ethylene response factor (ERF transcription factor (TF family, the largest plant-specific TF family, was identified to function in plant development and pathogen defense. Our study aimed to analyze the mechanism underlying the function of ERF (SlERF TFs in response to TYLCV infection and improve useful information to increase the resistance to TYLCV in tomato. A total of 22 tomato AP2/ERF TFs in response to TYLCV were identified according to transcriptome database. Five ERF-B3 TFs were identified in cultivars Hongbeibei (highly resistant, Zheza-301, Zhefen-702 (both resistant, Jinpeng-1, and Xianke-6 (both susceptible. Interaction network indicated that SlERF TFs could interact with mitogen-activated protein kinase (MAPK. Expression profiles of five ERF-B3 genes (, , , , and were detected by quantitative real-time–polymerase chain reaction (qRT-PCR after TYLCV infection in five tomato cultivars. expression was upregulated in five tomato cultivars. The expressions of three genes (, , and were upregulated in Zheza-301 and Zhefen-702. and expressions were downregulated in Hongbeibei and Xianke-6, respectively. Yeast one-hybrid showed that the GCC-box binding ability of ERF-B3 TFs differed in resistant and susceptible tomato cultivars. Expression profiles were related to the GCC-box binding ability of SlERF TFs in resistant and susceptible tomato cultivars. The defense mechanism underlying the tomato’s response to TYLCV involved a complicated network, which provided important information for us in breeding and genetic analysis.

  19. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  20. The tomato UV-damaged DNA-binding protein-1 (DDB1) is implicated in pathogenesis-related (PR) gene expression and resistance to Agrobacterium tumefaciens

    Science.gov (United States)

    Plants defend themselves against potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs). However, the molecular mechanisms underlying this PAMP triggered immunity (PTI) are largely unknown. In this study, we show that tomato HP1/DDB1, coding for a key component of ...

  1. Retention of the ability to synthesize HIV-1 and HBV antigens in generations of tomato plants transgenic for the TBI-HBS gene

    Science.gov (United States)

    In development of new types of edible vaccines on the basis of transgenic plants, the ability of the latter to retain the synthesis of foreign antibodies in a series of generations is of great importance. For this purpose, the goal of this study was to investigate the ability of transgenic tomato pl...

  2. QRLs for tomato powdery mildew resisance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 colocalize with two qualitative powdery mildew resistance genes

    NARCIS (Netherlands)

    Bai, Y.; Huang, C.C.; Hulst, van der R.G.M.; Meijer-Dekens, R.G.; Bonnema, A.B.; Lindhout, W.H.

    2003-01-01

    Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F-2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used

  3. The Tomato Hybrid Proline-Rich Protein regulates the abcission zone competence to respond to ethylene signals

    Science.gov (United States)

    The Tomato Hybrid Proline-Rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4,significantly inh...

  4. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill under stress of NaCl and/or ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Hesham F. Alharby

    2016-11-01

    Full Text Available Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1 and ZnO-NPs (0, 15 and 30 mg L−1. Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD and glutathione peroxidase (GPX genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa. Keywords: Tomato, Salt stress, Nanoparticles, Gene expression, Real-time PCR, Polymorphism

  5. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance.

    Science.gov (United States)

    Ma, Hao; Song, Congfeng; Borth, Wayne; Sether, Diane; Melzer, Michael; Hu, John

    2011-10-20

    Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance. The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  6. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance

    Directory of Open Access Journals (Sweden)

    Ma Hao

    2011-10-01

    Full Text Available Abstract Background Tomato spotted wilt virus (TSWV has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX in tomato and petunia is related to TSWV resistance. Results The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. Conclusion In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  7. 21 CFR 155.190 - Canned tomatoes.

    Science.gov (United States)

    2010-04-01

    ... tomatoes. (a) Identity—(1) Description. (i) Canned tomatoes is the food prepared from mature tomatoes...). Without shifting the tomatoes, so incline the sieve as to facilitate drainage of the liquid. Two minutes...

  8. octadecenoic acid in tomato

    African Journals Online (AJOL)

    User

    bly involved in plant defense responses is synthesized in tomato fruits and subjected to metabo- lism. Its catabolism or .... stored at -20°C. Enzymatic in vitro synthesis of radiolabeled ..... with nematicidal activity from Culture of basidiomycetes.

  9. The arms race between tomato and Fusarium oxysporum.

    Science.gov (United States)

    Takken, Frank; Rep, Martijn

    2010-03-01

    The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.

  10. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  11. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman; Chapman, Natalie H; Smith, Rebecca; Poole, Mervin; Adams, Gary; Gillis, Richard B; Besong, Tabot M.D.; Sheldon, Judith; Stiegelmeyer, Suzy; Perez, Laura; Samsulrizal, Nurul; Wang, Duoduo; Fisk, Ian D; Yang, Ni; Baxter, Charles; Rickett, Daniel; Fray, Rupert; Blanco-Ulate, Barbara; Powell, Ann L T; Harding, Stephen E; Craigon, Jim; Rose, Jocelyn K C; Fich, Eric A; Sun, Li; Domozych, David S; Fraser, Paul D; Tucker, Gregory A; Grierson, Don; Seymour, Graham B

    2016-01-01

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  12. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xuepeng eFu

    2015-09-01

    Full Text Available Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae. To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related

  13. POSTHARVEST FUNGAL DETERIORATION OF TOMATO ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    commercial food vendors often intentionally use physically damaged tomatoes and ... The production of the bulk of the fresh tomato and. 'tatase' in Nigeria is in ...... mycotoxin contamination of food include but not limited to mycotoxicoses, liver ...

  14. A Snapshot of the Emerging Tomato Genome Sequence

    Directory of Open Access Journals (Sweden)

    Lukas A. Mueller

    2009-03-01

    Full Text Available The genome of tomato ( L. is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States as part of the larger “International Solanaceae Genome Project (SOL: Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN. Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato ( L. sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010.

  15. Expression of the Grape VaSTS19 Gene in Arabidopsis Improves Resistance to Powdery Mildew and Botrytis cinerea but Increases Susceptibility to Pseudomonas syringe pv Tomato DC3000

    Directory of Open Access Journals (Sweden)

    Yaqiong Wang

    2017-09-01

    Full Text Available Stilbene synthase (STS is a key enzyme that catalyzes the biosynthesis of resveratrol compounds and plays an important role in disease resistance. The molecular pathways linking STS with pathogen responses and their regulation are not known. We isolated an STS gene, VaSTS19, from a Chinese wild grape, Vitis amurensis Rupr. cv. “Tonghua-3”, and transferred this gene to Arabidopsis. We then generated VaSTS19-expressing Arabidopsis lines and evaluated the functions of VaSTS19 in various pathogen stresses, including powdery mildew, B. cinerea and Pseudomonas syringae pv. tomato DC3000 (PstDC3000. VaSTS19 enhanced resistance to powdery mildew and B. cinerea, but increased susceptibility to PstDC3000. Aniline blue staining revealed that VaSTS19 transgenic lines accumulated more callose compared to nontransgenic control plants, and showed smaller stomatal apertures when exposed to pathogen-associated molecular patterns (flagellin fragment (flg22 or lipopolysaccharides (LPS. Analysis of the expression of several disease-related genes suggested that VaSTS19 expression enhanced defense responses though salicylic acid (SA and/or jasmonic acid (JA signaling pathways. These findings provide a deeper insight into the function of STS genes in defense against pathogens, and a better understanding of the regulatory cross talk between SA and JA pathways.

  16. Expression of the Grape VaSTS19 Gene in Arabidopsis Improves Resistance to Powdery Mildew and Botrytis cinerea but Increases Susceptibility to Pseudomonas syringe pv Tomato DC3000.

    Science.gov (United States)

    Wang, Yaqiong; Wang, Dejun; Wang, Fan; Huang, Li; Tian, Xiaomin; van Nocker, Steve; Gao, Hua; Wang, Xiping

    2017-09-17

    Stilbene synthase (STS) is a key enzyme that catalyzes the biosynthesis of resveratrol compounds and plays an important role in disease resistance. The molecular pathways linking STS with pathogen responses and their regulation are not known. We isolated an STS gene, VaSTS19 , from a Chinese wild grape, Vitis amurensis Rupr. cv. "Tonghua-3", and transferred this gene to Arabidopsis . We then generated VaSTS19 -expressing Arabidopsis lines and evaluated the functions of VaSTS19 in various pathogen stresses, including powdery mildew, B. cinerea and Pseudomonas syringae pv. tomato DC3000 ( Pst DC3000). VaSTS19 enhanced resistance to powdery mildew and B. cinerea , but increased susceptibility to Pst DC3000. Aniline blue staining revealed that VaSTS19 transgenic lines accumulated more callose compared to nontransgenic control plants, and showed smaller stomatal apertures when exposed to pathogen-associated molecular patterns (flagellin fragment (flg22) or lipopolysaccharides (LPS)). Analysis of the expression of several disease-related genes suggested that VaSTS19 expression enhanced defense responses though salicylic acid (SA) and/or jasmonic acid (JA) signaling pathways. These findings provide a deeper insight into the function of STS genes in defense against pathogens, and a better understanding of the regulatory cross talk between SA and JA pathways.

  17. A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue

    NARCIS (Netherlands)

    Spassieva, S; Hille, J

    Lesion mimic phenotypes serve as a tool to study the regulation of cell death in plants. In order to obtain a tomato lesion mimic phenotype, we used the conservation of the lethal leaf spot 1 (Lls1) genes between plant species. The tomato Lls1 homologue was cloned, sequenced and analyzed. It showed

  18. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  19. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    Science.gov (United States)

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  1. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  2. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).

    Science.gov (United States)

    Slugina, M A; Shchennikova, A V; Kochieva, E Z

    2017-10-01

    Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.

  3. Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector.

    Science.gov (United States)

    Noris, Emanuela; Miozzi, Laura

    2015-01-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen, transmitted by the whitefly Bemisia tabaci, that severely affects the tomato production in the Mediterranean basin. Here, we describe real-time PCR protocols suitable for relative and absolute quantification of TYLCSV in tomato plants and in whitefly extracts. Using primers and probe specifically designed for TYLCSV, the protocols for relative quantification allow to compare the amount of TYLCSV present in different plant or whitefly samples, normalized to the amount of DNA present in each sample using endogenous tomato or Bemisia genes as internal references. The absolute quantification protocol allows to calculate the number of genomic units of TYLCSV over the genomic units of the plant host (tomato), with a sensitivity of as few as ten viral genome copies per sample. The described protocols are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.

  4. Safety assessment for genetically modified sweet pepper and tomato

    International Nuclear Information System (INIS)

    Chen Zhangliang; Gu Hongya; Li Yi; Su Yilan; Wu Ping; Jiang Zhicheng; Ming Xiaotian; Tian Jinhua; Pan Naisui; Qu Lijia

    2003-01-01

    The coat protein (CP) gene of cucumber mosaic virus (CMV) was cloned from a Chinese CMV isolate, the CaMV promoter and NOS terminator added and the gene construct was transformed into both sweet pepper and tomato plants to confer resistance to CMV. Safety assessments of these genetically modified (GM) plants were conducted. It was found that these two GM products showed no genotoxicity either in vitro or in vivo by the micronucleus test, sperm aberration test and Ames test. Animal feeding studies showed no significant differences in growth, body weight gain, food consumption, hematology, blood biochemical indices, organ weights and histopathology between rats or mice of either sex fed with either GM sweet pepper or tomato diets compared with those with non-GM diets. These results demonstrate that the CMV-resistant sweet pepper and tomato are comparable to the non-GM counterparts in terms of food safety

  5. λ-Carrageenan Suppresses Tomato Chlorotic Dwarf Viroid (TCDVd Replication and Symptom Expression in Tomatoes

    Directory of Open Access Journals (Sweden)

    Jatinder S. Sangha

    2015-05-01

    Full Text Available The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(ɩ-, lambda(λ-, and kappa(κ-carrageenan at 1 g·L−1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS and lipoxygenase (LOX, were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA dependent, and that it could be explored in plant protection against viroid infection.

  6. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper.

    Science.gov (United States)

    Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin

    2017-06-01

    The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.

  7. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    OpenAIRE

    Inès, Zouari; Alessandra, Salvioli; Matteo, Chialva; Mara, Novero; Laura, Miozzi; Gian Carlo, Tenore; Paolo, Bagnaresi; Paola, Bonfante

    2014-01-01

    Background Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Results Fruits were collected at 55 days after flowering, from plants coloni...

  8. Transgenic tomato hybrids resistant to tomato spotted wilt virus infection.

    NARCIS (Netherlands)

    Haan, de P.; Ultzen, T.; Prins, M.; Gielen, J.; Goldbach, R.; Grinsven, van M.

    1996-01-01

    Tomato spotted wilt virus (TSWV) infections cause significant economic losses in the commercial culture of tomato (Lycopersicon esculentum). Culture practices have only been marginally effective in controlling TSWV. The ultimate way to minimize losses caused by TSWV is resistant varieties. These can

  9. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Tomato lycopene extract; tomato lycopene... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene extract; tomato lycopene concentrate. (a) Identity. (1) The color additive tomato lycopene extract is a...

  10. From Flavr Savr Tomatoes to STEM Cell Therapy: Young People's Understandings of Gene Technology, 15 Years On

    Science.gov (United States)

    Lewis, Jenny

    2014-01-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a "science for all" National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of…

  11. Tomato thymidine kinase is subject to inefficient TTP feedback regulation

    DEFF Research Database (Denmark)

    Larsen, Nicolai Balle; Munch-Petersen, Birgitte; Piskur, Jure

    2014-01-01

    A promising suicide gene therapy system to treat gliomas has been reported: the thymidine kinase 1 from tomato (toTK1) combined with the nucleoside analog pro-drug zidovudine (azidothymidine, AZT), which is known to penetrate the blood–brain barrier. Transduction with toTK1 has been found to effi...

  12. Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato Expressão diferencial de genes induzida por ácido salicílico e por Fusarium oxysporum f. sp. lycopersici, em tomateiro

    Directory of Open Access Journals (Sweden)

    Daniel Oliveira Jordão do Amaral

    2008-08-01

    Full Text Available The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill., during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.O objetivo deste trabalho foi determinar o perfil de transcritos em plantas de tomate (Lycopersicon esculentum Mill., durante a infecção com Fusarium oxysporum f. sp. lycopersici e após a aplicação foliar de ácido salicílico. A técnica de hibridização subtrativa por supressão (SSH foi utilizada para gerar uma biblioteca de cDNA enriquecida por transcritos diferencialmente expressos. Foram identificados 307 clones, em duas bibliotecas subtrativas, que permitiram o isolamento de diversos genes de defesa com função em diferentes processos relacionados à resistência vegetal contra patógenos. Também foram isolados, nas duas bibliotecas, genes com função desconhecida, o que indica a possibilidade de identificação de novos genes que ainda não tenham sido relatados em estudos anteriores de resposta a estresses e defesa, em plantas

  13. Identification and diversity of Fusarium species isolated from tomato fruits

    Directory of Open Access Journals (Sweden)

    Murad Nur Baiti Abd

    2016-07-01

    Full Text Available Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici, F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.

  14. A rapid seedling resistance assay identifies wild tomato lines that are resistant to Psuedomonas syringe pv. tomato race 1

    Science.gov (United States)

    Bacterial speck caused by Pseudomonas syringae has historically been controlled by the Pto/Prf gene cluster. Emerging strains like P. syringae pv. tomato race 1 overcome resistance conferred by Pto/Prf, and can cause serious crop loss under appropriate environmental conditions. We developed a rapid ...

  15. Molecular marker-assisted selection for resistance to pathogens in tomato

    International Nuclear Information System (INIS)

    Barone, A.; Frusciante, L.

    2007-01-01

    Since the 1980s, the use of molecular markers has been suggested to improve the efficiency of releasing resistant varieties, thus overcoming difficulties met with classical breeding. For tomato, a high-density molecular map is available in which more than 40 resistance genes are localized. Markers linked to these genes can be used to speed up gene transfer and pyramiding. Suitable PCR markers targeting resistance genes were constructed directly on the sequences of resistance genes or on restriction fragment length polymorphisms (RFLPs) tightly linked to them, and used to select resistant genotypes in backcross schemes. In some cases, the BC 5 generation was reached, and genotypes that cumulated two homozygous resistant genes were also obtained. These results supported the feasibility of using marker-assisted selection (MAS) in tomato and reinforcing the potential of this approach for other genes, which is today also driven by the development of new techniques and increasing knowledge about the tomato genome. (author)

  16. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  17. Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Niu, Yiling; Zhao, Tingting; Xu, Xiangyang; Li, Jingfu

    2017-01-01

    Solanum lycopersicum , belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis , rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.

  18. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea

    NARCIS (Netherlands)

    Sun, K.; Tuinen, van A.; Kan, van J.A.L.; Wolters, A.M.A.; Jacobsen, E.; Visser, R.G.F.; Bai, Y.

    2017-01-01

    Background
    Botrytis cinerea, a necrotrophic pathogenic fungus, attacks many crops including potato and tomato. Major genes for complete resistance to B. cinerea are not known in plants, but a few quantitative trait loci have been described in tomato. Loss of function of particular susceptibility

  19. Methyl salicylate production in tomato affects biotic interactions.

    Science.gov (United States)

    Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

    2010-04-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.

  20. In vitro reporter gene assays for assessment of PPAR- and Nrf2-mediated health effects of tomato and its bioactive constituents

    NARCIS (Netherlands)

    Gijsbers, L.

    2013-01-01

    The consumption of food products with health-promoting properties, such as for example margarines with plant sterols, fruit juice enriched with calcium and cereals with (soluble) fibre, has increased rapidly during the last years. The present thesis provides proof-of-principle that reporter gene

  1. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhieva

    2015-01-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environmental feasibility of tomatoes stage drying in the atmosphere of inert gas in solar dry kiln were evaluated; production scheme of dried tomatoes is improved; a system for tomato pomace drying is developed; a production scheme of powders of pulp, skin and seeds of tomatoes is developed. Combined method of tomato pomace drying involves the simultaneous use of the electromagnetic field of low and ultra-high frequency and blowing product surface with hot nitrogen. Conducting the drying process in an inert gas atmosphere of nitrogen intensified the process of moisture removing from tomatoes. The expediency of using tomato powder as enriching additive was proved. Based on the study of the chemical composition of the tomato powder made from Dagestan varieties of tomatoes, and on the organoleptic evaluation and physico-chemical studies of finished products, we have proved the best degree of recoverability of tomato powder during the production of reconstituted juice and tomato beverages.

  2. Characterization of Oligomeric and Kinetic Properties of Tomato Thymidine Kinase 1

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Larsen, Nicolai Balle; Andersson, Karl-Magnus

    2011-01-01

    The gene encoding thymidine kinase 1 from tomato (toTK1) has in combination with azidothymidine (AZT) recently been proposed as a powerful suicide gene for anticancer gene therapy. The toTK1/AZT combination has been demonstrated to have several advantages for the treatment of glioblastomas becaus...

  3. Natural variation for responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in heirloom tomatoes.

    Directory of Open Access Journals (Sweden)

    Selvakumar Veluchamy

    Full Text Available Tomato (Solanum lycopersicum L. is susceptible to many diseases including bacterial speck caused by Pseudomonas syringae pv. tomato. Bacterial speck disease is a serious problem worldwide in tomato production areas where moist conditions and cool temperatures occur. To enhance breeding of speck resistant fresh-market tomato cultivars we identified a race 0 field isolate, NC-C3, of P. s. pv. tomato in North Carolina and used it to screen a collection of heirloom tomato lines for speck resistance in the field. We observed statistically significant variation among the heirloom tomatoes for their response to P. s. pv. tomato NC-C3 with two lines showing resistance approaching a cultivar that expresses the Pto resistance gene, although none of the heirloom lines have Pto. Using an assay that measures microbe-associated molecular pattern (MAMP-induced production of reactive oxygen species (ROS, we investigated whether the heirloom lines showed differential responsiveness to three bacterial-derived peptide MAMPs: flg22 and flgII-28 (from flagellin and csp22 (from cold shock protein. Significant differences were observed for MAMP responsiveness among the lines, although these differences did not correlate strongly with resistance or susceptibility to bacterial speck disease. The identification of natural variation for MAMP responsiveness opens up the possibility of using a genetic approach to identify the underlying loci and to facilitate breeding of cultivars with enhanced disease resistance. Towards this goal, we discovered that responsiveness to csp22 segregates as a single locus in an F2 population of tomato.

  4. EFFECTIVE COMPLEX PROCESSING OF RAW TOMATOES

    Directory of Open Access Journals (Sweden)

    AIDA M. GADZHIEVA

    2018-03-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5 - 6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids, 0.5 % minerals, etc. are used as research material. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have long term preservation. For the extraction of valuable components from dried tomato pomace, the CO2 extraction method is applied. The technological and environmental feasibility of graded tomato drying in the atmosphere of an inert gas and in a solar drier is evaluated; the scheme of dried tomatoes production is improved; a system for tomato pomace drying is developed; a scheme of tomato powder production from pulp, skin and seeds is developed. The combined method of tomato pomace drying involves the simultaneous use of electromagnetic field of low and ultra-high frequency and blowing hot nitrogen on the product surface. Conducting the drying process in the atmosphere of nitrogen intensifies the process of removing moisture from tomatoes. The expediency of using tomato powder as an enriching additive is proved. Based on the study of the chemical composition of the tomato powder made from the Dagestan varieties, and on the organoleptic evaluation and physicochemical analysis of finished products, we prove the best degree of recoverability of tomato powder in the production of reconstituted juice and tomato beverages.

