WorldWideScience

Sample records for tomato plants infected

  1. Influence of spaceflight on the efficiency of tomatoes quality and plant resistance to viral infection

    Science.gov (United States)

    Dashchenko, Anna; Mishchenko, Lidiya

    Tomatoes are an important agricultural crop. The use of plants for life support in long-term space flight advances multiple problems - an adaptation to microgravity and taste. Conditions of microgravity are stressful for plants and they cause them adaptation syndrome to protect and preserve homeostasis (Kordyum, 2010, 2012;. Hasenstein, 1999). Tomatoes are also a product of the diet of astronauts, which is an important part of their life - the regeneration gas environment (photosynthesis), the relaxation factor in psychological people and a powerful antioxidant. In 2007, the tomato seeds, genetically created by scientists from the University of North Carolina, was placed on the International Space Station. But the experiment failed because the seedlings died (Khodakovskaya). Although researchers do not bind this fact with microgravity, it is clear that the study of this factor on plants is rather important. Therefore, the study of the effect of space flight conditions on plant species continues. The aim of our study was to investigate the effect of space flight on tomato plant resistance to viral infection and quality products. Seeds of tomato plants (Lycopersicon esculentum Mill., Sort Podmoskovny early) 6 years (1992-1998) were in terms of long-term space flight on the Russian space station "Mir". Then the seeds germinated in the spring of 2011 and grew up in the Earth's field on the natural infectious background. Part of the plants underwent 5 reproductive phase, resulting in 2011 investigated tomatoes from seed 1st and 5th reproduction, in 2012 - the second and sixth, respectively, and in 2013 - as the second and sixth (sow seeds obtained by us in the Ukraine in 2011.) In our research we used two controls: 1 (stationary control) - plants of the first generation seeds which were not in outer space; 2 - five plants from seed reproduction that exhibited in space and were grown in parallel under the same conditions of the studied plants. Defining of β-carotene and

  2. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens.

    Science.gov (United States)

    Fayos, Joaquín; Bellés, José María; López-Gresa, M Pilar; Primo, Jaime; Conejero, Vicente

    2006-01-01

    Tomato plants infected with the citrus exocortis viroid exhibited strongly elevated levels of a compound identified as 2,5-dihydroxybenzoic acid (gentisic acid, GA) 5-O-beta-D-xylopyranoside. The compound accumulated early in leaves expressing mild symptoms from both citrus exocortis viroid-infected tomato, and prunus necrotic ringspot virus-infected cucumber plants, and progressively accumulated concomitant with symptom development. The work presented here demonstrates that GA, mainly associated with systemic infections in compatible plant-pathogen interactions [Bellés, J.M., Garro, R., Fayos, J., Navarro, P., Primo, J., Conejero, V., 1999. Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol. Plant-Microbe Interact. 12, 227-235], is conjugated to xylose. Notably, this result contrasts with those previously found in other plant-pathogen interactions in which phenolics analogues of GA as benzoic or salicylic acids, are conjugated to glucose.

  3. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    Science.gov (United States)

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  4. Changes in volatile production during an infection of tomato plants by Botrytis cinerea

    NARCIS (Netherlands)

    Jansen, R.M.C.; Miebach, M.; Kleist, E.; Henten, van E.J.; Wildt, J.

    2006-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not

  5. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    NARCIS (Netherlands)

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not

  6. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    OpenAIRE

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not suitable for large sample sizes. In contrast we propose a fast and non-destructive detection method for plant diagnosis using volatiles as an early indicator of plant diseases. This report presents...

  7. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    Science.gov (United States)

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  8. Comparison of defence responses to Botrytis cinerea infection in tomato plants propagated in vitro and grown in vivo

    Directory of Open Access Journals (Sweden)

    Jacek Patykowski

    2013-12-01

    Full Text Available Defence reactions: O2 - generation, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities after B. cinerea infection in tomato plants propagated in vitro and grown in vivo have been compared. Infection resulted in rapid O2 - generation. Superoxide dismutase activity increase was slower than O2 - response. In plants propagated in vitro catalase and guaiacol peroxidase activities after infection were induced less strongly than in plants grown in vivo. K2HPO4 pretreatment of plants grown in vitro enhanced significantly the activities of catalase and guaiacol peroxidase after infection. Slight restriction of B. cinerea infection development in in vitro propagated plants pretreated with K2HP04 was observed.

  9. The levels of nitrite and nitrate, proline and protein profiles in tomato plants infected with pseudomonas syringae

    International Nuclear Information System (INIS)

    Berber, I.; Onlu, H.

    2012-01-01

    In this study, the contents of nitrite-nitrate and free L-proline, and pathogenesis-related (PR) proteins in tomato plants following inoculation with Pseudomonas syringae pv. tomato strain were examined. The results of the nitrite and nitrate indicated that there was a reduction in the levels of nitrate in the infected tomato plants through 1-8 study days, compared with the healthy plants. On the other hands, when the nitrite amounts increased in the first and second days, the nitrite concentrations reduced in infected plants at subsequent time periods, compared with uninfected plants. The accumulation of free proline increased in the infected plants, according to control plants. The whole-cell protein profiles displayed that the levels of the protein bands of molecular masses 204.6 kDa and 69.9 kDa significantly increased in infected and uninfected plants during 2-10 study days. In additionally, in the quantities of the protein bands of molecular weights 90.3 and 79.4 kDa were observed an increase in the infected and healthy plants after the fourth day. However, the protein band of molecular weight 54.3 kDa was visible only in uninfected plants for the fourth and eighth days. Finally, the study suggest that there were the sophisticate relationships among the proline accumulation, the conversion of nitrate to nitrite and the induction of PR protein genes in the regulation of defense mechanisms toward microbial invaders. Our results also indicated that the increases in nitrite and proline contents might be useful indicator for the response toward pathogen attacks. (author)

  10. Transgenic tomato hybrids resistant to tomato spotted wilt virus infection.

    NARCIS (Netherlands)

    Haan, de P.; Ultzen, T.; Prins, M.; Gielen, J.; Goldbach, R.; Grinsven, van M.

    1996-01-01

    Tomato spotted wilt virus (TSWV) infections cause significant economic losses in the commercial culture of tomato (Lycopersicon esculentum). Culture practices have only been marginally effective in controlling TSWV. The ultimate way to minimize losses caused by TSWV is resistant varieties. These can

  11. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    Science.gov (United States)

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However

  12. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    Directory of Open Access Journals (Sweden)

    Alberto Fereres

    2016-08-01

    Full Text Available Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV, a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV, a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own

  13. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants

    Science.gov (United States)

    Mitter, Neena; Koundal, Vikas; Williams, Sarah; Pappu, Hanu

    2013-01-01

    Background Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. Principal Findings Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. Significance Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral

  14. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  15. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  16. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  17. Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York

    Science.gov (United States)

    Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...

  18. Key factors to inoculate Botrytis cinerea in tomato plants

    Directory of Open Access Journals (Sweden)

    Álefe Vitorino Borges

    2014-09-01

    Full Text Available Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.

  19. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  20. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available Tomato yellow leaf curl Sardinia virus (TYLCSV, a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.

  1. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  2. Characterization of a novel tymovirus on tomato plants in Brazil.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; Nagata, Tatsuya; Guimarães, Felipe C; Ferreira, Fernanda A; Kitajima, Elliot Watanabe; Nicolini, Cícero; de Oliveira Resende, Renato; Inoue-Nagata, Alice Kazuko

    2013-02-01

    A tymovirus was isolated in Brazil from tomato plants with severe symptoms of leaf mosaic and blistering. The virus was mechanically transmissible to solanaceous indicator host species. The infected plants contained icosahedral particles and chloroplasts with membrane deformations which are typical cytopathic effects caused by tymoviruses. Its coat protein amino acid sequence shares the maximum of 64 % identity with the tymovirus Chiltepin yellow mosaic virus, which suggested that it can be considered as a distinct member of the genus Tymovirus. In a phylogenetic tree, this tymovirus was clustered with other solanaceous-infecting tymoviruses. It was tentatively named as Tomato blistering mosaic virus (ToBMV).

  3. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants.

    Science.gov (United States)

    Adkar-Purushothama, Charith Raj; Iyer, Pavithran Sridharan; Perreault, Jean-Pierre

    2017-08-21

    It is well established that viroid derived small RNA (vd-sRNA) induces RNA silencing of endogenous mRNA. However, it remains not clear how exactly viroid infections can lead to severe symptom induction given the fact that fewer vd-sRNAs binding the specific target mRNAs were recovered from the infected plants. To answer this question, the two least expressed (+) and (-) strand vd-sRNAs of potato spindle tuber viroid (PSTVd) binding to both the 3' UTR and the coding region of tomato mRNAs were analyzed by infecting tomato plants with two variants of PSTVd. As products of these putative target mRNAs are involved in plant phenotype, the effect of this viroid on these genes were analyzed by infecting tomato plants with two variants of PSTVd. The direct interaction between the vd-sRNAs and putative mRNAs was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Parallel analysis of RNA ends of viroid infected plants revealed the widespread cleavage of the target mRNAs in locations other than the vd-sRNA binding site during the viroid infection implying the viroid-infection induced vd-sRNA independent degradation of endogenous mRNAs during viroid infection.

  4. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  5. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus.

    Science.gov (United States)

    López-Gresa, M Pilar; Lisón, Purificación; Yenush, Lynne; Conejero, Vicente; Rodrigo, Ismael; Bellés, José María

    2016-01-01

    Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.

  6. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus.

    Directory of Open Access Journals (Sweden)

    M Pilar López-Gresa

    Full Text Available Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA, were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd or Tomato Spotted Wilt Virus (TSWV. The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH, which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.

  7. Assessment of transformability of bacteria associated with tomato and potato plants

    NARCIS (Netherlands)

    Overbeek, van L.S.; Ray, J.L.; Elsas, van J.D.

    2007-01-01

    Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic

  8. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  9. Redox proteomics of tomato in response to Pseudomonas syringae infection

    Science.gov (United States)

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  10. Mineral Content in Leaves of Tomato Plants Grafted on Solanum Rootstocks

    OpenAIRE

    松添, 直隆; 間, 浩美; 花田, 勝美; モハメド, アリ; 大久保, 敬; 藤枝, 國光

    1995-01-01

    Nutrient uptake of tomato plants cv. Momotaro grafted on Solanum sisymbriifoliulm, S. torvum and S. toxicarium which are resistant to soil-born disease were compared with tomato grafted on its own root, a tomato/tomato, scion/rootstock combination. Mineral content in leaves of tomato/S. sisymbriifoliulm was nearly equal to that of tomato/tomato. In leaves of tomato/S. torvum, nitrogen content was higher, and magnesium content was lower than those of tomato/tomato. Furthermore, phosphorus and ...

  11. Organic production of tomatoes in the amazon region by plants grafted on wild Solanum rootstocks

    Directory of Open Access Journals (Sweden)

    Elaine Aparecida de Paula Farias

    2013-08-01

    Full Text Available The production of organically grown tomatoes in the Amazonian region of Brazil is difficult due to inherent phytosanitary issues. The objectives of the present investigation were to evaluate the productivity of grafted tomato plants (Solanumlycopersicum cv. Santa Adélia grown organically in Rio Branco, Acre, Brazil, and to assess scion/rootstock compatibility under organic growth conditions. The Solanum species employed as rootstocks were S. gilo (jiló, S. lycocarpum (jurubebão, S. stramonifolium (jurubeba vermelha and S. viarum (joá, while the susceptible S.lycopersicum cultivar Santa Adélia was the scion. Ungrafted tomato plants and tomato grafted on tomato rootstock were employed as controls. The experiment was arranged in a completely randomized block design with six treatments and five repetitions of five plants each. Data were submitted to analysis of variance and the significance of differences between treatments were determined using the Tukey test (P<0.05. All ungrafted tomato plants and those comprising tomato grafted on S.lycopersicum rootstock became infected by brown rot and perished. The total numbers of fruits, numbers of marketable fruits, mean masses of fruits, total productivities and productivities of marketable fruits associated with tomato grafted on S. gilo, S. lycocarpum and S. stramonifolium rootstocks were significantly higher (P<0.05 than the equivalent values obtained with tomato grafted on S. viarum rootstock. S. gilo exhibited the best compatibility index (1.11 of all rootstock/scion combinations studied. It is concluded that tomato grafted on S. gilo, S. lycocarpum and S. stramonifolium rootstocks represent viable alternatives for the production of organic tomatoes in the Amazon region.

  12. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  13. Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.

    Science.gov (United States)

    Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus

    2016-01-01

    Dodders ( Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa . In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa . Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.

  14. Response of Various Tomato Genotypes to Begomovirus Infection and Its Improved Diagnostic

    Directory of Open Access Journals (Sweden)

    NOOR AIDAWATI

    2007-09-01

    Full Text Available Begomovirus infection was identified from tomato growing areas in West Java (Bogor, Central Java (Boyolali, and D.I. Yogyakarta (Kaliurang. Efforts to reduce the infection among others are planting resistance varieties. This research was undertaken to evaluate 14 tomato genotypes for their response to the infection. Dot blot hybridization using nonradioactive (digoxigenin DNA probe was employed to determine the presence of begomovirus in inoculated plants. Polymerase chain reaction-amplified product of DNA clone of tobacco leaf curl virus –Indonesia was used as a source of DNA probe. All of tomato genotypes evaluated in this study was infected separately by three strain of begomovirus (GVPSlm, GVABy, GVCBgr. Tomato genotypes Bonanza, Jelita, Safira, Permata, Presto, PSPT 8, PSPT 5B, Apel-Belgia, Karibia, Mitra, PSPT 9, Marta, and PSPT 2, showed susceptible or highly susceptible response to the three strains of begomovirus. Exception to those was shown by cv. Intan which resulted in moderate resistance when inoculated with GVCBgr although it resulted susceptible response with the other two strains. Dot-blot hybridization technique was proved to be a powerful tool to detect begomovirus infection in plants showing symptom as well as symptom-less plants. Accumulation of the virus in those plants was relatively high, except in cv. Bonanza and Apel-Belgia. Dot-blot hybridization technique using DIG-labeled DNA probe was able to detect begomovirus DNA in infected tissue up to 10−2 dilution factor.

  15. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum cultivar in response to infection by tomato yellow leaf curl virus.

    Directory of Open Access Journals (Sweden)

    Tianzi Chen

    Full Text Available Tomato yellow leaf curl virus (TYLCV threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S. The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs in the R tomato line (58.37% was higher than that in the S line (9.17%. Gene ontology (GO analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management.

  16. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  17. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  19. Organic fertilization in cherry tomato plants

    Directory of Open Access Journals (Sweden)

    Janini Tatiane Lima Souza Maia

    2013-03-01

    Full Text Available Cherry tomato (Solanum lycopersicum is highly demanding with regard to mineral nutrients. The use of animal manure shows to be an efficient and sustainable fertilization way for this crop. This study aimed to evaluate the effect of different doses of cattle manure in the vegetative and reproductive growth of cherry tomato. The experiment was conducted in a greenhouse at the Plant Science Department of Universidade Federal de Vicosa, using a completely randomized experimental design with 5 treatments and 4 replications, besides 1 control treatment using chemical fertilizer as a source of NPK. After 45 days from the beginning of the experiment, the number of leaves, flowers, and fruits, the dry mass of leaves, stem, flowers, fruits, and roots, the stem length, and the root volume were evaluated. The nutrient content in leaves, stem, and roots was also evaluated. Plants grown with chemical fertilizer obtained a lower average for all phytotechnical variables analyzed. The number of leaves and fruits, and the production of dry matter of leaves, fruits, and stems showed an upward linear response with an increase in manure doses. The Ca, Mg, and S leaf contents were higher in the treatment with chemical fertilization.

  20. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  1. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  2. Distribution of Tomato spotted wilt virus in dahlia plants.

    Science.gov (United States)

    Asano, S; Hirayama, Y; Matsushita, Y

    2017-04-01

    Tomato spotted wilt virus (TSWV) causes significant losses in the production of the ornamental plant Dahlia variabilis in Japan. The purpose of this study was to examine the distribution of TSWV in dahlia plants and identify plant parts that can be used in the selection of TSWV-free plants. The distribution of TSWV was investigated using reverse transcriptional polymerase chain reaction (RT-PCR) and tissue blot immunoassay. The detection rate of TSWV in latent infected compound leaves was the highest in the petiole, and it decreased from the veins and rachis to the lamina. The tissue blot immunoassays of the leaflets showed an uneven distribution of TSWV, especially along the edge of the leaf blade. In stems, the detection rate of TSWV was high partway up the stem compared to that in the upper and the lower parts of the stem during the vegetative growth stage. A highly uneven distribution was observed in the bulb. Our results indicated that middle parts of the stem as well as the petioles, rachis, and veins of compound leaves are suitable for detection of TSWV in dahlias. This study is the first to report uneven distribution of TSWV in dahlia plants. In this study, the distribution of Tomato spotted wilt virus (TSWV) in various parts of dahlia plants was investigated for the first time. The distribution of TSWV was uneven in compound leaves, leaflets, stems, and bulbs. The middle parts of the stem or the petiole and leaf veins should be sampled to detect TSWV when selecting healthy plants. © 2017 The Society for Applied Microbiology.

  3. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  4. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  5. Detection and molecular characterization of tomato yellow leaf curl virus naturally infecting Lycopersicon esculentum in Egypt.

    Science.gov (United States)

    Rabie, M; Ratti, C; Abdel Aleem, E; Fattouh, F

    Tomato yellow leaf curl virus (TYLCV) infections of tomato crops in Egypt were widely spread in 2014. Infected symptomatic tomato plants from different governorates were sampled. TYLCV strains Israel and Mild (TYLCV-IL, TYLCV-Mild) were identified by multiplex and real-time PCR. In addition, nucleotide sequence analysis of the V1 and V2 protein genes, revealed ten TYLCV Egyptian isolates (TYLCV from TY1 to 10). Phylogenetic analysis showed their high degree of relatedness with TYLCV-IL Jordan isolate (98%). Here we have showed the complete nucleotide sequence of the TYLCV Egyptian isolate TY10, sampled from El Beheira. A high degree of similarity to other previously reported Egyptian isolates and isolates from Jordan and Japan reflect the importance of phylogenetic analysis in monitoring virus genetic diversity and possibilities for divergence of more virulent strains or genotypes.

  6. Key factors to inoculate Botrytis cinerea in tomato plants

    OpenAIRE

    Borges,Álefe Vitorino; Saraiva,Rodrigo Moreira; Maffia,Luiz Antonio

    2014-01-01

    Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness...

  7. Digitization and Visualization of Greenhouse Tomato Plants in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2015-02-01

    Full Text Available This paper is concerned with the digitization and visualization of potted greenhouse tomato plants in indoor environments. For the digitization, an inexpensive and efficient commercial stereo sensor—a Microsoft Kinect—is used to separate visual information about tomato plants from background. Based on the Kinect, a 4-step approach that can automatically detect and segment stems of tomato plants is proposed, including acquisition and preprocessing of image data, detection of stem segments, removing false detections and automatic segmentation of stem segments. Correctly segmented texture samples including stems and leaves are then stored in a texture database for further usage. Two types of tomato plants—the cherry tomato variety and the ordinary variety are studied in this paper. The stem detection accuracy (under a simulated greenhouse environment for the cherry tomato variety is 98.4% at a true positive rate of 78.0%, whereas the detection accuracy for the ordinary variety is 94.5% at a true positive of 72.5%. In visualization, we combine L-system theory and digitized tomato organ texture data to build realistic 3D virtual tomato plant models that are capable of exhibiting various structures and poses in real time. In particular, we also simulate the growth process on virtual tomato plants by exerting controls on two L-systems via parameters concerning the age and the form of lateral branches. This research may provide useful visual cues for improving intelligent greenhouse control systems and meanwhile may facilitate research on artificial organisms.

  8. Energetic use of the tomato plant waste

    Energy Technology Data Exchange (ETDEWEB)

    Encinar, Jose M.; Martinez, Gloria [Dpto. de Ingenieria Quimica y Quimica Fisica. UEX. Avda de Elvas s/n. 06071 Badajoz, Tf. 34 924 289672 (Spain); Gonzalez, Juan F. [Dpto. de Fisica Aplicada. UEX. Avda de Elvas s/n 06071 Badajoz (Spain)

    2008-11-15

    A study of the conventional pyrolysis of the tomato plant waste has been carried out. The objective of this work was to characterize the solid, liquid and gaseous phases obtained in the process for their possible utilization in energy generation. Also, a study of the influence of operation variables has been performed, determining the optimal conditions in which the process can be accomplished. The operation variables studied were temperature (400-800 C), the initial sample mass (2.5-10 g of tomato plant waste) and the particle size (0.63-2.00 mm). Under the conditions studied here, an increase in reaction temperature leads to a decrease in solid and liquid yields and to an increase in gas phase yield. However the variation in the initial sample mass and the particle size does not seem to exert a defined influence in the yield of the different phases. The higher heating value (HHV) of solids and liquids was determined; also the immediate analysis of the solid phase was carried out. The gas phase, mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and traces of ethane and ethylene, was analyzed chromatographically. The solid phase is constituted for a charcoal with an average higher heating value of 26 MJ kg{sup -} {sup 1}, the liquid phase presents a HHV of 7.8 MJ kg{sup -} {sup 1} at 400 C, this value diminishes when the temperature is increased, and the gas phase has an HHV between 0.5 and 8.0 MJ (kg of raw material){sup -} {sup 1}. According to their characteristics and energy contents, the solid phase can be used as fuel or precursor for the manufacture of activated carbons. The liquid phase could be used as liquid fuel or as organic-compounds source. The gas phase could be used to heat the pyrolysis reactor or to generate heat and electricity in a gas-turbine/vapour-turbine combined cycle. Finally, as previous step to the design of the industrials equipments, a kinetic study of the process, based in the generation of the principal gases, has been carried

  9. Pepino Mosaic Virus: a serious threat to tomato plants worldwide

    Directory of Open Access Journals (Sweden)

    Imane BIBI

    2017-09-01

    Full Text Available omato (Solanum lycopersicum is one of the widely grown crops worldwide. It is consumed in various forms and has excellent nutritional values. Presently, this crop is facing a serious threat to its yield and survival because of a potexvirus infection. One of the potexvirus species hampering tomato productions worldwide is Pepino mosaic virus (PepMV. This emerging virus is one of the most destructive plant diseases destroying tomato crops globally. It has spread to many countries worldwide including France, Italy, the UK, Poland, Belgium, the USA, Canada and China. PepMV genome consists of a positive-sense, single-stranded RNA molecule, approximately 6.4 kb in length. The genomic RNA contains five open reading frames (ORFs encoding for the coat protein (CP, the putative viral polymerase (RdRp and the triple gene block (TGB proteins. PepMV is efficiently transmitted mechanically. In other studies, seed transmission has been demonstrated. This article provides an overview of PepMV symptoms, transmission, different strains of PepMV, its genome organization and strategies employed for controlling it. The knowledge about the recent progress in the study of PepMV would help develop novel strategies for its control in agriculture.

  10. Response of Pratylenchus spp Infected Tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    The need to reduce the negative impact of synthetic nematicides on the environment necessitated the search for bio-pesticides. This study was conducted to evaluate the nematicidal potential of chromatographic fractions from Mangifera indica on tomato in the screenhouse and field. M. indica bark was extracted with ...

  11. GRAFT TAKES OF TOMATO ON OTHER SOLANACEOUS PLANTS

    Directory of Open Access Journals (Sweden)

    ANDRÉ RICARDO ZEIST

    2017-01-01

    Full Text Available This paper aimed to assess tomato grafting on different solanaceous species through two grafting methods. Scions were cut from cultivar Santa Cruz Kada seedlings. A fully randomized experimental design was carried out with treatments in a 9 x 2 factorial scheme. As rootstocks, four accessions of mini - tomatoes (0224 - 53, RVTC 57, RVTC 20 and 6889 - 50 - Solanum lycopersicum L; two species of wild tomato ( Solanum habrochaites var hirsutum ‘PI - 127826’ and Solanum pennellii ‘LA716’; other two tomato species [ Solanum, cocona ( Solanum sessiliflorum and physalis ( Physalis peruviana ] and a control with cultivar Santa Cruz Kada (auto - graft rootstocks were used. In addition, two grafting methods were evaluated full cleft and approach graft. Fifteen days after grafting, plants were assessed for graft - take percentage; root length; plant height; leaf number; foliar area; root, stem and leaf dry matter; and ratio between shoot and root dry matter. Based on the results, we may state rootstock and grafting interaction had effect on both graft - take rate and plant development. Overall, the studied plants should be recommended as rootstock, except for 6889 - 50 mini - tomato ( S. lycopersicum L. and S. pennellii . Full cleft grafting was most suitable for cocona and physalis, while the approach method showed better results for the mini - tomato accessions 0224 - 53, RVTC 57 and RVTC 20, as well as for S. habrochaites .

  12. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    Science.gov (United States)

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant. 2009 Elsevier Ltd. All rights reserved.

  13. Water transport through tomato roots infected with Meloidogyne incognita.

    NARCIS (Netherlands)

    Dorhout, R.; Gommers, F.J.; Kollöffel, C.

    1991-01-01


    The effect of Meloidogyne incognita on water flow in tomato roots was investigated in rooted split-stem cuttings. Total water flow through infected root parts was significantly lower than through comparable uninfected parts. Total water uptake was correlated with total length of the root

  14. Other pospiviroids infecting Solanaceous plants (Book Chapter)

    Science.gov (United States)

    Aside from potato spindle tuber viroid, the genus Pospiviroid contains several agents reported to naturally infect solanaceous crops (e.g. tomato, potato, pepper) or ornamental plants (e.g. Petunia hybrida, Solanum spp., Brugmansia spp.). The present chapter focuses on the following so-called solana...

  15. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  16. Inactivation of Salmonella spp. on tomatoes by plant molecules.

    Science.gov (United States)

    Mattson, Tyler E; Johny, Anup Kollanoor; Amalaradjou, Mary Anne Roshni; More, Karen; Schreiber, David T; Patel, Jitu; Venkitanarayanan, Kumar

    2011-01-05

    The efficacy of carvacrol (CAR), trans-cinnamaldehyde (TC), eugenol (EUG) and β-resorcylic acid (BR) as a wash treatment for reducing Salmonella spp. on tomatoes was investigated. Plum tomatoes inoculated with a six-serotype mixture of Salmonella (10⁸CFU) were subjected to washing in sterile deionized water (control) or deionized water containing chlorine (100 ppm), CAR (0.25 and 0.75%), TC (0.5 and 0.75%), EUG (0.25 and 0.75%), or BR (0.75 and 1.0%) for 15 sec, 1 min, and 3 min. The plant molecules were more effective (Pwashing in water and chlorine. Both concentrations of CAR and TC, and 0.75% EUG decreased Salmonella counts on tomatoes by~6.0 log CFU/ml at 1 min. Both concentrations of BR decreased the pathogen on tomatoes to undetectable levels at 3 min of exposure. Washing of tomatoes in deionized water and chlorine for 3 min reduced Salmonella by ca. 2.0 and 4.0 log CFU/ml, respectively. No Salmonella was detected in the wash water containing the plant molecules or chlorine, whereas a substantial population of the pathogen survived in the control wash water. Moreover, none of the dipping treatments had any effect on the red color of tomatoes (P>0.05). Results indicate that CAR, TC, EUG and BR could effectively be used to kill Salmonella on tomatoes, but additional studies on sensory and quality characteristics of tomatoes treated with plant molecules are warranted. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    Science.gov (United States)

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  18. The role of NSm during tomato spotted wilt virus infection

    NARCIS (Netherlands)

    Storms, M.M.H.

    1998-01-01

    In the past ten years the genome organisation of tomato spotted wilt virus (TSWV) has been intensively studied in our laboratory. Complete genome sequence data revealed that this enveloped plant virus belongs to the Bunyaviridae, a virus family further restricted to

  19. Pochonia chlamydosporia promotes the growth of tomato and lettuce plants

    Directory of Open Access Journals (Sweden)

    Rosangela Dallemole-Giaretta

    2015-10-01

    Full Text Available The fungus Pochonia chlamydosporia is one of the most studied biological agents used to control plant-parasitic nematodes. This study found that the isolates Pc-3, Pc-10 and Pc-19 of this fungus promote the growth of tomato and lettuce seedlings. The isolate Pc-19 colonized the rhizoplane of tomato seedlings in only 15 days and produced a large quantity of chlamydospores. This isolate was able to use cellulose as a carbon source, in addition to glucose and sucrose. Scanning electron microscopy (SEM revealed that hyphae of the P. chlamydosporia isolate Pc-10 penetrated the epidermal cells of the tomato roots. These three P. chlamydosporia isolates promote the growth of tomato and lettuce.