  5. Managing thrips and tospoviruses in tomato

    Science.gov (United States)

    Tomato spotted wilt virus and more recently emerged Tomato chlorotic spot virus and Groundnut ringspot virus are all transmitted by thrips, making managment complex. All three viruses and the thrips vector are major pests of tomato in Florida. Current management tools for these viruses and the th...

  6. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  7. Gamma-irradiation of tomatoes

    International Nuclear Information System (INIS)

    Tencheva, S.; Todorov, S.

    1975-01-01

    The influence of gamma-ray on tomatoes picked in a pink-red ripening stage, good for consumption, is studied. For that purpose tomatoes of ''Pioneer 2'' variety packed in perforated 500 g plastic bags were irradiated on a gamma device (Cobalt-60) at a dose power of 1900 rad/min with doses 200 or 300 krad. Samples were stored after irradiation at room temperature (20 - 22sup(o)C). Microbiological studies demonstrated that 44 resp. 99.96 per cent of the initial number of microorganisms was destroyed after irradiation with 200 resp. 300 krad. The time required for the number of microorganisms to be restored was accordingly increased. Irradiation delayed tomato ripening by 4 to 6 days, demonstrable by the reduced content of the basic staining substances - carotene and licopine. Immediately after irradiation the ascorbic acid content was reduced by an average of 13 per cent. After 18 days the amount of ascorbic acid in irradiated tomatoes was increased to a higher than the starting level, this is attributed to reductone formation during irradiation. The elevated total sugar content shown to be invert sugar was due to further tomato ripening. (Ch.K.)

  8. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  9. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil; Negrã o, Só nia; Essack, Magbubah; Morton, Mitchell J. L.; Bougouffa, Salim; Mohamad Razali, Rozaimi; Radovanovic, Aleksandar; Marchand, Benoit; Kulmanov, Maxat; Hoehndorf, Robert; Tester, Mark A.; Bajic, Vladimir B.

    2017-01-01

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  10. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil

    2017-07-14

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  11. TOMATOMICS: A Web Database for Integrated Omics Information in Tomato

    KAUST Repository

    Kudo, Toru; Kobayashi, Masaaki; Terashima, Shin; Katayama, Minami; Ozaki, Soichi; Kanno, Maasa; Saito, Misa; Yokoyama, Koji; Ohyanagi, Hajime; Aoki, Koh; Kubo, Yasutaka; Yano, Kentaro

    2016-01-01

    Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.

  12. TOMATOMICS: A Web Database for Integrated Omics Information in Tomato

    KAUST Repository

    Kudo, Toru

    2016-11-29

    Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.

  13. Competitiveness of tomato production in punjab, pakistan

    International Nuclear Information System (INIS)

    Akhtar, W.; Qureshi, A.H.; Khan, M.A.

    2016-01-01

    The study measures competitiveness at farm level and economic efficiency at country level of tomato production in relation to tomato trade by using Policy Analysis Matrix (PAM) framework in Punjab, Pakistan. The province was divided into two tomato production regions i.e., Central and Southern Punjab for analysis purpose under importable scenario by using import parity price. Results of PAM model revealed that tomato production in both regions of Punjab has competitiveness under prevailing market situation as indicated by positive private profitability and private cost ratio (PCR) which is less than 1. Competitiveness difference in two regions indicated that Central Punjab has more competitiveness at farm level in tomato production. Economic efficiency results i.e. Domestic Resource Cost (DRC) ratio remained 0.39 and 0.51 in Central and Southern Punjab, respectively with positive social profitability indicating strong comparative advantage under importable scenario. The above results implied that Central Punjab has greater economic efficiency than Southern Punjab in domestic resources use for production of tomato as import substitute commodity. Results of Nominal Protection Coefficient (NPC) and Effective Protection Coefficient (EPC) indicated that combine effects of policies on output and tradable input market did not pass any protection to tomato farmers in the study area. Net effect of policy or market failure is reducing the profitability of tomato producers at farm level which indicates lack of motivation from policies for farmers to expand tomato production as import substitute crop. Present study recommended competitiveness and economic efficiency analysis in other tomato producing regions of the country for year round tomato supply on the basis of resource efficiency and to curtail tomato imports to save the precious foreign exchange. To enhance the competitiveness there is need to increase farmer's incentives through increase of farm level price up to

  14. Hormones and tomato seed germination

    NARCIS (Netherlands)

    Liu, Y.

    1996-01-01

    Using GA- and ABA-deficient mutants, exogenous gibberellins (GAs), abscisic acid (ABA) and osmoticum, we studied the roles of GAs and ABA in the induction of cell cycle activities, internal free space formation and changes in water relations during seed development and imbibition in tomato. First of

  15. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Directory of Open Access Journals (Sweden)

    Imène Hichri

    2017-07-01

    Full Text Available Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.. WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass and photosynthesis (stomatal conductance and chlorophyll a content were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.

  16. Effect of Dry Season Tomato Farming on Poverty Alleviation among ...

    African Journals Online (AJOL)

    Effect of Dry Season Tomato Farming on Poverty Alleviation among Women ... their major sources of resources for tomato farming, marketing and marketing ... and the effect of dry season tomato farming as strategy for poverty reduction; ...

  17. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management.

    Science.gov (United States)

    Nandi, Munmun; Macdonald, Jacqueline; Liu, Peng; Weselowski, Brian; Yuan, Ze-Chun

    2018-03-12

    Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management. © 2018 AGRICULTURE AND AGRI-FOOD CANADA. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  18. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing

    Science.gov (United States)

    Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2016-01-01

    ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes

  19. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: a pharmacokinetic study.

    Science.gov (United States)

    Martínez-Huélamo, Miriam; Tulipani, Sara; Estruch, Ramón; Escribano, Elvira; Illán, Montserrat; Corella, Dolores; Lamuela-Raventós, Rosa M

    2015-04-15

    Tomato sauce is the most commonly consumed processed tomato product worldwide, but very little is known about how the manufacturing process may affect the phenolic composition and bioavailability after consumption. In a prospective randomised, cross-over intervention study, we analysed the plasma and urinary levels of tomato phenolic compounds and their metabolites after acute consumption of raw tomatoes and tomato sauce, enriched or not with refined olive oil during production. Respectively, eleven and four phenolic metabolites were found in urine and plasma samples. The plasma concentration and urinary excretion of naringenin glucuronide were both significantly higher after the consumption of tomato sauce than raw tomatoes. The results suggest that the mechanical and thermal treatments during tomato sauce manufacture may help to deliver these potentially bioactive phenolics from the food matrix more effectively than the addition of an oil component, thus increasing their bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant.

    Science.gov (United States)

    Ohta, Kazuhiro; Moriguchi, Ryo; Kanahama, Koki; Yamaki, Shohei; Kanayama, Yoshinori

    2005-12-01

    The enzyme NAD-dependent sorbitol dehydrogenase (SDH) is well characterized in the Rosaceae family of fruit trees, which synthesizes sorbitol as a translocatable photosynthate. Expressed sequence tags of SDH-like sequences have also been generated from various non-Rosaceae species that do not synthesize sorbitol as a primary photosynthetic product, but the physiological roles of the encoded proteins in non-Rosaceae plants are unknown. Therefore, we isolated an SDH-like cDNA (SDL) from tomato (Lycopersicon esculentum Mill.). Genomic Southern blot analysis suggested that SDL exists in the tomato genome as a single-copy gene. Northern blot analysis showed that SDL is ubiquitously expressed in tomato plants. Recombinant SDL protein was produced and purified for enzymatic characterization. SDL catalyzed the interconversion of sorbitol and fructose with NAD (H). SDL showed highest activity for sorbitol among the several substrates tested. SDL showed no activity with NADP+. Thus, SDL was identified as a SDH, although the Km values and substrate specificity of SDL were significantly different from those of SDH purified from the Japanese pear (Pyrus pyrifolia), a Rosaceae fruit tree. In addition, tomato was transformed with antisense SDL to evaluate the contribution of SDL to SDH activity in tomato. The transformation decreased SDH activity to approximately 50% on average. Taken together, these results provide molecular evidence of SDH in tomato, and SDL was renamed LeSDH.

  1. Manipulating Sensory and Phytochemical Profiles of Greenhouse Tomatoes Using Environmentally Relevant Doses of Ultraviolet Radiation.

    Science.gov (United States)

    Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A

    2016-09-14

    Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.

  2. A DEMETER-like DNA demethylase governs tomato fruit ripening.

    Science.gov (United States)

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H; Maucourt, Mickael; Hodgman, T Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B; Giovannoni, James J; Gallusci, Philippe

    2015-08-25

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.

  3. Genome-wide identification and expression analysis of aquaporins in tomato.

    Science.gov (United States)

    Reuscher, Stefan; Akiyama, Masahito; Mori, Chiharu; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2013-01-01

    The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  4. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  5. Genome-wide identification and expression analysis of aquaporins in tomato.

    Directory of Open Access Journals (Sweden)

    Stefan Reuscher

    Full Text Available The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum, which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  6. Screening of tomato varieties for fruit tree based Agroforestry system

    OpenAIRE

    J. Hossain

    2014-01-01

    An experiment was conducted with four tomato varieties under a six year old orchard was accomplished at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) research farm during October 2011 to April 2012. The experiment was laid out in a Randomized Complete Block Design with three replications. Four tomato varieties (BARI Tomato 2, BARI Tomato 8, BARI Tomato 14 and BARI Tomato 15) were grown under guava, mango, olive and control. Results showed that light availability in co...

  7. Localization of QTLs for in vitro plant regeneration in tomato.

    Science.gov (United States)

    Trujillo-Moya, Carlos; Gisbert, Carmina; Vilanova, Santiago; Nuez, Fernando

    2011-10-20

    Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration. In this study we have

  8. Localization of QTLs for in vitro plant regeneration in tomato

    Directory of Open Access Journals (Sweden)

    Nuez Fernando

    2011-10-01

    Full Text Available Abstract Background Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. Results We developed two mapping populations (F2 and BC1 derived from a previously selected tomato cultivar (cv. Anl27 with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47. The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8 in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1 and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related

  9. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense.

    Science.gov (United States)

    Sakamoto, Tetsu; Deguchi, Michihito; Brustolini, Otávio J B; Santos, Anésia A; Silva, Fabyano F; Fontes, Elizabeth P B

    2012-12-02

    Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. Despite the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not yet been characterized, and a framework for functional predictions of the members of the family is lacking. To generate a complete list of all the members of the tomato RLK family, we performed a phylogenetic analysis using the Arabidopsis family as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same subfamily clades as Arabidopsis RLKs. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP). The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation. Based on the fact that members of the Arabidopsis LRRII subfamily (AtNIK1, AtNIK2 and AtNIK3) interact with the begomovirus nuclear shuttle protein (NSP), we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interact with NSP of Tomato Yellow Spot Virus (ToYSV). The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. The tomato RLK superfamily is made-up of 647 proteins that form a

  10. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense

    Directory of Open Access Journals (Sweden)

    Sakamoto Tetsu

    2012-12-01

    Full Text Available Abstract Background Receptor-like kinases (RLKs play key roles during development and in responses to the environment. Despite the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not yet been characterized, and a framework for functional predictions of the members of the family is lacking. Results To generate a complete list of all the members of the tomato RLK family, we performed a phylogenetic analysis using the Arabidopsis family as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same subfamily clades as Arabidopsis RLKs. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP. The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation. Based on the fact that members of the Arabidopsis LRRII subfamily (AtNIK1, AtNIK2 and AtNIK3 interact with the begomovirus nuclear shuttle protein (NSP, we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interact with NSP of Tomato Yellow Spot Virus (ToYSV. The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. Conclusions The tomato RLK

  11. Anti-atherosclerotic effects of tomatoes

    Directory of Open Access Journals (Sweden)

    Hidekatsu Yanai

    2017-06-01

    Full Text Available Tomatoes are rich in lycopene, which causes the red coloring of tomatoes. Several reports have suggested lycopene plays a role in the prevention of cardiovascular diseases. In this study, we systematically reviewed the interventional studies using tomatoes or tomato products to understandtheanti-atherosclerotic effects of the tomatoas a functional food. We found that a significantnumber of interventional studies reportedtheanti-atherosclerotic effects of tomatoes, includinganti-obesity effects, hypotensiveeffects, improvement of lipid/glucose metabolismand endothelial function, anti-oxidative and anti-inflammatory effect, and anti-platelet effect; however, the anti-platelet effect was disagreed uponby some studies. Furthermore, we discoveredcooking methods significantlyaffect anti-atherosclerotic effects of tomatoes.

  12. Predicting the presence of whiteflies and tomato yellow leaf curl virus in Florida tomato fields

    Science.gov (United States)

    Florida is one of the leading states for production of fresh market tomatoes. Production is severely affected by Tomato yellow leaf curl virus (TYLCV). The objective of this study was to identify landscape and climatic factors that drive whitefly populations and TYLCV incidence in commercial tomato ...

  13. Tomato juices and tomato juice concentrates : a study of factors contributing to their gross viscosity

    NARCIS (Netherlands)

    Heutink, R.

    1986-01-01

    The gross viscosity of tomato juice and tomato juice concentrates was found to be determined primarily by the water insoluble solids (WIS) content. The serum viscosity did not contribute to gross viscosity. The WIS consisted of whole tomato cells, vascular bundles and skin fragments. In general the

  14. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    OpenAIRE

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae...

  15. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways.

    Science.gov (United States)

    Jogaiah, Sudisha; Abdelrahman, Mostafa; Tran, Lam-Son Phan; Ito, Shin-Ichi

    2018-04-01

    In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell-free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol-plant-pathogen interaction system. Two-week-old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell-free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata-Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS- and CF-induced resistance was evaluated using JA- and SA-impaired tomato lines. We observed that JA-deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild-type (WT) BGS-treated tomato plants showed a higher JA level and significantly lower disease incidence. SA-deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF-treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA-responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA-inducible pathogenesis-related protein 1 acidic (PR1a) gene was up-regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  16. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    Science.gov (United States)

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes.

  17. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    Science.gov (United States)

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  18. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles

    Directory of Open Access Journals (Sweden)

    Aiese Cigliano Riccardo

    2013-01-01

    Full Text Available Abstract Background Histone post-translational modifications (HPTMs including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs in tomato are sketchy. Results Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs, 15 histone deacetylases (HDACs, 52 histone methytransferases (HMTs and 26 histone demethylases (HDMs, and compared them with those detected in Arabidopsis (Arabidopsis thaliana, maize (Zea mays and rice (Oryza sativa orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. Conclusions In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  19. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  20. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance

    KAUST Repository

    Razali, Rozaimi; Bougouffa, Salim; Morton, Mitchell J. L.; Lightfoot, Damien; Alam, Intikhab; Essack, Magbubah; Arold, Stefan T.; Kamau, Allan; Schmö ckel, Sandra M.; Pailles, Yveline; Shahid, Mohammed; Michell, Craig; Al-Babili, Salim; Ho, Yung Shwen; Tester, Mark A.; Bajic, Vladimir B.; Negrã o, Só nia

    2017-01-01

    Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for several desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome and annotation of S. pimpinellifolium LA0480. The LA0480 genome size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the LA0480 protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in LA0480. Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.

  1. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance

    KAUST Repository

    Razali, Rozaimi

    2017-11-14

    Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for several desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome and annotation of S. pimpinellifolium LA0480. The LA0480 genome size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the LA0480 protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in LA0480. Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.

  2. Phloem unloading in tomato fruit

    International Nuclear Information System (INIS)

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-01-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose ( 3 H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and 3 H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate

  3. Preplanting irradiation of tomato seeds

    International Nuclear Information System (INIS)

    Maltseva, S.

    1976-01-01

    Seeds of the tomato varieties Pioneer-2, Drouzhba and Ace were treated prior to planting with Co 60 gamma rays in optimal doses of 2000 R and the varieties No 10 x Bison, Triumph and Extase with 1500 R. This treatment raised the germination energy and the plants started flowering and ripening earlier. The index of earliness was enhanced but the overall yield was equal to that of the control plants. (author)

  4. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    Science.gov (United States)

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.

  5. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  6. Identification of rat Rosa26 locus enables generation of knock-in rat lines ubiquitously expressing tdTomato.

    Science.gov (United States)

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Yamaguchi, Tomoyuki; Tamura, Chihiro; Sanbo, Makoto; Hirabayashi, Masumi; Nakauchi, Hiromitsu

    2012-11-01

    Recent discovery of a method for derivation and culture of germline-competent rat pluripotent stem cells (PSCs) enables generation of transgenic rats or knock-out rats via genetic modification of such PSCs. This opens the way to use rats, as is routine in mice, for analyses of gene functions or physiological features. In mouse or human, one widely used technique to express a gene of interest stably and ubiquitously is to insert that gene into the Rosa26 locus via gene targeting of PSCs. Rosa26 knock-in mice conditionally expressing a reporter or a toxin gene have contributed to tracing or ablation of specific cell lineages. We successfully identified a rat orthologue of the mouse Rosa26 locus. Insertion of tdTomato, a variant of red fluorescent protein, into the Rosa26 locus of PSCs of various rat strains allows ubiquitous expression of tdTomato. Through germline transmission of one Rosa26-tdTomato knock-in embryonic stem cell line, we also obtained tdTomato knock-in rats. These expressed tdTomato ubiquitously throughout their bodies, which indicates that the rat Rosa26 locus conserves functions of its orthologues in mouse and human. The new tools described here (targeting vectors, knock-in PSCs, and rats) should be useful for a variety of research using rats.

  7. Mycorrhizal Dependency and Response of Tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    A pot experiment was conducted on tomato (Lycopersicon esculentum) to evaluate the responses of tomato to inoculation of mycorrhiza (AMF) under different levels of soil phosphorus (P) concentrations in a greenhouse study. The results showed different responses on dry matter yield, shoot phosphorus concentration, ...

  8. 21 CFR 155.191 - Tomato concentrates.

    Science.gov (United States)

    2010-04-01

    ... Tomato concentrates. (a) Identity—(1) Definition. Tomato concentrates are the class of foods each of... greater in length. (c) Blemishes, such as dark brown or black particles (specks)—not more than four exceed...; place a U.S. No. 12 screen (1.68 millimeters (0.066 inch) openings) over the sink drain; transfer the...

  9. An improved Agrobacterium mediated transformation in tomato ...

    African Journals Online (AJOL)

    Bacterial wilt is a devastating disease of tomato crop throughout the world. This disease is very dangerous in hot and humid regions, where it spreads with the irrigation water to whole field within days, which resulted in severe decline in yield. Two varieties of tomato were used for developing bacterial wilt resistance.

  10. Economic Sustainability of Italian Greenhouse Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Riccardo Testa

    2014-11-01

    Full Text Available Greenhouse tomato cultivation plays an important role in Sicily, being the primary production area in Italy, due to its favorable pedo-climatic conditions that permit extra-seasonal productions. In Sicily, more than half of greenhouse tomato production is derived from the Province of Ragusa on the southeastern coast, where especially cherry tomato typologies are cultivated. Over the last decade, the Ragusa Province has registered a decrease both in terms of greenhouse tomato area and harvested production due to several structural problems that would require restructuring of the tomato supply chain. Thus, since recognition of real costs and profitability of tomato growing is a vital issue, both from the perspective of the farm, as well as from that of the entrepreneur, the aim of this paper was to analyze the economic sustainability of Sicilian greenhouse cherry tomato cultivated in the Ragusa Province. In particular, an economic analysis on 30 representative farms was conducted in order to estimate production costs and profits of greenhouse cherry tomato. According to our results, the lack of commercial organization, which characterizes the small farms we surveyed, determines low contractual power for farmers and, consequently, low profitability.

  11. Isolation and composition of chromoplasts from tomatoes.

    Science.gov (United States)

    Hansen, Linn U; Chiu, Mei-Chen M

    2005-08-24

    The fruit of the tomato plant is composed of elongated tomato cells filled with organelles called chromoplasts (plastids). These plastids scattered throughout the cell are rich in nutrients, particularly protein (33%) and lipids (20%). They can be released from the cells by rupture of their cell membranes and then isolated. Plastids and their cell contents can be utilized by the food-processing industry for the preparation of special food products. This study was designed to examine the macronutrient content of isolated tomato plastids and, therefore, determine its potential nutritional value. Use of tomato plastids in pasta sauces and rice dishes, salsa, and extrusion products would increase the nutritional value of the product. Because glucose has been removed in the process of plastid isolation, tomato plastids are useful in the diets of diabetics and cardiovascular patients, as well as for patients in need of weight reduction. Composition comparison of tomato plastid is made with tomato paste, from which glucose has not been removed. Many people require low-sugar products for medical reasons (diabetics and those with cardiovascular disease) and others for weight loss. Therefore, tomato chromoplasts having high protein and lipid contents and low sugar content may be useful in meeting these particular human needs.

  12. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  13. Prediction of processing tomato peeling outcomes

    Science.gov (United States)

    Peeling outcomes of processing tomatoes were predicted using multivariate analysis of Magnetic Resonance (MR) images. Tomatoes were obtained from a whole-peel production line. Each fruit was imaged using a 7 Tesla MR system, and a multivariate data set was created from 28 different images. After ...

  14. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Collemare, J.; Griffiths, S.A.; Iida, Y.; Karimi Jashni, M.; Battaglia, E.; Cox, R.J.; Wit, de P.J.G.M.

    2014-01-01

    Cladosporium fulvum is a biotrophic fungal pathogen that causes leaf mould of tomato. Analysis of its genome suggested a high potential for production of secondary metabolites (SM), which might be harmful to plants and animals. Here, we have analysed in detail the predicted SM gene clusters of C.

  15. System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato

    NARCIS (Netherlands)

    Etalo, D.W.; Stulemeijer, I.J.E.; Esse, van H.P.; Vos, de R.C.H.; Bouwmeester, H.J.; Joosten, M.H.A.J.

    2013-01-01

    The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the

  16. Specific Hypersensitive Response–Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato

    NARCIS (Netherlands)

    Mesarich, Carl H.; Ӧkmen, Bilal; Rovenich, Hanna; Griffiths, Scott A.; Wang, Changchun; Karimi Jashni, Mansoor; Mihajlovski, Aleksandar; Collemare, Jérôme; Hunziker, Lukas; Deng, Cecilia H.; Burgt, Van Der Ate; Beenen, Henriek G.; Templeton, Matthew D.; Bradshaw, Rosie E.; Wit, De Pierre J.G.M.

    2018-01-01

    Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes

  17. Kanamycin resistance during in vitro development of pollen from transgenic tomato plants

    NARCIS (Netherlands)

    Bino, R.J.; Hille, J.; Franken, J.

    1987-01-01

    Effects of kanamycin on pollen germination and tube growth of pollen from non-transformed plants and from transgenic tomato plants containing a chimaeric kanamycin resistance gene were determined. Germination of pollen was not affected by the addition of kanamycin to the medium in both genotypes.

  18. Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste

    NARCIS (Netherlands)

    Kalamaki, M.S.; Powell, A.L.T.; Struijs, K.; Labavitch, J.M.; Reid, D.S.; Bennett, A.B.

    2003-01-01

    Suppression of the expression of a ripening-related expansin gene, LeExp1, in tomato enhanced fruit firmness and overexpression of LeExp1 resulted in increased fruit softening. Because of the incompletely understood relationship between fresh fruit texture and the consistency of processed products,

  19. Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection

    Czech Academy of Sciences Publication Activity Database

    Satková, P.; Starý, T.; Plešková, E.; Zapletalová, M.; Kašparovský, T.; Činčalová-Kubienová, L.; Luhová, L.; Mieslerová, B.; Mikulík, Jaromír; Lochman, J.; Petřivalský, M.

    2017-01-01

    Roč. 119, č. 5 (2017), s. 829-840 ISSN 0305-7364 Institutional support: RVO:61389030 Keywords : baba * Defence genes * Ethylene * Oidium neolycopersici * Oligandrin * Powdery mildew * Resistance * Solanum habrochaites * Solanum lycopersicum * Tomato Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  20. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    Science.gov (United States)

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional

  1. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum cultivar Micro-Tom, a reference system for the Solanaceae genomics

    Directory of Open Access Journals (Sweden)

    Kikuchi Mari

    2010-03-01

    Full Text Available Abstract Background The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. Results To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706 was estimated to be 0.061%. Conclusion The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the

  2. Mineral Content in Leaves of Tomato Plants Grafted on Solanum Rootstocks

    OpenAIRE

    松添, 直隆; 間, 浩美; 花田, 勝美; モハメド, アリ; 大久保, 敬; 藤枝, 國光

    1995-01-01

    Nutrient uptake of tomato plants cv. Momotaro grafted on Solanum sisymbriifoliulm, S. torvum and S. toxicarium which are resistant to soil-born disease were compared with tomato grafted on its own root, a tomato/tomato, scion/rootstock combination. Mineral content in leaves of tomato/S. sisymbriifoliulm was nearly equal to that of tomato/tomato. In leaves of tomato/S. torvum, nitrogen content was higher, and magnesium content was lower than those of tomato/tomato. Furthermore, phosphorus and ...

  3. Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles.

    Science.gov (United States)

    Labate, Joanne A; Robertson, Larry D

    2012-08-07

    Many highly beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are closely related to each other and wild species genes have been extensively used for improvement of the crop, Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S. lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to 1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Between six and twelve genotypes were comparatively analyzed per marker. Several of the markers had previously been hypothesized as carrying wild species alleles within S. lycopersicum, i.e., cryptic introgressions. Each marker was mapped with high confidence (etomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high mean bootstrap support (86.8 ± 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers. Hybridization and parsimony splits networks, genomic map positions of markers relative to documented introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with putatively introgressed alleles. Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome 9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of introgressed genes within crop species such as S. lycopersicum will help

  4. Plastid and Stromule Morphogenesis in Tomato

    Science.gov (United States)

    PYKE, KEVIN A.; HOWELLS, CAROLINE A.

    2002-01-01

    By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead‐like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed. PMID:12466096

  5. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  6. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  7. Identidade molecular dos fitoplasmas associados aos enfezamentos do tomateiro e da berinjela com base na análise do gene 16S rDNA Molecular identity of the phytoplasma associated to stunting of tomato and eggplant on the basis of analyses of the 16S rDNA

    Directory of Open Access Journals (Sweden)

    Ana Paula de Oliveira Amaral Mello

    2007-09-01

    Full Text Available Doenças de hortaliças de ocorrência no território brasileiro e em outras áreas do mundo têm sido associadas a diversos fitoplasmas. Na região de Piracicaba-SP e Bragança Paulista-SP, em plantas de tomate e berinjela foram observados sintomas típicos de enfezamento caracterizados por porte reduzido, clorose foliar, superbrotamento de ramos, desenvolvimento anormal do cálice, encurtamento de entre-nós, redução no tamanho de folhas, flores e frutos. Através de duplo PCR, utilizando os iniciadores R16 mF1/mR2 e R16 F2n/R2, fragmentos de DNA de 1,2 kb foram amplificados de amostras sintomáticas, demonstrando a presença de fitoplasma nos tecidos das plantas. O uso de iniciadores específicos demonstrou que estes fitoplasmas eram afiliados ao grupo 16SrIII. Análises de RFLP, usando as enzimas de restrição AluI, HpaII, KpnI, MboI, MseI e RsaI confirmaram que os fitoplasmas detectados eram representantes do grupo 16SrIII. Os fragmentos de DNA amplificados foram clonados em Escherichia coli, sequenciados e comparados, por homologia de seqüência, entre si e com outros fitoplasmas do grupo 16SrIII. Um índice de similaridade de seqüência acima de 95% foi encontrado quando seqüências dos fitoplasmas detectados em tomate e berinjela foram comparadas com aquelas de outros representantes do grupo 16SrIII. Um índice de 98-99% foi obtido quando seqüências dos fitoplasmas encontrados em tomate e berinjela foram comparadas entre si. Estes resultados evidenciaram que o enfezamento do tomateiro e da berinjela podem estar associados a um mesmo fitoplasma, com base na análise de seqüências do gene do 16S rDNA.Vegetable diseases occurring in the Brazilian territory and around the world have been associated with various phytoplasmas. In the region of Piracicaba-SP and Bragança-SP, in eggplant and tomato plants typical symptoms of stunting characterized by reduced canopy, leaf yellowing, proliferation of shoots, calix malformation

  8. ECONOMIC EFFICIENCY IN TOMATOES PRODUCTION IN GREENHOUSES

    Directory of Open Access Journals (Sweden)

    A POPESCU

    2003-07-01

    Full Text Available This study aimed to appreciate the evolution of economic efficiency in tomatoes production in greenhouses within a private firm situated next to the capital. The firm owns 4 ha greenhouses and the weight of tomatoes crop in the cultivated area is just 38.75 %. In fact, during the last three years, the tomatoes cultivated surface has been diminished in favour of flowers production which, like tomatoes production is an important income source for any producer. The reduction of the tomatoes cultivated area was compensated by the increase of intensification grade using new high performance hybrids and modern technologies. Thus, the scientific production management has been looking for maintaining the total production at the same level from a year to another by an increased average tomatoes yield by 53.33 % . The continuous increase of farm input price has doubled the cost per surface unit and increased the cost per tomatoes kilogram by 33 %. The increase of tomatoes demand and of market price by 31 % have had a positive influence on the farm incomes which has doubled during the last three years. In the year 2000, the company has obtained USD 41,818 income/ha of which subtracting the related production cost we can easily get USD 4,815 profit/ha. The average profit rate recorded by the firm is 13 % in the period 2000-2002, when the study was made. As a conclusion, tomatoes production in greenhouses is a good deal. To keep a high economic efficiency, under the diminishing of the cultivated area, the producers have to increase average tomatoes production by using high performance technology based on high economic value hybrids.

  9. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California

    OpenAIRE

    Thapa, Shree P.; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P.?syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

  10. Effects of tomato variety, temperature differential and post-stem removal time on internalization of Salmonella Thompson into tomatoes

    Science.gov (United States)

    Tomatoes have been implicated in several Salmonellosis outbreaks due to possible contamination through bacterial infiltration into tomatoes during post-harvest handling. The aim of this study was to determine the effects of tomato variety, dump tank water to tomato pulp temperature differential, and...

  11. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  12. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yunzhou Li

    Full Text Available Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3 in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L. infected with tomato yellow leaf curl virus (TYLCV. There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA and jasmonic acid (JA defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD, peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  13. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  14. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.

    Directory of Open Access Journals (Sweden)

    Zheng Zheng

    Full Text Available Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum, a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.

  15. Detection and molecular characterization of tomato yellow leaf curl virus naturally infecting Lycopersicon esculentum in Egypt.

    Science.gov (United States)

    Rabie, M; Ratti, C; Abdel Aleem, E; Fattouh, F

    Tomato yellow leaf curl virus (TYLCV) infections of tomato crops in Egypt were widely spread in 2014. Infected symptomatic tomato plants from different governorates were sampled. TYLCV strains Israel and Mild (TYLCV-IL, TYLCV-Mild) were identified by multiplex and real-time PCR. In addition, nucleotide sequence analysis of the V1 and V2 protein genes, revealed ten TYLCV Egyptian isolates (TYLCV from TY1 to 10). Phylogenetic analysis showed their high degree of relatedness with TYLCV-IL Jordan isolate (98%). Here we have showed the complete nucleotide sequence of the TYLCV Egyptian isolate TY10, sampled from El Beheira. A high degree of similarity to other previously reported Egyptian isolates and isolates from Jordan and Japan reflect the importance of phylogenetic analysis in monitoring virus genetic diversity and possibilities for divergence of more virulent strains or genotypes.

  16. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.

  17. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum).

    Science.gov (United States)

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene ( SlTDT ) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT , we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles.

  18. Fast data preprocessing for chromatographic fingerprints of tomato cell wall polysaccharides using chemometric methods.

    Science.gov (United States)

    Quéméner, Bernard; Bertrand, Dominique; Marty, Isabelle; Causse, Mathilde; Lahaye, Marc

    2007-02-02

    The variability in the chemistry of cell wall polysaccharides in pericarp tissue of red-ripe tomato fruit (Solanum lycopersicon Mill.) was characterized by chemical methods and enzymatic degradations coupled to high performance anion exchange chromatography (HPAEC) and mass spectrometry analysis. Large fruited line, Levovil (LEV) carrying introgressed chromosome fragments from a cherry tomato line Cervil (CER) on chromosomes 4 (LC4), 9 (LC9), or on chromosomes 1, 2, 4 and 9 (LCX) and containing quantitative trait loci (QTLs) for texture traits, was studied. In order to differentiate cell wall polysaccharide modifications in the tomato fruit collection by multivariate analysis, chromatograms were corrected for baseline drift and shift of the component elution time using an approach derived from image analysis and mathematical morphology. The baseline was first corrected by using a "moving window" approach while the peak-matching method developed was based upon location of peaks as local maxima within a window of a definite size. The fast chromatographic data preprocessing proposed was a prerequisite for the different chemometric treatments, such as variance and principal component analysis applied herein to the analysis. Applied to the tomato collection, the combined enzymatic degradations and HPAEC analyses revealed that the firm LCX and CER genotypes showed a higher proportion of glucuronoxylans and pectic arabinan side chains while the mealy LC9 genotype demonstrated the highest content of pectic galactan side chains. QTLs on tomato chromosomes 1, 2, 4 and 9 contain important genes controlling glucuronoxylan and pectic neutral side chains biosynthesis and/or metabolism.

  19. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon).

    Science.gov (United States)

    Lin, Chih-Hui; Sheu, Fuu; Lin, Hsin-Tang; Pan, Tzu-Ming

    2010-02-24

    Cucumber mosaic virus (CMV) has been identified as the causal agent of several disease epidemics in most countries of the world. Insect-mediated virus diseases, such as those caused by CMV, caused remarkable loss of tomato (Solanum lycopersicon) production in Taiwan. With expression of the CMV coat protein gene (Cmvcp) in a local popular tomato cultivar L4783, transgenic tomato line R8 has showed consistent CMV resistance through T(0) to T(8). In this report, the allergenicity of the CMV coat protein (CMV cp) expressed in transgenic tomato R8 was assessed by investigation of the expression of the transgene source of protein, sequence similarity with known allergens, and resistance to pepsin hydrolysis. There is no known account for either the CMV or its coat protein being an allergen. The result of a bioinformatic search also showed no significant homology between CMV cp and any known allergen. The pepsin-susceptible property of recombinant CMV cp was revealed by a simulated gastric fluid (SGF) assay. Following the most recent FAO/WHO decision tree, all results have indicated that CMV cp was a protein with low possibility to be an allergen and the transgenic tomato R8 should be considered as safe as its host.

  20. Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens.

    Science.gov (United States)

    Pastor, Nicolás; Masciarelli, Oscar; Fischer, Sonia; Luna, Virginia; Rovera, Marisa

    2016-09-01

    Tomato is one of the most economically attractive vegetable crops due to its high yields. Diseases cause significant losses in tomato production worldwide. We carried out Polymerase Chain Reaction studies to detect the presence of genes encoding antifungal compounds in the DNA of Pseudomonas putida strain PCI2. We also used liquid chromatography-electrospray tandem mass spectrometry to detect and quantify the production of compounds that increase the resistance of plants to diseases from culture supernatants of PCI2. In addition, we investigated the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in PCI2. Finally, PCI2 was used for inoculation of tomato seeds to study its potential biocontrol activity against Fusarium oxysporum MR193. The obtained results showed that no fragments for the encoding genes of hydrogen cyanide, pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, or phenazine-1-carboxylic acid were amplified from the DNA of PCI2. On the other hand, PCI2 produced salicylic acid and jasmonic acid in Luria-Bertani medium and grew in a culture medium containing ACC as the sole nitrogen source. We observed a reduction in disease incidence from 53.33 % in the pathogen control to 30 % in tomato plants pre-inoculated with PCI2 as well as increases in shoot and root dry weights in inoculated plants, as compared to the pathogenicity control. This study suggests that inoculation of tomato seeds with P. putida PCI2 increases the resistance of plants to root rot caused by F. oxysporum and that PCI2 produces compounds that may be involved at different levels in increasing such resistance. Thus, PCI2 could represent a non-contaminating management strategy potentially applicable in vegetable crops such as tomato.

  1. Nutritional evaluation of dried tomato seeds.

    Science.gov (United States)

    Persia, M E; Parsons, C M; Schang, M; Azcona, J

    2003-01-01

    Two samples of tomato seeds, a by-product of the tomato canning industry were evaluated to determine proximate analysis, amino acid content, and digestibility, TMEn, and protein efficiency ratio. Tomato seeds were also used to replace corn and soybean meal (SBM) in a chick diet on an equal true amino acid digestibility and TMEn basis. Tomato seeds were found to contain 8.5% moisture, 25% CP, 20.0% fat, 3.1% ash, 35.1% total dietary fiber, 0.12% Ca, 0.58% P, and 3,204 kcal/kg of TMEn. The total amounts of methionine, cystine, and lysine in the tomato seeds were 0.39, 0.40, and 1.34%, respectively, and their true digestibility coefficients, determined in cecectomized roosters, were 75, 70, and 54%, respectively. The protein efficiency ratio (weight gain per unit of protein intake) value when fed to chicks at 9% CP was 2.5 compared to 3.6 for SBM (P seeds could replace corn and SBM without any adverse affects on chick weight gain, feed intake, or gain:feed ratio from 8 to 21 d posthatch. Tomato seeds at any level in the diet did not significantly affect skin pigmentation. Although the protein quality of tomato seeds may not be as high as SBM, tomato seeds do contain substantial amounts of digestible amino acids and TMEn. When formulating diets on a true digestible amino acid and TMEn basis, tomato seeds can be supplemented into chick rations at up to 15% without any adverse affects on growth performance.

  2. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-05-01

    Full Text Available Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys, that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT. We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato.Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2 and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.

  3. COMPARISON OF CAROTENOID CONTENT IN TOMATO, TOMATO PULP AND KETCHUP BY LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    J. J. T. GAMA

    2009-01-01

    Full Text Available

    Although tomatoes are commonly consumed fresh, over 80 % the consumption of tomatoes is in the form of processed products such as tomato pulp, ketchup, juice and sauce. Research has indicated the potential health benefits of a diet rich in tomatoes and tomato products. The present study was carried out to determine the carotenoid content of fresh tomato, tomato pulp and ketchup by high performance liquid chromatography. The major differences among these products were in the concentration of some of the pigments. Tomato had all-trans-lycopene (1046-1099 μg/g DW, cislycopene (125-132 μg/g DW and all-trans- -carotene (45-59 μg/g DW as principal carotenoids. Tomato pulp and ketchup had all-trans-lycopene (951-999 μg/g DW and 455-476 μg/g DW, all-trans- -carotene (76-88 DW μg/g and 20-27 DW μg/g and cis-lycopene (71-83 μg/g DW and 14-25 μg/g DW as the main pigments, respectively. They also contained other carotenoids in much smaller amounts (lycoxanthin, zeaxanthin, anteraxanthin, lutein, -carotene, -carotene and phytofluene.

  4. Biotechnological strategies for enhancing the nutritive and nutraceutical values of tomato (Solanum lycopersicon

    Directory of Open Access Journals (Sweden)

    Charles Ojo OLAIYA

    2015-12-01

    Full Text Available Tomatoes are a unique functional food and a natural reservoir of many health promoting nutrients, antioxidants, dietary fibres and chemopreventive nutraceuticals. They are particularly rich in lycopene which has been associated with the prevention of cardiovascular disease and cancers of the prostate and the gastrointestinal tract. As an important vegetable worldwide, tomatoes have drawn the attention of many researchers. Thus, numerous investigations have been conducted and various improvement strategies applied for enhancing the functionality of this medicinal food geared towards disease prevention, global health and well-being. Molecular breeding has produced a number of tomato lines with enhanced levels of lycopene, β-carotene and xanthophylls. Over expression of certain genes have generated tomato fruits with enhanced ascorbic acid levels and folate accumulation up to 25-fold. Plant hormone technology has been used to enhance tomato minerals, antioxidant vitamins, lycopene, β-carotene, flavonoids and phenolic compounds in tomato fruit tissues. Manipulation in soilless culture solutions is valuable for enhancing the antioxidative capacity of tomatoes, vitamin C, flavonoids, lycopene, and β-carotene in fresh fruits. In addition, the spraying of nutrients, such as potassium, in field conditions has a strong stimulatory effect on lycopene contents of tomatoes. Transgenic strategies are also being adopted. These strategies offer a rapid way to introduce desirable traits into the phenotype and differ from other approaches in that novel genetic information is introduced directly into the plant’s genome. An important and current trend in the improvement of functional foods is to shift from enhancing single nutritional compounds towards enhancing multiple nutrients and phytochemicals in order to harness their synergistic interactions. This could be achieved by the use of strategies having pleitropic effects such as bioregulators, multigene

  5. Identification of key molecular components of the resistance of cherry tomato against Phytophthora infestans

    International Nuclear Information System (INIS)

    Lopez Kleine, Liliana; Smart, Christine D; Fry, William E; Restrepo, Silvia

    2012-01-01

    Cherry tomato Solanum lycopersicum var cerasiforme CV matt's wild cherry is a very resistant cultivar to most Phytophthora infestans isolates. Two isolates were identified, us 940480 and us 970001 that cause an incompatible and a compatible interaction respectively. Us 970001 is one of the few isolates producing a compatible interaction with this cultivar. To identify genes with a differential gene expression between compatible and incompatible interactions, gene expression patterns were analyzed with tomato CDNA microarrays including 12,899 independent tomato CDNA clones at different time points after inoculation. A diverse set of statistical tools were used to identify key components of the plant response to the pathogen. Forty-three genes were up-regulated during the incompatible reaction at time point 36 hours, 15 globally at all-time points and twelve were found both in globally and at 36 hours. Northern blots analysis was performed to confirm differential expression showed by microarray analysis and to study the differential expression of more plant resistance genes (PR) genes between compatible and incompatible interactions for this interaction.

  6. Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato.