  20. Effects of plant hormones and 20-hydroxyecdysone on tomato ...

    African Journals Online (AJOL)

    20-hydroxyecdysone (20E) is the major phytoecdysteroid of about 6% of plants. Its role in plant physiology has not been fully elucidated. In this work we studied the effects of 20E application on some morphological and biochemical parameters of tomato, Lycopersicum esculentum, seed during germination and seedling ...

  1. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  2. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  3. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.

    Directory of Open Access Journals (Sweden)

    Jeri D Barak

    Full Text Available BACKGROUND: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease. CONCLUSIONS/SIGNIFICANCE: S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.

  4. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2016-10-01

    Full Text Available Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22 to control Cucumber mosaic virus (CMV in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species (ROS scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.

  5. Genetic diversity of tomato-infecting Tomato yellow leaf curl virus (TYLCV) isolates in Korea.

    Science.gov (United States)

    Kim, Sue Hoon; Oh, Sung; Oh, Tae-Kyun; Park, Jae Sung; Kim, Sei Chang; Kim, Seong Hwan; Kim, Young Shik; Hong, Jeum Kyu; Sim, Sang-Yun; Park, Kwon Seo; Lee, Hwan Gu; Kim, Kyung Jae; Choi, Chang Won

    2011-02-01

    Epidemic outbreaks of Tomato yellow leaf curl virus (TYLCV) diseases occurred in greenhouse grown tomato (Solanum lycopersicum) plants of Busan (TYLCV-Bus), Boseong (TYLCV-Bos), Hwaseong (TYLCV-Hwas), Jeju Island (TYLCV-Jeju), and Nonsan (TYLCV-Nons) in Korea during 2008-2009. Tomato disease by TYLCV has never occurred in Korea before. We synthesized the full-length genomes of each TYLCV isolate from the tomato plants collected at each area and determined their nucleotides (nt) sequences and deduced the amino acids of six open reading frames in the genomes. TYLCV-Bus and -Bos genomes shared higher nt identities with four Japanese isolates -Ng, -Omu, -Mis, and -Miy. On the other hand, TYLCV-Hwas, -Jeju, and -Nons genomes shared higher nt identities with five Chinese isolates TYLCV-AH1, -ZJ3, -ZJHZ12, -SH2, -Sh10, and two Japanese isolates -Han and -Tosa. On the basis of a neighbor-joining tree, five Korean TYLCV isolates were separated into three clades. TYLCV-Bus and -Bos formed the first clade, clustering with four Japanese isolates TYLCV-Mis, -Omu, -Ng, and -Miy. TYLCV-Jeju and -Nons formed the second clade, clustering with two Chinese isolates -ZJHZ212 and -Sh10. TYLCV-Hwas was clustered with two Japanese isolates -Han and -Tosa and three Chinese isolates -AH1, -ZJ3, and -SH2. Two fragments that had a potentially recombinant origin were identified using the RDP, GENECONV, BootScan, MaxChi, Chimaera, SiScan, and 3Seq methods implemented in RDP3.41. On the basis of RDP analysis, all TYLCV isolates could originated from the interspecies recombination between TYLCV-Mld[PT] isolated from Portugal as a major parent and TYLCTHV-MM isolated from Myanmar as a minor parent.

  6. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    Science.gov (United States)

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  7. Responses of soilless grown tomato plants to arbuscular ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Full Length Research Paper. Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. H. Yildiz Dasgan1*, Sebnem Kusvuran1 and Ibrahim Ortas2. 1Cukurova University, Faculty of Agriculture, Department of Horticulture ...

  8. Infection of the whitefly Bemisia tabaci with Rickettsia spp. alters its interactions with Tomato yellow leaf curl virus

    Science.gov (United States)

    Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. Here we report that infection with Rickettsia spp., a facultative endosymbiont of whiteflies...

  9. APPLICATON OF MYCORRIZA ON PLANTING MEDIA OF TWO TOMATO VARIETIES TO INCREASEVEGETABLE PRODUCTIVITY IN DROUGHT CONDITION

    Directory of Open Access Journals (Sweden)

    Paramita Cahyaningrum Kuswandi

    2016-04-01

    Full Text Available A method used for the development of dry areas/marginal lands is the improvement of soil structure and addition to the media to support the growth and development of crops. Tomatoes have the potential to be developed in marginal lands due to its high nutrition, high in demand and easy to be cultivated. One of the method used to improve planting media is the addition of microorganism such as mycorrhiza which can help the absorbtion of water and nutrition for plants. The interval of irrigation is used as a simulation of drought. This research aim was to observe the effect of mycorrhiza in the soil on the growth and development of tomato with several treatments of irrigation. The method used was the addition of 4 g of mycorrhiza  per polybag (size 30x30 cm2, using Complete Randomized Design. There were 6 combinations of treatments. The treatments were : 3 interval of irrigation (every day, every 7 days and every 14 days, and 2 treatments of mycorrhiza (0 g and 4 g. There were 3 repetition for each combination of treatments. The results showed that the addition of mycorrhiza can increase significantly plant fresh and dry weight and also root length. The difference in plant height, number of branches, number of leaves, plant growth rate and percentage of infection were caused by the difference in irrigation interval. The difference in the varieties used also contribute to a difference in the percentage of infection. Further research must be made on the effect of mycorrhiza with addition of inorganic fertilizer to increase the growth and development of tomato plants in water stressed condition. Keywords:   mycorriza, tomato, draught simulation

  10. Tomato bushy stunt virus (TBSV) infecting Lycopersicon esculentum.

    Science.gov (United States)

    Hafez, El Sayed E; Saber, Ghada A; Fattouh, Faiza A

    2010-01-01

    Tomato bushy stunt virus (TBSV) was detected in tomato crop (Lycopersicon esculentum) in Egypt with characteristic mosaic leaf deformation, stunting, and bushy growth symptoms. TBSV infection was confirmed serologically by ELISA and calculated incidence was 25.5%. Basic physicochemical properties of a purified TBSV Egh isolate were identical to known properties of tombusviruses of isometric 30-nm diameter particles, 41-kDa coat protein and the genome of approximately 4800 nt. This is the first TBSV isolate reported in Egypt. Cloning and partial sequencing of the isolate showed that it is more closely related to TBSV-P and TBSV-Ch than TBSV-Nf and TBSV-S strains of the virus. However, it is distinct from the above strains and could be a new strain of the virus which further confirms the genetic diversity of tombusviruses.

  11. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    Science.gov (United States)

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

    Directory of Open Access Journals (Sweden)

    Namgyu Kim

    2016-10-01

    Full Text Available Tomato yellow leaf curl virus (TYLCV, a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

  13. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  14. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.

    Science.gov (United States)

    Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen

    2014-08-01

    Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  15. Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates.

    Science.gov (United States)

    Lee, Jong-Seung; Cho, Won Kyong; Kim, Mi-Kyeong; Kwak, Hae-Ryun; Choi, Hong-Soo; Kim, Kook-Hyung

    2011-04-01

    Tomato spotted wilt virus (TSWV) infects numerous host plants and has three genome segments, called L, M and S. Here, we report the complete genome sequences of three Korean TSWV isolates (TSWV-1 to -3) infecting tomato and pepper plants. Although the nucleotide sequence of TSWV-1 genome isolated from tomato is very different from those of TSWV-2 and TSWV-3 isolated from pepper, the deduced amino acid sequences of the five TSWV genes are highly conserved among all three TSWV isolates. In phylogenetic analysis, deduced RdRp protein sequences of TSWV-2 and TSWV-3 were clustered together with two previously reported isolates from Japan and Korea, while TSWV-1 grouped together with a Hawaiian isolate. A phylogenetic tree based on N protein sequences, however, revealed four distinct groups of TSWV isolates, and all three Korean isolates belonged to group II, together with many other isolates, mostly from Europe and Asia. Interestingly, most American isolates grouped together as group I. Together, these results suggested that these newly identified TSWV isolates might have originated from an Asian ancestor and undergone divergence upon infecting different host plants.

  16. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    Science.gov (United States)

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. RESPONSE OF TOMATO PLANTS EXPOSED TO TREATMENT WITH NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Tommaso Giordani

    2012-07-01

    Full Text Available In this work the response of Tomato plants cv. Micro-Tom to nanoparticles (NPs treatment was investigated. Tomato seedlings were grown in hydroponic condition and NPs treatments were carried out by adding Fe3O4 or TiO2 NPs to nutrient solution. At the end of treatments, NPs root uptake and tissue deposition were investigated using Environmental Scanning Electron Microscope, equipped with energy dispersive spectroscopy for chemical identification. At morphological level, one week after the beginning of NP treatment, seedlings grown with high concentration of TiO2 NPs showed an abnormal proliferation of root hairs, as compared to the control seedlings and to the seedlings exposed to Fe3O4 NPs, Shoot morphology did not differ in tomato seedlings grown under different conditions and no symptoms of toxicity were observed in NP-treated plants. In order to analyse genetic effects of NPs treatments, RNA transcription was studied in roots of NP-exposed and control plants by Illumina RNA sequencing, evidencing the induction of transposable elements.

  18. The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants

    Czech Academy of Sciences Publication Activity Database

    Cheng, X.; Floková, Kristýna; Bouwmeester, H.; Ruyter-Spira, C.

    2017-01-01

    Roč. 8, MAR 24 (2017), č. článku 392. ISSN 1664-462X Institutional support: RVO:61389030 Keywords : suppression subtractive hybridization * hemiparasite rhinanthus-minor * putative defense genes * box protein max2 * abscisic-acid * striga-hermonthica * arabidopsis-thaliana * orobanche-aegyptiaca * medicago-truncatula * expression analysis * root parasitic plant * strigolactone * abscisic acid * post-attachment resistance * plant architecture Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  19. Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants

    Directory of Open Access Journals (Sweden)

    Luis M. Cervilla

    2012-01-01

    Full Text Available The incidence of boron (B toxicity has risen in areas of intensive agriculture close to the Mediterranean sea. The objective of this research was to study the how B toxicity (0.5 and 2 mM B affects the time course of different indicators of abiotic stress in leaves of two tomato genotypes having different sensitivity to B toxicity (cv. Kosaco and cv. Josefina. Under the treatments of 0.5 and 2 mM B, the tomato plants showed a loss of biomass and foliar area. At the same time, in the leaves of both cultivars, the B concentration increased rapidly from the first day of the experiment. These results were more pronounced in the cv. Josefina, indicating greater sensitivity than in cv. Kosaco with respect to excessive B in the environment. The levels of O2 •− and anthocyanins presented a higher correlation coefficient (r>0.9 than did the levels of B in the leaf, followed by other indicators of stress, such as GPX, chlorophyll b and proline (r>0.8. Our results indicate that these parameters could be used to evaluate the stress level as well as to develop models that could help prevent the damage inflicted by B toxicity in tomato plants.

  20. Obtaining of Grafted Planting Material at Some Romanian Tomatoes

    Directory of Open Access Journals (Sweden)

    Madalina Doltu

    2016-11-01

    Full Text Available The tomatoes have highest share in Romanian crops from protected spaces (greenhouses, solariums. The grafting is an agronomical technique that induces or improves some qualities of the tomato cultivars (resistance to soil diseases and pests, resistance to abiotic factors, quantity and quality of fruit production. The research was aimed the establishing of the technological stages for producing of scion and rootstock seedlings from L. esculentum species, to obtain compatible phenotype when is grafted. The observations of this research were conducted on Department of Horticultural Cultures in Protected Spaces from Horting Institute Bucharest. The experience was carry out on a cultivar collection consisting from L. esculentum plants: scions (‘Siriana’–F1 hybrid and ‘Buzău 1600’– variety, creations from the germplasm bank of Research and Development Station for Vegetable Growing Buzău Romania (VDRS Buzău and rootstock (‘Groundforce’–F1 hybrid. The plant diameters were correlated for a grafting by the annexation method, cutting at 45 degrees. The grafting was performed successfully. The technological steps have achieved phenotypic compatibility of the symbiotes when was the grafting by annexation. The technology for producing of scion and rootstock seedlings at these Romanian tomatoes (‘Siriana’ and ‘Buzău’ 1600 was established for the crops in protected spaces in south area of Romania.

  1. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    Science.gov (United States)

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  2. Pepino mosaic virus, a first report of a virus infecting tomato in Syria

    Directory of Open Access Journals (Sweden)

    Ahmad Fakhro

    2010-05-01

    Full Text Available This is the first report of Pepino mosaic virus (PepMV occurring in tomato plants grown in plastic greenhouses in a Mediterranean city in Syria. One tomato fruit from sixty samples tested positive for this virus by DAS-ELISA. Biotest assay, RT-PCR, and sequencing confirmed the presence of PepMV. The highest sequence identity of the Syrian isolate was with the EU-tomato strains of PepMV.

  3. Infection of a tomato cell culture by Phytophthora infestans; a versatile tool to study Phytophthora-host interactions

    Directory of Open Access Journals (Sweden)

    Charikleia Schoina

    2017-10-01

    Full Text Available Abstract Background The oomycete Phytophthora infestans causes late blight on potato and tomato. Despite extensive research, the P. infestans-host interaction is still poorly understood. To find new ways to further unravel this interaction we established a new infection system using MsK8 tomato cells. These cells grow in suspension and can be maintained as a stable cell line that is representative for tomato. Results MsK8 cells can host several Phytophthora species pathogenic on tomato. Species not pathogenic on tomato could not infect. Microscopy revealed that 16 h after inoculation up to 36% of the cells were infected. The majority were penetrated by a germ tube emerging from a cyst (i.e. primary infection while other cells were already showing secondary infections including haustoria. In incompatible interactions, MsK8 cells showed defense responses, namely reactive oxygen species production and cell death leading to a halt in pathogen spread at the single cell level. In compatible interactions, several P. infestans genes, including RXLR effector genes, were expressed and in both, compatible and incompatible interactions tomato genes involved in defense were differentially expressed. Conclusions Our results show that P. infestans can prosper as a pathogen in MsK8 cells; it not only infects, but also makes haustoria and sporulates, and it receives signals that activate gene expression. Moreover, MsK8 cells have the ability to support pathogen growth but also to defend themselves against infection in a similar way as whole plants. An advantage of MsK8 cells compared to leaves is the more synchronized infection, as all cells have an equal chance of being infected. Moreover, analyses and sampling of infected tissue can be performed in a non-destructive manner from early time points of infection onwards and as such the MsK8 infection system offers a potential platform for large-scale omics studies and activity screenings of inhibitory

  4. Phosphorus deficiency enhances molybdenum uptake by tomato plants

    International Nuclear Information System (INIS)

    Heuwinkel, H.; Kirkby, E.A.; Le Bot, J.; Marschner, H.

    1992-01-01

    Water culture experiments are described which provide conclusive evidence that Mo uptake by tomato plants is markedly enhanced by P deficiency. In a longterm experiment, which ran for 11 days, in marked contrast to the uptake of other nutrients, a three fold higher Mo uptake rate was observed after only four days of withdrawal of P from the nutrient medium. In contrast to the gradual increase in pH of the nutrient medium of the plants supplied with P, the pH in the medium of the -P plants fell. Throughout the growth of these plants net H+ efflux could be accounted for by excess cation over anion uptake, indicating that organic acid extrusion plays no major role in the observed fall in pH. Further evidence that Mo uptake is enhanced in P deficient tomato plants is provided in short-term nutrient solution experiments (1h and 4h) using radioactive molybdenum (99Mo). Compared with P sufficient plants, the uptake rates of 99Mo by P deficient plants were three to five times higher after 1h and nine to twelve times higher after 4h. Resupplying P during the uptake periods to deficient plants reduced the uptake rate of 99Mo to values similar to those of P sufficient plants. It is concluded that the uptake of molybdate occurs via phosphate binding/ transporting sites at the plasma membrane of root cells. Further support for this conclusion comes from exchange experiments with non-labelled molybdenum, which show a much larger amount of 99Mo exchangeable from the roots of P deficient plants

  5. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense.

    Science.gov (United States)

    Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian

    2017-06-01

    Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

  6. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  7. Infection of potato mesophyll protoplasts with five plant viruses.

    Science.gov (United States)

    Barker, H; Harrison, B D

    1982-12-01

    Methods are described for preparing potato mesophyll protoplasts that are suitable for infection with inocula of virus nucleoprotein or RNA. The protoplasts could be infected with four sap-transmissible viruses (tobacco mosaic, tobacco rattle, tobacco ringspot and tomato black ring viruses) and with potato leafroll virus, which is not saptransmissible. No differences were observed in ability to infect protoplasts with potato leafroll virus strains differing either in virulence in intact plants or in aphid transmissibility.

  8. The Clavibacter michiganensis subsp. michiganensis-tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [Tel Aviv University; Teper, [Tel Aviv University; Gartemann, KH [Tel Aviv University; Eichenlaub, R [Tel Aviv University; Chalupowicz, L [Tel Aviv University; Manulis-Sasson, S [Tel Aviv University; Barash, I [Tel Aviv University; Tews, H [Tel Aviv University; Mayer, K [Tel Aviv University; Giannone, Richard J [ORNL; Hettich, Robert {Bob} L [ORNL; Sessa, G [Tel Aviv University

    2012-01-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes wilt and canker disease of tomato (Solanum lycopersicum). Mechanisms of Cmm pathogenicity and tomato response to Cmm infection are not well understood. To explore the interaction between Cmm and tomato, multidimensional protein identification technology (MudPIT) and tandem mass spectrometry were used to analyze in vitro and in planta generated samples. The results show that during infection Cmm senses the plant environment, transmits signals, induces, and then secretes multiple hydrolytic enzymes, including serine proteases of the Pat-1, Ppa, and Sbt familes, the CelA, XysA, and NagA glycosyl hydrolases, and other cell wall-degrading enzymes. Tomato induction of pathogenesis-related (PR) proteins, LOX1, and other defense-related proteins during infection indicates that the plant senses the invading bacterium and mounts a basal defense response, although partial with some suppressed components including class III peroxidases and a secreted serine peptidase. The tomato ethylene-synthesizing enzyme ACC-oxidase was induced during infection with the wild-type Cmm but not during infection with an endophytic Cmm strain, identifying Cmm-triggered host synthesis of ethylene as an important factor in disease symptom development. The proteomic data were also used to improve Cmm genome annotation, and thousands of Cmm gene models were confirmed or expanded.

  9. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  10. Response of nitrogen metabolism to boron toxicity in tomato plants.

    Science.gov (United States)

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  11. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi.

    Directory of Open Access Journals (Sweden)

    Miguel G Ximénez-Embún

    Full Text Available Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios. Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold at 4 days post infestation (dpi, and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales.

  12. Effect Of Salinization On Fusarium Wilt Disease In Tomato Plant

    International Nuclear Information System (INIS)

    Ahmed, B.M.; Fath El-Bab, T.S.

    2013-01-01

    Salinization of soils or waters is one of the serious environmental problems in agriculture. It is necessary to determine the environmental factors under which the plants give higher yields and better quality to solve this problem. The problem of salinity is characterized by disruption in the physiological processes in plant which lead to shorting in growth and decrease in yield. The study was carried out to control fusarium disease in tomato plant irrigated with salt water (500, 1500, 15000, 45000 and 100000 ppm). These treatments lead to excess in malic and citric acids i.e. from 21 mmol/g fresh weight in control to 38.8 mmol/g fresh weight at 100000 ppm for citric acid while for malic acid, the value was increased from 1.4 mmol/g fresh weight for control to 2.1 mmol/g fresh weight. The excess of malic and citric acids lead to increase in acidity and vitamin C in tomato fruits. On the other side, the plant may adapt to this stress by increasing its proline content from 0.59 µmol/g fresh weight to 6.56 µmol/g fresh weight at 100000 and abscisic acid from 0.49 µmol/g fresh weight to 20.7 µmol/g fresh weight. The results showed that the fusarium fungal growth was observed till 100000 ppm but did not form sclerotia spores at 45000 ppm. On the other hand, the electrical conductivity was found to be 0.46, 2.3, 23.1, 69.2 and 153.8 dS/m for salinity levels of 500, 1500, 15000, 45000 and 100000 ppm, respectively. This study aimed to control the fusarium wilt disease by irrigating the plant with water has high salinity

  13. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  14. Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato.

    Science.gov (United States)

    Paz-Carrasco, Lenin C; Castillo-Urquiza, Gloria P; Lima, Alison T M; Xavier, Cesar A D; Vivas-Vivas, Leticia M; Mizubuti, Eduardo S G; Zerbini, F Murilo

    2014-08-01

    Viral diseases caused by begomoviruses are of economic importance due to their adverse effects on the production of tropical and subtropical crops. In Ecuador, despite reports of significant infestations of Bemisia tabaci in the late 1990s, only very recently has a begomovirus, tomato leaf deformation virus (ToLDeV, also present in Peru), been reported in tomato. ToLDeV is the first monopartite begomovirus discovered that originated in the Americas, and its presence in Ecuador highlights the need for a wider survey of tomato-infecting begomoviruses in this country. Tomato and weed samples were collected in 2010 and 2011 in six provinces of Ecuador, and begomovirus genomes were cloned and sequenced using a rolling-circle-amplification-based approach. Most tomato samples from the provinces of Guayas, Loja, Manabi and Santa Elena were infected with tomato leaf deformation virus (ToLDeV). One sample from Manabi had a triple infection with ToLDeV, rhynchosia golden mosaic Yucatan virus (RhGMYuV) and an isolate that was a recombinant between the two. A new begomovirus was detected in another tomato sample from Manabi. Samples of Rhynchosia sp. from the provinces of Guayas and Manabi were infected by RhGMYuV. These results indicate not only the prevalence of ToLDeV in tomato in Ecuador but also the presence of other viruses, albeit at a much lower frequency.

  15. Irradiation-induced mutation experiments with eiploid and tetraploid tomato plants

    International Nuclear Information System (INIS)

    Boda, J.

    1979-01-01

    Tomato mutation experiments are described. The tomatoes used in the experiment were the diploid Reziszta and its autotetraploid variety. The experimental plants were exposed to an irradiation of 5000 rsd for 1-2 days, and after transplantation into the gamma field, to chronic irradiation during the whole growing season. The chronic treatment heavily reduced fertility in the generations of tetraploid tomato plants. Recurrent treatment of tetraploid led to further deterioration in fertility. Several berries were formed with few seeds or with no seeds at all. After three irradiations, the chlorophyll mutation frequency increased in the diploid and tetraploid tomato plants. For diploids, treatment applied at the seedling stage gave a lower chlorophyll mutation frequency. With tetraploids the same treatment induced similar chlorophyll mutation frequency. As regards to phenotypic variability of quantitative characteristics in diploid and tetraploid tomatoes, the single and repeated chronic irradiation induced no increase in the variability of properties like flowering time, weight, height etc. (author)

  16. Serological detection of viruses infecting tomato and pepper in ...

    African Journals Online (AJOL)

    ... one tomato leaf sample while PVMV + CMV occurred on three pepper leaf samples. The control of aphid vectors that transmit these viruses and good sanitary practices against soil borne ToMV would minimize disease incidences and subsequent yield loss. Keywords: Tomato, Pepper, virus distribution, PVMV, CMV, PVY ...

  17. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots.

    Science.gov (United States)

    Tian, Bao-Yu; Cao, Yi; Zhang, Ke-Qin

    2015-11-25

    Endophytes are known to play important roles in plant's health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis. Community analysis of root-associated microbiomes in healthy and nematode-infected tomatoes indicated that nematode infections were associated with variation and differentiation of the endophyte and rhizosphere bacterial populations in plant roots. The community of the resident endophytes in tomato root was significantly affected by nemato-pathogenesis. Remarkably, some bacterial groups in the nematode feeding structure, the root gall, were specifically enriched, suggesting an association with nematode pathogenesis. Function-based metagenomic analysis indicated that the enriched bacterial populations in root gall harbored abundant genes related to degradation of plant polysaccharides, carbohydrate and protein metabolism, and biological nitrogen fixation. Our data indicated that some of the previously assumed beneficial endophytes or bacterial associates with nematode might be involved in nematode infections of the tomato roots.

  18. Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector.

    Science.gov (United States)

    Noris, Emanuela; Miozzi, Laura

    2015-01-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen, transmitted by the whitefly Bemisia tabaci, that severely affects the tomato production in the Mediterranean basin. Here, we describe real-time PCR protocols suitable for relative and absolute quantification of TYLCSV in tomato plants and in whitefly extracts. Using primers and probe specifically designed for TYLCSV, the protocols for relative quantification allow to compare the amount of TYLCSV present in different plant or whitefly samples, normalized to the amount of DNA present in each sample using endogenous tomato or Bemisia genes as internal references. The absolute quantification protocol allows to calculate the number of genomic units of TYLCSV over the genomic units of the plant host (tomato), with a sensitivity of as few as ten viral genome copies per sample. The described protocols are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.

  19. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    LENUS (Irish Health Repository)

    Potnis, Neha

    2011-03-11

    Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster

  20. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  1. Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection

    Czech Academy of Sciences Publication Activity Database

    Satková, P.; Starý, T.; Plešková, E.; Zapletalová, M.; Kašparovský, T.; Činčalová-Kubienová, L.; Luhová, L.; Mieslerová, B.; Mikulík, Jaromír; Lochman, J.; Petřivalský, M.

    2017-01-01

    Roč. 119, č. 5 (2017), s. 829-840 ISSN 0305-7364 Institutional support: RVO:61389030 Keywords : baba * Defence genes * Ethylene * Oidium neolycopersici * Oligandrin * Powdery mildew * Resistance * Solanum habrochaites * Solanum lycopersicum * Tomato Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  2. Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (Cuscuta reflexa).

    Science.gov (United States)

    Krause, Kirsten; Johnsen, Hanne R; Pielach, Anna; Lund, Leidulf; Fischer, Karsten; Rose, Jocelyn K C

    2018-02-01

    The parasitic flowering plant genus Cuscuta (dodder) is a parasitic weed that infects many important crops. Once it winds around the shoots of potential host plants and initiates the development of penetration organs, called haustoria, only a few plant species have been shown to deploy effective defense mechanisms to ward off Cuscuta parasitization. However, a notable exception is Solanum lycopersicum (tomato), which exhibits a local hypersensitive reaction when attacked by giant dodder (Cuscuta reflexa). Interestingly, the closely related wild desert tomato, Solanum pennellii, is unable to stop the penetration of its tissue by the C. reflexa haustoria. In this study, we observed that grafting a S. pennellii scion onto the rootstock of the resistant S. lycopersicum did not change the susceptibility phenotype of S. pennellii. This suggests that hormones, or other mobile substances, produced by S. lycopersicum do not induce a defense reaction in the susceptible tissue. Screening of a population of introgression lines harboring chromosome fragments from S. pennellii in the genome of the recurrent parent S. lycopersicum, revealed that most lines exhibit the same defense reaction as shown by the S. lycopersicum parental line. However, several lines showed different responses and exhibited either susceptibility, or cell death that extended considerably beyond the infection site. These lines will be valuable for the future identification of key loci involved in the perception of, and resistance to, C. reflexa and for developing strategies to enhance resistance to infection in crop species. © 2017 Scandinavian Plant Physiology Society.

  3. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    Science.gov (United States)

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  4. Automatic detection of diseased tomato plants using thermal and stereo visible light images.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

  5. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  6. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  7. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    Science.gov (United States)

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  8. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    OpenAIRE

    Buxa, Stefanie V; Degola, Francesca; Polizzotto, Rachele; de Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organ...

  9. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    Science.gov (United States)

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright 2009 John Wiley & Sons, Ltd.

  10. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  11. Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

    Directory of Open Access Journals (Sweden)

    Yong Seong Lee

    2017-12-01

    Full Text Available This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F, a bacterial grass culture (G, a 1/3 volume of G plus 2/3 F (GF, and F plus a synthetic fungicide (FSf were applied to tomato leaves and roots. The result showed that the severity of Alternariasolani and Botrytiscinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

  12. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).