    Science.gov (United States)

    Lee, Jinsu; Shim, Donghwan; Moon, Suyun; Kim, Hyemin; Bae, Wonsil; Kim, Kyunghwan; Kim, Yang-Hoon; Rhee, Sung-Keun; Hong, Chang Pyo; Hong, Suk-Young; Lee, Ye-Jin; Sung, Jwakyung; Ryu, Hojin

    2018-06-01

    Brassinosteroids (BRs) are plant steroid hormones that play crucial roles in a range of growth and developmental processes. Although BR signal transduction and biosynthetic pathways have been well characterized in model plants, their biological roles in an important crop, tomato (Solanum lycopersicum), remain unknown. Here, cultivated tomato (WT) and a BR synthesis mutant, Micro-Tom (MT), were compared using physiological and transcriptomic approaches. The cultivated tomato showed higher tolerance to drought and osmotic stresses than the MT tomato. However, BR-defective phenotypes of MT, including plant growth and stomatal closure defects, were completely recovered by application of exogenous BR or complementation with a SlDWARF gene. Using genome-wide transcriptome analysis, 619 significantly differentially expressed genes (DEGs) were identified between WT and MT plants. Several DEGs were linked to known signaling networks, including those related to biotic/abiotic stress responses, lignification, cell wall development, and hormone responses. Consistent with the higher susceptibility of MT to drought stress, several gene sets involved in responses to drought and osmotic stress were differentially regulated between the WT and MT tomato plants. Our data suggest that BR signaling pathways are involved in mediating the response to abiotic stress via fine-tuning of abiotic stress-related gene networks in tomato plants. Copyright © 2018. Published by Elsevier Masson SAS.

  7. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Directory of Open Access Journals (Sweden)

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  8. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  9. Postharvest fungal deterioration of tomato ( Lycopersicum ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... tomatoes and pepper were sourced from Mile 12 Market in Lagos state. ... the ingestion of mycotoxins that are usually associated with fungal species), ...

  10. Fertilizers applied to certified organic tomato culture

    International Nuclear Information System (INIS)

    Martins, T.C.G.; De Nadai Fernandes, E.A.; Ferrari, A.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2010-01-01

    The tomato culture demands large quantities of mineral nutrients, which are supplied by synthetic fertilizers in the conventional cultivation system. In the organic cultivation system only alternative fertilizers are allowed by the certifiers and accepted as safe for humans and environment. The chemical composition of rice bran, oyster flour, cattle manure and ground charcoal, as well as soils and tomato fruits were evaluated by instrumental neutron activation analysis (INAA). The potential contribution of organic fertilizers to the enrichment of chemical elements in soil and their transfer to fruits was investigated using concentration ratios for fertilizer and soil samples, and also for soil and tomato. Results evidenced that these alternative fertilizers could be taken as important sources of Br, Ca, Ce, K, Na and Zn for the organic tomato culture. (author)

  11. Callus formation and organogenesis of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... propagated plants upon transfer to soil under natural conditions. ... Effect of high temperature and heat shock on tomato (Lycopersicon esculentum Mill) genotypes .... Modulation of mineral and fatty acid profiles during ...

  12. (edta) on the germination of tomato

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    response of plant to salinity stress varies according to plant ... National Horticultural Research Institute (NIHORT), Ibadan, Oyo. State .... the work of Mgbeze et al. ... accumulation of four tomato cultivars. American. Journal of Plant Physiology, ...

  13. Tomato leaves methanol extract possesses anti- inflammatory ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... demonstrated, the anti-inflammatory effect of tomato leaves and its associated molecular mechanisms have not yet .... dissolved in 10% of culture-grade dimethylsulfoxide (DMSO; Sigma-. Aldrich .... In Vitro Cell. Dev. Biol.

  14. Turkish tomato greenhouse gets geothermal heating

    NARCIS (Netherlands)

    Sikkema, A.; Maaswinkel, R.H.M.

    2011-01-01

    Wageningen UR Greenhouse Horticulture will set up an ultramodern greenhouse in Turkey, together with Dutch greenhouse builders and contractors. Geothermal energy will be used there to provide heat and carbon dioxide for tomato cultivation.

  15. Influence of UV-A or UV-B light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase in etiolated tomato cotyledons

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The influence of ultraviolet A (UV-A) or B (UV-B) light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) was examined in etiolated cotyledons of tomato (Lycopersicon escu- lentum L.). The Fd-GOGAT activity increased upon illumination of etiolated tomato cotyledons with UV-A or UV-B light. This stimulation of Fd-GOGAT activity was correlated with an increase in both the Fd-GOGAT transcript level and the Fd-GOGAT protein abundance. These results suggest that UV-A or UV-B light stimulates the de novo synthesis of Fd-GOGAT in etiolated tomato cotyledons. Both UV-A and UV-B light failed to influence the activity of NADH-GOGAT (EC 1.4.1.14) in etiolated tomato cotyledons. Taken together, our data indicate that the tomato genes encoding Fd- or NADH-dependent glutamate synthase are regulated differently by UV-A or UV-B light. No difference with respect to both the Fd-GOGAT transcript and protein abundance was found between cotyledons of tomato seedlings grown with either nitrate or ammonium as the sole N-source in the dark or in white light. In addition, the increase in the Fd-GOGAT protein pool induced by white light in etiolated nitrate-grown tomato seedling cotyledons was similar to that induced by white light in etiolated ammonium-grown tomato seedling cotyledons. These results show that the tomato Fd-GOGAT protein level does not depend strongly on the nature of the nitrogen source and that there appears to be no major stimulatory effect on the Fd-GOGAT protein pool produced by nitrate during the illumination of etiolated tomato cotyledons

  16. A Biocontrol Strain of Bacillus subtilis WXCDD105 Used to Control Tomato Botrytis cinerea and Cladosporium fulvum Cooke and Promote the Growth of Seedlings

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2018-05-01

    Full Text Available In this study, a strain named WXCDD105, which has strong antagonistic effects on Botrytis cinerea and Cladosporium fulvum Cooke, was screened out from the rhizosphere of healthy tomato plants. The tomato plants had inhibition diameter zones of 5.00 mm during the dual culture for four days. Based on the morphological and physiological characteristics, the 16S rDNA sequence, and the gyrB gene sequence analysis, the strain WXCDD105 was identified as Bacillus subtilis suBap. subtilis. The results of the mycelial growth test showed that the sterile filtrate of the strain WXCDD105 could significantly inhibit mycelial growth of Botrytis cinerea and Cladosporium fulvum Cooke. The inhibition rates were 95.28 and 94.44%, respectively. The potting experiment showed that the strain WXCDD105 made effective the control of tomato gray mold and tomato leaf mold. The control efficiencies were 74.70 and 72.07%. The antagonistic test results showed that the strain WXCDD105 had different degrees of inhibition on 10 kinds of plant pathogenic fungi and the average inhibition rates were more than 80%. We also found that the strain WXCDD105 stimulated both the seed germination and seedling growth of tomatoes. Using the fermentation liquid of WXCDD105 (108 cfu·mL−1 to treat the seeds, the germination rate and radicle length were increased. Under the treatment of the fermentation liquid of the strain WXCDD105 (106 cfu·mL−1, nearly all physiological indexes of tomato seedlings were significantly higher than that of the control groups. This could not only keep the nutritional quality of tomato fruits but also prevent them from rotting. This study provided us with an excellent strain for biological control of tomato gray mold, tomato leaf mold, and tomato growth promotion. This also laid the technical foundation for its application.

  17. Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum Resistance against Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Valentina Bracuto

    2017-09-01

    Full Text Available Specific syntaxins, such as Arabidopsis AtPEN1 and its barley ortholog ROR2, play a major role in plant defense against powdery mildews. Indeed, the impairment of these genes results in increased fungal penetration in both host and non-host interactions. In this study, a genome-wide survey allowed the identification of 21 tomato syntaxins. Two of them, named SlPEN1a and SlPEN1b, are closely related to AtPEN1. RNAi-based silencing of SlPEN1a in a tomato line carrying a loss-of-function mutation of the susceptibility gene SlMLO1 led to compromised resistance toward the tomato powdery mildew fungus Oidium neolycopersici. Moreover, it resulted in a significant increase in the penetration rate of the non-adapted powdery mildew fungus Blumeria graminis f. sp. hordei. Codon-based evolutionary analysis and multiple alignments allowed the detection of amino acid residues that are under purifying selection and are specifically conserved in syntaxins involved in plant-powdery mildew interactions. Our findings provide both insights on the evolution of syntaxins and information about their function which is of interest for future studies on plant–pathogen interactions and tomato breeding.

  18. Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum) Resistance against Powdery Mildew.

    Science.gov (United States)

    Bracuto, Valentina; Appiano, Michela; Zheng, Zheng; Wolters, Anne-Marie A; Yan, Zhe; Ricciardi, Luigi; Visser, Richard G F; Pavan, Stefano; Bai, Yuling

    2017-01-01

    Specific syntaxins, such as Arabidopsis AtPEN1 and its barley ortholog ROR2, play a major role in plant defense against powdery mildews. Indeed, the impairment of these genes results in increased fungal penetration in both host and non-host interactions. In this study, a genome-wide survey allowed the identification of 21 tomato syntaxins. Two of them, named SlPEN1a and SlPEN1b , are closely related to AtPEN1 . RNAi-based silencing of SlPEN1a in a tomato line carrying a loss-of-function mutation of the susceptibility gene SlMLO1 led to compromised resistance toward the tomato powdery mildew fungus Oidium neolycopersici . Moreover, it resulted in a significant increase in the penetration rate of the non-adapted powdery mildew fungus Blumeria graminis f. sp. hordei . Codon-based evolutionary analysis and multiple alignments allowed the detection of amino acid residues that are under purifying selection and are specifically conserved in syntaxins involved in plant-powdery mildew interactions. Our findings provide both insights on the evolution of syntaxins and information about their function which is of interest for future studies on plant-pathogen interactions and tomato breeding.

  19. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  20. PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment

    Directory of Open Access Journals (Sweden)

    Mariam Zameer

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria are colonized bacterial species that has the capability to improve plant growth by certain direct and indirect means. Environmental factors including both biotic and abiotic stresses are among the major constraints to crop production. In the current study, the effectiveness of microbial inoculation (Bacillus megaterium for enhancing growth of tomato plants under salt stress conditions has been investigated. Significant improvement in shoot length, root length, leaf surface area, number of leaves, total weight of the shoot and root was observed in tomato plants inoculated with zm7 strain post 15 and 30 days of its application. Zm3, Zm4 and Zm6 strains improved the morphological parameters as compared to the control. Chlorophyll content a, chlorophyll content b, anthocyanin and carotenoid content was increased in tomato plants subjected to Zm7, Zm6 and Zm4 strains. Stress responsive genes; metallothionein and glutothion gene were found highly expressed in Zm7 treated tomato plants as compared to control, untreated plants. Significant correlation of anthocyanin was reported for carotenoids, chlorophyll-b, shoot weight and total weight of seedling while carotenoids were significantly correlated with leaf surface area, root length, chlorophyll-b and anthocyanin. Overall, Zm7 strain proved best for improvement in salt stressed plant’s morphological parameters and biochemical parameters as compared to control, untreated plants.

  1. The Role of Pathogenesis-Related Proteins in the Tomato-Rhizoctonia solani Interaction

    Directory of Open Access Journals (Sweden)

    Parissa Taheri

    2012-01-01

    Full Text Available Rhizoctonia solani is one of the most destructive pathogens causing foot rot disease on tomato. In this study, the molecular and cellular changes of a partially resistant (Sunny 6066 and a susceptible (Rio Grande tomato cultivar after infection with necrotrophic soil-borne fungus R. solani were compared. The expression of defense-related genes such as chitinase (LOC544149 and peroxidase (CEVI-1 in infected tomato cultivars was investigated using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR. This method revealed elevated levels of expression for both genes in the partially resistant cultivar compared to the susceptible cultivar. One of the most prominent facets of basal plant defense responses is the formation of physical barriers at sites of attempted fungal penetration. These structures are produced around the sites of potential pathogen ingress to prevent pathogen progress in plant tissues. We investigated formation of lignin, as one of the most important structural barriers affecting plant resistance, using thioglycolic acid assay. A correlation was found between lignification and higher level of resistance in Sunny 6066 compared to Rio Grande cultivar. These findings suggest the involvement of chitinase, peroxidase, and lignin formation in defense responses of tomato plants against R. solani as a destructive pathogen.

  2. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

    Science.gov (United States)

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop

    2015-01-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  3. Carotenoid Profile of Tomato Sauces: Effect of Cooking Time and Content of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Anna Vallverdú-Queralt

    2015-04-01

    Full Text Available The consumption of carotenoid-rich vegetables such as tomatoes and tomato sauces is associated with reduced risk of several chronic diseases. The predominant carotenoids in tomato products are in the (all-E configuration, but (Z isomers can be formed during thermal processing. The effect of cooking time (15, 30, 45 and 60 min and the addition of extra virgin olive oil (5% and 10% on the carotenoid extractability of tomato sauces was monitored using liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS and LC-ultraviolet detection (LC-UV. The thermal treatment and the addition of extra virgin olive oil increased the levels of antioxidant activity, total carotenoids, Z-lycopene isomers, α-carotene and β-carotene. These results are of particular nutritional benefit since higher lycopene intake has been associated with a reduced risk of lethal prostate and a reduction of prostate-specific antigen (PSA levels. Moreover, β-carotene has been reported to suppress the up-regulation of heme oxygenase-1 gene expression in a dose dependent manner and to suppress UVA-induced HO-1 gene expression in cultured FEK4.

  4. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates

    Science.gov (United States)

    Wei, Jia; Wang, Qiaomei

    2012-01-01

    One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits. PMID:22945939

  5. A novel synthetic quantification standard including virus and internal report targets: application for the detection and quantification of emerging begomoviruses on tomato

    OpenAIRE

    Péréfarres, Frédéric; Hoareau, Murielle; Chiroleu, Frédéric; Reynaud, Bernard; Dintinger, Jacques; Lett, Jean-Michel

    2011-01-01

    Abstract Background Begomovirus is a genus of phytopathogenic single-stranded DNA viruses, transmitted by the whitefly Bemisia tabaci. This genus includes emerging and economically significant viruses such as those associated with Tomato Yellow Leaf Curl Disease, for which diagnostic tools are needed to prevent dispersion and new introductions. Five real-time PCRs with an internal tomato reporter gene were developed for accurate detection and quantification of monopartite begomoviruses, inclu...

  6. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport.

    Science.gov (United States)

    Mathews, Helena; Clendennen, Stephanie K; Caldwell, Colby G; Liu, Xing Liang; Connors, Karin; Matheis, Nikolaus; Schuster, Debra K; Menasco, D J; Wagoner, Wendy; Lightner, Jonathan; Wagner, D Ry

    2003-08-01

    We have developed a high-throughput T-DNA insertional mutagenesis program in tomato using activation tagging to identify genes that regulate metabolic pathways. One of the activation-tagged insertion lines (ant1) showed intense purple pigmentation from the very early stage of shoot formation in culture, reflecting activation of the biosynthetic pathway leading to anthocyanin accumulation. The purple coloration resulted from the overexpression of a gene that encodes a MYB transcription factor. Vegetative tissues of ant1 plants displayed intense purple color, and the fruit showed purple spotting on the epidermis and pericarp. The gene-to-trait relationship of ant1 was confirmed by the overexpression of ANT1 in transgenic tomato and in tobacco under the control of a constitutive promoter. Suppression subtractive hybridization and RNA hybridization analysis of the purple tomato plants indicated that the overexpression of ANT1 caused the upregulation of genes that encode proteins in both the early and later steps of anthocyanidin biosynthesis as well as genes involved in the glycosylation and transport of anthocyanins into the vacuole.

  7. IDENTIFICATION OF KEY MOLECULAR COMPONENTS OF THE RESISTANCE OF CHERRY TOMATO AGAINST Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    LILIANA LÓPEZ KLEINE

    2012-09-01

    Full Text Available Cherry tomato Solanum lycopersicum var cerasiforme cv Matt’s wild cherry is a very resistant cultivar to most Phytophthora infestans isolates. Two isolates were identified, US940480 and US970001 that cause an incompatible and a compatible interaction respectively. US970001 is one of the few isolates producing a compatible interaction with this cultivar. To identify genes with a differential gene expression between compatible and incompatible interactions, gene expression patterns were analyzed with tomato cDNA microarrays including 12,899 independent tomato cDNA clones at different time points after inoculation. A diverse set of statistical tools were used to identify key components of the plant response to the pathogen. Forty-three genes were up-regulated during the incompatible reaction at time point 36 hours, 15 globally at all time points and twelve were found both in globally and at 36 hours. Northern blots analysis was performed to confirm differential expression showed by microarray analysis and to study the differential expression of more PR genes between compatible and incompatible interactions for this interaction.

  8. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Li, Dayong; Fu, Fuyou; Zhang, Huijuan; Song, Fengming

    2015-10-12

    Transcription factors of the basic leucine zipper (bZIP) family represent exclusively in eukaryotes and have been shown to regulate diverse biological processes in plant growth and development as well as in abiotic and biotic stress responses. However, little is known about the bZIP family in tomato (Solanum lycopersicum L.). The SlbZIP genes were identified using local BLAST and hidden Markov model profile searches. The phylogenetic trees, conserved motifs and gene structures were generated by MEGA6.06, MEME tool and gene Structure Display Server, respectively. The syntenic block diagrams were generated by the Circos software. The transcriptional gene expression profiles were obtained using Genevestigator tool and quantitative RT-PCR. In the present study, we carried out a genome-wide identification and systematic analyses of 69 SlbZIP genes that distributes unevenly on the tomato chromosomes. This family can be divided into 9 groups according to the phylogenetic relationship among the SlbZIP proteins. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs and their presence of the group specificity were also identified. Further, we predicted the DNA-binding patterns and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 24 distinct subfamilies. Within the SlbZIP family, a total of 40 SlbZIP genes are located in the segmental duplicate regions in the tomato genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the tomato SlbZIP family. Expression profiling analyses of 59 SlbZIP genes using quantitative RT-PCR and publicly available microarray data indicate that the tomato SlbZIP genes have distinct and diverse expression patterns in different tissues and developmental stages and many of the tomato bZIP genes

  9. Mapping Quantitative Trait Loci (QTL for Resistance to Late Blight in Tomato

    Directory of Open Access Journals (Sweden)

    Dilip R. Panthee

    2017-07-01

    Full Text Available Late blight caused by Phytophthora infestans (Montagne, Bary is a devastating disease of tomato worldwide. There are three known major genes, Ph-1, Ph-2, and Ph-3, conferring resistance to late blight. In addition to these three genes, it is also believed that there are additional factors or quantitative trait loci (QTL conferring resistance to late blight. Precise molecular mapping of all those major genes and potential QTL is important in the development of suitable molecular markers and hence, marker-assisted selection (MAS. The objective of the present study was to map the genes and QTL associated with late blight resistance in a tomato population derived from intra-specific crosses. To achieve this objective, a population, derived from the crossings of NC 1CELBR × Fla. 7775, consisting of 250 individuals at F2 and F2-derived families, were evaluated in replicated trials. These were conducted at Mountain Horticultural Crops Reseach & Extension Center (MHCREC at Mills River, NC, and Mountain Research Staion (MRS at Waynesville, NC in 2011, 2014, and 2015. There were two major QTL associated with late blight resistance located on chromosomes 9 and 10 with likelihood of odd (LOD scores of more than 42 and 6, explaining 67% and 14% of the total phenotypic variation, respectively. The major QTLs are probably caused by the Ph-2 and Ph-3 genes. Furthermore, there was a minor QTL on chromosomes 12, which has not been reported before. This minor QTL may be novel and may be worth investigating further. Source of resistance to Ph-2, Ph-3, and this minor QTL traces back to line L3707, or Richter’s Wild Tomato. The combination of major genes and minor QTL may provide a durable resistance to late blight in tomato.

  10. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus.

    Science.gov (United States)

    Fuentes, Alejandro; Carlos, Natacha; Ruiz, Yoslaine; Callard, Danay; Sánchez, Yadira; Ochagavía, María Elena; Seguin, Jonathan; Malpica-López, Nachelli; Hohn, Thomas; Lecca, Maria Rita; Pérez, Rosabel; Doreste, Vivian; Rehrauer, Hubert; Farinelli, Laurent; Pujol, Merardo; Pooggin, Mikhail M

    2016-03-01

    RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.

  11. INTEGRATED WEED MANAGEMENT ON THE PROCESSING TOMATO CROP AND TOMATO FOR CONSUMPTION IN NATURA

    Directory of Open Access Journals (Sweden)

    Y. O. Castro

    2016-11-01

    Full Text Available Weeds cause direct and indirect damage to processing tomato and tomato for consumption in natura. The coexistence period is decisive for the intensity of damage, although the economic cost is also considered for decision making when to control the weeds. There are similarities between processing tomato and tomato for consumption in natura cropping system and peculiarities. This causes the management has adopted its common applications and its variables within each system. As control alternative, the farmer has basically the preventive control, mechanical, cultural, biological and chemical. The application of a single method is not recommended. Ideally, the methods needs to be integrated in order to combat weeds, highly evolved populations and resistant to unfavorable conditions. Consider weed management taking only one control measure is to underestimate the evolutionary ability of such species. Therefore, it is necessary to integrate the various methods available to the weed interference not impede the tomato production.

  12. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  13. Economics Of Wholesale Marketing Of Tomato Fruits In Ibadan ...

    African Journals Online (AJOL)

    Economics Of Wholesale Marketing Of Tomato Fruits In Ibadan Metropolis Of Oyo State, Nigeria. ... fruits, determining marketing efficiency, margin and marketing costs associated with tomato marketing. ... EMAIL FULL TEXT EMAIL FULL TEXT

  14. TARGET MICROFLORA OF A TOMATO C ROPPED SOIL.

    African Journals Online (AJOL)

    The effect of benomyl on the microflora of a tomato cropped soil was investigated. ... both in culture and soil treatments. ... pseudomonads to benomyl in culture .... bacterial pathogens of tomato solanucearum. Indian Pin to 11:01. in vitro.

  15. Yield and Adaptability Evaluation of Newly Introduced Tomato ...

    African Journals Online (AJOL)

    High yield is a major ambition to tomato plant breeders and farmers. The purpose of the ... Tabora Region on the growth and yield of newly introduced tomato varieties. The tested ..... (1985). Evaluation of some American tomatocultivars grown.

  16. Effect of tomato cultivars, honey finisher and processing methods on ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... microbiological and sensory quality of tomato ketchup that was prepared using low-cost ... The color of tomato ketchup samples were measured by comparing it with standard color chart .... multiple rage tests. RESULTS AND ...

  17. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  18. Industrial processing versus home processing of tomato sauce

    NARCIS (Netherlands)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D.; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-01-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity

  19. Economics Of Tomato Production In Yewa North Local Government ...

    African Journals Online (AJOL)

    Questions relating to the socio-economic characteristics of the tomato farmers, tomato outputs, output prices and cost of resources viz. labour, seed, fertilizer and land used in production, as well as constraints to tomato production were asked in the questionnaire. Production function analysis was used to show the ...

  20. Morphological and Molecular Identification of Colletotrichum acutatum from Tomato Fruit

    OpenAIRE

    Svetlana Živković; Saša Stojanović; Žarko IVanović; Nenad Trkulja; Nenad Dolovac; Goran Aleksić; Jelica Balaž

    2010-01-01

    Colletotrichum gloeosporioides, Colletotrichum acutatum, Colletotrichum coccodes, and Colletotrichum dematium are the four main species of Colletotrichum that cause tomato anthracnose. In Serbia, the occurrence of anthracnose on tomato fruit has been recorded during the last several years. Typical fruit symptoms include dark, sunken, and circular lesion with orange conidial masses. Pathogen isolates were obtained from a diseased tomato fruits, on PDA medium...

  1. Biochemical evaluation of tomato germplasm part I: workflow and methods

    Science.gov (United States)

    Of the seed crop species conserved at PGRU, tomato (Solanum lycopersicum L.) is the largest in terms of numbers of accessions. Furthermore, tomato ranks very high among vegetable crops in economic importance to the US. We are characterizing a tomato core collection for traits that are of interest to...

  2. Vision-based judgment of tomato maturity under growth conditions ...

    African Journals Online (AJOL)

    To determine the picking time of tomato and design the control strategy for the harvesting robot, the judgment of tomato maturity under natural conditions is ... Hue-mean and red-green color-difference image mean can be used as a criterion for the judgment of tomato maturity, and the tests indicated that the redgreen mean ...

  3. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    Science.gov (United States)

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-07-14

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato.

  4. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    Science.gov (United States)

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  7. Pepino Mosaic Virus: a serious threat to tomato plants worldwide

    Directory of Open Access Journals (Sweden)

    Imane BIBI

    2017-09-01

    Full Text Available omato (Solanum lycopersicum is one of the widely grown crops worldwide. It is consumed in various forms and has excellent nutritional values. Presently, this crop is facing a serious threat to its yield and survival because of a potexvirus infection. One of the potexvirus species hampering tomato productions worldwide is Pepino mosaic virus (PepMV. This emerging virus is one of the most destructive plant diseases destroying tomato crops globally. It has spread to many countries worldwide including France, Italy, the UK, Poland, Belgium, the USA, Canada and China. PepMV genome consists of a positive-sense, single-stranded RNA molecule, approximately 6.4 kb in length. The genomic RNA contains five open reading frames (ORFs encoding for the coat protein (CP, the putative viral polymerase (RdRp and the triple gene block (TGB proteins. PepMV is efficiently transmitted mechanically. In other studies, seed transmission has been demonstrated. This article provides an overview of PepMV symptoms, transmission, different strains of PepMV, its genome organization and strategies employed for controlling it. The knowledge about the recent progress in the study of PepMV would help develop novel strategies for its control in agriculture.

  8. Fungi of genus Alternaria occurring on tomato

    Directory of Open Access Journals (Sweden)

    Joanna Marcinkowska

    2013-12-01

    Full Text Available Tomato early blight in central Poland was caused by Alternaria solani (A. porri f. sp., solani and A. alernata (A. tenuis. A. alternata was isolated more often than A. solani. All isolates of A. solani in controlled conditions killed tomato seedlings, while pathogenic isolates of A. alternata caused only slight seedling blight. In greenhouse tests A. solani proved to be strongly pathogenic for leaves and stems of tomato but A. alternata was weakly pathogenic. The latter species attacked only injured fruits while, A. solanicould penetrate through undamaged peel of fruits. Both of these species caused the same type of symptoms; the differences consisted only in intensification of disease symptoms. During 1974 and 1975 field tomatoes were moderately attacked by early blight. Thebest development of this disease occurred by the turn of August and September. Determinate variety 'New Yorker' was distinguished by more severe infection of stem parts of tomato whereas the fruits of a stock variety 'Apollo' were more strongly attacked.

  9. Draft Genome Sequence of Bacillus velezensis Lzh-a42, a Plant Growth-Promoting Rhizobacterium Isolated from Tomato Rhizosphere.

    Science.gov (United States)

    Li, Zhenghua; Chen, Mei; Ran, Kun; Wang, Jihua; Zeng, Qiangcheng; Song, Feng

    2018-03-22

    The plant growth-promoting rhizobacterium Bacillus velezensis strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis. Copyright © 2018 Li et al.

  10. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  11. Studies towards the Intrinsic Function of the AVR4 and AVR9 Elicitors of the Fungal Tomato Pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Burg, van den H.A.

    2003-01-01

    Recognition of the extracellular race-specific elicitor proteins AVR4 and AVR9 produced by the pathogenic fungus Cladosporium fulvum is mediated by the tomato resistance genes Cf-4 and Cf-9 , respectively. Recognition of these elicitors triggers host defense responses

  12. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

    NARCIS (Netherlands)

    Karlova, R.B.; Haarst, van J.C.; Maliepaard, C.A.; Geest, van de H.C.; Bovy, A.G.; Lammers, M.; Angenent, G.C.; Maagd, de R.A.

    2013-01-01

    MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally

  13. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    Science.gov (United States)

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  14. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  15. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    KAUST Repository

    Pailles, Yveline

    2017-02-15

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance.

  16. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes.

    Science.gov (United States)

    Tancos, Matthew A; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit; Smart, Christine D

    2013-11-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.

  17. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  18. Physicochemical and microbiological evaluation of sun dried tomatoes in comparison with fresh tomatoes

    International Nuclear Information System (INIS)

    Sohail, M.

    2011-01-01

    The present study was conducted to evaluate the quality of sun dried tomatoes in comparison with fresh tomatoes. Fresh fully ripen tomatoes were washed and cut in thin slices with sterilized stainless steel knife and divided into two lots, one was taken as control and other was dipped in 3% potassium meta bisulfite solution for 5 minutes. The samples were spread over stainless steel trays covered with muslin cloth and kept in solar dehydrator for 5 days at 55 +- 2 deg. C. The physicochemical analyses were carried out in both dried and fresh (control) tomatoes. They were also analyzed microbiologically for bacterial and fugal count. Results showed that sun dried tomatoes are microbiologically safe. The values of moisture content and vitamin C of fresh and sun dried tomatoes statistically differ from each others at probability level of 5 %. The nutrient which is highly affected by sun drying is vitamin C. In fresh tomatoes it was 32.5 mg/100 g which is reduced to 24.6 mg/100 g after sun drying and further reduced to 15.86 mg/100 g during three months storage. The moisture content of the fresh tomatoes was 94.4% which decreased to 8.15% after drying, and then slowly increased to 9.95% in the three months storage. Statistically no major difference was found in the other nutrients during storage, which indicates that sun drying is nutritionally and microbiologically safe and can be used to preserve tomatoes and other fruits and vegetables for off season use. (author)

  19. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    Directory of Open Access Journals (Sweden)

    Li Dongmei

    2009-05-01

    Full Text Available Abstract Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7, anthesis-stage flowers (floral landmark 10 and fruit landmark 1, and 5 days post anthesis fruit (fruit landmark 3. To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in

  20. Genetic divergence of tomato subsamples

    Directory of Open Access Journals (Sweden)

    André Pugnal Mattedi

    2014-02-01

    Full Text Available Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market and two commercial controls, one of the Salad group (cv. Fanny and another of the Santa Cruz group (cv. Santa Clara. Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981, and the less important ones were excluded according to Garcia (1998. Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.

  1. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem.

    Science.gov (United States)

    Wulff, B B H; Chakrabarti, A; Jones, D A

    2009-10-01

    The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also

  2. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato.

    Science.gov (United States)

    Liu, An-Chi; Cheng, Chiu-Ping

    2017-10-01

    Ethylene response factors (ERFs) are a large plant-specific transcription factor family and play diverse important roles in various plant functions. However, most tomato ERFs have not been characterized. In this study, we showed that the expression of an uncharacterized member of the tomato ERF-IX subgroup, ERF68, was significantly induced by treatments with different bacterial pathogens, ethylene (ET) and salicylic acid (SA), but only slightly induced by bacterial mutants defective in the type III secretion system (T3SS) or non-host pathogens. The ERF68-green fluorescent protein (ERF68-GFP) fusion protein was localized in the nucleus. Transactivation and electrophoretic mobility shift assays (EMSAs) further showed that ERF68 was a functional transcriptional activator and was bound to the GCC-box. Moreover, transient overexpression of ERF68 led to spontaneous lesions in tomato and tobacco leaves and enhanced the expression of genes involved in ET, SA, jasmonic acid (JA) and hypersensitive response (HR) pathways, whereas silencing of ERF68 increased tomato susceptibility to two incompatible Xanthomonas spp. These results reveal the involvement of ERF68 in the effector-triggered immunity (ETI) pathway. To identify ERF68 target genes, chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) was performed. Amongst the confirmed target genes, a few genes involved in cell death or disease defence were differentially regulated by ERF68. Our study demonstrates the function of ERF68 in the positive regulation of hypersensitive cell death and disease defence by modulation of multiple signalling pathways, and provides important new information on the complex regulatory function of ERFs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum)

    OpenAIRE

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene (SlTDT) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analys...

  4. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    Science.gov (United States)

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  6. Improving tomato seed quality- challenges and possibilities

    DEFF Research Database (Denmark)

    Shrestha, Santosh

    The thesis investigates the possibility of using single seed near-infrared (NIR) spectroscopy, multispectral imaging (MSI) and NIR hyperspectral imaging (NIR-HSI) in combination with chemometrics for rapid determination of the tomato seed quality. The results of the PhD study are compiled in four...... manuscripts (MS). These non-destructive methods show the potential of sorting tomato seeds as per their viability and varietal identity. The results are discussed in the context of possible contribution from these methods in the improvement of the seed quality in Nepal. In MS I, potential application of NIR...... spectroscopy in combination with chemometrics for prediction of tomato seed viability is demonstrated. The work in MS I also emphasises on identifying the important NIR spectral regions for the chemometric model that are relevant to the separation of viable and non-viable seeds. The NIR-HIS method was also...

  7. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter; Arthur, Paula B.

    2013-01-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  8. Survey of tomato diseases in Cameroon

    Directory of Open Access Journals (Sweden)

    Fontem, DA.

    1993-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. is the most widely cultivated field vegetable crop in Cameroon. On-farm surveys were undertaken from November 1988 to October 1991 to identify nursery and field diseases in major tomato producing areas of Cameroon, Damping-off and seedling blights were the main seedling diseases. Of the eleven diseases observed in the field, the most widely distributed and severe on the foliage and fruits were early (Alternaria solani and late (Phytophthora infestans blights. Late blight was the most severe disease in the wet season while early blight was most severe in the dry season. Nine pathogens were associated with various fruit rots. This study indicates the need for an identification of appropriate control methods for early and late blights of tomato in Cameroon.

  9. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    Science.gov (United States)

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  10. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  11. The plant growth promoting substance, lumichrome, mimics starch and ethylene-associated symbiotic responses in lotus and tomato roots

    Directory of Open Access Journals (Sweden)

    Liezel eGouws

    2012-06-01

    Full Text Available Symbiosis involves responses that maintain the plant host and symbiotic partner’s genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus and tomato (Solanum lycopersicum. Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus or Glomus intraradices/Glomus mossea (for tomato. It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.

  12. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  13. Tomato FK506 Binding Protein 12KD (FKBP12 mediates the interaction between rapamycin and Target of Rapamycin (TOR

    Directory of Open Access Journals (Sweden)

    Fangjie Xiong

    2016-11-01

    Full Text Available Target of Rapamycin (TOR signaling is an important regulator in multiple organisms including yeast, plants and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12KD (FKBP12 in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis such as KU63794, AZD8055 and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profiling analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles

  14. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Ho-Plágaro, Tania; Huertas, Raúl; Tamayo-Navarrete, María I; Ocampo, Juan A; García-Garrido, José M

    2018-01-01

    Solanum lycopersicum , an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes -mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots . S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.

  15. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR).

    Science.gov (United States)

    Xiong, Fangjie; Dong, Pan; Liu, Mei; Xie, Gengxin; Wang, Kai; Zhuo, Fengping; Feng, Li; Yang, Lu; Li, Zhengguo; Ren, Maozhi

    2016-01-01

    Target of Rapamycin (TOR) signaling is an important regulator in multiple organisms including yeast, plants, and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12 KD (FKBP12) in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis) such as KU63794, AZD8055, and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profile analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs) which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles.

  16. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2013-01-01

    Full Text Available Important component of the tomato are carotenoid dyes, especially lycopene. The importance of lycopene in the diet of people in recent years has grown mainly for its pharmacological effects due to its ability to reduce the risk of carcinoma diseases and prevention of cardiovascular diseases. The aim of this work was to analyze the content of total carotenoids and lycopene in 8 varieties of tomato and to monitor dynamic changes after their different treatments (heating, drying. The experiment included following tomato varieties: Bambino F1, Darina F1, Diana F1, Denár, Milica F1, Orange F1, Paulína F1, Šejk F1.We found that processing of tomato fruits into juices and dried slices positively affected the presence of carotenoids and lycopene. Processing leads to an increase in the content of carotenoids that can be attributed to better availability of these components in the human body.

  17. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  18. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    Science.gov (United States)

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  19. Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life.

    Science.gov (United States)

    Yogendra, K N; Ramanjini Gowda, P H

    2013-02-27

    Breeding for better quality fruits is a major focus for tomatoes, which are continuously subjected to post-harvest losses. Several methods have been used to improve the fruit shelf life of tomatoes, including the use of ripening gene mutants of Solanum lycopersicum. We developed extended shelf-life tomato hybrids with better quality fruits using ripening mutants. Nine tomato crosses were developed using 3 fruit ripening gene mutants of S. lycopersicum [alcobaca (alc), non-ripening, and ripening inhibitor] and 3 agronomically superior Indian cultivars ('Sankranti', 'Vaibhav', and 'Pusaruby') with short shelf life. The hybrid progenies developed from alc x 'Vaibhav' had the highest extended shelf life (up to 40 days) compared with that of other varieties and hybrids. Further, the F(2) progenies of alc x 'Vaibhav' were evaluated for fruit quality traits and yield parameters. A wide range of genetic variability was observed in shelf life (5-106 days) and fruit firmness (0.55-10.65 lbs/cm(2)). The potential polymorphic simple sequence repeat markers underlying shelf life traits were identified in an F(2) mapping population. The marker association with fruit quality traits and yield was confirmed with single-marker analysis and composite interval mapping. The genetic parameters analyzed in the parents and F(1) and F(2) populations indicated that the cross between the cultivar 'Vaibhav' and ripening gene mutant alc yielded fruit with long shelf life and good quality.

  20. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-03-01

    Full Text Available Pyridoxal phosphate (PLP-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC, including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L. Heynh., pepper ( L., and tomato ( L. pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene ( operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.

  1. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  2. Identification of arbuscular mycorrhiza (AM-responsive microRNAs in tomato

    Directory of Open Access Journals (Sweden)

    Ping eWu

    2016-03-01

    Full Text Available A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM fungi. MicroRNAs (miRNAs have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  3. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  4. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    Science.gov (United States)

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  5. Genomewide analysis of the lateral organ boundaries domain gene ...

    Indian Academy of Sciences (India)

    of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However ... found to share a similar intron/exon structure and gene length within the same class. .... ches against the proteome and genome files downloaded.

  6. 21 CFR 156.145 - Tomato juice.

    Science.gov (United States)

    2010-04-01

    ...). The food is preserved by heat sterilization (canning), refrigeration, or freezing. When sealed in a... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Tomato juice. 156.145 Section 156.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  7. Enhanced regeneration in explants of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... The development of a cost effective and efficient protocol for mass propagation of high quality tomato seedlings via tissue culture could help to reduce the price per seedling. A good in vitro plant regeneration system may also assist in further improvement of the commercially important cultivars for disease.

  8. Temperature field for radiative tomato peeling

    International Nuclear Information System (INIS)

    Cuccurullo, G; Giordano, L

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling. (paper)

  9. Tomato leaves methanol extract possesses antiinflammatory activity ...

    African Journals Online (AJOL)

    Recently, the leaves of tomato plant that contained several active compounds including alkaloid, steroid and flavanoid has been used for the treatment of variety of diseases and as anti-cancer, antioxidant and anti-gout. Although, a number of pharmacological properties have already been demonstrated, the ...

  10. Genetic (in)stability in tomato

    NARCIS (Netherlands)

    Wisman, E.

    1993-01-01

    In the present study tomato lines carrying unstable alleles of the loci yv or sulfurea were characterized. In addition, we aimed at the isolation of an endogenous transposable element supposedly active in the unstable lines. Since the unstable loci were not cloned, we

  11. How to grasp a ripe tomato

    NARCIS (Netherlands)

    Verhagen, L.

    2012-01-01

    Fortunately, we don’t have to think about this when we are standing in the supermarket after a busy day. We adjust our grip without effort, making sure we don’t squish an overripe tomato, while we firmly grasp a hard green one. This is actually a complex task in which humans are surprisingly

  12. Nitrogen determination on tomato ( Lycopersicon esculentum Mill ...

    African Journals Online (AJOL)

    In order to investigate the effectiveness of a new method based on color image analysis and the Minolta SPAD-502 chlorophyll meter for the diagnosis of nitrogen deficiencies of tomato seedlings, a field experiment was conducted. In this study, five levels of nitrogen fertilization were established so as to induce nitrogen ...

  13. Response of Pratylenchus spp Infected Tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    The need to reduce the negative impact of synthetic nematicides on the environment necessitated the search for bio-pesticides. This study was conducted to evaluate the nematicidal potential of chromatographic fractions from Mangifera indica on tomato in the screenhouse and field. M. indica bark was extracted with ...

  14. Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates.

    Science.gov (United States)

    Lee, Jong-Seung; Cho, Won Kyong; Kim, Mi-Kyeong; Kwak, Hae-Ryun; Choi, Hong-Soo; Kim, Kook-Hyung

    2011-04-01

    Tomato spotted wilt virus (TSWV) infects numerous host plants and has three genome segments, called L, M and S. Here, we report the complete genome sequences of three Korean TSWV isolates (TSWV-1 to -3) infecting tomato and pepper plants. Although the nucleotide sequence of TSWV-1 genome isolated from tomato is very different from those of TSWV-2 and TSWV-3 isolated from pepper, the deduced amino acid sequences of the five TSWV genes are highly conserved among all three TSWV isolates. In phylogenetic analysis, deduced RdRp protein sequences of TSWV-2 and TSWV-3 were clustered together with two previously reported isolates from Japan and Korea, while TSWV-1 grouped together with a Hawaiian isolate. A phylogenetic tree based on N protein sequences, however, revealed four distinct groups of TSWV isolates, and all three Korean isolates belonged to group II, together with many other isolates, mostly from Europe and Asia. Interestingly, most American isolates grouped together as group I. Together, these results suggested that these newly identified TSWV isolates might have originated from an Asian ancestor and undergone divergence upon infecting different host plants.

  15. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  16. Accumulation of anthocyanins in tomato skin extends shelf life.

    Science.gov (United States)

    Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie

    2013-11-01

    Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  18. Estimation of the nutritive value of tomato pomace for ruminant using ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... composition and estimation of nutritive value of dried tomato pomace (DTP) using in vitro gas ... of processed products such as tomato juice, paste, puree ..... of feeding ensiled mixed tomato and apple pomace on performance.