    Science.gov (United States)

    Slugina, M A; Shchennikova, A V; Kochieva, E Z

    2017-10-01

    Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.

  13. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  14. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

    Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function

  15. Virus-specific proteins in cells infected with tomato black ring nepovirus: evidence for proteolytic processing in vivo.

    OpenAIRE

    Demangeat, Gerard; Hemmer, O; Reinbolt, J; Mayo, M A; Fritsch, Coralie

    1992-01-01

    The synthesis of proteins encoded by the RNA of tomato black ring virus (TBRV) in vivo was studied in protoplasts by direct labelling with [35S]methionine, and in protoplasts and plants by immunoblotting experiments with specific antisera. Comparison of the proteins synthesized in infected and mock-inoculated protoplasts suggested that proteins of M(r) 120K, 90K, 80K, 57K and 46K were virus-specific. The proteins derived from the RNA-1-encoded polyprotein detected by immunoblotting were a sta...

  16. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  17. MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease

    Directory of Open Access Journals (Sweden)

    Haq Qazi MR

    2010-10-01

    Full Text Available Abstract Background Tomato leaf curl virus (ToLCV, a constituent of the genus Begomovirus, infects tomato and other plants with a hallmark disease symptom of upward leaf curling. Since microRNAs (miRs are known to control plants developmental processes, we evaluated the roles of miRNAs in Tomato leaf curl New Delhi virus (ToLCNDV induced leaf curling. Results Microarray analyses of miRNAs, isolated from the leaves of both healthy and ToLCNDV agroinfected tomato cv Pusa Ruby, revealed that ToLCNDV infection significantly deregulated various miRNAs representing ~13 different conserved families (e.g., miR319, miR172, etc.. The precursors of these miRNAs showed similar deregulated patterns, indicating that the transcription regulation of respective miRNA genes was perhaps the cause of deregulation. The expression levels of the miRNA-targeted genes were antagonistic with respect to the amount of corresponding miRNA. Such deregulation was tissue-specific in nature as no analogous misexpression was found in flowers. The accumulation of miR159/319 and miR172 was observed to increase with the days post inoculation (dpi of ToLCNDV agroinfection in tomato cv Pusa Ruby. Similarly, these miRs were also induced in ToLCNDV agroinfected tomato cv JK Asha and chilli plants, both exhibiting leaf curl symptoms. Our results indicate that miR159/319 and miR172 might be associated with leaf curl symptoms. This report raises the possibility of using miRNA(s as potential signature molecules for ToLCNDV infection. Conclusions The expression of several host miRNAs is affected in response to viral infection. The levels of the corresponding pre-miRs and the predicted targets were also deregulated. This change in miRNA expression levels was specific to leaf tissues and observed to be associated with disease progression. Thus, certain host miRs are likely indicator of viral infection and could be potentially employed to develop viral resistance strategies.

  18. The effects of surface-applied jasmonic and salicylic acids on caterpillar growth and damage to tomato plants

    Science.gov (United States)

    Aaron L. Iverson; Louis R. Iverson; Steve Eshita

    2001-01-01

    We tested the role of salicylic acid (SA) and jasmonic acid (JA) in altering the tomato plant's defense against herbivory by tobacco hornworm. Treatments of SA or JA were topically applied to tomato plants, hornworm consumption was allowed to proceed for 12 days, and harvest analyses were performed Measurements taken included a subjective plant rating (1-10 score...

  19. Commercial plant-probiotic microorganisms for sustainable organic tomato production systems

    OpenAIRE

    Bosco, Marco; Giovannetti, Giusto; Picard, Christine; Baruffa, Elisa; Brondolo, Anna; Sabbioni, Fabio

    2007-01-01

    Selected plant-probiotic microorganisms, produced by the company CCS Aosta at a commercial scale, are being tested in the Italian Padana plain in open field conditions for their ability to provide adequate crop nutrition and to ensure durable soil fertility for organic tomato production. In this three-years-long project the QLIF-WP333 research team will investigate the potential of soil probiotics management as a tool to improve the quality of tomato fruits and the sustainability of organic t...

  20. USE OF SAPROPHYTIC FUNGI SPECIMENS AS A PLANT PROTECTION AGENTS IN TOMATOE PLANTATION

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandurska

    2015-07-01

    Full Text Available The purpose of this study was to determine the effects of the Trichoderma spp. fungi on the conditions and health of tomato plants. The experiments were conducted in pot cultures and controlled conditions. Commercial formula TRIFENDER containing Trichoderma asperellum spores and isolated from garden soil strain T12 Trichoderma viride were used. In one embodiment, the plants were treated with pathogenic strain of Fusarium sp. that commonly damages crops and against which the whole arsenal of chemicals is used. Preparations obtained from isolated and multiplied fungal cultures were used for the treatment of the above-ground (spraying and under-ground (sprinkling parts of tomatoes. Influence of the Trichoderma fungi was determined by comparing the presence of necrosis on leaves in various groups of cultivated tomatoes compared to control samples. The development of seedlings was checked by measuring the length of plants and the weight of fresh and dry plants. The results demonstrated the protective role of Trichoderma spp. fungi in relation to the Fusarium sp.. Leaves of tomato treated with solutions of saprophytic fungi had a statistically significant lower amount of necrotic changes caused by the pathogen. More effective in this regard was uncommercial isolate of T. viride. Formulation used in the experiments Trifender and isolate T. viride statistically significant influence on the growth and development of the tomato plants as evidenced by increased compared to the control fresh and dry weight of plants.

  1. Nondestructive detection of water stress in tomato [Lycopersicon esculentum] plants using microwave sensing, 2

    International Nuclear Information System (INIS)

    Shimomachi, T.; Takemasa, T.; Kurata, K.; Takakura, T.

    2004-01-01

    The physiological accommodation response to environmental stress of a plant can induce changes in physiological and physical conditions of the plant. These changes influence the dielectric properties of the plant, which can be detected by measuring microwave complex dielectric properties of plant materials such as leaves and stems. The objective of this research was to detect these responses of plants to water deficiency stress nondestructively. The complex dielectric properties of tomato leaves during water stress were measured with an Open-ended Coaxial Probe from 0.3 to 3 GHz, as well as changes in gravimetric moisture, photosynthetic rate, stomatal conductance and water potential which reflect the physiological condition of the plants. Experimental results showed that the complex permittivity (both permittivity and loss factor) of tomato leaves increased during water stress. Of the parameters measured the highest correlation was observed between complex permittivity and water potential. In order to confirm these results, control and water deficient tomato leaves were crushed, and the complex permittivity was measured and compared. The results showed quite similar tendencies compared with the results from the nondestructive microwave measurements. A physiochemical model to describe the complex permittivity of crushed non-stressed and stressed tomato leaves was constructed with pure water, pulp, glycine, and KN03, and the complex dielectric measurements of crushed tomato leaves were reproduced quite accurately from 0.3 to 3 GHz

  2. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    Science.gov (United States)

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  3. PRODUCTIVE POTENTIAL OF THE CHERRY TOMATO GENOTYPE GROUP BEFORE INFECTION BY Alternaria tomatophila

    Directory of Open Access Journals (Sweden)

    HUGO CESAR RODRIGUES MOREIRA CATÃO

    2017-01-01

    Full Text Available Early blight (caused by Alternaria tomatophila is a major disease of tomato with no resistant cultivars. Thus, it is necessary to identify sources of resistance and productive genotypes for the development of new cultivars. Therefore, this study aimed to evaluate the productive potential of cherry tomato genotypes grown in the summer / fall, the severity of early blight on leaves and the incidence of disease in fruits. The treatments consisted of Carolina tomato genotypes, Cereja Vermelho, CH 152 and CLN1561A. The experimental design consisted of randomized blocks with six replications, and the experimental plot had 16 plants. The following characteristics were evaluated: area under the disease progress curve (AUDPC, average number of microinjuries on the fruits (MF, average number of fruits per bunch (NFC, average number of bunches per plant (NCP, average number of fruits per plant (NFP, average yield, number of fruits with incidence of early blight per plant (NFI and the severity of early blight in leaves (%. The cherry tomato genotype CH152 showed tolerance to early blight with a smaller area under the disease progress curve, lower severity and fruits with incidence of A. tomatophila were not observed in this genotype. The CH152 had the highest number of fruits per bunch, greater number of bunches per plant, higher number of fruits per plant and higher productivity. This line has great potential of being integrated into breeding programs.

  4. Detection and frequency of recombination in tomato-infecting begomoviruses of South and Southeast Asia

    Directory of Open Access Journals (Sweden)

    Rai Mathura

    2007-10-01

    Full Text Available Abstract Background Tomato-infecting begomoviruses are widely distributed across the world and cause diseases of high economic impact on wide range of agriculturally important crops. Though recombination plays a pivotal role in diversification and evolution of these viruses, it is currently unknown whether there are differences in the number and quality of recombination events amongst different tomato-infecting begomovirus species. To examine this we sought to characterize the recombination events, estimate the frequency of recombination, and map recombination hotspots in tomato-infecting begomoviruses of South and Southeast Asia. Results Different methods used for recombination breakpoint analysis provided strong evidence for presence of recombination events in majority of the sequences analyzed. However, there was a clear evidence for absence or low Recombination events in viruses reported from North India. In addition, we provide evidence for non-random distribution of recombination events with the highest frequency of recombination being mapped in the portion of the N-terminal portion of Rep. Conclusion The variable recombination observed in these viruses signified that all begomoviruses are not equally prone to recombination. Distribution of recombination hotspots was found to be reliant on the relatedness of the genomic region involved in the exchange. Overall the frequency of phylogenetic violations and number of recombination events decreased with increasing parental sequence diversity. These findings provide valuable new information for understanding the diversity and evolution of tomato-infecting begomoviruses in Asia.

  5. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  6. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  7. A new approach for in vitro regeneration of tomato plants devoid of exogenous plant growth hormones.

    Science.gov (United States)

    Plana, Dagmara; Fuentes, Alejandro; Alvarez, Marta; Lara, Regla M; Alvarez, Félix; Pujol, Merardo

    2006-10-01

    Many available methodologies for in vitro regeneration of commercial tomato varieties promote not only the production of normal shoots but also individual leaves, shoots without apical meristems and vitrified structures. All these abnormal formations influence and diminish the regeneration efficiency. At the basis of this phenomenon lies callus development. We optimized an alternative procedure by which the regeneration occurs without abnormal shoot formation. The portion including the proximal part of hypocotyls and the radicle was cultured on medium consisting of Murashige and Skoog salts, 4 mg/L thiamine, 100 mg/L mio-inositol and 3% sucrose. After two-three weeks, 60% explants showed adventitious shoot formation. No changes in the morphological characteristics of regenerated plants and fruits were observed as compared with parents. Karyotypic analysis of regenerated plants showed no variations in chromosome number. The optimized procedure offers the advantage of tomato plant regeneration avoiding callus formation, which enables normal plant recovery with an efficiency ranging from 1.45 +/- 0.05 to 2.57 +/- 0.06 shoots per explant in Campbell-28, Amalia, Lignon, and Floradel cultivars.

  8. Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant.

    Science.gov (United States)

    Ohta, Kazuhiro; Moriguchi, Ryo; Kanahama, Koki; Yamaki, Shohei; Kanayama, Yoshinori

    2005-12-01

    The enzyme NAD-dependent sorbitol dehydrogenase (SDH) is well characterized in the Rosaceae family of fruit trees, which synthesizes sorbitol as a translocatable photosynthate. Expressed sequence tags of SDH-like sequences have also been generated from various non-Rosaceae species that do not synthesize sorbitol as a primary photosynthetic product, but the physiological roles of the encoded proteins in non-Rosaceae plants are unknown. Therefore, we isolated an SDH-like cDNA (SDL) from tomato (Lycopersicon esculentum Mill.). Genomic Southern blot analysis suggested that SDL exists in the tomato genome as a single-copy gene. Northern blot analysis showed that SDL is ubiquitously expressed in tomato plants. Recombinant SDL protein was produced and purified for enzymatic characterization. SDL catalyzed the interconversion of sorbitol and fructose with NAD (H). SDL showed highest activity for sorbitol among the several substrates tested. SDL showed no activity with NADP+. Thus, SDL was identified as a SDH, although the Km values and substrate specificity of SDL were significantly different from those of SDH purified from the Japanese pear (Pyrus pyrifolia), a Rosaceae fruit tree. In addition, tomato was transformed with antisense SDL to evaluate the contribution of SDL to SDH activity in tomato. The transformation decreased SDH activity to approximately 50% on average. Taken together, these results provide molecular evidence of SDH in tomato, and SDL was renamed LeSDH.

  9. Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings.

    Science.gov (United States)

    Perdones, Ángela; Tur, Núria; Chiralt, Amparo; Vargas, Maria

    2016-10-01

    Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the FFDs was evaluated on tomato plants (cultivar Micro-Tom) at three different stages of development, and on pre-harvest and postharvest applications on tomato fruit. The application of the FFDs at '3 Leaves' stage caused phytotoxic problems, which were lethal when the EO was applied without biopolymers. Even though plant growth and development were delayed, the total biomass and the crop yield were not affected by biopolymer-EO treatments. When the FFDs were applied in the 'Fruit' stage the pre-harvest application of FFDs had no negative effects. All FFDs containing EO significantly reduced the respiration rate of tomato fruit and diminished weight loss during storage. Moreover, biopolymer-EO FFDs led to a decrease in the fungal decay of tomato fruit inoculated with Rhizopus stolonifer spores, as compared with non-treated tomato fruit and those coated with FFDs without EO. The application of biopolymer-oregano essential oil coatings has been proven to be an effective treatment to control R. stolonifer in tomato fruit. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs.

    Science.gov (United States)

    Święcicka, Magdalena; Skowron, Waldemar; Cieszyński, Piotr; Dąbrowska-Bronk, Joanna; Matuszkiewicz, Mateusz; Filipecki, Marcin; Koter, Marek Daniel

    2017-04-01

    Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa

    Science.gov (United States)

    Cui, Hongying; Su, Jianwei; Wei, Jianing; Hu, Yongjian; Ge, Feng

    2014-01-01

    We experimentally examined the effects of elevated O3 and whitefly herbivory on tomato volatiles, feeding and oviposition preferences of whiteflies and behavioural responses of Encarsia formosa to these emissions on two tomato genotypes, a wild-type (Wt) and a jasmonic acid (JA) defence-enhanced genotype (JA-OE, 35S). The O3 level and whitefly herbivory significantly increased the total amount of volatile organic compounds (VOCs), monoterpenes, green leaf volatiles (GLVs), and aldehyde volatiles produced by tomato plants. The 35S plants released higher amount of total VOCs and monoterpene volatiles than Wt plants under O3+herbivory treatments. The feeding and oviposition bioassays showed that control plants were preferred by adult whiteflies whereas the 35S plants were not preferred by whiteflies. In the Y-tube tests, O3+herbivory treatment genotypes were preferred by adult E. Formosa. The 35S plants were preferred by adult E. formosa under O3, herbivory and O3+herbivory treatments. Our results demonstrated that elevated O3 and whitefly herbivory significantly increased tomato volatiles, which attracted E. formosa and reduced whitefly feeding. The 35S plants had a higher resistance to B. tabaci than Wt plant. Such changes suggest that the direct and indirect defences of resistant genotypes, such as 35S, could strengthen as the atmospheric O3 concentration increases. PMID:24939561

  12. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  13. PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment

    Directory of Open Access Journals (Sweden)

    Mariam Zameer

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria are colonized bacterial species that has the capability to improve plant growth by certain direct and indirect means. Environmental factors including both biotic and abiotic stresses are among the major constraints to crop production. In the current study, the effectiveness of microbial inoculation (Bacillus megaterium for enhancing growth of tomato plants under salt stress conditions has been investigated. Significant improvement in shoot length, root length, leaf surface area, number of leaves, total weight of the shoot and root was observed in tomato plants inoculated with zm7 strain post 15 and 30 days of its application. Zm3, Zm4 and Zm6 strains improved the morphological parameters as compared to the control. Chlorophyll content a, chlorophyll content b, anthocyanin and carotenoid content was increased in tomato plants subjected to Zm7, Zm6 and Zm4 strains. Stress responsive genes; metallothionein and glutothion gene were found highly expressed in Zm7 treated tomato plants as compared to control, untreated plants. Significant correlation of anthocyanin was reported for carotenoids, chlorophyll-b, shoot weight and total weight of seedling while carotenoids were significantly correlated with leaf surface area, root length, chlorophyll-b and anthocyanin. Overall, Zm7 strain proved best for improvement in salt stressed plant’s morphological parameters and biochemical parameters as compared to control, untreated plants.

  14. Kanamycin resistance during in vitro development of pollen from transgenic tomato plants

    NARCIS (Netherlands)

    Bino, R.J.; Hille, J.; Franken, J.

    1987-01-01

    Effects of kanamycin on pollen germination and tube growth of pollen from non-transformed plants and from transgenic tomato plants containing a chimaeric kanamycin resistance gene were determined. Germination of pollen was not affected by the addition of kanamycin to the medium in both genotypes.

  15. THE PARTICULARITIES OF PROLONGED CULTIVATION OF PLANTS-REGENERANTS OF TOMATO INTERSPECIFIC HYBRIDS

    Directory of Open Access Journals (Sweden)

    T. N. Miroshnichenko

    2015-01-01

    Full Text Available The particularities of the changes of the morphological parameters of plants-regenerants of tomato hybrids F1 during prolonged cultivation in conditions of in vitro have been studied. The cultivation during 12 passages in hormoneless MS medium does not lead to somaclonal variants, but act to raise the increasing of coefficient of variability of plants-regenerants features. 

  16. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    mycorrhizal spores in the Indian Thar desert, colonizes the root cortex of a wide range of plants, enhancing plant growth and modulating plant specialized metabolism. The effect of S. indica colonization on the metabolism of the host can be potentially used in improving plant defence against pathogens...... and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused....... indica-inoculated and S. indica-free tomato plants. Preliminary data suggest that fungal colonization results in increased production of specific volatile terpenes. A transcriptome analysis on fungus-associated and fungus-free plant tissues is currently ongoing to elucidate in depth the mechanisms...

  17. An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato.

    Science.gov (United States)

    Albert, Markus; Belastegui-Macadam, Xana; Kaldenhoff, Ralf

    2006-11-01

    Dodder or Cuscutaceae are holoparasitic plants subsisting on other dicotyledonous plants. The infection process is initiated by adherence of Cuscuta prehaustoria to the host surface, followed by penetration attempts by hyphae. In the case of a successful infection, these organs connect the parasite's vascular tissue to that of the host. Here we show that contact of Cuscuta reflexa prehaustoria to tomato induces the expression of a new arabinogalactan protein (AGP), attAGP, in the tomato precisely at the site of dodder attack. We show that attAGP is a plasma membrane-bound cell wall-localized protein. Using the RNAi technique and attAGP-targeted virus-induced gene silencing, we observed a correlation between attAGP expression level and force of attachment of the parasite to host tomatoes. If the expression level of attAGP was reduced, the C. reflexa attachment capability was significantly reduced, too. We conclude that C. reflexa infection induced a signal in the host leading to expression of tomato attAGP, which promotes the parasite's adherence.

  18. Effect of aluminum treatment on proteomes of radicles of seeds derived from Al-treated tomato plants

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive A1 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 uM AlK(SO4)2. Seeds harv...

  19. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus.

    Science.gov (United States)

    Fuentes, Alejandro; Carlos, Natacha; Ruiz, Yoslaine; Callard, Danay; Sánchez, Yadira; Ochagavía, María Elena; Seguin, Jonathan; Malpica-López, Nachelli; Hohn, Thomas; Lecca, Maria Rita; Pérez, Rosabel; Doreste, Vivian; Rehrauer, Hubert; Farinelli, Laurent; Pujol, Merardo; Pooggin, Mikhail M

    2016-03-01

    RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.

  20. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    OpenAIRE

    Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan

    2013-01-01

    In higher plants, the destiny of apical meristems (stem cells) is specific organogenesis, which determines the pattern of plant growth, and therefore morphotype and fertility. We found that bacterial infection can derail the meristems from their genetically preprogrammed destiny, altering plant morphogenesis. We identified four abnormal growth patterns, symptoms, in tomato infected with a cell wall-less bacterium, and found that each symptom corresponds to a distinct phase in meristem fate de...

  1. Reverse transcription loop-mediated isothermal amplification for species-specific detection of tomato chlorotic spot orthotospovirus

    Science.gov (United States)

    Tomato chlorotic spot virus (TCSV) is an emerging tospovirus that can cause severe disease on tomato plants. There are at least four tospoviruses infecting tomato, and mixed infection of various viruses in a field crop is quite common. With similarity in the symptomatology and cross serological reac...

  2. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    Science.gov (United States)

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  3. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  4. Comparative study of different application methods of 14C-Fosthiazate in tomato plants

    International Nuclear Information System (INIS)

    Nitesh Sharma; Surendra Kumar

    2011-01-01

    A comparative study of different application methods of nematicide 14 C-Fosthiazate was done for the uptake in tomato plants in two varieties Pusa Ruby and Pusa Early Dwarf. The application methods used for the research purpose are seed treatment, soil supplication and drip application in presence and absence of surfactant (Tween-80).It as found that percent absorption was the highest in the drip irrigation method in presence of surfactant. The percent uptake of 14 C-Fosthiazate in two varieties of tomato plants was found to be higher in Pusa Early Dwarf in all the treatment methods. (author)

  5. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  6. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2016-10-01

    Full Text Available Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1, niacin (vitamin B3, pyridoxine (vitamin B6, and menadione (vitamin K3. In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10⁶ colony-forming unit [cfu]/ml. Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  7. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-10-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea , respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10 6 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea . Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  8. Minimum number and best combinations of harvests to evaluate accessions of tomato plants from germplasm banks

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Abreu

    2006-01-01

    Full Text Available This study presents the minimum number and the best combination of tomato harvests needed to compare tomato accessions from germplasm banks. Number and weight of fruit in tomato plants are important as auxiliary traits in the evaluation of germplasm banks and should be studied simultaneously with other desirable characteristics such as pest and disease resistance, improved flavor and early production. Brazilian tomato breeding programs should consider not only the number of fruit but also fruit size because Brazilian consumers value fruit that are homogeneous, large and heavy. Our experiment was a randomized block design with three replicates of 32 tomato accessions from the Vegetable Germplasm Bank (Banco de Germoplasma de Hortaliças at the Federal University of Viçosa, Minas Gerais, Brazil plus two control cultivars (Debora Plus and Santa Clara. Nine harvests were evaluated for four production-related traits. The results indicate that six successive harvests are sufficient to compare tomato genotypes and germplasm bank accessions. Evaluation of genotypes according to the number of fruit requires analysis from the second to the seventh harvest. Evaluation of fruit weight by genotype requires analysis from the fourth to the ninth harvest. Evaluation of both number and weight of fruit require analysis from the second to the ninth harvest.

  9. The Effect of Different Fertilizer Applications on Plant and Fruit Yield in Greenhouse Organic Tomato Growing

    Directory of Open Access Journals (Sweden)

    Funda Ulusu

    2017-12-01

    Full Text Available Greenhouse tomato production is in the first place in Turkey, 34% of total tomato production (3.614.472 tonnes is under greenhouse conditions. The increase in yield in Turkey is due to the spread of undergrowth cultivation besides the use of qualified varieties and seeds. Synthetic fertilizers can’t be used to obtain economic efficiency in underground organic tomato growing Therefore, the application of alternative fertilizers (barn stubble, green manure, organic fertilizer, vermicompost etc. needs to be improved. For this purpose, effect of the eight different fertilizer combination including organic and worm liquid fertilizer, humic acid and mycorrhizae applications on tomato plant and fruit yield were investigated in the study. Negative check without any fertilizer application growing and a positive check; a synthetic liquid fertilizer application was included. Experiment was set up according to completely randomised block design with 3 replications under greenhouse conditions. Tomato fruit length, diameter and weight was determined as fruit yield and fresh and dry weight as plant yield. There was not any statistical difference among fertilizer applications for fruit and plant yield. However, the highest tomato fruit yield was obtained in the treatments of organic (7.17 kg/ plot and worm fertilizers (4,80 kg/ plot in combination with mycorrhizae. The results were similar for fruit diameter and length. Plant fresh and dry weight was between 2.01 to 5.92 and 0.368 to 1.153 kg, respectively. The highest plant weight was belong to mycorrhizae and organic fertilizer application.

  10. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  11. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis

    Science.gov (United States)

    Naselli, Mario; Urbaneja, Alberto; Siscaro, Gaetano; Jaques, Josep A.; Zappalà, Lucia; Flors, Víctor; Pérez-Hedo, Meritxell

    2016-01-01

    The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs’ relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered. PMID:27472328

  12. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.

    Science.gov (United States)

    Jansen, R M C; Miebach, M; Kleist, E; van Henten, E J; Wildt, J

    2009-11-01

    Changes in emission of volatile organic compounds (VOCs) from tomato induced by the fungus Botrytis cinerea were studied in plants inoculated by spraying with suspensions containing B. cinerea spores. VOC emissions were analysed using on-line gas chromatography-mass spectrometry, with a time resolution of about 1 h, for up to 2 days after spraying. Four phases were delimited according to the starting point and the applied day/night rhythm of the experiments. These phases were used to demonstrate changes in VOC flux caused by B. cinerea infestation. Tomato plants inoculated with B. cinerea emitted a different number and amount of VOCs after inoculation compared to control plants that had been sprayed with a suspension without B. cinerea spores. The changes in emissions were dependent on time after inoculation as well as on the severity of infection. The predominant VOCs emitted after inoculation were volatile products from the lipoxygenase pathway (LOX products). The increased emission of LOX products proved to be a strong indicator of a stress response, indicating that VOC emissions can be used to detect plant stress at an early stage. Besides emission of LOX products, there were also increases in monoterpene emissions. However, neither increased emission of LOX products nor of monoterpenes is specific for B. cinerea attack. The emission of LOX products is also induced by other stresses, and increased emission of monoterpenes seems to be the result of mechanical damage induced by secondary stress impacts on leaves.

  13. Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom).

    Science.gov (United States)

    Scarpeci, Telma E; Marro, Martin L; Bortolotti, Santiago; Boggio, Silvana B; Valle, Estela M

    2007-02-01

    Tomato (Solanum lycopersicum) fruit ripening implies that chloroplastic proteins are degraded and new proteins are synthesized. Supplementary nutrition is frequently required when tomato plants begin to fruit and continues until the end of the plant's life cycle. Ammonium assimilation is crucial in these fruit maturation and ripening processes. Glutamine synthetase (GS; EC 6.3.1.2), the main ammonium-fixing enzyme in plants, could not be detected in red fruits of several tomato varieties when growing under standard nutrition. In this paper, we analyze the influence of the nutritional status on the ammonium assimilation capacity of ripe tomato (cv. Micro-Tom) fruit. For this purpose, GS expression and protein profiles were followed in mature green and red fruits harvested from plants grown under standard or supplemented nutrition. Under standard nutrient regime (weekly supplied with 0.5 x Hoagland solution) GS activity was found in chloroplasts (GS2) of mature green fruits, but it was not detected either in the chromoplasts or in the cytosol of red fruits. When plants were shifted to a supplemented nutritional regime (daily supplied with 0.5 x Hoagland solution), GS was found in red fruits. Also, cytosolic transcripts (gs1) preferentially accumulated in red fruits under high nutrition. These results indicate that mature green Micro-Tom fruits assimilate ammonia through GS2 under standard nutrition, while ripe red fruits accumulate GS1 under high nutrition, probably in order to assimilate the extra N-compounds made available through supplemented nutrition.

  14. Oxidative stress and antioxidative mechanisms in tomato (solanum lycopersicum l.) plants sprayed with different pesticides

    International Nuclear Information System (INIS)

    Yildiztekin, M.; Kaya, C.