  19. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    LENUS (Irish Health Repository)

    Potnis, Neha

    2011-03-11

    Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster

  20. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  1. Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato

    International Nuclear Information System (INIS)

    Ahammed, Golam Jalal; Li, Xin; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2015-01-01

    Photosynthesis, the basal manufacturing process in the earth is habitually restricted by airborne micropollutants such as phenanthrene (PHE). Here, we show that 24-epibrassinolide (EBR), a bioactive plant steroid is able to keep higher photosynthetic capacity consistently for a long period under a shoot-imposed PHE stress in tomato. EBR-promoted photosynthetic capacity and efficiency eventually resulted in a 37.5% increase of biomass under PHE stress. As primary response, transcripts of antioxidant genes were remarkably induced by EBR in PHE-treated plants. Activities of antioxidant and detoxification enzymes were also enhanced by EBR. Notably, EBR-induced higher antioxidant potential was associated with reduced levels of H 2 O 2 and O 2 · — , resulting in a 32.7% decrease of content of malondialdehyde in the end of experiment and relatively healthy chloroplast ultrastructure in EBR + PHE treatment compared with PHE alone. These results indicate that EBR alleviates shoot-imposed PHE phytotoxicity by maintaining a consistently higher photosynthetic capacity and antioxidant potential in tomato. - Highlights: • PHE mist spray gradually inhibits photosynthesis and eventually reduces biomass. • EBR maintains a consistently higher photosynthesis even under PHE stress. • EBR upregulates expression of antioxidant genes as initial response to PHE stress. • EBR reduces oxidative stress by constantly activating strong antioxidant potential. • EBR-induced efficient neutralization of ROS protects chloroplast ultrastructure. - 24-epibrassinolide protects tomato plants from airborne phenanthrene-induced damages by maintaining a consistently higher photosynthetic capacity and antioxidant potential

  2. An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance[OPEN

    Science.gov (United States)

    Wang, Xin; Hu, Tixu; Zhang, Fengxia; Wang, Bing; Li, Changxin; Yang, Tianxia; Li, Hanxia; Lu, Yongen; Ye, Zhibiao

    2017-01-01

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato (Solanum lycopersicum). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl-ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl-ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl-ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl-ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl-ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance. PMID:28814642

  3. Mode of inheritance for fruit firmness in tomato hybrids of F1 generation (Lycoperscum esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Sušić Zoran

    2000-01-01

    Full Text Available Present day program for tomato selection are aimed at creating the genotypes with firm fruit. The fruits with this quality surfer from minor injuries while being harvested and transported, which directly affects their better consumption purpose. By crossing seven divergent tomato genotypes that differed among themselves in fruit firmness, and by applying the method of full diallel without reciprocal crossings, we obtained 21 hybrids of F1 generation. Upon analyzing the components of the genetic variance we found out that dominant genes prevailed in inheriting this feature. Considering all the crossing combinations together, it could be concluded that super dominance was the mode of inheritance recorded in Fl generation. The hybrid combination obtained by crossing the two hybrids with the best general combining ability (V-100 x No-10 was characterized by the best specific combining ability. .

  4. CpG + CpNpG Analysis of Protein-Coding Sequences from Tomato

    DEFF Research Database (Denmark)

    Hobolth, Asger; Nielsen, Rasmus; Wang, Ying

    2006-01-01

    We develop codon-based models for simultaneously inferring the mutational effects of CpG and CpNpG methylation in coding regions. In a data set of 369 tomato genes, we show that there is very little effect of CpNpG methylation but a strong effect of CpG methylation affecting almost all genes. We...... further show that the CpNpG and CpG effects are largely uncorrelated. Our results suggest different roles of CpG and CpNpG methylation, with CpNpG methylation possibly playing a specialized role in defense against transposons and RNA viruses....

  5. Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain.

    Science.gov (United States)

    Marín, Clotilde; Fabre, Sandrine; Sánchez-Moreno, Manuel; Dollet, Michel

    2007-05-01

    A flagellate of the family Trypanosomatidae was isolated from fruits of Lycopersicon esculentum (tomato) in southeastern Spain. The isolate was successfully adapted to in vitro culture in monophasic media. The morphology showed the kinetoplast to be positioned towards the middle of the body, and the typical opistomastigote form characteristic of members of the genus Herpetomonas. Amplification of the mini-exon gene was negative, whilst for the 5S ribosomal rRNA gene the result was positive. The DNA sequence was obtained and its alignment with other trypasomatids, obtained using the BLAST algorithm, suggested it was closely related to Herpetomonas samuelpessoai.

  6. Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation.

    Science.gov (United States)

    Tomassen, Monic M M; Barrett, Diane M; van der Valk, Henry C P M; Woltering, Ernst J

    2007-01-01

    An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.

  7. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    Science.gov (United States)

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  8. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  9. Induction of mutations in tomato variety Solar Set

    International Nuclear Information System (INIS)

    Peiris, R.

    1995-01-01

    The production of tomatoes in Sri Lanka is hampered by many problems. Tomato is an economic crop which is nutritious and has export potential. The major constraint for tomato production is Bacterial Wilt caused by Pseudomonas Solanacearum. A study was initiated with the obnjective of finding tomato genotype having resistance to bacterial wilt. The seeds of the varity, Solar Set which is highly susceptible to bacterial wilt was exposed to irradiation from Co 60 source after adjusting moisture content to 14%. The dosese given were 0, 25, 30, 35, 40, 45, 50 krad. The seeds were sown in plastic trays and germination count was taken after 3 days. The LD50 value for the induction of mutants in tomato variety Solar Set is observed to be 35.6 Kr and it is the best dose value for the induction of beneficial mutants in tomato variety, Solar Set by irradiation

  10. Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot

    Directory of Open Access Journals (Sweden)

    Matthew F. Pye

    2018-04-01

    Full Text Available Salt stress predisposes plants to Phytophthora root and crown rot in an abscisic acid (ABA-dependent manner. We used the tomato–Phytophthora capsici interaction to examine zoospore chemoattraction and assessed expression of pathogenesis-related (PR genes regulated by salicylic acid (SA and jasmonic acid (JA following a salt-stress episode. Although salt treatment enhances chemoattraction of tomato roots to zoospores, exudates from salt-stressed roots of ABA-deficient mutants, which do not display the predisposition phenotype, have a similar chemoattraction as exudates from salt-stressed, wild-type roots. This suggests that ABA action during predisposing stress enhances disease through effects on plant responses occurring after initial contact and during ingress by the pathogen. The expression of NCED1 (ABA synthesis and TAS14 (ABA response in roots generally corresponded to previously reported changes in root ABA levels during salt stress onset and recovery in a pattern that was not altered by infection by P. capsici. The PR genes, P4 and PI-2, hallmarks in tomato for SA and JA action, respectively, were induced in non-stressed roots during infection and strongly suppressed in infected roots exposed to salt-stress prior to inoculation. However, there was a similar proportional increase in pathogen colonization observed in salt-stressed plants relative to non-stressed plants in both wild-type and a SA-deficient nahG line. Unlike the other tomato cultivars used in this study that showed a strong predisposition phenotype, the processing tomato cv. ‘Castlemart’ and its JA mutants were not predisposed by salt. Salt stress predisposition to crown and root rot caused by P. capsici appears to be strongly conditioned by ABA-driven mechanisms in tomato, with the stress compromising SA-and JA-mediated defense-related gene expression during P. capsici infection.

  11. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum.

    Science.gov (United States)

    Di, Xiaotang; Gomila, Jo; Takken, Frank L W

    2017-09-01

    Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  12. Screening of tomato varieties for fruit tree based Agroforestry system

    Directory of Open Access Journals (Sweden)

    J. Hossain

    2014-12-01

    Full Text Available An experiment was conducted with four tomato varieties under a six year old orchard was accomplished at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU research farm during October 2011 to April 2012. The experiment was laid out in a Randomized Complete Block Design with three replications. Four tomato varieties (BARI Tomato 2, BARI Tomato 8, BARI Tomato 14 and BARI Tomato 15 were grown under guava, mango, olive and control. Results showed that light availability in control plot (999.75 μ mol m-2s-1 was remarkably higher over fruit tree based agroforestry systems and it was 58.8, 43.9 and 31.5% of the control for guava, mango and olive based systems, respectively. The shortest tomato plant was observed in olive based system (54.91 cm, while the tallest plant was observed in mango based system (60.09 cm. The highest SPAD value and number of primary branches per plant was recorded in control plot. Fruit length, fruit girth was found lowest in olive based system. The highest yield (34.06 t ha-1 was recorded in control plot while the lowest yield (10.26 t ha-1 was recorded in olive based system. The economic performance of fruit tree based tomato production system showed that both the net return and BCR of mango and guava based system was higher over control and olive based system. The contents of organic carbon, nitrogen, available phosphorus, potassium and sulfur of before experimentation soil were slightly higher in fruit tree based agroforestry systems than the control. After experimentation, nutrient elements in soil were found increased slightly than initial soils. Fruit tree based agroforestry systems could be ranked based on the economic performance as mango> guava> control> olive based system with BARI Tomato 15, BARI Tomato 2, BARI Tomato 14 and BARI Tomato 8, respectively.

  13. An active ac/ds transposon system for activation tagging in tomato cultivar m82 using clonal propagation.

    Science.gov (United States)

    Carter, Jared D; Pereira, Andy; Dickerman, Allan W; Veilleux, Richard E

    2013-05-01

    Tomato (Solanum lycopersicum) is a model organism for Solanaceae in both molecular and agronomic research. This project utilized Agrobacterium tumefaciens transformation and the transposon-tagging construct Activator (Ac)/Dissociator (Ds)-ATag-Bar_gosGFP to produce activation-tagged and knockout mutants in the processing tomato cultivar M82. The construct carried hygromycin resistance (hyg), green fluorescent protein (GFP), and the transposase (TPase) of maize (Zea mays) Activator major transcript X054214.1 on the stable Ac element, along with a 35S enhancer tetramer and glufosinate herbicide resistance (BAR) on the mobile Ds-ATag element. An in vitro propagation strategy was used to produce a population of 25 T0 plants from a single transformed plant regenerated in tissue culture. A T1 population of 11,000 selfed and cv M82 backcrossed progeny was produced from the functional T0 line. This population was screened using glufosinate herbicide, hygromycin leaf painting, and multiplex polymerase chain reaction (PCR). Insertion sites of transposed Ds-ATag elements were identified through thermal asymmetric interlaced PCR, and resulting product sequences were aligned to the recently published tomato genome. A population of 509 independent, Ds-only transposant lines spanning all 12 tomato chromosomes has been developed. Insertion site analysis demonstrated that more than 80% of these lines harbored Ds insertions conducive to activation tagging. The capacity of the Ds-ATag element to alter transcription was verified by quantitative real-time reverse transcription-PCR in two mutant lines. The transposon-tagged lines have been immortalized in seed stocks and can be accessed through an online database, providing a unique resource for tomato breeding and analysis of gene function in the background of a commercial tomato cultivar.

  14. LICOPENE AND Β-CAROTENE IN TOMATO

    Directory of Open Access Journals (Sweden)

    I. Yu. Kondratieva

    2016-01-01

    Full Text Available The high antioxidant activity in tomato fruits is caused not only by sufficient content of vitamin C and polyphenols but also the carotenoids and the fat soluble antioxidants. Lycopene and beta-carotene are the main fat-soluble antioxidants, the consumption of which influences positively on human’s health. It is known that tomato fruits are the source of lycopene for human diet, providing up to 85% of the total lycopene in food. The breeding program for tomato cultivars with high content of carotenoids is a very important task for breeders. In our study the content of betacarotene and lycopene was assessed in 18 tomato accessions with red, pink, yellow and orange fruits obtained in Solanaceae Breeding Laboratory at VNIISSOK. All plants were grown in experimental open field in Odintsovo region, Moscow oblast, VNIISSOK. It was revealed that the typical concentration ratio of lycopene to beta-carotene for pink and red fruits was 1.5 to 10.25, but for yellow and orange fruits was 0 to 0.63. Highest ratio was observed in red fruits in line 230-16. The highest lycopene content was found in red fruits of tree type tomato lines 198-16 and 86F1 (11.5 and 8.7 g/100g. respectively. The highest content of betacarotene was in yellow fruits of line 53-16 F1 (4.1 mg/100g and orange fruits of line 184-16 (6.2 mg/100g. All studied accessions with orange fruits had the higher content of beta-carotene than in standard and highest content of lycopene in this group of accessions. Thus, these fruits had the high nutritional value. The balanced content of lycopene and beta-carotene and low acidity in pink and yellow-orange tomato fruits makes these cultivars the most valuable for children’s diet and people with problems of digestive system.

  15. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available BACKGROUND: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS: We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.

  16. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves.

    Directory of Open Access Journals (Sweden)

    Liana Dalcantara Ongouya Mouekouba

    Full Text Available Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST, second messengers (NO, H2O2, O2(- and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4. Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis to be LEXYL2 (β-xylosidase and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.

  17. Screening of tomato genotypes for resistance to tomato fruit borer (helicoverpa armiger hubner) in Pakistan

    International Nuclear Information System (INIS)

    Sajjad, M.; Ashfaq, M.; Suhail, A.

    2011-01-01

    Tomato genotypes viz., Roma Local, Rio Grande, Tanja, Chico III, Long Tipped, Red-Top, FS-8001, FS-8002, Tropic, Pakit, Peelo, NARC-1, Roma VFN, Pant Bahr, Ebein, Nova Mech, Rockingham, Nagina, Shalkot-96, Pomodoro, Manik, Gressilesse, Nadir, Early Mech, Tommy, Pusha Rubi, Tropic boy, Big Long, Sahil, Sun 6002, Money-Maker and Royesta were evaluated to screen out the suitable resistant/susceptible genotypes against the fruit borer in Pakistan. The results imparted that the percentage of fruit infestation and larval population per plant on tested genotypes of tomato varied significantly. Roma VF, NARC-1 and FS-8002 were categorized as susceptible genotypes with fruit infestation (37.69%, 37.08% and 36.41%, respectively) and larval population per plant (1.02%, 1.02% and 0.84 %, respectively). Whereas, the genotypes Sahil, Pakit and Nova Mecb had fruit infestation (12.30%, 13.14% and 13.96%, respectively) and larval population per plant (0.42%, 0.42% and 0.43%, respectively) and declared as resistant genotypes to tomato fruit borer. Lower values of host plant susceptibility indices (HPSI) were recorded on resistant genotypes. Sahil, Pakit and Nova Mecb could be used as a source of resistance for developing tomato genotypes resistant to tomato fruit borer. (author)

  18. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum.

    Science.gov (United States)

    Rivas, Susana; Thomas, Colwyn M

    2005-01-01

    The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C. fulvum.

  19. Effects of pre-sowing gamma irradiation of tomato seeds on production and yield of open field tomato crops

    Energy Technology Data Exchange (ETDEWEB)

    Zhamyansurehn, D [Institut Fiziki i Matematiki Akademii Nauk Mongol' skoj Narodnoj Respubliki, Ulan Bator; Voloozh, D

    1976-01-01

    The following conclusions may be drawn from results obtained in experiments with pre-sowing irradiation of tomato seeds and its effect on tomato crops. The dose of 2500 R proved to be optimum for increase of tomato crops yield. The yield increase resulted from increase in average weight, quantity and the dry matter of the fruit. The irradiation did not significantly affect the concentration of sugar, phosphorus, nitrogen and ascorbic acid in the fruit.

  20. Effects of pre-sowing gamma irradiation of tomato seeds on production and yield of open field tomato crops

    International Nuclear Information System (INIS)

    Zhamyansurehn, D.; Voloozh, D.

    1976-01-01

    The following conclusions may be drawn from results obtained in experiments with pre-sowing irradiation of tomato seeds and its effect on tomato crops. The dose of 2500 R proved to be optimum for increase of tomato crops yield. The yield increase resulted from increase in average weight, quantity and the dry matter of the fruit. The irradiation did not significantly affect the concentration of sugar, phosphorus, nitrogen and ascorbic acid in the fruit. (author)

  1. First report of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato race 1 in Portugal

    OpenAIRE

    Cruz, L.; Cruz, J.; Eloy, M.; Oliveira, Helena; Vaz, H.; Tenreiro, R.

    2010-01-01

    Protected and open field tomato crops are economically important for Portuguese agriculture. In 1983, Pseudomonas syringae pv. tomato (Okabe, 1933) Young, Dye & Wilkie, 1978 was first reported affecting protected crops (3) and then later under open field conditions (1). In the 2009 spring/summer season, several outbreaks of bacterial speck of tomato showing an unusual degree of severity were observed in open fields from the Tagus Valley Region

  2. Waste energy boosts tomato industry at distillery

    Energy Technology Data Exchange (ETDEWEB)

    McColl, J

    1989-04-01

    A trial project aimed at using waste hot water from the cooling process at a Scottish whisky distillery to heat a glasshouse for tomato production is described. Later developments have involved the installation of a waste heat boiler to make use of the heat from the still burner flue gases. Steam from the boiler is used within the distillery and to supplement the glasshouse system. The payback within the distillery industry has been excellent, but tomato production, though continuing, was adversely affected by severe cutbacks in distillery production in the early eighties. Recently further significant savings have been made in the distillery industry by the installation of a regenerative burner in one of the stills and thermo-compressors in the cooling tower condensers to produce low pressure steam which can be fed back into the system. (U.K.).

  3. Agronomic efficiency of intercropping tomato and lettuce

    Directory of Open Access Journals (Sweden)

    Arthur B. Cecílio Filho

    2011-09-01

    Full Text Available Four experiments were carried out at the São Paulo State University, Brazil, with the aim of determining the agronomic viability of intercropping tomato and lettuce, under greenhouse conditions. The studied intercropping systems were established by transplanting lettuce at 0, 10, 20 and 30 days after transplanting (DAT tomato and by transplanting tomato at 0, 10, 20 and 30 DAT lettuce. Intercropped tomato and lettuce were evaluated during two seasons and compared to their sole cropping. The experimental design was a randomized complete block with nine treatments. The productivity and the classification of the tomato fruits were not influenced by having lettuce intercropped with it, but lettuce production was lowered when tomato was intercropped with it. The longer the delay in lettuce transplanting, the greater the reduction in its productivity. There was an effect of cropping season on the extent of the agronomic advantage of intercropping over sole cropping. In the first cropping season, intercropping established by transplanting lettuce during the interval between 30 days before up to 20 DAT tomato yielded land use efficiency (LUE indices of 1.63 to 2.22. In the second period, intercropping established with the transplanting of lettuce up to 30 days before tomato yielded LUE indices of 1.57 to 2.05.Quatro experimentos foram conduzidos na Unesp, Brasil, com o objetivo de determinar a viabilidade agronômica de cultivos consorciados de alface e tomate em ambiente protegido. Consórcios estabelecidos por transplantes da alface aos 0, 10, 20 e 30 dias após o transplante (DAT do tomate e de tomate aos 0, 10, 20 e 30 DAT da alface, foram avaliados em duas épocas e comparados às suas monoculturas. Cada experimento foi conduzido em delineamento de blocos ao acaso, com nove tratamentos. Verificou-se que a produtividade do tomate e a classificação dos frutos não foram influenciadas pela alface, mas a produção da alface foi menor em cons

  4. Effect of gamma irradiation on fatty acids of tomato seed oil

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Raouf, M.S.; Morad, M.M.; Rady, A.H.

    1979-01-01

    Since gamma irradiation of tomatoes is investigated as a tool for increasing tomato shelf-lefe, in this study the tomato seed oil produced from irradiated tomatoes was compared with that produced from industrial tomato seeds and with cotton seeds. Fatty acid contents of tomato seed oil, produced from industrial tomato seed waste and from tomato seeds (Variety Ace), were found nearly the same as in the edible cotton seed oil. Hence, both tomato seed oils may be considered as an additional source of essential fatty acids especially linoleic. Gamma irradiation doses ranged from 50-200 Krad had no significant effect on total saturated and total unsaturated fatty acids. 200 Krad led to significant increases in lenolic acid on the account of insignificant decrease in palmatic acid. Essentail and non essential amino acids of tomato seed meal seem to be equivalent to these of cotton seed meal. This suggests the possible use of tomato seed meal in animal feeding

  5. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Ali Debbi

    2018-02-01

    Full Text Available Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum (Fo. The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL, and Fo f. sp. radicis lycopersici (FORL among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. “Super Marmande,” while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. “Rio Grande.” Inter simple sequence repeat (ISSR fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates, T. harzianum (four isolates and T. ghanense (one isolate based on ITS and tef1α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on “SM” tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.

  6. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp.

    Science.gov (United States)

    Debbi, Ali; Boureghda, Houda; Monte, Enrique; Hermosa, Rosa

    2018-01-01

    Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum ( Fo ). The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL), and Fo f. sp. radicis lycopersici (FORL) among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. "Super Marmande," while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. "Rio Grande." Inter simple sequence repeat (ISSR) fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates), T. harzianum (four isolates) and T. ghanense (one isolate) based on ITS and tef1 α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on "SM" tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.

  7. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    Science.gov (United States)

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  8. Biological control of corky root in tomato.

    Science.gov (United States)

    Fiume, G; Fiume, F

    2008-01-01

    Corky root caused by Pyrenochaeta lycopersici (Schneider et Gerlach) is one of the most important soil borne fungal pathogens which develops in the soils, causing diseases in different crops. The research was carried out to evaluate the effectiveness of the biological control of corky root on tomato. Biological control was performed by using Trichoderma viride Pers. 18/17 SS, Streptomyces spp. AtB42 and Bacillus subtilis M51 PI. According to present and future regulations on the use of chemical fungicides and considering that treatments must avoids environmental pollution, the main object of this research was to find alternative strategies by using biocontrol agents against P. lycopersici that affect tomato plants. In laboratory, the effectiveness of T. viride 18/17 SS, Streptomyces spp. AtB42 and B. subtilis M51 PI to control P. lycopersici were studied. In greenhouse, the research was carried out comparing the following treatments: 1) untreated control; 2) T. viride 18/17 SS; 3) Streptomyces spp. AtB42; 4) B. subtilis M51 PI. Roots of plants of tomato H3028 Hazera were treated with the antagonist suspensions just prior of transplant. Treatments were repeated about 2 months after, with the same suspensions sprayed on the soil to the plant collar. In dual culture, the inhibition of P. lycopersici ranged up to 81.2% (caused from T. viride 18/17 SS), 75.6% (from Streptomyces spp. AtB42) and 66.8% (from B. subtilis M51 PI). In greenhouse trials, with regard to corky root symptoms, all treated plots showed signifycative differences compared to untreated. T. viride gave the better results followed by Streptomyces spp. and then by B. subtilis. The fungus antagonist showed good root surface competence such as demonstrated its persistence on the roots surface of the tomato plants whose roots were treated with T. viride 18/17 SS up to 2 months before.