    2015-01-01

    A glasshouse experiment was conducted to appraise the influence of exogenously applied pesticides such as abamectin, thiamethoxam, pyriproxyfen and acetamiprid on oxidative defence system and some key physiological attributes in tomato (Solanum lycopersicum L.). Each of these pesticides was applied in three doses (recommended dose, twice and three times higher than the recommended dose). Higher doses of pesticides sprayed to the plants resulted in marked increase in leaf free proline content and electrolyte leakage, but in a decrease in shoot dry matter, chl a, chl b and chl a+b in tomato plants as compared to those plants not sprayed with pesticides. These reductions were greater in tomato plants sprayed with highest doses of thiamethoxam (144 mg L-1), whereas the reverse was true for proline content and electrolyte leakage. The foliar application of pesticides at the highest levels caused enhanced accumulation of malondialdehyde (MDA) in most cases, and these being greater in treatment of foliar application of thiamethoxam at the highest level. The highest doses of pesticides promoted the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in most cases. The results clearly indicate that application of pesticides at higher doses than recommended doses provoked both oxidative and antioxidative systems in tomato plants. (author)

  15. Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens.

    Science.gov (United States)

    Pastor, Nicolás; Masciarelli, Oscar; Fischer, Sonia; Luna, Virginia; Rovera, Marisa

    2016-09-01

    Tomato is one of the most economically attractive vegetable crops due to its high yields. Diseases cause significant losses in tomato production worldwide. We carried out Polymerase Chain Reaction studies to detect the presence of genes encoding antifungal compounds in the DNA of Pseudomonas putida strain PCI2. We also used liquid chromatography-electrospray tandem mass spectrometry to detect and quantify the production of compounds that increase the resistance of plants to diseases from culture supernatants of PCI2. In addition, we investigated the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in PCI2. Finally, PCI2 was used for inoculation of tomato seeds to study its potential biocontrol activity against Fusarium oxysporum MR193. The obtained results showed that no fragments for the encoding genes of hydrogen cyanide, pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, or phenazine-1-carboxylic acid were amplified from the DNA of PCI2. On the other hand, PCI2 produced salicylic acid and jasmonic acid in Luria-Bertani medium and grew in a culture medium containing ACC as the sole nitrogen source. We observed a reduction in disease incidence from 53.33 % in the pathogen control to 30 % in tomato plants pre-inoculated with PCI2 as well as increases in shoot and root dry weights in inoculated plants, as compared to the pathogenicity control. This study suggests that inoculation of tomato seeds with P. putida PCI2 increases the resistance of plants to root rot caused by F. oxysporum and that PCI2 produces compounds that may be involved at different levels in increasing such resistance. Thus, PCI2 could represent a non-contaminating management strategy potentially applicable in vegetable crops such as tomato.

  16. Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator

    International Nuclear Information System (INIS)

    Mojarab Soufiyan, Mohamad; Dadak, Ali; Hosseini, Seyed Sina; Nasiri, Farshid; Dowlati, Majid; Tahmasebi, Maryam; Aghbashlo, Mortaza

    2016-01-01

    In this study, a detailed exergy evaluation of a commercial tomato paste plant with a double-effect evaporator was conducted in order to provide information on the system thermodynamic inefficiencies. Using energy and exergy balance equations, all components of the plant were analyzed individually and their exergetic parameters were calculated on the basis of actual operational data. The required data were obtained from Nazchin tomato paste factory located in Tehran, Iran. In addition, it was attempted to quantify the exergy utilized for processing a given amount of the tomato paste. The results showed that over 82% of the total destroyed exergy in the plant occurred in the boiler combination as the main component wasting exergy. Furthermore, exergy analysis introduced this combination as the main equipment rejecting exergy to the ambient where 4.79% of its total exergy input was lost. The rational exergy efficiency of the first- and second-effect evaporative units was found to be 65.33% and 56.60%, respectively. The specific exergy consumption of the tomato paste production was also determined as 16.83 MJ/kg. Generally, exergy concept and its extensions could be served as a powerful assessment technique to optimize the design and performance of multiple-effect evaporation systems employed in food industry. - Highlights: • Exergy analysis of a tomato paste plant with a double-effect evaporator was done. • 82% of the total exergy destruction rate occurred in the boiler combination. • 16.83 MJ exergy was utilized for production of 1 kg tomato paste. • Optimal number of effects could be potentially found using exergy-based approaches.

  17. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Science.gov (United States)

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  18. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  19. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Directory of Open Access Journals (Sweden)

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  20. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant.

    Science.gov (United States)

    Garcia-Ruiz, Hernan; Gabriel Peralta, Sergio M; Harte-Maxwell, Patricia A

    2018-03-14

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana . Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.

  1. Organically grown tomato (Lycopersicon esculentum Mill.): bioactive compounds in the fruit and infection with Phytophthora infestans.

    Science.gov (United States)

    Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd

    2012-05-01

    Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.

  2. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  3. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor.

    Science.gov (United States)

    Hegenauer, Volker; Fürst, Ursula; Kaiser, Bettina; Smoker, Matthew; Zipfel, Cyril; Felix, Georg; Stahl, Mark; Albert, Markus

    2016-07-29

    Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein CUSCUTA RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens. Copyright © 2016, American Association for the Advancement of Science.

  4. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Horký, J.; Matoušková, H.; Šlais, Karel

    2009-01-01

    Roč. 1216, č. 6 (2009), s. 1019-1024 ISSN 0021-9673 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : free flow and capillary IEF * isoelectric point of microbes * tomatoes plant tissue suspension Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2009

  5. Use of hereditary for the detection of radioinduced variability in the height of tomato plants

    International Nuclear Information System (INIS)

    Fundora, Z.; Perez Talavera, S.; Auchet, F.; Moya, C.

    1986-01-01

    This paper is about the study of induced variability in the height of tomato plants from seeds treated with Co-60 gamma-rays. Hereditary coefficients in narrow sense were used trough progenitor-descendant regression of varieties irradiated on the control as indicator of the variability induced by the different doses

  6. Growth and physiological response of tomato plants to different periods of nitrogen starvation and recovery

    NARCIS (Netherlands)

    Martinez, V.; Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Young, vegetative-state tomato plants, starved of N for 1, 3 or 7 d, followed, in each case, by a 7-d recovery period with nutrient solution containing N, were examined. Relative growth rate (RGR), leaf photosynthesis and leaf expansion were reduced after only 1 d of N starvation.Tissue N

  7. Proteome modification in tomato plants upon long-term aluminum treatment

    Science.gov (United States)

    This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, “Micro-Tom”) after long-term exposure to the stress factor. Plants were treated in Magnavaca’s solution (pH 4.5) supplemented with 7.5 uM Al3+ ion activity over a 4 month period beginning at the emergen...

  8. Effect of plant diversification on pest abundance and tomato yields in ...

    African Journals Online (AJOL)

    Diakalia SON

    Effect of plant diversification on pest abundance and tomato yields in two cropping systems in ..... Table 2: Monitoring of evolution of the pests population in IPM plots. Pests ... For pollinators, the most abundant families ...... induced by chemical interaction between unattacked .... in a coastal savannah agro ecological zone.

  9. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Hsu, Chiun-Kang; Micallef, Shirley A

    2017-10-16

    Reducing Salmonella enterica association with plants during crop production could reduce risks of fresh produce-borne salmonellosis. Plant growth-promoting rhizobacteria (PGPR) colonizing plant roots are capable of promoting plant growth and boosting resistance to disease, but the effects of PGPR on human pathogen-plant associations are not known. Two root-colonizing Pseudomonas strains S2 and S4 were investigated in spinach, lettuce and tomato for their plant growth-promoting properties and their influence on leaf populations of S. enterica serovar Newport. Plant roots were inoculated with Pseudomonas in the seedling stage. At four (tomato) and six (spinach and lettuce) weeks post-germination, plant growth promotion was assessed by shoot dry weight (SDW) and leaf chlorophyll content measurements. Leaf populations of S. Newport were measured after 24h of leaf inoculation with this pathogen by direct plate counts on Tryptic Soy Agar. Root inoculation of spinach cv. 'Tyee', with Pseudomonas strain S2 or S4 resulted in a 69% and 63% increase in SDW compared to non-inoculated controls (pgrowth by over 40% compared to controls (pgrowth promotion was detected in tomato cv. 'BHN602', but S2-inoculated plants had elevated leaf chlorophyll content (13%, pgrowth, but also reduce the fitness of epiphytic S. enterica in the phyllosphere. Plant-mediated effects induced by PGPR may be an effective strategy to minimize contamination of crops with S. enterica during cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Salinity and ripening on/off the plant effects on lycopene synthesis and chlorophyll breakdown in hybrid Raf tomato

    NARCIS (Netherlands)

    Sánchez-González, María J.; Schouten, Rob E.; Tijskens, L.M.M.; Cruz Sánchez-Guerrero, M.; Medrano, Evangelina; Rio-Celestino, del Mercedes; Lorenzo, Pilar

    2016-01-01

    The aim of this study was to describe the physiology of fruit colour in tomato as affected by salinity and ripening on and off the plant. Chlorophyll and lycopene levels were repeatedly measured in ninety Raf tomatoes over a period of eight days using remittance spectroscopy. Fruits were

  11. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    Science.gov (United States)

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    Science.gov (United States)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  13. Genetic diversity and distribution of a distinct strain of Chili leaf curl virus and associated betasatellite infecting tomato and pepper in Oman.

    Science.gov (United States)

    Khan, Akhtar J; Akhtar, Sohail; Al-Zaidi, Amal M; Singh, Achuit K; Briddon, Rob W

    2013-10-01

    Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010-2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0-91.1%) to isolates of the "Pakistan" strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  15. Comparative effects of partial rootzone drying and deficit irrigation on growth and physiology of tomato plants

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2009-01-01

    Full Text Available The effects of partial rootzone drying (PRD, deficit irrigation (DI, and full irrigation (FI on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.

  16. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.

    Science.gov (United States)

    Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

    2010-01-01

    Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects].

  17. Population Growth Parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on Tomato Plant Using Organic Substrate and Biofertilizers.

    Science.gov (United States)

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-01-01

    The tomato leafminer, Tuta absoluta (Meyrick) is a devastating pest associated with tomato. In this study, effects of tomato plants treated with vermicompost (20, 40, and 60%), humic fertilizer (2, 4 and 6 g/kg soil) and plant growth promoting rhizobacteria (Pseudomonas fluorescens and Bacillus subtilis) were investigated on the life table parameters of T. absoluta in a growth chamber at 25 ± 2 °C, 65 ± 5% RH, and 16:8 (L:D) h. Significant differences were found for the total developmental time, fecundity, and oviposition period of T. absoluta on the treatments tested. The net reproductive rate (R0), intrinsic rate of natural increase (rm), finite rate of increase (λ), mean generation time (T), and doubling time (DT) of T. absoluta were significantly different among treatments tested. We found that in all vermicompost, humic fertilizer and plant growth promoting rhizobacteria treatments, values of R0, rm, and λ were lower than control treatment. However, the lowest values of these parameters were obtained on 2 g/kg humic fertilizer and 40% vermicompost. Furthermore, T. absoluta had longest T and DT values on 2 g/kg humic fertilizer treatment. Data obtained showed that the addition of 2 g/kg humic fertilizer and 40% vermicompost to the growing soil reduced T. absoluta populations in tomato cultures. In addition, these levels of fertilizers improved growth parameters of tomato seedlings (plant height, wet weight, and dry weight) compared with other treatments. These results could be useful in improving the sustainable management of the moth. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Localization of QTLs for in vitro plant regeneration in tomato.

    Science.gov (United States)

    Trujillo-Moya, Carlos; Gisbert, Carmina; Vilanova, Santiago; Nuez, Fernando

    2011-10-20

    Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration. In this study we have

  19. Localization of QTLs for in vitro plant regeneration in tomato

    Directory of Open Access Journals (Sweden)

    Nuez Fernando

    2011-10-01

    Full Text Available Abstract Background Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. Results We developed two mapping populations (F2 and BC1 derived from a previously selected tomato cultivar (cv. Anl27 with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47. The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8 in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1 and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related

  20. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    Science.gov (United States)

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.

  1. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants

    Directory of Open Access Journals (Sweden)

    Charith Raj Adkar-Purushothama

    2015-12-01

    Full Text Available In order to analyze the production of small RNA (sRNA by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers were inoculated with the variants of Potato spindle tuber viroid (PSTVd. After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+ and antigenomic (− strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE69225.

  2. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    Science.gov (United States)

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it.

  3. The deterioration during transport and storage of tomato fruits by microorganisms contaminating the surface and latent infected tissue

    OpenAIRE

    河野, 又四; 寺下, 隆夫

    1988-01-01

    [Author abstract]Deterioration during transport and storage of tomato fruits is generally thought to be caused by microorganisms contaminating the surface and latent infected tissue of apparently healthy fruit. Counts of viable airborne microorganisms showed that there were more in plastic greenhouses than in open culure of tomatoes. Altemaria, Aspergillus niger, Asp. oryzae, Cladosporium, Fusarium, Mucor, Penicillium, Trichoderma, Trichothecium, Bacillus, Erwinia and Pseudomonas were among t...

  4. Clustering and cellular distribution characteristics of virus particles of Tomato spotted wilt virus and Tomato zonate spot virus in different plant hosts.

    Science.gov (United States)

    Zhang, Zhongkai; Zheng, Kuanyu; Dong, Jiahong; Fang, Qi; Hong, Jian; Wang, Xifeng

    2016-01-19

    Tomato spotted wilt virus (TSWV) and Tomato zonate spot virus (TZSV) are the two dominant species of thrip-transmitted tospoviruses, cause significant losses in crop yield in Yunnan and its neighboring provinces in China. TSWV and TZSV belong to different serogroup of tospoviruses but induce similar symptoms in the same host plant species, which makes diagnostic difficult. We used different electron microscopy preparing methods to investigate clustering and cellular distribution of TSWV and TZSV in the host plant species. Negative staining of samples infected with TSWV and TZSV revealed that particles usually clustered in the vesicles, including single particle (SP), double particles clustering (DPC), triple particles clustering (TPC). In the immunogold labeling negative staining against proteins of TZSV, the antibodies against Gn protein were stained more strongly than the N protein. Ultrathin section and high pressure freeze (HPF)-electron microscopy preparations revealed that TSWV particles were distributed in the cisternae of endoplasmic reticulum (ER), filamentous inclusions (FI) and Golgi bodies in the mesophyll cells. The TSWV particles clustered as multiple particles clustering (MPC) and distributed in globular viroplasm or cisternae of ER in the top leaf cell. TZSV particles were distributed more abundantly in the swollen membrane of ER in the mesophyll cell than those in the phloem parenchyma cells and were not observed in the top leaf cell. However, TZSV virions were mainly present as single particle in the cytoplasm, with few clustering as MPC. In this study, we identified TSWV and TZSV particles had the distinct cellular distribution patterns in the cytoplasm from different tissues and host plants. This is the first report of specific clustering characteristics of tospoviruses particles as well as the cellular distribution of TSWV particles in the FI and globular viroplasm where as TZSV particles inside the membrane of ER. These results indicated that

  5. Assessment of multifunctional bio fertilizers on tomato plants cultivated under a fertigation system

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Khairuddin Abdul Rahim

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bio organic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG and PA and MF-BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N 2 -fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional bio fertilizers on tomato plants grown under a fertigation system. Multifunctional bio fertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional bio fertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. (author)

  6. Gamma radiation sensitivity in tomato tree and response of plants proceeding from salinity irradiated seeds

    International Nuclear Information System (INIS)

    Colaco, Waldeciro; Bidjeke, Raoul; Fleming, Peter M.

    2000-01-01

    Preliminary experiments were conducted to evaluate the radiosensitivity of tomato {Lycopersicon esculentum L. cultivars IPA-6, IPA-8, and Lycopersicum hirsutum glabratum - } to gamma rays from a 60 Co source, considering future induced mutation studies aiming at the improvement of plant salinity tolerance. Sets of dry seeds were exposed to gamma radiation doses (300 - 600 Gy and 100-400 Gy) and compared to a control without irradiation (0 Gy) under greenhouse conditions. The radiosensitivity was initially evaluated through germination of irradiated dry seeds determined at 13 and 30 days after irradiation and also through seedling survival. Seed germination was delayed by gamma irradiation and especially reduced at higher doses (300- 600 Gy). Survival of tomato plants was decreased with increased dose of radiation and was reduced by < 16% at the 300-600 Gy doses. Growth of plants was enhanced at low doses of gamma rays; higher doses reduced plant size. Gamma irradiation had significant effects on tomato plants generated from dry seed and submitted to different levels of salinity. It is recommended a dose range of 100-200 Gy for mutation breeding purpose using the varieties tested. (author)

  7. Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts.

    Science.gov (United States)

    Correia, L; Marrocos, P; Montalván Olivares, D M; Velasco, F G; Luzardo, F H M; Mota de Jesus, R

    2018-05-01

    Anthropogenic activities such as agriculture, industry, and mining have contributed significantly to the accumulation of heavy metals in the soil, which in turn cause problems to human health and to the environment. The present work aims to study the effects of nickel (Ni) on the development of tomato plants, the risks to human health associated to the consumption of contaminated tomatoes, and the consequences to the environment. The experiment was carried out in greenhouse environment for a period of 120 days, and the plants were cultivated in soils with four different concentrations of Ni: 0, 35, 70, and 105 mg kg -1 . The concentration of nickel in each part (root, stem, leaf, and fruit) of the tomato plant was measured at four different stages of the cycle: 30, 60, 90, and 120 days, by inductively coupled plasma optical emission spectrometer (ICP-OES). At the end of the cycle, the concentration of certain macro- and micronutrients was also determined and related to the corresponding Ni concentration in the soil. The distribution of Ni in the parts of the plant was analyzed from the bioaccumulation factor temporal behavior. Nickel concentrations found in the fruit were too low to pose a risk to human health. As a result of this research, it was verified that soils with nickel concentrations close to 70 mg kg -1 , which is the limit established by the CONAMA resolution (420/2009), may actually represent an optimum concentration value for the development of tomato plants. It also increases productivity per plant and reduces the use of resources such as water and agricultural inputs.

  8. Influence of simulated Quinclorac drift on the accumulation and movement of herbicide in tomato (Lycopersicon esculentum) plants.

    Science.gov (United States)

    Lovelace, Michael L; Hoagland, Robert E; Talbert, Ronald E; Scherder, Eric F

    2009-07-22

    Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a herbicide commonly used in rice, and its drift has been suspected of causing injury to off-target tomato fields throughout Arkansas. Studies were conducted to evaluate the effects of single and multiple simulated quinclorac drift applications on tomato plant growth and development. Residues extracted from tomato plants treated with 0.42 g of ai ha(-1) were below the detection limit of liquid chromatography-double mass spectrometry (LC-MS/MS) analysis. Quinclorac residue levels and half-lives in tomato tissue increased as the application rate and number of applications increased. From 3 to 72 h after (14)C-quinclorac treatment of plants, most of the absorbed (14)C was retained in the treated leaf, and translocations of (14)C out of the treated leaf of vegetative and flowering tomato plant tissues were similar. Of the (14)C that translocated out of the treated leaf, the greatest movement was acropetally. The flower cluster contained 1% of the total absorbed (14)C, which suggests the potential for quinclorac translocation into tomato fruit. More extensive research will be required to understand the impact that quinclorac may have on tomato production in the area.

  9. Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Mulder, Patrick; Kohlen, Wouter; Bino, Raoul; Levin, Ilan; Bouwmeester, Harro

    2008-08-13

    The consumption of natural products with potential health benefits has been continuously growing, and enhanced pigmentation is of major economic importance in fruits and vegetables. The tomato hp-2 ( dg ) is an important mutant line that has been introgressed into commercial tomato cultivars marketed as lycopene rich tomatoes (LRT) because of their enhanced fruit pigmentation, attributed to higher levels of carotenoids, including lycopene. Strigolactones are signaling compounds that mediate host finding in root parasitic plants and are biosynthetically derived from carotenoids. Considering the high carotenoid content of the hp-2 ( dg ) mutant, we studied its susceptibility to the root parasite Orobanche. In a field experiment, the average number of Orobanche aegyptiaca plants growing on hp-2 ( dg ) was surprisingly significantly reduced compared with its isogenic wild-type counterpart. In vitro assays and LC-MS/MS analysis showed that this reduction was associated with a lower production of strigolactones, which apparently renders the high-carotenoid hp-2 ( dg ) mutant less susceptible to Orobanche.

  10. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

    Science.gov (United States)

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-09-04

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

  11. Persistence of endosulfan and its metabolites in tomato plants and soil

    International Nuclear Information System (INIS)

    Carazo, E.; Barquero, M.; Valverde, B.

    1999-01-01

    Tests were conducted to study the persistence of 14 C-labelled α and β -endosulfan in tomato plants and soil under the greenhouse conditions when applied at the rate and number of applications used by tomato growers in Costa Rica. Two applications, at 30 and 55 days after planting were made. Plant and soil samples were extracted 37, 49, 71 and 125 days after planting and analyzed by LSC, TLC and GC-ECD. At 37 days after planting the compounds identified were α-endosulfan, β-endosulfan and endosulfan sulphate with a combined concentration of 3.6 mg/kg in plant and 0.6 mg/kg in the soil. At 49 days after planting the same three compounds were found at the combined concentration of 1.51 mg/kg in the plant and at 0.34 mg/kg in the soil. After 71 days low levels of α-endosulfan, β-endosulfan, endosulfan sulphate and endosulfan lactone were found in plants and soil. Similarly, at 125 days low levels of these compounds as well as low levels of two other metabolites, endosulfan alcohol and endosulfan ether were detected. Under the conditions of the experiment endosulfan residues do not seem to be significant or persistant. (author)

  12. High Level of Nitrogen Makes Tomato Plants Releasing Less Volatiles and Attracting More Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Islam, Md. Nazrul; Hasanuzzaman, Abu Tayeb Mohammad; Zhang, Zhan-Feng; Zhang, Yi; Liu, Tong-Xian

    2017-01-01

    Tomato (Solanum lycopersicum) production is seriously hampered by the infestation of the sweetpotato whitefly, Bemisia tabaci MEAM 1 (Middle East-Asia Minor 1). The infestation behavior of the whiteflies could be affected by the quantity of plant released volatile organic compounds (VOCs) related to nitrogen concentrations of the plant. In this study, we determined the infestation behavior of B. tabaci to the tomato plants that produced different levels of VOCs after application of different levels of nitrogen with a wind tunnel and an olfactometer. We also analyzed the VOCs released from nitrogen-treated tomato plants using solid phase microextraction and gas chromatography-mass spectrometry. The results revealed that the production of eight VOCs (β-pinene, (+)-4-carene, α-terpinene, p-cymene, β-phellandrene, α-copaene, β-caryophyllene, and α-humulene) was reduced after the plants were treated with high levels of nitrogen. However, more whiteflies were attracted to the tomato plants treated with high levels of nitrogen than to the plants treated with normal or below normal levels of nitrogen. These results clearly indicated that nitrogen can change the quality and quantity of tomato plant volatile chemicals, which play important roles in B. tabaci host plant selection. PMID:28408917

  13. Preliminary design, construction and evaluation of robot of tomato seed planting for the trays of greenhouse

    Directory of Open Access Journals (Sweden)

    J Ghezavati

    2015-09-01

    Full Text Available Introduction: From an economic viewpoint, tomato is considered as the second most valuable crop after potato. It is also preceded by the potato in terms of per capita consumption in the world. In 2008, the cultivation area used for the tomato as equal to 163,539 hectares in Iran and the production of it was equal to 5,887,715 tons with an average production of 117,887 tons in 4352 hectares in the provinces, respectively. Having high production volume and quality, costly hybrid seeds are currently used for the major planting areas of vegetable in Iran. Most of the used transplanted seedlings are 83%. Since the seeds are expensive, the percentage of seedlings and healthy and disease-free seeds should be used for maximized germination and be transferred to the fields of open space. Preparing seedlings in transplanting trays is a technology to respond to this need. Trays are covered with a layer of Peat and Miculite fertilizers. Then, one seed is manually placed in each cell after gauging and preparing a suitable field. However, manually placing seeds is time-consuming and requires hard labor. Sixteen working labors per hour are required for 15 × 7 cell in order to have 10200 seedlings grown in 100 trays. Due to lack of adequate labor, production capacity of greenhouses is reduced, especially in the farming season when finding labor for planting vegetable sprouts is laborious. Therefore, mechanizing tray seeding operations is essential to increase the capacity of the growing industry of greenhouses in Iran. Materials and Methods: Initially, the tomato seeds were examined in the laboratory. The most important parameters of the study included size, shape, weight, the speed of getting out of the tank and the minimum carrying speed. Then, a vacuum-based single seed picking unit was prepared to investigate the factors influencing the design, so that a single tomato seed can be harvested from the masses. The most important factors considered in the

  14. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  15. Inhibitory effects of salicylic acid on Meloidogyne javanica reproduction in tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Moslemi, F.; Fatemy, S.; Bernard, F.

    2016-11-01

    Root-knot nematodes (Meloidogyne spp.), play a major role in loss of agricultural production. Natural substances, such as salicylic acid (SA) could possibly be involved in inducing host plant resistance against nematodes. The present study is concerned with exploring the effects of varying concentrations of SA as seed priming and soil drench on tomato growth parameters and the reproduction of the root-knot nematode Meloidogyne javanica. SA at 50 μM concentration caused only 2% of juvenile mortality under in vitro conditions. SA applied as 50 μM seed treatment caused 95% and, as a soil drench, 78% reduction in the number of egg masses that formed on tomato plants. The numbers of galls were reduced to a lesser extent. Final nematode density per gram of soil was reduced to less than 1 by the 50 μM SA seed treatment, and in other treatments decreased by between 70 and 88% compared with control plants. Our results indicate SA has potential to lower root knot nematode reproduction in tomato, and seed priming is a fairly easy method to work with. (Author)

  16. 32P assessed phosphate uptake by tomato plants Hebros in relation to soil nutrient substance supplies

    International Nuclear Information System (INIS)

    Stoyanova, I.; Rankov, V.; Dimitrov, G.

    1978-01-01

    The uptake of phosphates by tomato plants, cv.Hebros, was assessed by 32 P in a vegetation pot experiment. Leached meadow-cinnamon soil was used, taken from a stationary field experiment to which, for a period of eight years, various rates of NPK were applied. As a result of that significant changes occurred in the soil nutrient substance supplies (concerning total and mobile forms of nitrogen, phosphorus, potassium, pH and salts concentration). It was established that the coefficient of phasphate utilization by tomato plants was the highest (19.15%) on soil receiving a N 210 P 210 K 210 fertilizer application. Long-term fertilization with higher rates at a 1:1:1 NPK ratio increased the content of nutrient substances in the soil, but the coefficient of utilization of available phosphate diminished and was lowest (11.40%) in the case when a N 960 P 960 K 720 mineral fertilizer rate was applied. Following prolonged mineral fertilization with growing N rates (from 240 up to 720 kg/ha) at a background of P 720 K 210 , the coefficient of phosphate utilization by tomato plants also diminished from 16.16 to 12.26%. (author)

  17. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    Directory of Open Access Journals (Sweden)

    Alvaro Fuentes

    2017-09-01

    Full Text Available Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN, Region-based Fully Convolutional Network (R-FCN, and Single Shot Multibox Detector (SSD, which for the purpose of this work are called “deep learning meta-architectures”. We combine each of these meta-architectures with “deep feature extractors” such as VGG net and Residual Network (ResNet. We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant’s surrounding area.

  18. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    International Nuclear Information System (INIS)

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-01-01

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  19. Accumulation of carbohydrates in the development of tomato plants treated with different chemical products

    Directory of Open Access Journals (Sweden)

    Anamaria Ribeiro Pereira Ramos

    2015-04-01

    Full Text Available This work had the purpose to study the physiological effects of pyraclostrobin, boscalid, plant growth regulators and plant extract on the accumulation of carbohydrates during the development of tomato plants (Solanum lycopersicum L., hybrid Giuliana, in protected environment conditions. The treatments were: T1- control; T2- pyraclostrobin 0.2 g L-1; T3- boscalid 0.075 g L-1, T4- pyraclostrobin 0.2 g L-1 + boscalid 0.075 g L-1, T5- IBA + GA3 + kinetin 375 mg L-1, T6- GA4+7 + benzylaminopurine 100 mg L-1 and T7- plant extract 100 mg L-1. The carbohydrate accumulation curve was accomplished with 5 samples, at 20-day intervals between evaluations, the 1st evaluation being carried out at 30 days after transplantation, on the day of the first treatment application. At each sampling the plants were separated in stem, leaves and fruits, of which the contents of total soluble sugars, reducing sugars and saccharose were evaluated. The effects of the treatments on chlorophyll content and gas exchanges were also evaluated. The experimental design was completely randomized, with 4 repetitions and 6 destructive evaluations during the development, with 1 plant per experimental unit for each sampling. The pyraclostrobin and boscalid applied in isolation and/or combined favor the increase of carbohydrates in leaves, stems and fruits of tomato hybrid Giuliana

  20. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

    Science.gov (United States)

    Zhang, Shuai; Li, Xin; Sun, Zenghui; Shao, Shujun; Hu, Lingfei; Ye, Meng; Zhou, Yanhong; Xia, Xiaojian; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant–pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems. PMID:25657213

  1. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  2. Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Rosa Lozano-Durán

    2013-03-01

    Full Text Available The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R, the other susceptible (S to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the

  3. Characterization of two biologically distinct variants of Tomato spotted wilt virus

    Science.gov (United States)

    Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...

  4. Strains of Peru tomato virus infecting cocona (Solanum sessiliflorum), tomato and pepper in Peru with reference to genome evolution in genus Potyvirus.

    Science.gov (United States)

    Melgarejo, T A; Alminaite, A; Fribourg, C; Spetz, C; Valkonen, J P T

    2004-10-01

    Two isolates (SL1 and SL6) of Peru tomato virus (PTV, genus Potyvirus) were obtained from cocona plants (Solanum sessiliflorum) growing in Tingo María, the jungle of the Amazon basin in Peru. One PTV isolate (TM) was isolated from a tomato plant (Lycopersicon esculentum) growing in Huaral at the Peruvian coast. The three PTV isolates were readily transmissible by Myzus persicae. Isolate SL1, but not SL6, caused chlorotic lesions in inoculated leaves of Chenopodium amaranticolor and C. quinoa. Isolate TM differed from SL1 and SL6 in causing more severe mosaic symptoms in tomato, and vein necrosis in the leaves of cocona. Pepper cv. Avelar (Capsicum annuum) showed resistance to the PTV isolates SL1 and SL6 but not TM. The 5'- and 3'-proximal sequences of the three PTV isolates were cloned, sequenced and compared to the corresponding sequences of four PTV isolates from pepper, the only host from which PTV isolates have been previously characterised at the molecular level. Phylogenetic analyses on the P1 protein and coat protein amino acid sequences indicated, in accordance with the phenotypic data from indicator hosts, that the PTV isolates from cocona represented a distinguishable strain. In contrast, the PTV isolates from tomato and pepper were not grouped according to the host. Inclusion of the sequence data from the three PTV isolates of this study in a phylogenetic analysis with other PTV isolates and other potyviruses strengthen the membership of PTV in the so-called "PVY subgroup" of Potyvirus. This subgroup of closely related potyvirus species was also distinguishable from other potyviruses by their more uniform sizes of the protein-encoding regions within the polyprotein.

  5. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray.

    Science.gov (United States)

    Samolski, Ilanit; de Luis, Alberto; Vizcaíno, Juan Antonio; Monte, Enrique; Suárez, M Belén

    2009-10-13

    It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as

  6. The effect of plant growth regulators on callus induction somatic embryogenesis of hybird tomato

    International Nuclear Information System (INIS)

    Jan, S. A.; Shah, S. H.; Ali, S.; Ali, G. H.

    2015-01-01

    Efficient tissue culture system is important for transformation of important genes in hybrid tomato cultivars. The present study was undertaken to develop an efficient tissue culture system for hybrid tomato cultivar Peto-86. The young primary leaves and stems were inoculated into five different MS media having different concentrations of plant growth regulators in different combinations for callus induction, somatic embryogenesis and for both direct and indirect regeneration. Maximum callus induction frequency 90 percentage was achieved with MS media containing 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. The direct somatic embryogenesis was found highest on MS media supplemented with 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. Maximum indirect regeneration frequency 87 percentage was achieved from primary leaves explants with MS media containing IAA 0.5 mg L-1 and BAP 3 mg L-1 and highest direct regeneration frequency 77% was obtained from primary leaves explants with MS media containing NAA 1 mg L-1 and BAP 3 mg L-1. The high concentration of 2,4-D increased callus induction and somatic embryogenesis frequencies while the high concentration of BAP increased regeneration frequency. An improved tissue culture system of hybrid tomato cultivar Peto-86 was established and it may be recommended for further transformation experiments. (author)

  7. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    Science.gov (United States)

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.

  8. Salt and genotype impact on plant physiology and root proteome variations in tomato.

    Science.gov (United States)

    Manaa, Arafet; Ben Ahmed, Hela; Valot, Benoît; Bouchet, Jean-Paul; Aschi-Smiti, Samira; Causse, Mathilde; Faurobert, Mireille

    2011-05-01

    To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.

  9. Antinematicidal Efficacy Of Root Exudates Of Some Crotalaria Species On Meloidogyne Incognita Root-Knot Nematode Kofoid And White Chitwood Isolated From Infected Lycopersicum Esculentum L.Tomato Plant

    Directory of Open Access Journals (Sweden)

    L.S Danahap

    2015-08-01

    Full Text Available The antinematicidal efficacies of exudates of four common weeds Crotalaria breviflora Crotalaria juncea Crotalaria retusa and Crotalaria spectabilis were carried out against Meloidogyne incognita. The young actively growing seedling of the common weeds were uprooted and taken to the laboratory for analyses. The root exudates of test plants were prepared by growing the young actively growing seedlings in test tubes wrapped with black carbon paper for five days under lighted florescent bulbs. Root exudates of Crotalaria breviflora Crotalaria juncea Crotalaria retusa and Crotalaria spectabilis exhibited nematicidal properties against the Meloidogyne incognita. The effects varied with concentrations of the exudates P0.05 using analysis of variance ANOVA. The effects also differed among test plants with Crotalaria retusa topping in terms of reduction in nematode population. This was followed by C.breviflora C.juncea and C.spectabilis respectively. The results thus confirmed that all the test plants are potentially viable trap weeds and can be used for the control of Meloidogyne incognita and should be employed as such.

  10. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  11. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  12. Effect of biological and chemical preparations on peroxidase activity in leaves of tomato plants

    Directory of Open Access Journals (Sweden)

    Yulia Kolomiets

    2016-10-01

    Full Text Available In terms of treating tomato variety Chaika with chemical preparations with active substances if aluminum phosphate, 570 g/l + phosphorous acid 80 g/,l and mankotseb in concentration of 640 g/kg, the maximum increase in peroxidase activity in leaves of plants was observed in12 hours. In terms of use of biological preparations based on living cells Bacillus subtilis and Azotobacter chroococcum its activity was maximum in 24 hours and ranged from 77.7 to 112.7 un.mg-1•s-1

  13. Effect of Post-Harvest Acetic Acid and Plant Essential Oils on Shelf-Life Extension of Tomato Fruits

    International Nuclear Information System (INIS)

    Salem, E.A.; Naweto, M.; Mostafa, M.

    2013-01-01

    In vitro effect of different concentrations of acetic acid on linear growth of Alternaria alternate was studied. The causal agent of tomato black rots in contact and fumigation showed that acetic acid inhibit A. alternata growth at 2 ml/L and on 0.8 ml/L in contact and fumigation, respectively. In vivo effect showed that acetic acid at 6 ml/L reduced severity of infection of tomato fruits from 53.5% to 4.8% after 3 weeks of storage in dipping method but at the strongest fumigation methods, acetic acid inhibit tomato fruits rot at 0.4 ml/L after 3 weeks of storage. In vitro effect of camphore (Eucalyptus globulus Labill), caraway (Carium carvum L.) and peppermint oil (Mentha piperita L.) at different concentrations were tested against Alternaria alternata, since caraway oil is the strongest oil effect on fungal growth followed by peppermint and camphore respectively. Similarly in in vivo caraway oil inhibit tomato fruits rots at 6 ml/L followed by peppermint that inhibited tomato rots at 8 ml / L but camphore reduced tomato rots at 8 ml/L from 40% to 8.1%. Accepted April 2013

  14. Fungi colonizing the soil and roots of tomato (Lycopersicum esculentum Mill. plants treated with biological control agents

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Tomato plants, cv. Rumba Ożarowska, grown in the greenhouse of the University of Warmia and Mazury, were protected in the form of alternate spraying (twice and watering (twice with 5% aqueous extracts of the following plant species: Aloe vulgaris Lam., Achillea millefolium L., Mentha piperita L., Polygonum aviculare L., Equisetum arvense L., Juglans regia L. and Urtica dioica L. Plants not treated with the extracts served as control. After fruit harvest, samples of roots and soil were collected. The roots were disinfected and next placed on PDA medium. Soil-colonizing fungi were cultured on Martin medium. Fungi were identified microscopically after incubation. Pathogenic fungal species, Colletotrichum coccodes, Fusarium equiseti, F. oxysporum and F. poae, accounted for over 60% of all isolates obtained from the roots of tomato plants. The soil fungal community was dominated by yeast-like fungi (75.4%, whereas pathogenic fungi were present in low numbers. The applied 5% aqueous plant extracts effectively reduced the abundance of fungi, including pathogenic species, colonizing tomato plants and soil. The extract from P. aviculare showed the highest efficacy, while the extract from J. regia was least effective. Fungi showing antagonistic activity against pathogens (Paecilomyces roseum and species of the genus Trichoderma were isolated in greatest abundance from the soil and the roots of tomato plants treated with A. millefolium, M. piperita and U. dioica extracts.

  15. [Effectiveness of aqueous extracts of aromatic and medicinal plants against tomato grey mould in Morocco].

    Science.gov (United States)

    Kasmi, Manal; Aourach, Mohammed; El Boukari, Mohammed; Barrijal, Said; Essalmani, Haiat

    2017-08-01

    Grey mould is a major disease threatening the Moroccan tomato; this disease is often controlled by fungicides. However, the latter are a real danger to human health and environment. Thus, this study is part of the research of harmless alternatives such extracts of aromatic and medicinal plants (Lavandula officinalis, Thymus vulgaris, Cymbopogon citratus, and Melissa officinalis). In this study, the extracts of four medicinal and aromatic plants were tested for their antifungal potency in vitro and in vivo in order to select the most effective. The results show that, in vitro, the Lavandula officinalis, Thymus vulgaris and Cymbopogon citratus aqueous extracts all possess significant antifungal activity, whereas Melissa officinalis shows the least effective. Also in vivo only the aqueous extract of Cymbopogon citratus proves most effective against B. cinerea on tomato fruit. The test of the plants confirms that aqueous extracts of Cymbopogon citratus and Thymus vulgaris are most effective, while the aqueous extracts of Melissa officinalis and Lavandula officinalis always seem to be the least effective. Therefore, the aqueous extracts of Cymbopogon citratus and Thymus vulgaris are the most envisaged for the biological control of grey mould. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  16. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  17. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  18. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    Science.gov (United States)

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  19. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    Science.gov (United States)

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  20. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    Science.gov (United States)

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    (TM) kg N ha-1. The N contents of plants sampled on three occasions during the growing period and those of marketable fruits were also analyzed. Total marketable yield was determined at the end of the harvest period. The EU-Rotate_N model was used to predict the effects of the applied treatments......A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO....... The model was calibrated using data from a previous experiment. No differences between treatments were observed with respect to yield or N content in marketable fruits. The amount of N left in the field at the end of the cropping period was significantly lower in TO than in TC and TM. Simulated plant growth...

  2. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

    Directory of Open Access Journals (Sweden)

    Sang Gyu Kim

    2016-02-01

    Full Text Available Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt.

  3. Salmonella transfer during pilot plant scale washing and roller conveying of tomatoes.

    Science.gov (United States)

    Wang, Haiqiang; Ryser, Elliot T

    2014-03-01

    Salmonella transfer during washing and roller conveying of inoculated tomatoes was quantified using a pilot scale tomato packing line equipped with plastic, foam, or brush rollers. Red round tomatoes (2.3 kg) were dip inoculated with Salmonella enterica serovar Typhimurium LT2 (avirulent) (4 log CFU/g), air dried for 2 h, and then washed in sanitizer-free water for 2 min. Inoculated tomatoes were then passed single file over a 1.5-m conveyor equipped with plastic, foam, or brush rollers followed by 25 previously washed uninoculated tomatoes. Tomato samples were collected after 2 min of both washing and roller conveying, with all 25 uninoculated tomatoes collected individually after conveying. Roller surface samples were collected before and after conveying the uninoculated tomatoes. Both tomato and surface samples were quantitatively examined for Salmonella by direct plating or membrane filtration using xylose lysine Tergitol 4 agar. Regardless of the roller type, Salmonella populations on inoculated tomatoes did not significantly (P conveyors. After conveying uninoculated tomatoes over contaminated foam rollers, 96% of the 25 tomatoes were cross-contaminated with Salmonella at >100 CFU per tomato. With plastic rollers, 24 and 76% of tomatoes were cross-contaminated with Salmonella at 10 to 100 and 1 to 10 CFU per tomato, respectively. In contrast, only 8% of 25 tomatoes were cross-contaminated with brush rollers with Salmonella populations of 1 to 10 CFU per tomato. Overall, cross-contamination was greatest with foam, followed by plastic and brush rollers (P < 0.05). Adding peroxyacetic acid or chlorine to the wash water significantly decreased cross-contamination during tomato conveying, with chlorine less effective in controlling Salmonella on foam compared with plastic and brush rollers.

  4. Virus-specific proteins in cells infected with tomato black ring nepovirus: evidence for proteolytic processing in vivo.

    Science.gov (United States)

    Demangeat, G; Hemmer, O; Reinbolt, J; Mayo, M A; Fritsch, C

    1992-07-01

    The synthesis of proteins encoded by the RNA of tomato black ring virus (TBRV) in vivo was studied in protoplasts by direct labelling with [35S]methionine, and in protoplasts and plants by immunoblotting experiments with specific antisera. Comparison of the proteins synthesized in infected and mock-inoculated protoplasts suggested that proteins of M(r) 120K, 90K, 80K, 57K and 46K were virus-specific. The proteins derived from the RNA-1-encoded polyprotein detected by immunoblotting were a stable 120K protein and, only in protoplasts, small amounts of a 90K protein which contains the C-terminal part of the 120K protein and the polymerase domain. The results suggest that the polymerase and the adjacent protease function in vivo largely or solely when combined in a 120K protein. The proteins derived from the RNA-2-encoded polyprotein detected by immunoblotting were 59K and 57K proteins, which reacted with antiserum to TBRV particles, and a 46K protein. In extracts of infected Nicotiana clevelandii and Chenopodium quinoa made soon after inoculation, the 59K protein was more abundant than the 57K protein; later samples contained similar quantities of each protein. The 57K protein comigrated with protein extracted from virus particles. The results of amino acid sequencing suggested that the 57K protein is derived from the 59K protein by the loss of nine C-terminal amino acids. Antiserum to a peptide adjacent to the 57K protein in the 150K polyprotein detected a 46K protein in protoplasts and plant tissue. The results support the processing scheme for TBRV polyproteins proposed after analysis of the products of in vitro translation.

  5. Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants1[w

    Science.gov (United States)

    Kant, Merijn R.; Ament, Kai; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    Through a combined metabolomics and transcriptomics approach we analyzed the events that took place during the first 5 d of infesting intact tomato (Lycopersicon esculentum) plants with spider mites (Tetranychus urticae). Although the spider mites had caused little visible damage to the leaves after 1 d, they had already induced direct defense responses. For example, proteinase inhibitor activity had doubled and the transcription of genes involved in jasmonate-, salicylate-, and ethylene-regulated defenses had been activated. On day four, proteinase inhibitor activity and particularly transcript levels of salicylate-regulated genes were still maintained. In addition, genes involved in phospholipid metabolism were up-regulated on day one and those in the secondary metabolism on day four. Although transcriptional up-regulation of the enzymes involved in the biosynthesis of monoterpenes and diterpenes already occurred on day one, a significant increase in the emission of volatile terpenoids was delayed until day four. This increase in volatile production coincided with the increased olfactory preference of predatory mites (Phytoseiulus persimilis) for infested plants. Our results indicate that tomato activates its indirect defenses (volatile production) to complement the direct defense response against spider mites. PMID:15122016

  6. Morphology and biomass variations in root system of young tomato plants (Solanum sp.)

    International Nuclear Information System (INIS)

    Álvarez Gil, Marta A.; Fernández, Ana Fita; Ruiz Sánchez, María del C.; Bolarín Jiménez, María del C.

    2016-01-01

    The scarce exploitation of genotypic variability present in plant roots is an attractive breeding choice with regard to abiotic stresses and supports the objective of this work, which is to identify genotypic variation in root system traits of tomato genotypes (Solanum sp.). Thus, five tomato genotypes were studied: the commercial hybrid cultivar Jaguar (S. lycopersicum), Pera, Volgogradiskij and PE-47 entry (S. pennellii), which were collected in Peru, and the interspecific hybrid PeraxPE-47. Plants were grown in hydroponics for 26 days since germination; their roots were extracted and images were digitalized on scanner to evaluate total length, average diameter, the projected area and root length, following the categories per diameter of the whole root system through software Win Rhizo Pro 2003. The dry mass of roots and aerial parts was also recorded. Results indicated that genotypes differed in morphology, length according to diameter, root system spatial configuration and biomass, mainly with respect to the wild salinity resistant species PE-47. The interspecific hybrid PxPE-47 could be used as a rootstock to increase salt tolerance of susceptible cultivars. (author)

  7. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants

    Directory of Open Access Journals (Sweden)

    Roberto Lanna Filho

    2010-12-01

    Full Text Available The objective of this work was to evaluate in vitro and in vivo biocontrol of bacterial spot (Xanthomonas vesicatoria and early blight (Alternaria solani by the epiphytic bacteria Paenibacillus macerans and Bacillus pumilus. Tomato plants were previously sprayed with epiphytic bacteria, benzalkonium chloride and PBS buffer and, after four days, they were inoculated with A. solani and X. vesicatoria. To determine the phytopathogenic bacteria population, leaflet samples were collected from each treatment every 24 hours, for seven days, and plated on semi-selective medium. The effect of epiphytic bacteria over phytopathogens was performed by the antibiosis test and antagonistic activity measured by inhibition zone diameter. The epiphytic and benzalkonium chloride drastically reduced the severity of early blight and bacterial spot in comparison to the control (PBS. In detached leaflets, the epiphytic bacteria reduced in 70% the number of phytopathogenic bacteria cells in the phylloplane. The antibiosis test showed that the epiphytic bacteria efficiently inhibit the phytopathogens growth. In all the bioassays, the epiphytic bacteria protect tomato plants against the phytopathogens

  8. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  9. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    OpenAIRE

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-01-01

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using ...

  10. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode.

    Science.gov (United States)

    Koter, Marek D; Święcicka, Magdalena; Matuszkiewicz, Mateusz; Pacak, Andrzej; Derebecka, Natalia; Filipecki, Marcin

    2018-03-01

    Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log 2 FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These

  11. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors.

    Science.gov (United States)

    Ghanim, Murad; Brumin, Marina; Popovski, Smadar

    2009-08-01

    A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.

  12. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

    Science.gov (United States)

    Domínguez, Sara; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  13. Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene

    Directory of Open Access Journals (Sweden)

    Sara Domínguez

    2016-08-01

    Full Text Available Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in T. harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by i enhanced growth, ii increased carbon and nitrogen levels and iii a

  14. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene.

    Science.gov (United States)

    Domínguez, Sara; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  15. Association of an Alphasatellite with Tomato Yellow Leaf Curl Virus and Ageratum Yellow Vein Virus in Japan is Suggestive of a Recent Introduction

    OpenAIRE

    Shahid, Muhammad Shafiq; Ikegami, Masato; Waheed, Abdul; Briddon, Rob W.; Natsuaki, Keiko T.

    2014-01-01

    Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein virus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Jap...

  16. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

    Science.gov (United States)

    Buxa, Stefanie V; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J E; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

  17. Effects of Fertilization on Uptake of 85Sr, 60Co and 54Mn by Tomato and Phaseolus Plants

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Ezz El-Din, M.R.

    2001-01-01

    The effects of N-, P-, and K- fertilizers on availability of 85 Sr, 60 Co and 54 Mn added to the soil were measured in an open field experiment. The uptake of 85 Sr, 60 Co and 54 Mn by tomato and phaseolus was lower in fertilized treatments than in unfertilized ones. The radionuclide availability under fertilized condition depends on soil and element properties. Solubilization of Ca-ions following nitrification of nitrogen in ammonium salts and the presence of stable Strontium, Cobalt and Manganese in the acidifying fertilizers are the main factors giving rise to the reduced radioisotopes uptake by plants. The relative order of uptake of the investigated radionuclides by plants appeared to be as follow 54 Mn> 60 Co> 85 Sr. The distribution pattern of the total absorbed radionuclides in the two plants shows that the shoots contained the highest percent of these radionuclides. Transfer factors for phaseolus plants were higher than those of tomato plants

  18. Draft Genome Sequence of Bacillus velezensis Lzh-a42, a Plant Growth-Promoting Rhizobacterium Isolated from Tomato Rhizosphere.

    Science.gov (United States)

    Li, Zhenghua; Chen, Mei; Ran, Kun; Wang, Jihua; Zeng, Qiangcheng; Song, Feng

    2018-03-22

    The plant growth-promoting rhizobacterium Bacillus velezensis strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis. Copyright © 2018 Li et al.

  19. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes

    NARCIS (Netherlands)

    Lee, K.M.; Driever, S.M.; Heuvelink, E.; Rüger, S.; Zimmermann, U.; Gelder, de A.; Marcelis, L.F.M.

    2012-01-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. Leaf patch clamp pressure changes, a measure for relative changes in cell turgor, were monitored at three different

  20. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  1. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona.

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Patel, Beneeta; Stromberg, Verlyn; Westwood, James

    2013-12-01

    The cross-species movement of mRNA from hosts to the parasitic plant Cuscuta pentagona has been reported previously, but has not been characterized quantitatively or with attention to uptake patterns and the fate of specific mRNAs. Real-time PCR and RNA-Seq approaches were used to identify and characterize mobile transcripts from tomato and Arabidopsis hosts into C. pentagona. Tomato transcripts of Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Proteinase Inhibitor (SlPI) differed significantly in the rate of uptake into the parasite, but were then distributed over the length of the parasite shoot. When parasite shoots were detached from the hosts, the SlPI transcript concentrations in the parasite showed the greatest decrease within the first 8 h. Arabidopsis transcripts also varied in mobility into the parasite, and assay of specific regions of a Salt-inducible Zinc Finger Protein (AtSZF1) transcript revealed distinct patterns of abundance in the parasite. The uptake and distribution of host mRNAs into C. pentagona appears to vary among mRNAs, and perhaps even with the region of the mRNA under investigation. We propose that mRNAs traffic into the parasite via multiple routes, or that other mechanisms for selective uptake and mobility exist between host and parasite. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Morphogenetic Potential of Tomato (Lycopersicon esculentum cv. ‘Arka Ahuti’ to Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Kanakapura K. NAMITHA

    2013-05-01

    Full Text Available A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill. cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L and Indole-3-acetic acid (0.1 to 1 mg/L. The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.

  3. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape-gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    Simbaqueba, Jaime; Catanzariti, Ann-Maree; González, Carolina; Jones, David A

    2018-05-22

    RNAseq reads from cape-gooseberry plants (Physalis peruviana) infected with Fusarium oxysporum f. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporum f. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1 (designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1 were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12 genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1b were tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant has reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither, SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3. These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1 undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3 could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph. Alternatively, cape gooseberry germplasm could be explored for I-3 homologues capable of providing resistance to Foph. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  4. Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination

    NARCIS (Netherlands)

    Hanssen, I.M.; Paeleman, A.; Wittemans, L.P.F.; Goen, K.; Lievens, B.; Bragard, C.; Vanachter, A.C.R.C.; Thomma, B.P.H.J.

    2008-01-01

    Over a period of a few years, Pepino mosaic virus (PepMV) has become one of the most important viral diseases in tomato production worldwide. Infection by PepMV can cause a broad range of symptoms on tomato plants, often leading to significant financial losses. At present, five PepMV genotypes (EU,

  5. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene.

    Science.gov (United States)

    Sobczak, Miroslaw; Avrova, Anna; Jupowicz, Justyna; Phillips, Mark S; Ernst, Karin; Kumar, Amar

    2005-02-01

    The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.

  6. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    Science.gov (United States)

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  7. The plant growth promoting substance, lumichrome, mimics starch and ethylene-associated symbiotic responses in lotus and tomato roots

    Directory of Open Access Journals (Sweden)

    Liezel eGouws

    2012-06-01

    Full Text Available Symbiosis involves responses that maintain the plant host and symbiotic partner’s genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus and tomato (Solanum lycopersicum. Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus or Glomus intraradices/Glomus mossea (for tomato. It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.

  8. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Science.gov (United States)

    Bargsten, Joachim W; Folta, Adam; Mlynárová, Ludmila; Nap, Jan-Peter

    2013-01-01

    As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  9. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Directory of Open Access Journals (Sweden)

    Joachim W Bargsten

    Full Text Available As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes. The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  10. Susceptibility of the Tomato Mutant High Pigment-2dg (hp-2dg) to Orobanche spp. Infection

    NARCIS (Netherlands)

    Lopez Raez, J.A.; Charnikhova, T.; Mulder, P.P.J.; Kohlen, W.; Bino, R.J.; Levin, I.; Bouwmeester, H.J.

    2008-01-01

    The consumption of natural products with potential health benefits has been continuously growing, and enhanced pigmentation is of major economic importance in fruits and vegetables. The tomato hp-2dg is an important mutant line that has been introgressed into commercial tomato cultivars marketed as

  11. A targeted management of the nutrient solution in a soilless tomato crop according to plant needs

    Directory of Open Access Journals (Sweden)

    Angelo eSignore

    2016-03-01

    Full Text Available The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution, in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: 1 studied the effect of several values of the electrical conductivity (EC of nutrient solution in a NFT (Nutrient Film Technique system on a cherry type tomato crop, and 2 define a NS (called recovery solution, based on the concept of uptake concentration and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP, above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5 and 10 dS m-1, respectively, were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively.The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the nutrient solution used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries.

  12. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    Science.gov (United States)

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b 6 /f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (F v /F m , rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain.

    Science.gov (United States)

    Romay, Gustavo; Chirinos, Dorys T; Geraud-Pouey, Francis; Gillis, Annika; Mahillon, Jacques; Bragard, Claude

    2018-02-01

    At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.

  14. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Nitrogen concentration in dry matter of the fifth leaf during growth of greenhouse tomato plants

    Directory of Open Access Journals (Sweden)

    Rattin Jorge E.

    2002-01-01

    Full Text Available The nitrogen concentration in dry matter of the fifth leaf during growth of a greenhouse tomato crop was determined. Plants of hybrid Monte Carlo were grown in 4.5 L bags, using a commercial substrate, in a plant density of 3.3 plants m-2. A nutrient solution containing, in mmol L-1: KNO3, 4.0; K2SO4, 0.9; Ca(NO32, 3.75; KH2PO4, 1.5; MgSO4, 1.0; iron chelate 19. 10³, was used as reference. Microelements were added by a commercial mixture. The T3 treatment was equal to the reference nutrient solution, whereas in treatments T1, T2, T4 and T5 quantities of all nutrients from T3 were multiplied by 0.25, 0.50, 1.25 and 1.50, respectively. In each treatment, the volume of 1 L of nutrient solution was supplied to each plant once a week by fertigation. Periodically destructive measurements were made from anthesis to ripening of the first truss, to determine dry matter and N concentration in shoot and in fifth leaf tissues, counted from the apex to the bottom of the plant. Five dilution curves were fitted from data of N concentration in the fifth leaf and shoot dry matter accumulation during growth of plants. A general relationship was adjusted between actual N concentration in shoot (Nt and in the fifth leaf (Nf: Nt = 1.287 Nf (R² = 0.80. This relationship could be used to estimate the N status of plants by means of a nitrogen nutrition index (NNI, from analysis of the fifth leaf sap.