  9. A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae

    Directory of Open Access Journals (Sweden)

    Causse Mathilde

    2008-12-01

    Full Text Available Abstract Background The natural phenotypic variability present in the germplasm of cultivated plants can be linked to molecular polymorphisms using association genetics. However it is necessary to consider the genetic structure of the germplasm used to avoid false association. The knowledge of genetic structure of plant populations can help in inferring plant evolutionary history. In this context, we genotyped 360 wild, feral and cultivated accessions with 20 simple sequence repeat markers and investigated the extent and structure of the genetic variation. The study focused on the red fruited tomato clade involved in the domestication of tomato and confirmed the admixture status of cherry tomatoes (Solanum lycopersicum var. cerasiforme. We used a nested sample strategy to set-up core collection maximizing the genetic diversity with a minimum of individuals. Results Molecular diversity was considerably lower in S. lycopersicum i.e. the domesticated form. Model-based analysis showed that the 144 S. lycopersicum var. cerasiforme accessions were structured into two groups: one close to the domesticated group and one resulting from the admixture of the S. lycopersicum and S. pimpinellifolium genomes. SSR genotyping also indicates that domesticated and wild tomatoes have evolved as a species complex with intensive level of hybridization. We compiled genotypic and phenotypic data to identify sub-samples of 8, 24, 32 and 64 cherry tomato accessions that captured most of the genetic and morphological diversity present in the entire S. lycopersicum var. cerasiforme collection. Conclusion The extent and structure of allelic variation is discussed in relation to historical events like domestication and modern selection. The potential use of the admixed group of S. lycopersicum var. cerasiforme for association genetics studies is also discussed. Nested core collections sampled to represent tomato diversity will be useful in diversity studies. Molecular and

  10. Linear relationships between cherry tomato traits

    Directory of Open Access Journals (Sweden)

    Bruno Giacomini Sari

    Full Text Available ABSTRACT: The objective of this study was to identify the linear relationship between cherry tomato yield components. Two uniformity trials, without treatments, were conducted on Lilli cherry tomato plants in a plastic greenhouse during the 2014 spring/summer season, with the plants in two stems. Variables observed for each plant were mean fruit length, mean fruit width, mean fruit weight, number of bunches, number of fruits per bunch, total number of fruits, and total fruit weight; a Pearson's correlation matrix was used to estimate the relationship between the variables. Path analysis was then performed considering total fruit weight as the main variable and the remaining variables as explanatory. Due to the severe multicollinearity, the variable 'number of fruits per bunch' was eliminated. Pearson's correlation coefficients were significant between explanatory and main variables. Mean fruit weight has a low cause-and-effect relationship with the total weight of fruits produced. A low cause-and-effect relationship was also observed between number of fruits and number of bunches. Cherry tomato productivity is directly related to the number of fruits per plant.

  11. Mineral composition of organically grown tomato

    Science.gov (United States)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  12. TRANSCRIPTOMIC CHANGES DRIVE PHYSIOLOGICAL RESPONSES TO PROGRESSIVE DROUGHT STRESS AND REHYDRATION IN TOMATO

    Directory of Open Access Journals (Sweden)

    Paolo eIovieno

    2016-03-01

    Full Text Available Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation and chlorophyll fluorescence, abscisic acid (ABA and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting and photosystem I and II category induced by drought stress. Gene ontology (GO categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included

  13. CHARACTERISTICS AND PHENOTYPICAL VARIABILITY OF TOMATO INITIAL BREEDING MATERIAL ACCORDING TO THE MAIN ECONOMICALLY VALUABLE TRAITS AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    R. K. Rechets

    2016-01-01

    Full Text Available The market of Moldova has a large assortment of seed of foreign selection, such as large-fruited tomatoes, cherry and cocktail tomato. Therefore, it is necessary to launch the breeding program for hybrid development of local origin tomato typed, such as ‘Cherry’ and ‘Cocktail’ with a different form, mass and fruit color. Initially, 15 parental forms of tomato were studied for the main economically valuable traits in the open field condition. Phenotypic variation in tomato varieties and breeding accession was identified depending on the terms of cultivation. Such varieties and lines of tomato as ‘Trapesa’, ‘Rosovaya Kapelka’, ‘Seniyorita’, ‘Ocharovaniye’, ‘L. 46/06’, ‘L. 49/09’, ‘L 295/09,’ ‘L. 336/11’, ‘L. 354/11’, ‘L. 357/11’, ‘L. 388/09 (nor’, ‘L.498 (released by TARI, ‘Tigris’, ‘Vishnya Zheltaya’ (released by OOO ‘Gavrish’, ‘Denezhnoye Derevo’ (national breeding program were used as the initial breeding material. Totally, 15 breeding accessions were used for the study, where all of them differed in the type of bush (determinate and indeterminate; a vegetation period (ultra-early, early, middle, late; a form (roundish, oval; a fruit color (red, pink, black, orange, tiger and with a NOR gene; a fruit weight (from 10 g and above; a structure of brush (dense, loose. Lines and varieties of tomato of different terms of ripening characterized by the shortened internode, high fruit setting on the bush, high content of biologically active substances, and complex resistance to diseases were used to breed tomato hybrids of ‘cherry’ and ‘cocktail’ types with different fruit form and color.

  14. Consumer attitudes and preferences for fresh market tomatoes.

    Science.gov (United States)

    Oltman, A E; Jervis, S M; Drake, M A

    2014-10-01

    This study established attractive attributes and consumer desires for fresh tomatoes. Three focus groups (n = 28 participants) were conducted to explore how consumers perceived tomatoes, including how they purchased and consumed them. Subsequently, an Adaptive Choice Based Conjoint (ACBC) survey was conducted to understand consumer preferences toward traditional tomatoes. The ACBC survey with Kano questions (n = 1037 consumers in Raleigh, NC) explored the importance of color, firmness, size, skin, texture, interior, seed presence, flavor, and health benefits. The most important tomato attribute was color, then juice when sliced, followed by size, followed by seed presence, which was at parity with firmness. An attractive tomato was red, firm, medium/small sized, crisp, meaty, juicy, flavorful, and with few seeds. Deviations from these features resulted in a tomato that was rejected by consumers. Segmentations of consumers were determined by patterns in utility scores. External attributes were the main drivers of tomato liking, but different groups of tomato consumers exist with distinct preferences for juiciness, firmness, flavor, and health benefits. Conjoint analysis is a research technique that collects a large amount of data from consumers in a format designed to be reflective of a real life market setting and can be combined with qualitative insight from focus groups to gain information on consumer consumption and purchase behaviors. This study established that the most important fresh tomato attributes were color, amount of juice when sliced, and size. Distinct consumer clusters were differentiated by preference for color/appearance, juiciness and firm texture. Tomato growers can utilize the results to target attributes that drive consumer choice for fresh tomatoes. © 2014 Institute of Food Technologists®

  15. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing.

    Science.gov (United States)

    Aflitos, Saulo; Schijlen, Elio; de Jong, Hans; de Ridder, Dick; Smit, Sandra; Finkers, Richard; Wang, Jun; Zhang, Gengyun; Li, Ning; Mao, Likai; Bakker, Freek; Dirks, Rob; Breit, Timo; Gravendeel, Barbara; Huits, Henk; Struss, Darush; Swanson-Wagner, Ruth; van Leeuwen, Hans; van Ham, Roeland C H J; Fito, Laia; Guignier, Laëtitia; Sevilla, Myrna; Ellul, Philippe; Ganko, Eric; Kapur, Arvind; Reclus, Emannuel; de Geus, Bernard; van de Geest, Henri; Te Lintel Hekkert, Bas; van Haarst, Jan; Smits, Lars; Koops, Andries; Sanchez-Perez, Gabino; van Heusden, Adriaan W; Visser, Richard; Quan, Zhiwu; Min, Jiumeng; Liao, Li; Wang, Xiaoli; Wang, Guangbiao; Yue, Zhen; Yang, Xinhua; Xu, Na; Schranz, Eric; Smets, Erik; Vos, Rutger; Rauwerda, Johan; Ursem, Remco; Schuit, Cees; Kerns, Mike; van den Berg, Jan; Vriezen, Wim; Janssen, Antoine; Datema, Erwin; Jahrman, Torben; Moquet, Frederic; Bonnet, Julien; Peters, Sander

    2014-10-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Huang, Ying; Li, Meng-Yao; Wu, Peng; Xu, Zhi-Sheng; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2016-10-07

    Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time-polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato-TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression.

  17. Caracterização de genótipos de tomateiro resistentes a begomovírus por marcador molecular co-dominante ligado ao gene Ty-1 Fingerprinting of tomato genotypes resistant to begomovirus by a codominant molecular marker linked to Ty-1 gene

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Castro Nizio

    2008-12-01

    Full Text Available O objetivo deste trabalho foi avaliar genótipos de tomateiro, quanto à resistência a begomovírus, e caracterizar, por meio do marcador molecular SSR-47, híbridos de tomate de mesa portadores do alelo de resistência ao begomovírus Ty-1, com potencial comercial. Os 24 híbridos experimentais, heterozigotos no loco Ty-1, depois de infectados via enxertia, apresentaram sintomas intermediários, em comparação aos identificados pelas linhagens homozigotas Ty-1/Ty-1 e pelos genótipos suscetíveis Ty-1+/Ty-1+, o que indica a dominância incompleta do alelo Ty-1. Esses híbridos foram considerados como parcialmente tolerantes a begomovírus. Os híbridos experimentais TEX-246, TEX-261, TEX-253, TEX-256, TEX-262, TEX-252, TEX-251 e TEX-268 aliaram médias elevadas de produção total e de massa média dos frutos; e os híbridos TEX-246, TEX-253, TEX-256, TEX-262 e TEX-252 apresentaram valores elevados também para meia-vida da firmeza e foram, portanto, considerados competitivos em comparação aos padrões comerciais usados como testemunhas. O marcador molecular SSR-47 foi eficiente em caracterizar genótipos portadores do alelo Ty-1. A infecção do begomovírus, induzida via enxertia, manifestou sintomas, nos genótipos testados, condizentes com os resultados obtidos com o marcador molecular SSR-47.The objectives of this study were to evaluate tomato genotypes for begomovirus resistance and to assess SSR-47 fingerprinting patterns associated with alleles Ty-1, in hybrids of fresh-market tomato with commercial potential. Twenty-four experimental genotypes, heterozygous at Ty-1 locus, were infected with begomovirus via grafting, and showed intermediate symptoms compared to the ones identified by homozygous Ty-1/Ty-1 lines and by susceptible genotypes Ty-1+/Ty-1+, which indicates the incomplete dominance of the Ty-1 allele. These hybrids were considered to possess partial resistance to begomovirus. The experimental hybrids TEX-246, TEX-261, TEX

  18. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  19. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    Science.gov (United States)

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  20. Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica.

    Science.gov (United States)

    Li, G J; Dong, Q E; Ma, L; Huang, Y; Zhu, M L; Ji, Y P; Wang, Q H; Mo, M H; Zhang, K Q

    2014-10-01

    To characterize the nematicidal endophytic bacteria (NEB) of Wasabia japonica (wasabi) and evaluated the control efficacies of promising NEB as well as fresh wasabi residue (FWR) against Meloidogyne incognita on tomato. By in vitro bioassay, 53 NEB strains showing nematicidal efficacies of >50% against J2 of M. incognita were isolated from wasabi. Basing on 16S rRNA gene sequences, these NEB were identified into 18 species of 11 genera. In greenhouse, incorporation of selected NEB culture or FWR into potted soil significantly reduced infection of M. incognita on tomato. Treating tomatoes with either FWR or NEB of Raoultella terrigena RN16 and Pseudomonas reinekei SN21 in the field yielded excellent control efficacies against M. incognita, especially the combinations of FWR with either R. terrigena RN16 or Ps. reinekei SN21 at doses of 50 g plus 100 ml per plant or more. The results established that R. terrigena RN16 and Ps. reinekei SN21 applied separately or combined with FWR have the potential to provide bioprotection agents against M. incognita. This study provides novel way for disease management using combination of endophyte and host residue. © 2014 The Society for Applied Microbiology.

  1. The effect of plant growth regulators on callus induction somatic embryogenesis of hybird tomato

    International Nuclear Information System (INIS)

    Jan, S. A.; Shah, S. H.; Ali, S.; Ali, G. H.

    2015-01-01

    Efficient tissue culture system is important for transformation of important genes in hybrid tomato cultivars. The present study was undertaken to develop an efficient tissue culture system for hybrid tomato cultivar Peto-86. The young primary leaves and stems were inoculated into five different MS media having different concentrations of plant growth regulators in different combinations for callus induction, somatic embryogenesis and for both direct and indirect regeneration. Maximum callus induction frequency 90 percentage was achieved with MS media containing 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. The direct somatic embryogenesis was found highest on MS media supplemented with 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. Maximum indirect regeneration frequency 87 percentage was achieved from primary leaves explants with MS media containing IAA 0.5 mg L-1 and BAP 3 mg L-1 and highest direct regeneration frequency 77% was obtained from primary leaves explants with MS media containing NAA 1 mg L-1 and BAP 3 mg L-1. The high concentration of 2,4-D increased callus induction and somatic embryogenesis frequencies while the high concentration of BAP increased regeneration frequency. An improved tissue culture system of hybrid tomato cultivar Peto-86 was established and it may be recommended for further transformation experiments. (author)

  2. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops

    Directory of Open Access Journals (Sweden)

    Enrique Moriones

    2017-09-01

    Full Text Available The tomato leaf curl New Delhi virus (ToLCNDV (genus Begomovirus, family Geminiviridae represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant–virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.

  3. Serological and molecular characterization of Syrian Tomato spotted wilt virus isolates

    Directory of Open Access Journals (Sweden)

    Faiz ISMAEIL

    2015-04-01

    Full Text Available Thirty four Syrian isolates of Tomato spotted wilt virus (TSWV collected from tomato and pepper were tested against five specific monoclonal antibodies using TAS-ELISA. The isolates were in two serogroups. Fourteen tomato and sixteen pepper isolates were similar in their reaction with MAb-2, MAb-4, MAb-5 and MAb-6, but did not react with MAb-7 (Serogroup 1. Meanwhile, four isolates collected from pepper reacted with all the MAbs used (Serogroup 2. The expected 620 bp DNA fragment was obtained by RT-PCR from six samples using a specific primer pair designed to amplify the nucleocapsid protein (NP gene of TSWV. The PCR products were sequenced and a phylogenetic tree was constructed. Sequence analysis revealed that the Syrian TSWV isolates were very similar at the nucleotide (97.74 to 99.84% identity and amino acid (96.17 to 99.03% identity sequences levels. The phylogenetic tree showed high similarity of Syrian TSWV isolates with many other representative isolates from different countries.

  4. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    Science.gov (United States)

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.

  5. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    Directory of Open Access Journals (Sweden)

    Valentina di Rienzo

    Full Text Available In tomato, resistance to Tomato spotted wilt virus (TSWV is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke and summer (tomato crops, in the same cultivated areas of Southern Italy.

  6. Tomato Sauce Enriched with Olive Oil Exerts Greater Effects on Cardiovascular Disease Risk Factors than Raw Tomato and Tomato Sauce: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Palmira Valderas-Martinez

    2016-03-01

    Full Text Available Epidemiological studies have observed a negative association between tomato intake and the incidence of cardiovascular disease. As tomato sauces are usually cooked with the addition of oil, some studies have pointed out that both processes may increase the bioavailability of the bioactive compounds. However, the effect of consumption of raw tomatoes and tomato sauces on inflammation biomarkers and adhesion molecules related to atherosclerosis remains unknown. The aim of this study was to test the postprandial effects of a single dose of raw tomatoes (RT, tomato sauce (TS and tomato sauce with refined olive oil (TSOO on cardiovascular disease risk factors. We performed an open, prospective, randomized, cross-over, controlled feeding trial in 40 healthy subjects who randomly received: 7.0 g of RT/kg of body weight (BW, 3.5 g of TS/kg BW, 3.5 g of TSOO/Kg BW and 0.25 g of sugar solved in water/kg BW on a single occasion on four different days. Biochemical parameters and cellular and circulating inflammatory biomarkers were assessed at baseline and 6 h after each intervention. The results indicate that, compared to control intervention, a single tomato intake in any form decreased plasma total cholesterol, triglycerides and several cellular and plasma inflammatory biomarkers, and increased plasma high density lipoproteins (HDL cholesterol and interleukine (IL 10 concentrations. However, the changes of plasma IL-6 and vascular cell adhesion molecule-1 (VCAM-1, and lymphocyte function-associated antigen-1 (LFA-1 from T-lymphocytes and CD36 from monocytes were significantly greater after TSOO than after RT and TS interventions. We concluded that tomato intake has beneficial effects on cardiovascular risk factors, especially cooked and enriched with oil.

  7. Flavor characteristics of the juices from fresh market tomatoes differentiated from those from processing tomatoes by combined analysis of volatile profiles with sensory evaluation.

    Science.gov (United States)

    Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio

    2016-12-01

    Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.

  8. Molecular and cellular characterization of the tomato pollen profilin, LePro1.

    Directory of Open Access Journals (Sweden)

    Long-Xi Yu

    Full Text Available Profilin is an actin-binding protein involved in the dynamic turnover and restructuring of the actin cytoskeleton in all eukaryotic cells. We previously cloned a profilin gene, designated as LePro1 from tomato pollen. To understand its biological role, in the present study, we investigated the temporal and spatial expression of LePro1 during pollen development and found that the transcript was only detected at late stages during microsporogenesis and pollen maturation. Using antisense RNA, we successfully knocked down the expression of LePro1 in tomato plants using stable transformation, and obtained two antisense lines, A2 and A3 showing significant down-regulation of LePro1 in pollen resulting in poor pollen germination and abnormal pollen tube growth. A disorganized F-actin distribution was observed in the antisense pollen. Down-regulation of LePro1 also appeared to affect hydration of pollen deposited on the stigma and arrested pollen tube elongation in the style, thereby affecting fertilization. Our results suggest that LePro1 in conjunction with perhaps other cytoskeletal proteins, plays a regulatory role in the proper organization of F-actin in tomato pollen tubes through promoting actin assembly. Down-regulation of LePro1 leads to interruption of actin assembly and disorganization of the actin cytoskeleton thus arresting pollen tube growth. Based on the present and previous studies, it is likely that a single transcript of profilin gives rise to multiple forms displaying multifunctionality in tomato pollen.

  9. Response of Tomato Genotypes to Induced Salt Stress | Agong ...

    African Journals Online (AJOL)

    Thirteen tomato (Lycopersicon esculentum L.) genotypes were subjected to salt treatment under hydroponics and their responses monitored in a set of two experiments with the objective of advancing them as potential salt tolerant tomato scion and/or rootstocks. Salt applications ranged from 0 to 2% NaCl, with the resultant ...

  10. Growth and Yield Components of Tomato as Influenced by Nitrogen ...

    African Journals Online (AJOL)

    yield of tomato, and later application in the growing stages favours fruit development, thus nitrogen has a dramatic effect on tomato growth and development ..... CRBD design in factorial experiment using SAS analytical Software. ..... with relatively fertile soil experimental conditions there is no existence of joint factor.

  11. Field evaluation of deficit irrigation effects on tomato growth ...

    African Journals Online (AJOL)

    Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...

  12. Suppressors of RNA silencing encoded by tomato leaf curl

    Indian Academy of Sciences (India)

    Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B ... In the present study suppressor function of ORF C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl ...

  13. Design and Development of a tomato Slicing Machine

    OpenAIRE

    Kamaldeen Oladimeji Salaudeen; Awagu E. F.

    2012-01-01

    Principle of slicing was reviewed and tomato slicing machine was developed based on appropriate technology. Locally available materials like wood, stainless steel and mild steel were used in the fabrication. The machine was made to cut tomatoes in 2cm thickness. The capacity of the machine is 540.09g per minute and its performance efficiency is 70%.

  14. Breeding of a Tomato Genotype Readily Accessible to Genetic Manipulation

    NARCIS (Netherlands)

    Koornneef, Maarten; Hanhart, Corrie; Jongsma, Maarten; Toma, Ingrid; Weide, Rob; Zabel, Pim; Hille, Jacques

    1986-01-01

    A tomato genotype, superior in regenerating plants from cell cultures, was obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. This genotype, MsK93, greatly facilitates genetic manipulation of tomato, as was demonstrated by successful

  15. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought.

    Science.gov (United States)

    Chitarra, Walter; Maserti, Biancaelena; Gambino, Giorgio; Guerrieri, Emilio; Balestrini, Raffaella

    2016-07-02

    A multidisciplinary approach, involving eco-physiological, morphometric, biochemical and molecular analyses, has been used to study the impact of two different AM fungi, i.e. Funneliformis mosseae and Rhizophagus intraradices, on tomato response to water stress. Overall, results show that AM symbiosis positively affects the tolerance to drought in tomato with a different plant response depending on the involved AM fungal species.

  16. Three QTLs for Botrytis cinerea resistance in tomato

    NARCIS (Netherlands)

    Finkers, H.J.; Berg, van den P.M.M.M.; Berloo, van R.; Have, ten A.; Heusden, van A.W.; Kan, van J.A.L.; Lindhout, P.