  16. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato......-colonization frequency appears to be influenced by the presence/absence of specific phytohormones. In order to obtain a deeper understanding of the role of these compounds in the plant-endophyte interaction, the selected isolates are currently being screened using confocal microscopy and qPCR in order to find candidates...... whose colonization rate is critically affected by the phytohormones of interest. A transcriptomic analysis of tomato plants inoculated with the isolates selected from the screening will provide further clues as to which physiological mechanisms, associated with endophyte recruitment, are influenced...

  17. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-07-01

    Full Text Available Tomato yellow leaf curly virus (TYLCV, transmitted by the whitefly (, causes leaf curling and yellowing, plant dwarfism, and growth inhibition in tomato ( L.. The APETALA2 (AP2 and ethylene response factor (ERF transcription factor (TF family, the largest plant-specific TF family, was identified to function in plant development and pathogen defense. Our study aimed to analyze the mechanism underlying the function of ERF (SlERF TFs in response to TYLCV infection and improve useful information to increase the resistance to TYLCV in tomato. A total of 22 tomato AP2/ERF TFs in response to TYLCV were identified according to transcriptome database. Five ERF-B3 TFs were identified in cultivars Hongbeibei (highly resistant, Zheza-301, Zhefen-702 (both resistant, Jinpeng-1, and Xianke-6 (both susceptible. Interaction network indicated that SlERF TFs could interact with mitogen-activated protein kinase (MAPK. Expression profiles of five ERF-B3 genes (, , , , and were detected by quantitative real-time–polymerase chain reaction (qRT-PCR after TYLCV infection in five tomato cultivars. expression was upregulated in five tomato cultivars. The expressions of three genes (, , and were upregulated in Zheza-301 and Zhefen-702. and expressions were downregulated in Hongbeibei and Xianke-6, respectively. Yeast one-hybrid showed that the GCC-box binding ability of ERF-B3 TFs differed in resistant and susceptible tomato cultivars. Expression profiles were related to the GCC-box binding ability of SlERF TFs in resistant and susceptible tomato cultivars. The defense mechanism underlying the tomato’s response to TYLCV involved a complicated network, which provided important information for us in breeding and genetic analysis.

  18. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    Science.gov (United States)

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  19. FEATURES OF MINERAL NUTRITION FOR TOMATO PLANTS WITH DRIP IRRIGATION SYSTEM IN OPEN FIELD CONDITION

    Directory of Open Access Journals (Sweden)

    P. M. Akhmetova

    2017-01-01

    Full Text Available Dagestan is the largest region with irrigation system of agriculture in Russia. Irrigated lands provide 70% of total plant production. The field cultivation is carried on arable land in plain region of the republic. The drip irrigation as an ecologically safe technology for watering is regarded as major means for vegetable production farming. This approach maintains the propitious level of water and air in the soil without surface and deep drainage of irrigating water. These irrigated lands are expected to be used first of all for valuable and profitable crops such as tomato that is a leading crop in Dagestan. The experimental work was carried out at OOO ‘Dagagrocomplex’, Aleksandro-Nevskoye, in Tarumovskiy region. The aim of the study was to determinate the optimal dose of mineral fertilizers and the way of their application to improve the productivity without quality loss. The complex analysis of the technology for tomato production under drip irrigation through nontransplanting culture showed its high efficiency, because volume and quality of yield directly depended on soil moisture and precise supporting of mineral nutrition rates. The maximal yield of tomato fruits, 88.7-94.5 t/ha was observed with once mineral fertilizer application at a dose of N180P135K60 with soil humidity 70-80% (field moisture capacity, and also at the dose of N180P135K60 with basic application of N100 in nutrition rate. The result of the study showed that the optimization of two factors, namely soil water rate and mineral nutrition, enabled to produce additionally 39.2 t/ha. It was shown the tight connection between yielding and its quality; when yielding 95 t/ha, the increased contents of dry matter to 7.01%, sugar to 3.8% vitamin C to 18.46% were noticed. The high quality of produced output was supported by pre-watering threshold of moisture at 75-80% (field moisture capacity, when once fertilizer application at a dose of N180P135K60. 

  20. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    Science.gov (United States)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content

  1. Tomato yield and potassium concentrations in soil and in plant petioles as affected by potassium fertirrigation

    Directory of Open Access Journals (Sweden)

    FONTES PAULO CEZAR REZENDE

    2000-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering. Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.

  2. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.

    Science.gov (United States)

    Yang, Qingjie; Yuan, Dawei; Shi, Lianxuan; Capell, Teresa; Bai, Chao; Wen, Nuan; Lu, Xiaodan; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2012-10-01

    The accumulation of carotenoids in plants depends critically on the spatiotemporal expression profiles of the genes encoding enzymes in the carotenogenic pathway. We cloned and characterized the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter to determine its role in the regulation of carotenogenesis, because the native gene is expressed at high levels in petals, which contain abundant chromoplasts. We transformed tomato (Solanum lycopersicum cv. Micro-Tom) plants with the gusA gene encoding the reporter enzyme β-glucuronidase (GUS) under the control of the GlZEP promoter, and investigated the reporter expression profile at the mRNA and protein levels. We detected high levels of gusA expression and GUS activity in chromoplast-containing flowers and fruits, but minimal levels in immature fruits containing green chloroplasts, in sepals, leaves, stems and roots. GlZEP-gusA expression was strictly associated with fruit development and chromoplast differentiation, suggesting an evolutionarily-conserved link between ZEP and the differentiation of organelles that store carotenoid pigments. The impact of our results on current models for the regulation of carotenogenesis in plants is discussed.

  3. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    Science.gov (United States)

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed

  4. Detection and identification of TMV infecting tomato under protected cultivation in Paraná State

    Directory of Open Access Journals (Sweden)

    Rodrigo Martins da Silva

    2008-10-01

    Full Text Available During an inspection in plastic houses in Sapopema, Paraná, 90% of tomato plants showed leaf abnormalities, probably associated with herbicide toxity. However, virus like symptoms developed in selected hosts after mechanical inoculatation. RT-PCR reactions using primers for an internal region within the movement protein gene of TMV and ToMV resulted in the amplification of a 409 bp cDNA fragment only by TMV primers. Deduced amino acids showed 100% identity when compared to TMV movement protein and 94% with ToMV. The RT-PCR protocol was efficient for quick and conclusive determination of virus species. The virus was purified and a polyclonal antiserum was raised for future surveys in tomato crops of Paraná. The partial genomic sequence obtained for TMV-Sapopema has been deposited under the accession number DQ173945, which is the first partial genomic sequence of an isolate of TMV from Brazil in the GenBank, and the first tomato virus isolate from Paraná to have some of its biological and molecular properties determined.Durante uma inspeção em cultivos protegidos de tomate em Sapopema, Paraná, foram observadas anormalidades foliares em 90% das plantas, indicando possivelmente a existência de um problema de fitotoxidade causada por herbicidas. Todavia, os sintomas manifestados nas hospedeiras após os ensaios de inoculação mecânica revelaram que os sintomas estariam relacionados a uma infecção por Tobamovirus. As reações de RT-PCR com oligonucleotídeos específicos para uma região interna da proteína de movimento de dois vírus comuns em tomate, TMV e ToMV, resultaram na amplificação de um fragmento de 409 pares de bases, apenas com os oligonucleotídeos específicos para o TMV. Após o sequenciamento, os aminoácidos deduzidos apresentaram identidade de 100% quando comparados com as seqüências das proteínas de movimento de outros isolados do TMV, e 94% de identidade com seqüências do ToMV. A RT-PCR demonstrou ser um m

  5. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    Science.gov (United States)

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments.

    Science.gov (United States)

    O'Carrigan, Andrew; Babla, Mohammad; Wang, Feifei; Liu, Xiaohui; Mak, Michelle; Thomas, Richard; Bellotti, Bill; Chen, Zhong-Hua

    2014-09-01

    Light spectrum affects the yield and quality of greenhouse tomato, especially over a prolonged period of monochromatic light treatments. Physiological and chemical analysis was employed to investigate the influence of light spectral (blue, green and red) changes on growth, photosynthesis, stomatal behaviour, leaf pigment, and micronutrient levels. We found that plants are less affected under blue light treatment, which was evident by the maintenance of higher A, gs, Tr, and stomatal parameters and significantly lower VPD and Tleaf as compared to those plants grown in green and red light treatments. Green and red light treatments led to significantly larger increase in the accumulation of Fe, B, Zn, and Cu than blue light. Moreover, guard cell length, width, and volume all showed highly significant positive correlations to gs, Tr and negative links to VPD. There was negative impact of monochromatic lights-induced accumulation of Mn, Cu, and Zn on photosynthesis, leaf pigments and plant growth. Furthermore, most of the light-induced significant changes of the physiological traits were partially recovered at the end of experiment. A high degree of morphological and physiological plasticity to blue, green and red light treatments suggested that tomato plants may have developed mechanisms to adapt to the light treatments. Thus, understanding the optimization of light spectrum for photosynthesis and growth is one of the key components for greenhouse tomato production. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers.

    Science.gov (United States)

    Seguí-Simarro, José M; Nuez, Fernando

    2007-01-01

    In this work, some of the different in vitro developmental pathways into which tomato microspores or microsporocytes can be deviated experimentally were explored. The two principal ones are direct embryogenesis from isolated microspores and callus formation from meiocyte-containing anthers. By means of light and electron microscopy, the process of early embryogenesis from isolated microspores and the disruption of normal meiotic development and change of developmental fate towards callus proliferation, morphogenesis, and plant regeneration have been shown. From microspores isolated at the vacuolate stage, embryos can be directly induced, thus avoiding non-androgenic products. In contrast, several different morphogenic events can be triggered in cultures of microsporocyte-containing anthers under adequate conditions, including indirect embryogenesis, adventitious organogenesis, and plant regeneration. Both callus and regenerated plants may be haploid, diploid, and mostly mixoploid. The results demonstrate that both gametophytic and sporophytic calli occur in cultured tomato anthers, and point to an in vitro-induced disturbance of cytokinesis and subsequent fusion of daughter nuclei as a putative cause for mixoploidy and genome doubling during both tetrad compartmentalization and callus proliferation. The potential implications of the different alternative pathways are discussed in the context of their application to the production of doubled-haploid plants in tomato, which is still very poorly developed.

  8. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants.

    Science.gov (United States)

    Wang, Liu; Chen, Lin; Li, Rui; Zhao, Ruirui; Yang, Meijing; Sheng, Jiping; Shen, Lin

    2017-10-04

    Drought stress is one of the most destructive environmental factors that affect tomato plants adversely. Mitogen-activated protein kinases (MAPKs) are important signaling molecules that respond to drought stress. In this study, SlMAPK3 was induced by drought stress, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized to generate slmapk3 mutants. Two independent T1 transgenic lines and wild-type (WT) tomato plants were used for analysis of drought tolerance. Compared with WT plants, slmapk3 mutants exhibited more severe wilting symptom, higher hydrogen peroxide content, lower antioxidant enzymes activities, and suffered more membrane damage under drought stress. Furthermore, knockout of SlMAPK3 led to up- or down-regulated expressions of drought stress-responsive genes including SlLOX, SlGST, and SlDREB. The results suggest that SlMAPK3 is involved in drought response in tomato plants by protecting cell membranes from oxidative damage and modulating transcription of stress-related genes.

  9. Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment.

    Science.gov (United States)

    Zhou, Suping; Okekeogbu, Ikenna; Sangireddy, Sasikiran; Ye, Zhujia; Li, Hui; Bhatti, Sarabjit; Hui, Dafeng; McDonald, Daniel W; Yang, Yong; Giri, Shree; Howe, Kevin J; Fish, Tara; Thannhauser, Theodore W

    2016-05-06

    This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, "Micro-Tom") after long-term exposure to the stress factor. Plants were treated in Magnavaca's solution (pH 4.5) supplemented with 7.5 μM Al(3+) ion activity over a 4 month period beginning at the emergence of flower buds and ending when the lower mature leaves started to turn yellow. Proteomes were identified using a 8-plex isobaric tags for relative and absolute quantification (iTRAQ) labeling strategy followed by a two-dimensional (high- and low-pH) chromatographic separation and final generation of tandem mass spectrometry (MS/MS) spectra of tryptic peptides on an LTQ-Orbitrap Elite mass spectrometer. Principal component analysis revealed that the Al-treatment had induced systemic alterations in the proteomes from roots and leaves but not seed tissues. The significantly changed root proteins were shown to have putative functions in Al(3+) ion uptake and transportation, root development, and a multitude of other cellular processes. Changes in the leaf proteome indicate that the light reaction centers of photosynthetic machinery are the primary targets of Al-induced stress. Embryo and seed-coat tissues derived from Al-treated plants were enriched with stress proteins. The biological processes involving these Al-induced proteins concur with the physiological and morphological changes, such as the disturbance of mineral homeostasis (higher contents of Al, P, and Fe and reduced contents of S, Zn, and Mn in Al-treated compared to nontreated plants) in roots and smaller sizes of roots and the whole plants. More importantly, the identified significant proteins might represent a molecular mechanism for plants to develop toward establishing the Al tolerance and adaptation mechanism over a long period of stress treatment.

  10. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C₂H₂ zinc finger transcription factor.

    Science.gov (United States)

    Rai, Avinash Chandra; Singh, Major; Shah, Kavita

    2013-01-01

    Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C₂H₂ zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T₀ tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T₂ generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H₂O₂ level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Studies on distribution pattern of 14C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    International Nuclear Information System (INIS)

    Shishido, Y.; Seyama, N.; Hori, Y.

    1988-01-01

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by 14 C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of 14 C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it

  12. Growth analysis partitioning of assimilate in tomato plants cv. Micro-Tom submitted to nitrogen and pyraclostrobin

    Directory of Open Access Journals (Sweden)

    Emanuela Garbin Martinazzo

    2015-10-01

    Full Text Available This work aimed at comparing the growth and partitioning of assimilate in tomato plants cv. Micro-Tom subjected to nitrogen and pyraclostrobin. This substance favors the development of chloroplasts and the synthesis of chlorophyll. Tomato plants were submitted to the treatments: T1, complete nutrient solution without pyraclostrobin, T2, complete nutrient solution + pyraclostrobin, T3, ½ strength nutrient solution without N pyraclostrobin and T4, ½ strength nutrient solution N + pyraclostrobin. Plants were collected at regular intervals of seven days after transplantation throughout the crop cycle, with dry mass and leaf area being determined. From the primary data, growth analysis was carried out to calculate total dry matter (Wt, the instantaneous rates of dry matter production (Ct, relative growth (Rw e net assimilation (Ea, leaf area (Af, production rates (Ca and relative growth of leaf area index (Ra and leaf weight (Fw specific leaf area (Sa the dry matter partitioning between organs and number (Nfr and fresh fruit weight (Wfr. Plants of T1 showed higher Wt, Ct and Wfr compared to those of other treatments. However, the T2 plants exhibited similar Nfr to T1 plants, being superior to others. Also allocated on the total dry matter and at the end of the cycle, a higher percentage of dry matter in the seafood compared to T3 and T4 plants. Also they allocated relative to the total dry matter and at the end of the cycle, a higher percentage in fruits of plants to T3 and T4. The association between nitrogen and pyraclostrobin changes the growth and assimilated partition on tomato plants cv. Micro – Tom, and those submitted to ½ dose of nitrogen have a higher total dry matter and less final percentage of total dry matter in fruits , comparatively to those submitted to the association ½ dose of nitrogen and pyraclostrobin.

  13. Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants

    Directory of Open Access Journals (Sweden)

    Ikenna Okekeogbu

    2014-03-01

    Full Text Available Aluminum (Al toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO42. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants were germinated in 50 µM AlK(SO42 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid buffer (pH 4.0, and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®. The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.

  14. Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde

    NARCIS (Netherlands)

    Smid, E.J.; Hendriks, L.; Boerrigter, H.A.M.; Gorris, L.G.M.

    1996-01-01

    Tomatoes are particularly vulnerable to microbial spoilage at calyces and wound sites on the fruit surface. Compared to the fruit surface, the calyx carries the major part of the microbial load, consisting of epiphytic bacteria and moulds. Disinfection of tomato fruits, as a means of extending

  15. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    Science.gov (United States)

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  16. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xuepeng eFu

    2015-09-01

    Full Text Available Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae. To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related

  17. Comparative Evaluation of Biochemical Changes in Tomato (Lycopersicon esculentum Mill.) Infected by Alternaria alternata and Its Toxic Metabolites (TeA, AOH, and AME).

    Science.gov (United States)

    Meena, Mukesh; Zehra, Andleeb; Dubey, Manish K; Aamir, Mohd; Gupta, Vijai K; Upadhyay, Ram S

    2016-01-01

    activities after 48 h post inoculation demonstrate that the biochemical defense programming shown by the host against the pathogen is not well efficient resulting in the compatible host-pathogen interaction. The elicitor (toxins) induced biochemical changes depends on the potential toxic effects (extent of ROS accumulation, amount of H 2 O 2 produced). Thus, a fine tuning occurs for the defense related antioxidative enzymes against detoxification of key ROS molecules and effectively regulated in tomato plant against the pathogen infected/toxin treated oxidative stress. The study well demonstrates the acute pathological effects of A. alternata in tomato over its phytotoxic metabolites.

  18. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    Science.gov (United States)

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  19. The translocation and distribution of CeO2 nanoparticles in plants (Soybeans, Chili, Eggplant and Tomato)

    Science.gov (United States)

    Li, Teng; Dai, Yanhui

    2018-02-01

    Intensive production of CeO2 nanoparticles (NPs) would lead to their release into the environment. While their use in commercial goods is constantly increasing, location of NPs in plant is still poorly documented. In this study we determined the translocation of CeO2-NPs in four plants (Soybeans, Tomato, Chili and Eggplant) grown in natural conditions. The plants were digged out 1/4 roots into 2000 mg/L CeO2-NPs solution during the blossoming period. After being exposed for one month, the contents of Ce in plant tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). There was more Ce in the leaf of treated plants than in control plants. The contents of Ce in leaf tissues was different. This research offers vital information about the translocation and distribution of CeO2-NPs in higher plants.

  20. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  1. Isotopic diagnosis and molecular identification of cucumber mosaic virus and satellite RNA infecting tomato in Shanghai

    International Nuclear Information System (INIS)

    Zhang Huarong; Du Zhiyou; Liao Qiansheng; Zhang Hen

    2006-01-01

    In summer of 2004 and 2005, typical viral disease symptoms were found on field tomato from Shanghai, which remarkably reduced the yield of tomato. Total RNA of tomato leaves and purified virions were detected by hybridization with 32 P probes conducted with partial sequence of CMV RNA3 and full cDNA of CMV satRNA. Viruses were also confirmed by analyzing dsRNA extracted from tomato leaves. Full sequence of CMV RNA3 was gained by RT-PCR and the result of sequencing indicated that genomic RNA3 belongs to subgroup II. Two 15nt complementary ssDNA as amplification primers. Phylogenetic analysis showed that the identity of this 383nt satellite and some documented satRNAs was 72.6 to 99.5% at the nucleotide level. Several mutation sites were found at the 3' terminus of the newly discovered satRNA. By Isotopic diagnosis and molecular Identification, variation of CMV and its satRNA were found in Tomato from Shanghai, Which may influence the viral disease prevalence and the emergence of new symptom. (authors)

  2. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy M.; Ali, Zahir

    2016-01-01

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence

  3. Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum

    DEFF Research Database (Denmark)

    Larsen, John; Graham, James H.; Cubero, Jaime

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reduci...

  4. λ-Carrageenan Suppresses Tomato Chlorotic Dwarf Viroid (TCDVd Replication and Symptom Expression in Tomatoes

    Directory of Open Access Journals (Sweden)

    Jatinder S. Sangha

    2015-05-01

    Full Text Available The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(ɩ-, lambda(λ-, and kappa(κ-carrageenan at 1 g·L−1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS and lipoxygenase (LOX, were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA dependent, and that it could be explored in plant protection against viroid infection.

  5. On Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2014-07-01

    Full Text Available Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although optimal thresholds tend to vary with images. Furthermore, most of these techniques have attempted to detect only mature and immature fruits, although the number of young fruits is more important for the prediction of long-term fluctuations in yield. In this study, we aimed to develop a method to accurately detect individual intact tomato fruits including mature, immature and young fruits on a plant using a conventional RGB digital camera in conjunction with machine learning approaches. The developed method did not require an adjustment of threshold values for fruit detection from each image because image segmentation was conducted based on classification models generated in accordance with the color, shape, texture and size of the images. The results of fruit detection in the test images showed that the developed method achieved a recall of 0.80, while the precision was 0.88. The recall values of mature, immature and young fruits were 1.00, 0.80 and 0.78, respectively.

  6. Methodology for tomato (Lycopersicon esculentum Mill) growth and plant productivity stimulation, thought seeds irradiation

    International Nuclear Information System (INIS)

    Ramirez Fernandez, Ramiro; Gonzalez Nunnez, Luis Manuel; Camejo Serrano, Yanelis; Licea Castro, Luis; Garcia Rodriguez, Blanca; Porras Leon, Elia; Perez Espinosa, Anabel

    2001-01-01

    Based in the obtained results by several authors and the experience accumulated by the group of Nuclear Techniques of the Agricultural Research Institute Jorge Dimitrov about the irradiation techniques; the methodology for tomato growth and productivity stimulation through the seeds irradiation was established. This methodology includes the preparation, irradiation and material selection to irradiate; as well as the sows of the material under field conditions. With her application the seedlings of good quality is guaranteed, what facilitates its transplant from the nursery to field conditions with 7 days in advance comparing to the control treatment, that contributes to the saving of material and human resources. Their fundamental contribution is given in the increment of the agricultural yield that reaches maximum values about 30% for some of the applied treatments. It is also recommended, the application of response- surface analysis among the plant yield (dependent variable) and the irradiation doses (independent variable) for determine the better stimulation doses in each one of the four varieties, as well as the time repeatability parameter of the growth and productivity were calculated, that which endorses the practical application of the proposed methodology

  7. Using genetically modified tomato crop plants with purple leaves for absolute weed/crop classification.

    Science.gov (United States)

    Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan

    2014-07-01

    Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.

  8. Parafilimonas rhizosphaerae sp. nov., isolated from the rhizosphere of tomato plant (Solanum lycopersicum L.).

    Science.gov (United States)

    Cho, Hayoung; Ahn, Jae-Hyung; Weon, Hang-Yeon; Joa, Jae-Ho; Hong, Seung-Beom; Seok, Soon-Ja; Kim, Jeong-Seon; Kwon, Soon-Wo; Kim, Soo-Jin

    2017-07-01

    A bacterial strain, designated T16E-198T, was isolated from the rhizosphere of tomato plant collected from a farm on Buyeo-gun, Chungcheongnam-do, South Korea. The strain was aerobic, Gram-stain-negative, rod-shaped, non-flagellated and yellow-pigmented. Strain T16E-198T was mesophilic, catalase- and oxidase-positive and with flexirubin-type pigments. A phylogenetic tree based on 16S rRNA gene sequences showed that strain T16E-198T formed a lineage with Parafilimonas terrae 5GHs7-2T, sharing highest sequence similarity of 98.4 % with it and less than 93 % with all the other validly published species. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The predominant menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, one unknown aminophospholipid, five unknown aminolipids and five unknown lipids. The DNA G+C content was 41.2 mol%. On the basis of the phenotypic, phylogenetic and chemotaxonomic data presented, strain T16E-198T is considered to represent a novel species of the genus Parafilimonas, for which the name Parafilimonas rhizosphaerae sp. nov. is proposed; the type strain is T16E-198T (=KACC 18786T=JCM 31601T).

  9. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  10. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans.

    Science.gov (United States)

    Fontanilla, M; Montes, M; De Prado, R

    2005-01-01

    The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.

  11. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  12. Effects of the moisture of gamma irradiated tomato-seeds on the plant growth sensitivity

    International Nuclear Information System (INIS)

    Kumala Dewi.

    1977-01-01

    The investigation of 2 Krad gamma irradiated dry seeds fruit and tomato seedlings has been carried out. The effect was observed on the time of flowering and fruit bearing, fruits number, fruits weight and time of harvesting. (author)

  13. EFFECT OF SILICON, NITROGEN AND POTASSIUM IN THE INCIDENCE OF TOMATO PIN WORM IN INDUSTRIAL TOMATO PLANTS

    Directory of Open Access Journals (Sweden)

    Marília Cristina dos Santos2*

    2013-12-01

    of two stems per plant. It was observed a decrease in the number of pinworm leaf mines with an increase in silicon and potassium doses and an increase in the number of mines with an increase on nitrogen doses.

  14. Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth.

    Science.gov (United States)

    Li, Rui-Xia; Cai, Feng; Pang, Guan; Shen, Qi-Rong; Li, Rong; Chen, Wei

    2015-01-01

    Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root

  15. Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2018-02-01

    Full Text Available Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1% caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum (10⁷ cfu/ml. Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

  16. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...... to the DI treatment. PRI-treated plants accumulated significantly higher amounts of P in their shoots than DI plants under organic maize straw N fertilisation, whereas similar levels of shoot P accumulation were observed under mineral N fertilisation. Thus, the form of N fertiliser, and thereby...... the different plant N status, affected the accumulation of P in shoots, as reflected by a higher plant N:P ratio following mineral N fertilisation than after organic N fertilisation. Compared to the DI treatment, PRI significantly increased both the physiological and agronomic efficiencies of P-use under...

  17. Alternative control of early blight of tomato using plant extracts from Acacia nilotica, Achillea fragrantissima and Calotropis procera

    Directory of Open Access Journals (Sweden)

    Zakaria A.M. BAKA

    2016-05-01

    Full Text Available The in vitro and in vivo antifungal potential of extracts of three wild medicinal plants, (Acacia nilotica (L. Delile, Achillea fragrantissima (Forssk. Sch.Bip. and Calotropis procera (Aiton W. T. Aiton was examined against Alternaria solani, the causal agent of the early blight of tomato. Aqueous or ethanol extracts of all tested plants reduced the mycelial growth and conidium germination of A. solani in vitro. Ethanol extracts were more effective against the pathogen than the aqueous extracts. Extract of C. procera exhibited more antifungal potential against the pathogen than other plant extracts. Observations by scanning and transmission electron microscopy showed dramatic alterations in the morphology and ultrastructure of A. solani when treated with the ethanol extract of C. procera at a concentration of 20%. Phytochemical screening confirmed the presence of many bioactive constituents in the extracts which were in greater amounts in C. procera than the other two plants. In a plot experiment, both types of extracts from C. procera reduced disease severity. Tomato fruit yield was increased after the treatment with the plant extracts.

  18. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  19. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  20. Direct and indirect impacts of infestation of tomato plant by Myzus persicae (Hemiptera: Aphididae on Bemisia tabaci (Hemiptera: Aleyrodidae.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Tan

    Full Text Available The impacts of infestation by the green peach aphid (Myzus persicae on sweetpotato whitefly (Bemisia tabaci settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect had fewer whiteflies than those previously infested by aphids (indirect effect. The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.

  1. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    Science.gov (United States)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  2. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  3. octadecenoic acid in tomato

    African Journals Online (AJOL)

    User

    bly involved in plant defense responses is synthesized in tomato fruits and subjected to metabo- lism. Its catabolism or .... stored at -20°C. Enzymatic in vitro synthesis of radiolabeled ..... with nematicidal activity from Culture of basidiomycetes.

  4. Estimation of water consumption of tomato crops planted in rock wool bed in greenhouse

    International Nuclear Information System (INIS)

    Ito, K.; Senge, M.; Iwama, K.; Hashimoto, I.

    2002-01-01

    For estimating the crop water consumption, it is necessary to determine meteorological data in greenhouse from open field data and calculate potential evaporation. In this study, temperature, humidity, wind velocity and solar radiation were measured in greenhouse as well as in open field. Then, we compared the meteorological data of greenhouse with that of open field. Results of the comparison differed from the reference values of the Official Manual (1997). Humidity during heating period and wind velocity in the greenhouse cannot be evaluated from the steps of the Official Manual. We applied the original equation that was derived in this observation to calculate the potential evaporation in the greenhouse. It became apparent that the potential evaporation could be estimated using open field data. A portion of irrigated water was consumed by vegetation and remainder was discharged from rock wool bed. Mean daily water consumption during the measurement period was 2.50(mm/d), with a monthly maximum occurring in July with 3.54(mm/d). Discharged water amounted to 9% of irrigated water. Tomato's crop coeffieiency with rock wool cultivation was calculated by potential evaporation and water consumption. In this field, this value was smaller than those recorded in the Official Manual. The amount of irrigation was same in all segments of the greenhouse. However, water consumption was affected by incident energy. A portion of discharged water (5% of irrigation water in this greenhouse) could not be saved because there existed a differential volume need for some plants which consumed more water in relation to others

  5. Chitinophaga rhizosphaerae sp. nov., isolated from rhizosphere soil of a tomato plant.

    Science.gov (United States)

    Kim, Soo-Jin; Cho, Hayoung; Ahn, Jae-Hyung; Weon, Hang-Yeon; Joa, Jae-Ho; Hong, Seung-Beom; Seok, Soon-Ja; Kim, Jeong-Seon; Kwon, Soon-Wo

    2017-09-01

    An aerobic, Gram-stain-negative, non-spore-forming, non-flagellated, rod-shaped or filamentous bacterial strain, T16R-86T, was isolated from rhizosphere of a tomato plant collected from a farm on Buyeo-gun, Chungcheongnam-do, South Korea. It grew at the temperature range 10-37 °C (optimum, 28 °C) and pH range 6.0-9.0 (optimum, pH 7.0), and tolerated up to 2 % (w/v) NaCl. According to 16S rRNA gene sequence analysis, strain T16R-86T shared the highest similarity with Chitinophaga barathri YLT18T (96.8 %) and C. pinensis DSM 2588T (96.7 %), forming a subcluster with C. barathri YLT18T, C. cymbidii R156-2T and C. niabensis JS13-10T in the phylogenetic tree. The major fatty acids were iso-C15 : 0, C16 : 1ω5c and iso-C17 : 0 3-OH. The predominant respiratory quinone was menaquinone MK-7. Polar lipids were phosphatidylethanolamine, five unknown aminolipids, an unknown aminophospholipid, one unknown phospholipid and two unknown lipids. The DNA G+C content was 53.6 mol%. The phenotypic, chemotaxonomic and phylogenetic data showed that strain T16R-86T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga rhizosphaerae sp. nov. is proposed. The type strain is T16R-86T (=KACC 18790T=JCM 31600T).

  6. Paenibacillus solanacearum sp. nov., isolated from rhizosphere soil of a tomato plant.

    Science.gov (United States)

    Cho, Hayoung; Heo, Jun; Ahn, Jae-Hyung; Weon, Hang-Yeon; Kim, Jeong-Seon; Kwon, Soon-Wo; Kim, Soo-Jin

    2017-12-01

    The taxonomic position of a bacterial strain designated T16R-228 T , isolated from a rhizosphere soil sample of a tomato plant collected from a farm in Buyeo, Chungcheongnam-do, Republic of Korea, was determined using a polyphasic approach. On the basis of morphological, genetic and chemotaxonomic characteristics, it was determined to belong to the genus Paenibacillus. It was an aerobic, Gram-stain-positive, non-motile, catalase-negative, oxidase-negative rod with peritrichous flagella. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, hydroxyl- phosphatidylethanolamine and one unidentified polar lipid. Menaquiones were MK-7. Predominant cellular fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. DNA G+C content was 56.8 mol%. The phylogenetic tree constructed based on the 16S rRNA gene sequences showed the strain formed a clade with P. mucilaginosus VKPM B-7519 T , P. edaphicus T7 T , P. ehimensis KCTC 3748 T , P. koreensis YC300 T , P. tianmuensis B27 T and P. elgii SD17 T , showing the highest sequence similarity with P. mucilaginosus VKPM B-7519 T (96.5 %). The polyphasic data supported that strain T16R-228 T was clearly distinguished from its closely related species and represents a novel species of the genus Paenibacillus for which the name Paenibacillus solanacearum is proposed. The type strain is T16R-228 T (=KACC 18654 T =NBRC 111896 T ).

  7. Dark CO/sub 2/ fixation in leaves of tomato plants grown with ammonium and nitrate as nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M; Yamada, Y [Kyushu Univ., Fukuoka (Japan). Dept. of Agricultural Chemistry

    1981-01-01

    The dark (non-photosynthetic) CO/sub 2/ fixation was studied in the leaves of ammonium-fed and nitrate-fed tomato plants. The ability to fix /sup 14/CO/sub 2/ in the dark of ammonium-fed plants was remarkably lower as compared with nitrate-fed plants, supporting the previous finding that the synthesis of C/sub 4/-compounds from C/sub 3/-compounds was reduced in the leaves of ammonium-fed plants. There was no difference in the activity of PEP carboxylase in extracts prepared from the leaves between both the plants during an early period of the treatment. However, the enzyme activity began to decrease rapidly in ammonium-fed plants 4 days after the treatment. By long-term treatments, the enzyme activity in ammonium-fed plants became half as high as that of nitrate-fed plants. The decreased PEP carboxylase activity in ammonium-fed plants was not associated with the presence of NH/sub 4/-N and the absence of NO/sub 3/-N in the leaf extract, and was not restored by the addition of the leaf extract from nitrate-fed plants. It is concluded that the decreased rate of synthesis of C/sub 4/-compounds from C/sub 3/-compounds in ammonium-fed plants is closely associated with a decrease in the dark fixation involving PEP carboxylase.

  8. Dark CO2 fixation in leaves of tomato plants grown with ammonium and nitrate at nitrogen sources

    International Nuclear Information System (INIS)

    Ikeda, M.; Yamada, Y.

    1981-01-01

    The dark (non-photosynthetic) CO 2 fixation was studied in the leaves of ammonium-fed and nitrate-fed tomato plants. The ability to fix 14 CO 2 in the dark of ammonium-fed plants was remarkably lower as compared with nitrate-fed plants, supporting the previous finding that the synthesis of C 4 -compounds from C 3 -compounds was reduced in the leaves of ammonium-fed plants. There was no difference in the activity of PEP carboxylase in extracts prepared from the leaves between both the plants during an early period of the treatment. However, the enzyme activity began to decrease rapidly in ammonium-fed plants 4 days after the treatment. By long-term treatments, the enzyme activity in ammonium-fed plants became half as high as that of nitrate-fed plants. The decreased PEP carboxylase activity in ammonium-fed plants was not associated with the presence of NH 4 -N and the absence of NO 3 -N in the leaf extract, and was not restored by the addition of the leaf extract from nitrate-fed plants. It is concluded that the decreased rate of synthesis of C 4 -compounds from C 3 -compounds in ammonium-fed plants is closely associated with a decrease in the dark fixation involving PEP carboxylase. (orig.)

  9. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  10. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  11. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  12. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2018-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  13. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    Science.gov (United States)

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant

    Science.gov (United States)

    Silva-Beltrán, Norma Patricia; Ruiz-Cruz, Saul; Cira-Chávez, Luis Alberto; Estrada-Alvarado, María Isabel; Ornelas-Paz, José de Jesús; López-Mata, Marco Antonio; Del-Toro-Sánchez, Carmen Lizette; Ayala-Zavala, J. Fernando; Márquez-Ríos, Enrique

    2015-01-01

    The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials. PMID:26609308

  15. Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants.

    Science.gov (United States)

    D'Ambrosio, Caterina; Stigliani, Adriana Lucia; Giorio, Giovanni

    2011-02-01

    Plant chloroplasts are enriched in xanthophylls which participate in photosynthesis as light-absorbing pigments and as dissipaters of excess light. In comparison, chromoplasts have evolved the capacity to synthesize and store brightly coloured carotenoid pigments to give flowers and fruits the power to attract pollinators and fruit dispersers. The best performing accumulator of xanthophylls in tomato is the petal chromoplast in contrast to the fruit chromoplast which only seems able to store carotenes. We have generated genetically engineered tomato lines carrying the tomato CrtR-b2 transgene with the aim of forcing the fruit to accumulate beta-xanthophylls. Both chloroplast- and chromoplast-containing tissues of hemizygous transgenic plants were found to contain elevated xanthophyll contents as a direct consequence of the increased number of CrtR-b2 transcripts. Hemizygous transgenic leaves contained fourfold more violaxanthin than control leaves. Developing fruits were yellow instead of green since they lacked chlorophyll a, and their violaxanthin and neoxanthin contents were seven- and threefold higher, respectively, than those of the control. Ripe fruits of hemizygous transgenic plants contained free violaxanthin and significant amounts of esterified xanthophylls. Esterified xanthophylls were present also in ripe fruits of control and homozygous plants. However, in transgenic homozygous plants, we observed a reduction in transcript content in most tissues, particularly in petals, due to a post-transcriptional gene silencing process. These findings demonstrate that tomato fruit chromoplasts can accumulate xanthophylls with the same sequestration mechanism (esterification) as that exploited by chromoplasts of the tomato petal and pepper fruit. This study on transgenic plants overexpressing an important carotenoid gene (CrtR-b2) provides an interesting model for future investigations on perturbations in beta-carotene-derived xanthophyll synthesis which in turn may

  16. First report of 'Candidatus Liberibacter solanacearum' on tomato in Honduras

    Science.gov (United States)

    In April of 2012, tomato plants grown in several departments of Honduras, were observed with symptoms resembling those of “Candidatus Liberibacter solanacearum” (Lso) infection. The symptoms include overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf pu...

  17. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.

    Science.gov (United States)

    Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani

    2013-10-01

    Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.

  18. The Effects of Planting Distances and Different Stages of Maturity on the Quality of Three Cultivars of Tomatoes (Lycopersicon esculentum Mill

    Directory of Open Access Journals (Sweden)

    Atefeh TABASI

    2013-08-01

    Full Text Available In this investigation the effects of cultivar, row spacing and different stages of maturity on qualitative characteristics of tomato (ascorbic acid, total soluble solids (TSS, β-carotene and lycopene have been evaluated. Experiment was performed by factorial analysis with 3 replicates in completely randomized design (CRD. First treatment was three cultivars of tomato, second treatment was four planting distances and third treatment was different stages of maturity. The results showed that all treatments had significant influence on the levels of ascorbic acid, soluble solids, β-carotene and lycopene. Generally, wider spacing and deep red fruits had the highest quality. Therefore, choosing appropriate cultivars, special planting distances and suitable stage of maturity can increase fruit quality of tomato.

  19. Efficacy of insect-proof nets used in Tunisian tomato greenhouses against Tuta absoluta (Meyrick (Lepidoptera: Gelechiidae and potential impact on plant growth and fruit quality

    Directory of Open Access Journals (Sweden)

    A. Harbi

    2015-12-01

    Full Text Available Insect-proof screens constitute efficient physical means of protecting horticultural crops against insect pests and their use has become widespread. However, they may have a negative impact on plant growth and fruit quality by modifying climatic parameters of greenhouses. In case of tomato crops, they are used mainly against white flies and the tomato leaf miner Tuta absoluta (Meyrick. In Tunisia, tomato plastic tunnels are often netted following two modalities: i complete netting of the greenhouse under the plastic screen (total netting; or ii netting only doors and lateral aeration windows (partial netting. Weekly monitoring of T. absoluta in two tomato greenhouses with different netting setups using pheromone traps and sampling of leaves and fruits showed no differences in the levels of infestation by the pest with a maximum average values of 6.66 eggs/leaf, 4.16 larvae/leaf and 4.16 mines/leaf. The maximum infestation rate of leaves was 86.66% and that of fruits was 10.83%. No effects of the netting setup used on plant growth parameters were detected. However, the study of fruit quality parameters revealed significant decrease in sugar contents in tomato fruits when using total netting setup (4.26°Brix versus 3.68°Brix. Recommendations regarding the combined use of pheromones traps and insect-proof nets are given and possibilities to enhance the efficiency of nets as physical barrier against T. absoluta are explored.

  20. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2017-08-01

    Full Text Available Rockwool (RC and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better. For all substrates, the blossom-end rot (BER of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  1. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    Science.gov (United States)

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  2. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress.

    Science.gov (United States)

    Rubio, M B; Hermosa, Rosa; Vicente, Rubén; Gómez-Acosta, Fabio A; Morcuende, Rosa; Monte, Enrique; Bettiol, Wagner

    2017-01-01

    Plants have evolved effective mechanisms to avoid or reduce the potential damage caused by abiotic stresses. In addition to biocontrol abilities, Trichoderma genus fungi promote growth and alleviate the adverse effects caused by saline stress in plants. Morphological, physiological, and molecular changes were analyzed in salt-stressed tomato plants grown under greenhouse conditions in order to investigate the effects of chemical and biological fertilizations. The application of Trichoderma harzianum T34 to tomato seeds had very positive effects on plant growth, independently of chemical fertilization. The application of salt stress significantly changed the parameters related to growth and gas-exchange rates in tomato plants subject to chemical fertilization. However, the gas-exchange parameters were not affected in unfertilized plants under the same moderate saline stress. The combined application of T34 and salt significantly reduced the fresh and dry weights of NPK-fertilized plants, while the opposite effects were detected when no chemical fertilization was applied. Decaying symptoms were observed in salt-stressed and chemically fertilized plants previously treated with T34. This damaged phenotype was linked to significantly higher intercellular CO 2 and slight increases in stomatal conductance and transpiration, and to the deregulation of phytohormone networking in terms of significantly lower expression levels of the salt overlay sensitivity 1 ( SOS1 ) gene, and the genes involved in signaling abscisic acid-, ethylene-, and salicylic acid-dependent pathways and ROS production, in comparison with those observed in salt-challenged NPK-fertilized plants.

  3. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements.

    Science.gov (United States)

    Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  4. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements

    Directory of Open Access Journals (Sweden)

    Jason Lanoue

    2017-06-01

    Full Text Available Advancements in light-emitting diode (LED technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum leaves under short-term illumination and lisianthus (Eustoma grandiflorum and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB and red-white (RW LEDs when compared to a high pressure sodium (HPS light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  5. Retention of the ability to synthesize HIV-1 and HBV antigens in generations of tomato plants transgenic for the TBI-HBS gene

    Science.gov (United States)

    In development of new types of edible vaccines on the basis of transgenic plants, the ability of the latter to retain the synthesis of foreign antibodies in a series of generations is of great importance. For this purpose, the goal of this study was to investigate the ability of transgenic tomato pl...

  6. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    Full Text Available Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing, on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS and enlargement (58-85 DAS growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content, taste (titratable acidity, and market quality (shape and firmness of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.

  7. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.

  8. Study of the Effects Irrigation Water Sanity and pH on Production and Relative Absorption of some Elements Nutrient by the Tomato Plant

    OpenAIRE

    Hossein Afshari; Shahram Ashraf; Abdol G. Ebadi; Sara Jalali; Hossein Abbaspour; Morteza S. Daliri; Seyed R. Toudar

    2011-01-01

    Problem statement: This study was conducted to examine the effects of irrigation water pH and sanity on the growth and absorption of P, Na, Ca, K by tomato. Approach:The study includes two sanity and pH factors and is consisted from 12 treatment and three repetitions. Tomato seeding grown in foam trays were transplanted in the joune 2010 to bags filled with perte in an Greenhouse at Damghan Islamic Azad University of Iran. Plant were divided into groups then irrigated with the targeted sane a...

  9. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  10. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.

    Science.gov (United States)

    Martínez-Andújar, Cristina; Ghanem, Michel Edmond; Albacete, Alfonso; Pérez-Alfocea, Francisco

    2013-05-01

    Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Polyethylene mulch modifies greenhouse microclimate and reduces infection of phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber.

    Science.gov (United States)

    Shtienberg, D; Elad, Y; Bornstein, M; Ziv, G; Grava, A; Cohen, S

    2010-01-01

    The individual and joint effects of covering the soil with polyethylene mulch before planting and fungicides commonly used by organic growers on tomato late blight (caused by Phytophthora infestans) were studied in three experiments conducted from 2002 to 2005. Application of fungicides resulted in inconsistent and insufficient late blight suppression (control efficacy +/- standard error of 34.5 +/- 14.3%) but the polyethylene mulch resulted in consistent, effective, and highly significant suppression (control efficacy of 83.6 +/- 5.5%) of the disease. The combined effect of the two measures was additive. In a second set of three experiments carried out between 2004 and 2006, it was found that the type of polyethylene mulch used (bicolor aluminized, clear, or black) did not affect the efficacy of late blight suppression (control efficacy of 60.1 to 95.8%) and the differences in the effects among the different polyethylene mulches used were insignificant. Next, the ability of the mulch to suppress cucumber downy mildew (caused by Pseudoperonospora cubensis) was studied in four experiments carried out between 2006 and 2008. The mulch effectively suppressed cucumber downy mildew but the effect was less substantial (control efficacy of 34.9 +/- 4.8%) than that achieved for tomato late blight. The disease-suppressing effect of mulch appeared to come from a reduction in leaf wetness duration, because mulching led to reductions in both the frequency of nights when dew formed and the number of dew hours per night when it formed. Mulching also reduced relative humidity in the canopy, which may have reduced sporulation.

  12. Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, F; Halevy, A H; Wittwer, S H

    1967-01-01

    Bean and tomato plants were grown in solution culture root media containing pre-determined concentrations of gibberellin A/sub 3/ (GA), 1-naphthalene-acetic acid (NAA), N/sup 6/-benzyladenine (BA), (2-chloroethyl)trimethylammonium chloride (CCC), and at atmospheric levels of 300 and 1000 ppm of CO/sub 2/. Net assimilation rates (NAR), relative growth rates (RGR), leaf area ratios (LAR), root to top dry weight ratios (R/T) and changes in dry weight, size, and form of each organ were recorded. Gibberellin had no effect on RGR of either plant species but increased the NAR of tomatoes at 1000 ppm CO/sub 2/. Total dry weight was only slightly affected by GA but root growth and R/T were markedly depressed. CCC had no effect on NAR, but decreased RGR and LAR. Root growth of beans and R/T in both plants were promoted by CCC. NAR and RGR were strongly inhibited by BA and NAA. Inhibition of stem and leaf growth by CCC and NAA was greater than that for roots; thus, R/T ratios were increased. Root branching was promoted by NAA. High (1000 ppm), compared to the low (300 ppm), atmospheric levels of CO/sub 2/ generally promoted root growth and produced an increase in the R/T, both in the absence and presence of chemical treatment. The multiplicity of effects of the root-absorbed chemical growth substances and CO/sub 2/ on growth and photosynthesis is discussed.

  13. Greenhouse energy use in 2011. Tomato, cucumber and ornamental plants; Energianvaendning i vaexthus 2011. Tomat, gurka och prydnadsvaexter

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Joergen [Jordbruksverket, Joenkoeping (Sweden)

    2012-11-15

    During the past decade, Swedish greenhouse cultivation has seen a continual structural and energy use transformation. As the number of holdings and the cultivated area has decreased, energy use has been reduced, streamlined and has changed character. The present report is a description of the current energy use pattern in the Swedish greenhouse business, as well as an overview of changes since 2002. The focus lies on the - from an area perspective - major branches: tomato-, cucumber- and ornamental plant cultivation. Between 2002 and 2011, the number of Swedish commercial greenhouse holdings has been reduced by 40 %, while the cultivated area has decreased by 12 %. During the same period, energy consumption for cultivation has been reduced from about 1,2 TWh to just over 0,6 TWh. The relatively large decrease in energy consumption as compared to cultivation area, signifies an increased energy efficiency. For the entire greenhouse cultivation, energy consumption was reduced from 371 to 215 kWh per square meter during the 2002-2011 period. For the specific branches, the decreased amounted to 21 %, 54 % and 58 % for tomato-, cucumber and ornamental plant cultivation, respectively. The use of various energy sources exhibited a distinct alteration between 2002 and 2011. The share of fossil fuels decreased from 77 % of the total energy consumption in 2002, to 43 % in 2011. Meanwhile, the share of biofuels increased from 5 % to 37 % of the energy used. Tomato- and cucumber cultivation exhibited a biofuel share of 55 % and 56 %, respectively, while the use of biofuels in the cultivation of ornamental plants reached 31 %. Holdings exhibiting different energy source use profiles also exhibited some general differences regarding cultivation branch, geographic location, greenhouse size and use of materials. Even as the change in direction towards a higher share of biofuels in the energy mix appears clear, changes on a holding level are more complex. While 95 holdings increased

  14. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Analysis of N and K in the sap of petioles and in foliage fabrics of tomato plants under hydropony conditions

    International Nuclear Information System (INIS)

    Alvarez Cordero, O. F.

    2001-01-01

    The foliage analyses give information about the nutritional state of the plant in the past, this is that it should have lapsed time enough so that the changes are manifested in the composition of fabrics of the foliage. A nutritional pursuit, based on variations in the concentration of elements in the sap of the plant could indicate that this is nutritionally happening in the plant in the moment. This can be a tool to predict symptoms caused by nutritional anomalies in an immediate form, being able to correct more quickly the problem and to reduce the time of exhibition from the plant to the nutritional tension. The nitrogen (N) and the potassium (K) are two elements that the tomato plants require in big quantities, therefore in search of validating new methodologies, this work had as objectives: 1) To determine the utility of the levels of N and K obtained in sap analysis as a tool for the detection of nutritional lacks and as an indicator of the concentration of N and K in the nutritious solution. 2) To compare the results of analysis of sap of petioles with the routine analyses of fabric to foliate. (Author) [es

  16. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues.

    Science.gov (United States)

    Hirano, Shin-Ichi; Matsumoto, Norio

    2018-02-01

    A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    Science.gov (United States)

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  18. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum)

    Institute of Scientific and Technical Information of China (English)

    Jaouhra Cherif; Chamseddine Mediouni; Wided Ben Ammar; Fatma Jemal

    2011-01-01

    The interaction between zinc and cadmium was investigated in tomato plants (Solanum lycopersicum).Ten-day-old seedlings were treated with 10 μmol/L CdCl2 associated to different concentrations of ZnCl2 (10, 50, 100, and 150 μmol/L).Zn supply clearly reduced Cd accumulation in leaves and simultaneously increased Zn concentration.Cd induced oxidative stress in leaves as indicated by an increase in thiobarbituric acid-reactive substances (TBARS) level and chlorophyll breakdown.Furthermore, compared with control, Cdtreated plants had significantly higher activities of superoxide dismutase (SOD, EC 1.15.1.1), whereas, catalase (CAT, EC 1.111.1.6),ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) activities were significantly suppressed by Cd addition.Zn supplementation, at low level, restored and enhanced the functional activity of these enzymes (SOD, CAT, APX and GR) as compared to Cd-alone-treated plants.The beneficial effect of adequate Zn level on Cd toxicity was confirmed by a significant decrease in TBARS level and restoration of chlorophyll content.However, when Zn was added at high level in combination with Cd there was an accumulation of oxidative stress, which was higher than that for Cd or excess Zn alone treatments.These results suggested that higher Zn concentrations and Cd are synergistic in their effect on plant growth parameters and oxidative stress.

  19. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    Science.gov (United States)

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  20. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    Science.gov (United States)

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  1. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation.

    Science.gov (United States)

    Muntean, Cristina M; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-05

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California

    OpenAIRE

    Thapa, Shree P.; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P.?syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

  3. The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions

    Directory of Open Access Journals (Sweden)

    Ariel Venezian

    2017-05-01

    Full Text Available Broomrapes (Phelipanche spp. and Orobanche spp. are holoparasitic plants that cause tremendous losses of agricultural crops worldwide. Broomrape control is extremely difficult and only amino acid biosynthesis-inhibiting herbicides present an acceptable control level. It is expected that broomrape resistance to these herbicides is not long in coming. Our objective was to develop a broomrape control system in tomato (Solanum lycopersicum L. based on the plant growth regulator maleic hydrazide (MH. Petri-dish and polyethylene-bag system experiments revealed that MH has a slight inhibitory effect on Phelipanche aegyptiaca seed germination but is a potent inhibitor of the first stages of parasitism, namely attachment and the tubercle stage. MH phytotoxicity toward tomato and its P. aegyptiaca-control efficacy were tested in greenhouse experiments. MH was applied at 25, 50, 75, 150, 300, and 600 g a.i. ha-1 to tomato foliage grown in P. aegyptiaca-infested soil at 200 growing degree days (GDD and again at 400 GDD. The treatments had no influence on tomato foliage or root dry weight. The total number of P. aegyptiaca attachments counted on the roots of the treated plants was significantly lower at 75 g a.i. ha-1 and also at higher MH rates. Phelipanche aegyptiaca biomass was close to zero at rates of 150, 300, and 600 g a.i. ha-1 MH. Field experiments were conducted to optimize the rate, timing and number of MH applications. Two application sequences gave superior results, both with five split applications applied at 100, 200, 400, 700, and 1000 GDD: (a constant rate of 400 g a.i. ha-1; (b first two applications at 270 g a.i. ha-1 and the next three applications at 540 g a.i. ha-1. Based on the results of this study, MH was registered for use in Israel in 2013 with the specified protocol and today, it is widely used by most Israeli tomato growers.

  4. Early biotic stress detection in tomato (Solanum lycopersicum) by BVOC emissions.

    Science.gov (United States)

    Kasal-Slavik, Tina; Eschweiler, Julia; Kleist, Einhard; Mumm, Roland; Goldbach, Heiner E; Schouten, Alexander; Wildt, Jürgen

    2017-12-01

    We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and the sap-sucking aphid Myzus persicae. Furthermore, plants were exposed to methyl jasmonate (MeJA) in order to identify BVOC emissions related to activation of jasmonic acid (JA) signalling pathway. These emissions where then used as a reference for identifying active JA signalling pathway in plants at early stages of biotic stress. After infection by the necrotrophic fungus B. cinerea, changes in BVOC emissions indicated that tomato plants had predominantly activated the jasmonic acid (JA) signalling pathway. The plants were able to modify their defence pathways in order to overcome fungal infection. When tomato plants were infected with the biotrophic fungus O. neolycopersici, only minor changes in BVOC emissions were observed with additional emissions of the sesquiterpene α-copaene. α-copaene emissions allowed the identification of general biotic stress in the plants, without pinpointing the actual triggered defence pathway. BVOC emissions during M. persicae attack had changed before the occurrence of visual symptoms. Despite low infestation rates, plants emitted methyl salicylate indicating activation of the SA-mediated defence pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CAUSES OF PHYSIOLOGICAL ABNORMALITIES IN TOMATO AND CUCUMBER PLANTS GROWN IN GREENHOUSES IN THE SOUTH OF RUSSIA

    Directory of Open Access Journals (Sweden)

    A. Yu. Barbaritskiy

    2017-01-01

    Full Text Available The physiological abnormalities of plants under protected conditions are one of the most common and economically dangerous phenomena for the grower. One of the frequent causes of this phenomenon in plastic houses is the damage of plants by herbicides; the symptoms of this are very similar to the damages of viral infections.

  6. 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Cui, Lirong; Zou, Zhirong; Zhang, Jing; Zhao, Yanyan; Yan, Fei

    2016-01-01

    Brassinosteroids (Brs) are a newly recognized group of active steroidal hormones that occur at low concentrations in all plant parts and one of the active and stable forms is 24-epibrassinolide (EBR). We investigated the effect of EBR on tomato (Lycopersicon esculentum Mill.) and its mechanism when seedlings were exposed to low temperature and poor light stress conditions. Leaves of stress-tolerant 'Zhongza9' and stress-sensitive 'Zhongshu4' cultivars were pre-treated with spray solutions containing either 0.1 μM EBR or no EBR (control). The plants were then transferred to chambers where they were exposed to low temperatures of 12 °C/6 °C (day/night) under a low light (LL) level of 80 μmol · m(-2) · s(-1). Exogenous application of EBR significantly increased the antioxidant activity of superoxide dismutase, catalase and peroxidase, and decreased the rate of O2 · (-) formation and H2O2 and malondialdehyde contents. Additionally, the ATP synthase β subunit content was increased by exogenous hormone application. Based on these results, we conclude that exogenous EBR can elicit synergism between the antioxidant enzyme systems and the ATP synthase β subunit so that scavenging of reactive oxygen species becomes more efficient. These activities enable plants to cope better under combined low temperature and poor light stresses.