    2007-01-01

    Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of

  17. Strategies for Increasing Tomato Production In Nigeria: A Case ...

    African Journals Online (AJOL)

    The study was carried out in Kabba-Bunu Local Government Area (LGA) of Kogi State, Nigeria in the year 2013 to assess the farmers' perception on the strategies for increasing tomato production in the LGA; an area that has potential to produce tomato on commercial level. The objectives of the study were to identify the ...

  18. Wild tomato introgressions that confer resistance to begomoviruses in Guatemala

    Science.gov (United States)

    Begomoviruses, whitefly-transmitted geminiviruses, are one of the major diseases of tomatoes in subtropical and tropical regions. In Guatemala, several bipartite begomoviruses and the monopartite geminivirus, Tomato yellow leaf curl virus, are present. Three experiments were conducted to evaluate th...

  19. Culture of the Tomato Micro-Tom Cultivar in Greenhouse.

    Science.gov (United States)

    Rothan, Christophe; Just, Daniel; Fernandez, Lucie; Atienza, Isabelle; Ballias, Patricia; Lemaire-Chamley, Martine

    2016-01-01

    Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.

  20. field reactions of interspecific hybrids of tomato (solanum

    African Journals Online (AJOL)

    User

    2014-09-03

    Sep 3, 2014 ... Leaf spot is a major disease of tomato causing reduction in fruit yield under humid environments. It's control using some of the major systemic fungicides available is environmentally unfriendly and costly. Heterosis known to increase productivity in crops was used to assess improvement in tomato yield and ...

  1. In Vitro screening of tomato genotypes for drought resistance using ...

    African Journals Online (AJOL)

    Drought is a major abiotic factor that limits plant growth and productivity. Tomato is an important vegetable crop and area under production is limited by irrigation water scarcity. Effort was made to screen tomato germplasm under in vitro condition using polyethylene glycol (PEG) at four concentrations (0, 20, 40 and 60 g/l) ...

  2. The potential of endomycorrhizal fungi in controlling tomato bacterial ...

    African Journals Online (AJOL)

    The impact of colonization by three mycorrhizal fungi on tomato bacterial wilt caused by Ralstonia solanaceraum was investigated. Three species of arbuscular mycorrhizal fungal (AMF) were tested (Glomus mosseae, Scutellospora sp. and Gigaspora margarita). Siginificant differences in tomato growth based on plant ...

  3. Testing the Performance of Fresh Tomato Markets Following Import ...

    African Journals Online (AJOL)

    2006). For tomato, the commodity of interest in this study, tariffs reduction increased ... Even though Accra is the largest tomato consumer market in Ghana, it was ... Impediments arising from oligopolistic behaviour of traders, seasonal ... an ideal case for employing the TAR model in analysing price transmission and market.

  4. Farmers Agronomic Practice in Management of the Tomato ...

    African Journals Online (AJOL)

    The study assessed farmers' awareness of tomato yellow leaf curl virus (TYLCV) disease and their agronomic and disease management practices in the Efutu municipality, Komenda-Edina-Eguafo-Abirem (KEEA), and Mfantseman districts which are leading tomato producing centres in the Central Region of Ghana.

  5. Morphological and Molecular Identification of Colletotrichum acutatum from Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Svetlana Živković

    2010-01-01

    Full Text Available Colletotrichum gloeosporioides, Colletotrichum acutatum, Colletotrichum coccodes, and Colletotrichum dematium are the four main species of Colletotrichum that cause tomato anthracnose. In Serbia, the occurrence of anthracnose on tomato fruit has been recorded during the last several years. Typical fruit symptoms include dark, sunken, and circular lesion with orange conidial masses. Pathogen isolates were obtained from a diseased tomato fruits, on PDA medium forming a white to gray colonies. The cultures developed black acervuli around the center of the colony. Conidia were hyaline, aseptate, and fusiform or rarely cylindrical. Appressoria were smooth, simple, clavate to ovate, and variedfrom light to dark brown. Pathogenicity tests with representative isolates were conducted on symptomless, detached tomato fruits. All tested isolates caused anthracnose lesions on tomato fruit after 7 days of incubation. Koch’s postulates were fulfilled by reisolationfrom inoculated tomato fruits. PCR analysis (using species-specific primer pair, CaInt2/ITS4 of genomic DNA from tomato isolates resulted in an amplification product of 490 bp, specific for C. acutatum, further confirming the identity of the pathogen. Based onmorphological and molecular characteristics, the isolates from tomato fruit were determined as C. acutatum.

  6. Using hyperspectral imaging technology to identify diseased tomato leaves

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei

    2016-11-01

    In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.

  7. Tomato sorting using independent component analysis on spectral images

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2003-01-01

    Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  8. Pepino mosaic virus isolates and differential symptomatology in tomato

    NARCIS (Netherlands)

    Hanssen, I.M.; Paeleman, A.; Vandewoestijne, E.; Bergen, Van L.; Bragard, C.; Lievens, B.; Vanachter, A.C.R.C.; Thomma, B.P.H.J.

    2009-01-01

    Based on a survey conducted in commercial tomato production in Belgium in 2006, four Pepino mosaic virus (PepMV) isolates that differed in symptom expression in the crop of origin were selected for greenhouse trials. The selected isolates were inoculated onto tomato plants grown in four separate

  9. Serological detection of viruses infecting tomato and pepper in ...

    African Journals Online (AJOL)

    ... one tomato leaf sample while PVMV + CMV occurred on three pepper leaf samples. The control of aphid vectors that transmit these viruses and good sanitary practices against soil borne ToMV would minimize disease incidences and subsequent yield loss. Keywords: Tomato, Pepper, virus distribution, PVMV, CMV, PVY ...

  10. YIELD OF TOMATO (Lycopersicum esculentum) IN MUBI, ADAMAWA

    African Journals Online (AJOL)

    pc

    fruits and can be taken raw or cooked (Adams et al.,. 1978). It was believed to have been originated from ... European literatures appeared as herbal swelling fruit used for cooking (Olayinka and Adebayo, 1985). Over ... largest consumers of tomato paste all over the world. Production indices of tomato in Nigeria as reported ...

  11. Tomato farmers adoption level of postharvest value addition ...

    African Journals Online (AJOL)

    The study examined tomato farmers' adoption level of postharvest value addition technology and its constraints in Surulere Area of Oyo state. 160 tomato farmers were randomly selected and interviewed through structured interview schedule. Data obtained were subjected to descriptive and inferential statistics. Results ...

  12. MONOCLONAL ANTIBODIES TO IDENTIFY TOMATO MOSAIC TOBAMOVIRUS (TOMV

    Directory of Open Access Journals (Sweden)

    Duarte Keila M.R.

    2001-01-01

    Full Text Available Monoclonal antibodies were obtained against Tomato mosaic tobamovirus (ToMV isolated in Brazil. One antibody (8G7G2 isotyped as IgG2b (kappa light chain showed strong specificity and very low cross reaction with the Tobacco mosaic virus (TMV. It can be used in identification of tomato mosaic virus (ToMV.

  13. Price Variation of Tomatoes and Ginger in Giwa Market, Kaduna ...

    African Journals Online (AJOL)

    Jamila Rabe Mani

    ginger marketing an indication of principle of supply and demand. The feasibility for storage were 20.71% and 21.44% for tomato and ginger respectively, implying that the producers/marketers of both tomato and ginger will make highest returns if they stored and sold to other (urban/international) markets during periods of ...

  14. Development of infrared heating technology for tomato peeling

    Science.gov (United States)

    The commercial lye and steam peeling methods used in tomato processing industry are water- and energy-intensive and have a negative impact on the environment. To develop alternative peeling methods, we conducted comprehensive studies of using infrared (IR) heating for tomato peeling. The three major...

  15. Development of polymorphic microsatellite loci for the tomato leaf ...

    Indian Academy of Sciences (India)

    lite loci for the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae). J. Genet. 92, e110–e112. Online only ... idae) is a devastating pest of tomato originating from South. America (García and Espul 1982). .... ture of Aphis spiraecola (Hemiptera: Aphididae) on pear trees in. China identified using microsatellites.

  16. Genotypic variation in the response of tomato to salinity | Turhan ...

    African Journals Online (AJOL)

    In order to determine the predictive screening parameters that can be applied at early development stages of tomato plants, 18 tomato cultivars were grown in nutrient solution with 12 dS m-1 NaCl. The research was conducted in a completely randomized design with tree replications. The relationships among the salinity ...

  17. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements

    Directory of Open Access Journals (Sweden)

    Ahn Jong Hwa

    2011-01-01

    Full Text Available Abstract Background Among the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato. Results For sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation. Conclusions Compared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.

  18. Characterization of a New World Monopartite Begomovirus Causing Leaf Curl Disease of Tomato in Ecuador and Peru Reveals a New Direction in Geminivirus Evolution

    Science.gov (United States)

    Melgarejo, Tomas A.; Kon, Tatsuya; Rojas, Maria R.; Paz-Carrasco, Lenin; Zerbini, F. Murilo

    2013-01-01

    All characterized whitefly-transmitted geminiviruses (begomoviruses) with origins in the New World (NW) have bipartite genomes composed of a DNA-A and DNA-B component. Recently, an NW begomovirus lacking a DNA-B component was associated with tomato leaf curl disease (ToLCD) in Peru, and it was named Tomato leaf deformation virus (ToLDeV). Here, we show that isolates of ToLDeV associated with ToLCD in Ecuador and Peru have a single, genetically diverse genomic DNA that is most closely related to DNA-A components of NW bipartite begomoviruses. Agroinoculation of multimeric clones of the genomic DNA of three ToLDeV genotypes (two variants and a strain) resulted in the development of tomato leaf curl symptoms indistinguishable from those of ToLCD in Ecuador and Peru. Biological properties of these ToLDeV genotypes were similar to those of Old World (OW) monopartite tomato-infecting begomoviruses, including lack of sap transmissibility, phloem limitation, a resistance phenotype in tomato germplasm with the Ty-1 gene, and functional properties of the V1 (capsid protein) and C4 genes. Differences in symptom phenotypes induced by the ToLDeV genotypes in tomato and Nicotiana benthamiana plants were associated with a highly divergent left intergenic region and C4 gene. Together, these results establish that ToLDeV is an emergent NW monopartite begomovirus that is causing ToLCD in Ecuador and Peru. This is the first report of an indigenous NW monopartite begomovirus, and evidence is presented that it emerged from the DNA-A component of a NW bipartite progenitor via convergent evolution and recombination. PMID:23468482

  19. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers

    Directory of Open Access Journals (Sweden)

    Xiaoxi Liu

    2017-07-01

    Full Text Available Tomato (Solanum lycopersicum fruit weight (FW, soluble solid content (SSC, fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI, and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4 associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05 associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.

  20. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    Science.gov (United States)

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species. PMID:21637482

  1. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    Science.gov (United States)

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  2. The Rg1 allele as a valuable tool for genetic transformation of the tomato 'Micro-Tom' model system

    Directory of Open Access Journals (Sweden)

    Quecini Vera

    2010-10-01

    Full Text Available Abstract Background The cultivar Micro-Tom (MT is regarded as a model system for tomato genetics due to its short life cycle and miniature size. However, efforts to improve tomato genetic transformation have led to protocols dependent on the costly hormone zeatin, combined with an excessive number of steps. Results Here we report the development of a MT near-isogenic genotype harboring the allele Rg1 (MT-Rg1, which greatly improves tomato in vitro regeneration. Regeneration was further improved in MT by including a two-day incubation of cotyledonary explants onto medium containing 0.4 μM 1-naphthaleneacetic acid (NAA before cytokinin treatment. Both strategies allowed the use of 5 μM 6-benzylaminopurine (BAP, a cytokinin 100 times less expensive than zeatin. The use of MT-Rg1 and NAA pre-incubation, followed by BAP regeneration, resulted in high transformation frequencies (near 40%, in a shorter protocol with fewer steps, spanning approximately 40 days from Agrobacterium infection to transgenic plant acclimatization. Conclusions The genetic resource and the protocol presented here represent invaluable tools for routine gene expression manipulation and high throughput functional genomics by insertional mutagenesis in tomato.

  3. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers.

    Science.gov (United States)

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-04-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F(ST) > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  4. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII markers

    Directory of Open Access Journals (Sweden)

    Felix Enciso-Rodríguez

    2010-01-01

    Full Text Available The Lulo or naranjilla (Solanum quitoense Lam. and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt. are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32 and tree tomatoes (n = 30 through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII in other Solanaceae (Asterid species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested and tree tomatoes (26 out of 41 for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F ST > 0.90, which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  5. Expression of heterosis in floral traits and fruit size in tomato ...

    African Journals Online (AJOL)

    The present research was prompted by lack of improved tomato cultivars adapted to the humid tropical. Tomato hybrids were developed by crossing wild and cultivated tomato varieties. The average fruit size of the tomato hybrids generated did not meet the level of acceptability in the local market. A modified three way cross ...

  6. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  7. Effect of concentration on the rheology and serum separation of tomato suspensions

    NARCIS (Netherlands)

    Ouden, den F.W.C.; Vliet, van T.

    2002-01-01

    The °Brix value of the tomato concentrate, from which tomato suspensions were prepared, was shown to have a large effect on the resulting apparent viscosity and storage modulus. The apparent viscosity of a tomato suspension prepared from a 30 °Brix tomato concentrate was only 35␘f that of a

  8. Emergence of a resistance breaking TSWV strain in tomato in California

    Science.gov (United States)

    Tomato spotted wilt virus (TSWV) is a highly destructive pathogen of tomato in the central valley of California. During the 2016 tomato growing season, unusually early and severe symptoms of TSWV occurred in fields of TSWV-resistant fresh market tomato cultivars. Disease incidences of 50-80% were ob...

  9. Changes in antioxidant and metabolite profiles during production of tomato paste

    NARCIS (Netherlands)

    Capanoglu, E.; Beekwilder, M.J.; Boyacioglu, D.; Hall, R.D.; Vos, de C.H.

    2008-01-01

    Tomato products and especially concentrated tomato paste are important sources of antioxidants in the Mediterranean diet. Tomato fruit contain well-known antioxidants such as vitamin C, carotenoids, flavonoids, and hydroxycinnamic acids. The industrial processing of this fruit into tomato paste

  10. Low temperature-induced lycopene degradaton in red ripe tomato evaluated by remittance spectroscopy

    NARCIS (Netherlands)

    Farneti, B.; Schouten, R.E.; Woltering, E.J.

    2012-01-01

    Tomatoes are mostly harvested at the orange and red-ripe stages. A survey among consumers indicated that tomatoes are most often stored in the refrigerator well below 10 °C, a temperature considered harmful for chilling sensitive products such as tomato. Also during distribution, tomatoes may be

  11. KINETICS OF COLOUR CHANGE OF TOMATOES DURING DRYING

    Directory of Open Access Journals (Sweden)

    A. Unadi

    2016-10-01

    Full Text Available Colour is one of the pharameters determining the quality of dried tomatoes. The changes in colour of the skin of tomatoes during drying in an experimental dryer at various temperatures were measured every two hours by using Minolta CR 200 colorimeter and the colours were represented in Hunter-Lab scale. The objective of this research was develop a model for predicting colour changes of tomatoes during drying. The decrease in darkness as represented by dL value varied from 10 to 16%, while decrease in chroma value (dL varied from 20 to 37% of initial values. An empirical logarithmic equation with six constants was derived to fit the data of chroma changes during drying at various temperature and times. The model of colour change of tomatoes can be used for determining the optimum drying temperature to produce acceptable colour of dried tomatoes at reasonable cost.

  12. Use of multispectral images and chemometrics in tomato seed studies

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    During the production of tomato seeds, green tomatoes are normally discarded before seed extraction irrespective of their maturity stage. Studies indicate that seeds from green tomatoes may reach be able to reach full germination capacity. Thus the potential of multispectral imaging for non......-destructive discrimination of seeds based on their germination capacity was investigated. A total of 840 seeds extracted from green and red tomatoes were divided into two sets; a training set and a test set consisting of 648 and 192 seeds respectively. Each set consisted of 96 seeds from green tomatoes. The multispectral...... images of the seeds were captured and normalized canonical discriminant analysis was used to analyse the images. Germination tests were performed and seeds that subsequently germinated were recorded as viable. The viable seeds were classified with 99% and 98% accuracy for the training and test set...

  13. Development of Aloe vera based edible coating for tomato

    Science.gov (United States)

    Athmaselvi, K. A.; Sumitha, P.; Revathy, B.

    2013-12-01

    The effect of formulated Aloe vera based edible coating on mass loss, colour, firmness, pH, acidity, total soluble solid, ascorbic acid and lycopene on the coated tomato was investigated. The tomato in control showed a rapid deterioration with an estimated shelf life period of 19 days, based on the mass loss, colour changes, accelerated softening and ripening. On the contrary, the coating on tomatoes delayed the ripening and extended the shelf life up to 39 days. The physiological loss in weight was 7.6 and 15.1%, firmness was 36 and 46.2 N on 20th day for control and coated tomatoes, respectively. From the results, it was concluded that the use of Aloe vera based edible coating leads to increased tomato shelf-life.

  14. Infection of a tomato cell culture by Phytophthora infestans; a versatile tool to study Phytophthora-host interactions

    Directory of Open Access Journals (Sweden)

    Charikleia Schoina

    2017-10-01

    Full Text Available Abstract Background The oomycete Phytophthora infestans causes late blight on potato and tomato. Despite extensive research, the P. infestans-host interaction is still poorly understood. To find new ways to further unravel this interaction we established a new infection system using MsK8 tomato cells. These cells grow in suspension and can be maintained as a stable cell line that is representative for tomato. Results MsK8 cells can host several Phytophthora species pathogenic on tomato. Species not pathogenic on tomato could not infect. Microscopy revealed that 16 h after inoculation up to 36% of the cells were infected. The majority were penetrated by a germ tube emerging from a cyst (i.e. primary infection while other cells were already showing secondary infections including haustoria. In incompatible interactions, MsK8 cells showed defense responses, namely reactive oxygen species production and cell death leading to a halt in pathogen spread at the single cell level. In compatible interactions, several P. infestans genes, including RXLR effector genes, were expressed and in both, compatible and incompatible interactions tomato genes involved in defense were differentially expressed. Conclusions Our results show that P. infestans can prosper as a pathogen in MsK8 cells; it not only infects, but also makes haustoria and sporulates, and it receives signals that activate gene expression. Moreover, MsK8 cells have the ability to support pathogen growth but also to defend themselves against infection in a similar way as whole plants. An advantage of MsK8 cells compared to leaves is the more synchronized infection, as all cells have an equal chance of being infected. Moreover, analyses and sampling of infected tissue can be performed in a non-destructive manner from early time points of infection onwards and as such the MsK8 infection system offers a potential platform for large-scale omics studies and activity screenings of inhibitory

  15. Recognition of Cladosporium fulvum Ecp2 elicitor by non-host Nicotiana spp. is mediated by a single dominant gene that is not homologous to known Cf-genes

    NARCIS (Netherlands)

    Kock, de M.J.D.; Iskandar, H.M.; Brandwagt, B.F.; Laugé, R.; Wit, de P.J.G.M.; Lindhout, W.H.

    2004-01-01

    Cladosporium fulvum is a fungal pathogen of tomato that grows exclusively in the intercellular spaces of leaves. Ecp2 is one of the elicitor proteins that is secreted by C. fulvum and is specifically recognized by tomato plants containing the resistance gene Cf-Ecp2. Recognition is followed by a

  16. Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York

    Science.gov (United States)

    Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...

  17. Suicidal tomato cells: programmed cell death in suspension-cultured tomato cells and ripening fruit

    NARCIS (Netherlands)

    Hoeberichts, F.A.

    2002-01-01

    Tomato fruit ripening involves a series of highly organised biochemical, physiological and structural changes that are under strict genetic control. The plant hormone ethylene (C 2 H 4 ), in synergy

  18. Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruits

    NARCIS (Netherlands)

    Delatte, H.; Dalmon, A.; Rist, D.; Soustrade, I.; Wuster, G.; Lett, J.M.; Goldbach, R.W.; Peterschmitt, M.; Reynaud, B.

    2003-01-01

    The whitefly Bemisia tabaci is an insect pest causing worldwide economic losses, especially as a vector of geminiviruses such as Tomato yellow leaf curl virus (TYLCV). Currently, imported and exported tomato fruit are not monitored for TYLCV infection because they are not considered to represent a

  19. Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis

    NARCIS (Netherlands)

    Martel, C.; Zhurov, V.; Navarro, M.; Martinez, M.; Cazaux, M.; Auger, P.; Migeon, A.; Santamaria, M.E.; Wybouw, N.; Diaz, I.; Van Leeuwen, T.; Navajas, M.; Grbic, M.; Grbic, V.

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite

  20. Incidence, Distribution and Characteristics of Major Tomato Leaf Curl and Mosaic Virus Diseases in Uganda

    OpenAIRE

    Ssekyewa, C

    2006-01-01

    In Uganda, about 3 million households consume tomato. However, tomato yields (10 ton/ ha) are low due to poor agronomic practices, lack of high yielding and disease resistant varieties, and pests (Varela, 1995; Hansen, 1990; Defrancq, 1989). Viral diseases are the third major cause of low tomato productivity in Uganda. Therefore, a survey was conducted; symptoms observed on tomato were categorized, and screened for both ribonucleic and deoxyribonucleic acid tomato viruses. Genetic identity fo...