  7. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil; Negrã o, Só nia; Essack, Magbubah; Morton, Mitchell J. L.; Bougouffa, Salim; Mohamad Razali, Rozaimi; Radovanovic, Aleksandar; Marchand, Benoit; Kulmanov, Maxat; Hoehndorf, Robert; Tester, Mark A.; Bajic, Vladimir B.

    2017-01-01

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  8. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil

    2017-07-14

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  9. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting Tomato.

    Science.gov (United States)

    Shanmugam, Veerubommu; Atri, Kamini; Gupta, Samriti; Kanoujia, Nandina; Naruka, Digvijay Singh

    2011-03-01

    Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.

  10. Ecotoxicology evaluation of watery extracts of plants on seeds of radish, lettuce and tomato

    Directory of Open Access Journals (Sweden)

    Edisleidy Águila Jiménez

    2016-02-01

    Full Text Available The effect of watery extracts of Nicotiana acuminata, Piper aduncum L. and Crotalaria juncea was evaluated on the germination and the elongación of the roots of seeds of Raphanus sativus (radish, Lactuca sativa L (lettuce and Lycopersicon esculentum (tomato. The extracts were produced at medium scale in the laboratory of formulation of the Faculty of Química- Pharmacy of the “Universidad Central Marta Abreu de las Villas” . It was demonstrated upon concluding the work that the lettuce was the most sensitive species for this type of study. It was concluded that the extracts could be poured to the means to minor concentrations that 0.01% with a margin of security that they are not going to affect the processes of germination and elongacion of the roots. It was determined that one could use the alone rehearsal using the seeds of lettuce like species of rehearsal.

  11. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    Science.gov (United States)

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10 7  cfu g -1 ) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  12. Flowering and fruiting intensity of small - sized tomato, due to the regulation of the quantity of light reaching the plant top

    Directory of Open Access Journals (Sweden)

    Renata Dobromilska

    2012-12-01

    Full Text Available The experiments were carried out in 2001-2003 in a high unheated plastic tunnel. The influence of reduction of leaves and application of reflection matter on flowering and fruiting of small-sized tomato was studied. The experiment focused on the following factors: methods of increasing the amount of light in plant tops (reflection matter, cutting leaves, reflection matter + cutting leaves and cultivars of small sized tomato ('Conchita F1', 'Picolino F1'. The cutting of leaves and reflection matter mulching resulted in the increase of the intensity of radiation reaching plant tops and the reflected radiation. The above measures increasing the light access to plant tops significantly increased the number of flowers, germs and fruits. The reflection matter mulching along with cutting leaves resulted in the substantial growth of early yield of small-sized tomato. The 'Conchita F1' cultivar set a relatively greater number of flowers and fruits on a plant and in cluster than 'Picolino F1'.

  13. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery.

    Science.gov (United States)

    Terefe, Metasebia; Tefera, Tadele; Sakhuja, P K

    2009-02-01

    Bacillus firmus, commercial WP formulation (BioNem) was evaluated against the root-knot nematode Meloidogyne incognita in a laboratory, greenhouse and under field conditions on tomato plants. In the laboratory tests, an aqueous suspension of BioNem at 0.5%, 1%, 1.5% and 2% concentration reduced egg hatching from 98% to 100%, 24-days after treatment. Treatment of second-stage juveniles with 2.5% and 3% concentration of BioNem, caused 100% inhibition of mobility, 24 h after treatment. In the green house trials, BioNem applied at 8 g/pot (1200 cc soil) planted with a tomato seedlings reduced gall formation by 91%, final nematode populations by 76% and the number of eggs by 45%. Consequently, plant height and biomass was increased by 71% and 50%, respectively, compared to the untreated control, 50-days after treatment application. Application of BioNem at 16 g/pot was phytotoxic to plants. In the field trails, BioNem applied at 200 and 400 kg ha(-1) was effective in reducing the number of galls (75-84%), and increased shoot height (29-31%) and weight (20-24%) over the untreated control, 45-days after treatment. Our results indicate that B. firmus is a promising microorganism for the biological control of M. incognita in tomato pots.

  14. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.

    2012-01-01

    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named

  15. Studies on distribution pattern of {sup 14}C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Y. [National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan); Seyama, N.; Hori, Y.

    1988-12-15

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by {sup 14}C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of {sup 14}C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it.

  16. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  17. Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis subsp. michiganensis in greenhouse tomato seedlings

    OpenAIRE

    Milijašević Svetlana; Todorović Biljana; Potočnik Ivana; Rekanović Emil; Stepanović Miloš

    2009-01-01

    Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate), two antibiotics (streptomycin and kasugamycin) and a plant activator (ASM) significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomato seedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the regi...

  18. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    Science.gov (United States)

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  19. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing

    Science.gov (United States)

    Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2016-01-01

    ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes

  20. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    Science.gov (United States)

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease

    NARCIS (Netherlands)

    Lowe-Power, Tiffany M.; Hendrich, Connor G.; Roepenack-Lahaye, von Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L.; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J.; Allen, Caitilyn

    2018-01-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from

  2. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  3. Tomato Preserves.

    Science.gov (United States)

    Stevens, Wendy Tessman

    1996-01-01

    Describes a project in which students selected seeds from two heirloom varieties of tomatoes, sowed the seeds, harvested the tomatoes, and fermented the seeds. Details are provided for each step of the project and the school address is included so that other students can begin similar projects. (DDR)

  4. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Have, ten A.; Woltering, E.J.

    2003-01-01

    Programmed cell death (PCD) in plant cells is often accompanied by biochemical and morphological hallmarks similar to those of animal apoptosis. However, orthologs of animal caspases, cysteinyl aspartate-specific proteases that constitute the core component of animal apoptosis, have not yet been

  5. (edta) on the germination of tomato

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    response of plant to salinity stress varies according to plant ... National Horticultural Research Institute (NIHORT), Ibadan, Oyo. State .... the work of Mgbeze et al. ... accumulation of four tomato cultivars. American. Journal of Plant Physiology, ...

  6. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    Efficient water resource management in relation to water use and crop yields is premised on the knowledge of plant resistance to water flow. However, such studies are limited and for most crops, the within plant resistance to water flow remains largely unknown. In this study, within plant resistance to water transport ...

  7. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    Science.gov (United States)

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  9. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  10. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil

    International Nuclear Information System (INIS)

    Judy, Jonathan D.; Kirby, Jason K.; Creamer, Courtney; McLaughlin, Mike J.; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R.; Bertsch, Paul M.

    2015-01-01

    We investigated effects of Ag_2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag"+ on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg"−"1 PVP-Ag ENMs and 100 mg kg"−"1 Ag"+ exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg"−"1 PVP-Ag ENMs and 100 mg kg"−"1 Ag"+. Overall, Ag_2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag"+. However, significant effects were observed at 1 mg kg"−"1 Ag_2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag_2S ENMs. - Highlights: • PVP-Ag and Ag"+ inhibited AMF colonization more readily than Ag_2S ENMs. • Impact of PVP-Ag ENMs and Ag"+ on microbial communities larger than for Ag_2S ENMs. • Significant changes in microbial communities in response to Ag_2S ENMs at 1 mg kg"−"1. - Although Ag_2S ENMs are less toxic to soil microorganisms than pristine nanomaterials or ions, some effects are observed on soil microbial communities at relevant concentrations.

  11. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  12. Occurrence of Tomato spotted wilt virus in Stevia rebaudiana and Solanum tuberosum in Northern Greece

    NARCIS (Netherlands)

    Chatzivassiliou, E.K.; Peters, D.; Lolas, P.

    2007-01-01

    Tomato spotted wilt virus (TSWV) (genus Tospovirus, family Bunyaviridae) was first reported in Greece during 1972 (3) and currently is widespread in the central and northern part of the country infecting several cultivated and wild plant species (1,2). In June 2006, virus-like symptoms similar to

  13. Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir

    Directory of Open Access Journals (Sweden)

    Iwona Kowalska

    2015-03-01

    Full Text Available Effects of P level in nutrient solution and the colonization of roots by arbuscular mycorrhizal fungi (AMF on P uptake by tomato plants, their nutritional status, yield and quality of fruits were studied. Plants were grown on rockwool or coconut coir. Inoculation by a mixture of several AMF species was performed three times during the growing period. The mycorrhizal frequency in roots inoculated with AMF amounted to 35.79 – 50.82%. The highest level of mycorrhiza was found in plants receiving nutrient solution with a lower concentration of P. Among the experimental factors, only P level influenced the fruit yield, being higher from plants receiving a nutrient solution with a higher P level. A higher concentration of P in nutrient solution imposed better nutritional status of plants. Higher contents of ascorbic acid and total soluble sugars were found in fruits collected from inoculated plants, grown on rockwool.

  14. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    Ramirez, R; Gonzalez, LM; Chavez, Licet; Camejo, Yanelis; Gonzalez, Maria C; Fernandez, Arais

    2008-01-01

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  15. Adubação do tomateiro - ensaios com diversos adubos nitrogenados Trials with the tomato plant using nitrogenous fertilizers

    Directory of Open Access Journals (Sweden)

    Humberto Ribeiro de Campos

    1963-01-01

    Full Text Available Ensaios de campo foram conduzidos em solo massapé da Estação Experimental de Monte Alegre do Sul, com o objetivo de investigar o efeito de quatro adubos nitrogenados - salitre do Chile, sulfato de amônio, Nitrocálcio e uréia - sôbre a produção do tomateiro (Lycopersicon esculentum Mill.. O nitrogênio foi aplicado em cobertura em quatro e em cinco parcelas iguais, para o primeiro e segundo ensaio, respectivamente. Não foram significativas as diferenças entre as produções proporcionadas pelas diversas formas de adubo nitrogenado usadas; houve, porém, diferença altamente significativa entre as produções obtidas com êsses adubos e a da testemunha.This paper presents the results of two fertilizer trials comparing nitrogen sources for the tomato plant. Both were carried out at the Monte Alegre Experiment Station, on a massape type of soil. The nitrogenous fertilizers were ammonium sulfate, Nitroealcio (ammonium nitrate plus calcium carbonate, Chile nitrate and urea. They were applied as top dressing four and five times, respectively, for the first and second experiments. The results of these tests indicated that there was no significant difference between the nitrogen sourees, but on the other hand its application was highly significant when compared with the control, except for the Chile nitrate.

  16. Ventomod: a dynamic model for leaf to fruit transfer of radionuclides in processing tomato plants (Lycopersicon esculentum Mill.) following a direct contamination event

    International Nuclear Information System (INIS)

    Brambilla, M.; Strebl, F.; Carini, F.; Gerzabek, M.

    2003-01-01

    This paper presents results on the calibration and validation of a model (Ventomod) for leaf to fruit transfer of 134 Cs, 85 Sr and 65 Zn in processing tomato plants after leaf contamination. Several models (e.g FARMLAND) that deal specifically with the transfer of radionuclides to fruits are adaptations of models that were developed for agricultural crops such as leafy green vegetables. 'Ventomod' represents a dynamic evaluation model exclusively built for the short-term behaviour of radionuclide depositions. It forecasts the level of radionuclide contamination in ripe processing tomato fruits following an accidental radionuclide release into the atmosphere. A validation of the developed model by data sets from an independent experiment showed that the model successfully reproduced the observed radionuclide distribution and dynamics in tomato fruits. The level of uncertainty was within the normal range of similar assessment models. Fo a more general use of this model further testing with independent data sets from experiments obtained under different environmental conditions and data from other horticulturally important plant species would be desirable

  17. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    Science.gov (United States)

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management.

    Science.gov (United States)

    Nandi, Munmun; Macdonald, Jacqueline; Liu, Peng; Weselowski, Brian; Yuan, Ze-Chun

    2018-03-12

    Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management. © 2018 AGRICULTURE AND AGRI-FOOD CANADA. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  19. Morpho-histological analysis of tomato (Solanum lycopersicum L. plants after treatment with juglone

    Directory of Open Access Journals (Sweden)

    Anna Milewska-Hendel

    2017-06-01

    Full Text Available Juglone is a substance that limits plant growth and has a toxic effect on plant development. In this study, we analyzed the influence of juglone at two different concentrations (10−3 M and 10−4 M, which were applied to different parts of Solanum lycopersicum L. plants (root system, stem after decapitation, and surface of a younger leaf or after autografting for a short period of time (7 days, on the morphology and histology of stems. At a lower concentration, juglone had positive effects on plant growth, which resulted in an increase in interfascicular cambial cell divisions, faster development of a continuous cambium layer along the stem circumference, and development of fibers. Additionally, under the influence of juglone, the number of developing leaves increased and adventitious roots developed. The results are discussed based on the current literature concerning the reaction of plants to juglone and to stress conditions.

  20. Yield and Adaptability Evaluation of Newly Introduced Tomato ...

    African Journals Online (AJOL)

    High yield is a major ambition to tomato plant breeders and farmers. The purpose of the ... Tabora Region on the growth and yield of newly introduced tomato varieties. The tested ..... (1985). Evaluation of some American tomatocultivars grown.

  1. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  2. Trafficking of the potato spindle tuber viroid between tomato and Orobanche ramosa.

    Science.gov (United States)

    Vachev, T; Ivanova, D; Minkov, I; Tsagris, M; Gozmanova, M

    2010-04-10

    Viroids, small RNA pathogens capable of infecting flowering plants, coexist in the field with parasitic plants that infest many crops. The ability of viroids to be exchanged between host and parasitic plants and spread in the latter has not yet been investigated. We studied the interaction between the Potato spindle tuber viroid (PSTVd) and Branched bromrape (Orobanche ramosa) using the tomato, Solanum lycopersicon, as a common host. We report the long distance trafficking of PSTVd RNA via the phloem from tomato to O. ramosa, but not vice versa. Furthermore, we identify O. ramosa as a novel host with the ability to facilitate the replication and processing of PSTVd. Finally, molecular variants of PSTVd with single nucleotide substitutions that replicate with different efficiencies in tomato were isolated from O. ramosa. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  4. The reorganization of root anatomy and ultrastructure of syncytial cells in tomato (Lycopersicon esculentum Mill. infected with potato cyst nematode (Globodera rostochiensis Woll.

    Directory of Open Access Journals (Sweden)

    Sylwia Fudali

    2011-01-01

    Full Text Available The sequence of anatomical and ultrastructural events leading to the syncytium development in tomato roots infected with Globodera rostochiensis was examined. The syncytia were preferentially induced in cortical or pericyclic cells in the elongation zone of root. They developed towards the vascular cylinder by incorporation of new cells via local cell wall breakdown. After surrounding primary phloem bundle and reaching xylem tracheary elements syncytia spread along vascular cylinder. Roots in primary state of growth seemed to be the best place for syncytium induction as syncytia formed in the zone of secondary growth were less hypertrophied. At the ultrastructural level syncytial elements were characterized by strong hypertrophy, breakdown of central vacuole, increased volume of cytoplasm, proliferation of organelles, and enlargement of nuclei. On the syncytial wall adjoining vessels the cell wall ingrowths were formed, while the syncytial walls at interface of phloem were considerably thickened. They lacked of functional plasmodesmata and did not form any ingrowths. Using immunofluorescent-labelling and immunogold-labelling methods tomato expansin 5 protein was localized in nematode infected roots. The distribution of LeEXP A5 was restricted only to the walls of syncytia. The protein distribution pattern indicated that LeEXP A5 could mediates cell wall expansion during hypertrophy of syncytial elements.

  5. Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different Pepino mosaic virus isolates

    NARCIS (Netherlands)

    Hanssen, I.M.; Gutiérrez-Aguirre, I.; Paeleman, A.; Goen, K.; Wittemans, L.; Lievens, B.; Vanachter, A.C.R.C.; Ravnikar, M.; Thomma, B.P.H.J.

    2010-01-01

    The potential of three mild Pepino mosaic virus (PepMV) isolates, belonging to the CH2, EU and LP genotypes, to protect a tomato (Solanum lycopersicum) crop against an aggressive challenge isolate of the CH2 genotype was assessed in greenhouse trials and PepMV symptoms were rated at regular time

  6. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  7. Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.

    Directory of Open Access Journals (Sweden)

    Areli Herrera Diaz

    Full Text Available Antimicrobial peptides (AMPs are small peptides with less than 50 amino acids and are part of the innate immune response in almost all organisms, including bacteria, vertebrates, invertebrates and plants. AMPs are active against a broad-spectrum of pathogens. The inducible expression of AMPs in plants is a promising approach to combat plant pathogens with minimal negative side effects, such as phytotoxicity or infertility. In this study, inducible expression of the de-novo designed AMP SP1-1 in Micro Tom tomato protected tomato fruits against bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria. The peptide SP1-1 was targeted to the apoplast which is the primary infection site for plant pathogens, by fusing SP1-1 peptide to the signal peptide RsAFP1 of radish (Raphanus sativus. The pathogen inducibility of the expression was enabled by using an optimized inducible 4XW2/4XS promoter. As a result, the tomato fruits of independently generated SP1-1 transgenic lines were significantly more resistant to X. campestris pv. vesicatoria than WT tomato fruits. In transgenic lines, bacterial infection was reduced up to 65% in comparison to the infection of WT plants. Our study demonstrates that the combination of the 4XW2/4XS cis-element from parsley with the synthetic antimicrobial peptide SP1-1 is a good alternative to protect tomato fruits against infections with X. campestris pv. vesicatoria.

  8. within plant resistance to water flow in tomato and sweet melons

    African Journals Online (AJOL)

    Administrator

    high pressure flow meter (HPFM) and evaporative flux (EF) methods. In the evaporative flux method, measure- ments of transpiration flux and leaf water potential were used to calculate the total resistance to water flow using. Ohm's law analogy. Measurements of tranpiration flux (Q) relationship, plant resistance calculated ...

  9. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    In the evaporative flux method, measurements of transpiration flux and leaf water potential were used to calculate the total resistance to water flow using Ohm's law analogy. Measurements of tranpiration flux (Q) relationship, plant resistance calculated from the slope of their relationship, ranged from 6.57x10-01 to ...

  10. Herbivore arthropods benefit from vectoring plant viruses

    NARCIS (Netherlands)

    Belliure, B.; Janssen, A.; Maris, P.C.; Peters, D.; Sabelis, M.W.

    2005-01-01

    Plants infected with pathogens often attract the pathogens' vectors, but it is not clear if this is advantageous to the vectors. We therefore quantified the direct and indirect (through the host plant) effects of a pathogen on its vector. A positive direct effect of the plant-pathogenic Tomato

  11. Altering young tomato plant growth by nitrate and CO2 preserves the proportionate relation linking long-term organic-nitrogen accumulation to intercepted radiation.

    Science.gov (United States)

    Adamowicz, Stéphane; Le Bot, Jacques

    2008-01-01

    * A previously published model of crop nitrogen (N) status based on intercepted photosynthetically active radiation (R(i), mol per plant) suggested that plant organic N accumulation is related to R(i) by a constant ratio, defined hereafter as the radiation use efficiency for N (NRUE). The aim of this paper was to compare the effects of N nutrition and CO2 enrichment on NRUE and RUE (radiation use efficiency for biomass accumulation). * In three unrelated glasshouse experiments, tomato plants (Solanum lycopersicum) grown in hydroponics were fed for 28 d (exponential growth) with full solutions containing constant NO3(-) concentrations ([NO3(-)]) ranging from 0.05 to 15 mol m(-3), both under ambient or CO2-enriched (1000 microl l(-1)) air. * Each experiment comprised five harvests. Low [NO3(-)] (radiation efficiency for organic N acquisition (NRUE) did not depend on C or N nutrition for young plants grown under unstressed conditions.

  12. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  13. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission

    Czech Academy of Sciences Publication Activity Database

    Mishra, Kumud; Iannacone, R.; Petrozza, A.; Mishra, Anamika; Armentano, N.; La Vecchia, G.; Trtílek, M.; Cellini, F.; Nedbal, Ladislav

    2012-01-01

    Roč. 182, SI (2012), s. 79-86 ISSN 0168-9452 R&D Projects: GA MŠk OC08055; GA MŠk 2B06068; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Chlorophyll fluorescence * Drought * High-throughput screening * Solanum lycopersicum * Transcription factor * Transgenic plant Subject RIV: EH - Ecology, Behaviour Impact factor : 2.922, year: 2012

  14. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    Science.gov (United States)

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  15. Conservation of Salmonella infection mechanisms in plants and animals.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs. In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  16. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  17. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    Science.gov (United States)

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  18. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  19. Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants

    Directory of Open Access Journals (Sweden)

    Livia eSpicher

    2016-02-01

    Full Text Available Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C in comparison to mild (20°C and moderately cold temperature (10°C using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol, carotenoids (β-carotene, xanthophylls to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.

  20. Negative-strand RNA viruses: The plant-infecting counterparts

    NARCIS (Netherlands)

    Kormelink, R.J.M.; Garcia, M.L.; Goodin, M.; Sasaya, T.; Haenni, A.L.

    2011-01-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome

  1. Resistência à traça-do-tomateiro em plantas com altos teores de acilaçúcares nas folhas Resistance to the South American tomato pinworm in tomato plants with high foliar acylsugar contents

    Directory of Open Access Journals (Sweden)

    Álvaro C Gonçalves Neto

    2010-06-01

    in 1980 and today it is among the major pests of tomato in Brazil. The control of this pest has been done primarily with the use of insecticides, and three sprays per week may be necessary in extreme cases. Wild tomato accessions such as S. pennellii LA-716 possess high levels of insect resistance, mediated by high foliar contents of acylsugars. The objectives of this study were obtain improved tomato genotypes with high contents of leaf acylsugars, and to assess their levels of resistance to the South American tomato pinworm Tuta absoluta. These genotypes were obtained from segregating (F2 populations from the cross between AF-8665 (an elite low AS tomato line and lines BPX370E-30-275-11-7, BPX370E-30-275-11-8, BPX370E-30-380-68-6 and BPX370E-30-380-68-8 (pre-commercial high AS inbreds derived from an original interspecific cross between S. lycopersicum x S. pennellii LA-716. F2 plants selected for high AS contents were cloned and subsequently tested for pinworm resistance. The high AS genotypes showed smaller ovoposition counts and lower plant damage levels than low AS genotypes (commercial or not. Even though high AS genotypes were generally more resistant to the South American tomato pinworm than low AS genotypes, their actual levels of resistance may be background-dependent: high AS clones with BPX-410H background had slightly higher levels of resistance than high AS clones with BPX-370G background. Clones BPX-410H-01pl#281, BPX-410H-04pl#348 and BPX-410H-04pl#481 had the highest levels of pinworm resistance, and were recommended for further use in breeding programs.

  2. Sharka: how do plants respond to Plum pox virus infection?

    Science.gov (United States)

    Clemente-Moreno, María J; Hernández, José A; Diaz-Vivancos, Pedro

    2015-01-01

    Plum pox virus (PPV), the causal agent of sharka disease, is one of the most studied plant viruses, and major advances in detection techniques, genome characterization and organization, gene expression, transmission, and the description of candidate genes involved in PPV resistance have been described. However, information concerning the plant response to PPV infection is very scarce. In this review, we provide an updated summary of the research carried out to date in order to elucidate how plants cope with PPV infection and their response at different levels, including the physiological, biochemical, proteomic, and genetic levels. Knowledge about how plants respond to PPV infection can contribute to the development of new strategies to cope with this disease. Due to the fact that PPV induces an oxidative stress in plants, the bio-fortification of the antioxidative defences, by classical or biotechnological approaches, would be a useful tool to cope with PPV infection. Nevertheless, there are still some gaps in knowledge related to PPV-plant interaction that remain to be filled, such as the effect of PPV on the hormonal profile of the plant or on the plant metabolome. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce

  4. The role of weeds in the spread of Tomato spotted wilt virus by thrips tabaci (Thysanoptera: Thripidae) in tobacco crops

    NARCIS (Netherlands)

    Chatzivassiliou, E.K.; Peters, D.; Katis, N.I.

    2007-01-01

    Oviposition of Thrips tabaci, larval development and their potential to acquire Tomato spotted wilt virus (TSWV) from infected Amaranthus retroflexus, Datura stramonium, Lactuca serriola, Solanum nigrum and Sonchus oleraceus plants and the ability of the adults to transmit this virus to these weeds

  5. The Role of Pathogenesis-Related Proteins in the Tomato-Rhizoctonia solani Interaction

    Directory of Open Access Journals (Sweden)

    Parissa Taheri

    2012-01-01

    Full Text Available Rhizoctonia solani is one of the most destructive pathogens causing foot rot disease on tomato. In this study, the molecular and cellular changes of a partially resistant (Sunny 6066 and a susceptible (Rio Grande tomato cultivar after infection with necrotrophic soil-borne fungus R. solani were compared. The expression of defense-related genes such as chitinase (LOC544149 and peroxidase (CEVI-1 in infected tomato cultivars was investigated using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR. This method revealed elevated levels of expression for both genes in the partially resistant cultivar compared to the susceptible cultivar. One of the most prominent facets of basal plant defense responses is the formation of physical barriers at sites of attempted fungal penetration. These structures are produced around the sites of potential pathogen ingress to prevent pathogen progress in plant tissues. We investigated formation of lignin, as one of the most important structural barriers affecting plant resistance, using thioglycolic acid assay. A correlation was found between lignification and higher level of resistance in Sunny 6066 compared to Rio Grande cultivar. These findings suggest the involvement of chitinase, peroxidase, and lignin formation in defense responses of tomato plants against R. solani as a destructive pathogen.

  6. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  7. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  8. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  10. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yunzhou Li

    Full Text Available Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3 in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L. infected with tomato yellow leaf curl virus (TYLCV. There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA and jasmonic acid (JA defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD, peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  11. Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251) on Meloidogyne incognita in a tomato-cucumber rotation in a greenhouse.

    Science.gov (United States)

    Giné, Ariadna; Sorribas, Francisco J

    2017-05-01

    The effectiveness of combining resistant tomato with BioAct WG (Purpureocillium lilacinum strain 251, Pl251) against Meloidogyne incognita was assessed in a tomato-cucumber rotation in a greenhouse over 2 years. Additionally, the enzymatic activity of the fungus, the percentage of fungal egg and juvenile parasitism, cardinal temperatures and the effect of water potential on mycelial growth and the soil receptivity to Pl251 were determined in vitro. Plant resistance was the only factor that suppressed nematode and crop yield losses. Percentage of egg parasitism in plots treated with BioAct WG was less than 2.6%. However, under in vitro conditions, Pl251 showed protease, lipase and chitinase activities and parasitised 94.5% of eggs, but no juveniles. Cardinal temperatures were 14.2, 24-26 and 35.4 °C. The maximum Pl251 mycelial growth was at -0.25 MPa and 25 °C. Soil temperatures and water potential in the greenhouse were in the range of the fungus. However, soil receptivity was lower in greenhouse soil, irrespective of sterilisation, than in sterilised sand. Plant resistance was the only factor able to suppress nematode densities, disease severity and yield losses, and to protect the following cucumber crop. Environmental factors involved in soil receptivity could have negatively affected fungus effectiveness. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effects of shoot pruning and inflorescence thinning on plant growth, yield and fruit quality of greenhouse tomatoes in a tropical climate

    Directory of Open Access Journals (Sweden)

    Johannes F. J. Max

    2016-03-01

    Full Text Available The combined effects of shoot pruning (one or two stems and inflorescence thinning (five or ten flowers per inflorescence on greenhouse tomato yield and fruit quality were studied during the dry season (DS and rainy season (RS in Central Thailand. Poor fruit set, development of undersized (mostly parthenocarpic fruits, as well as the physiological disorders blossom-end rot (BER and fruit cracking (FC turned out to be the prevailing causes deteriorating fruit yield and quality. The proportion of marketable fruits was less than 10% in the RS and around 65% in the DS. In both seasons, total yield was significantly increased when plants were cultivated with two stems, resulting in higher marketable yields only in the DS. While the fraction of undersized fruits was increased in both seasons when plants were grown with a secondary stem, the proportions of BER and FC were significantly reduced. Restricting the number of flowers per inflorescence invariably resulted in reduced total yield. However, in neither season did fruit load considerably affect quantity or proportion of the marketable yield fraction. Inflorescence thinning tended to promote BER and FC, an effect which was only significant for BER in the RS. In conclusion, for greenhouse tomato production under climate conditions as they are prevalent in Central Thailand, the cultivation with two stems appears to be highly recommendable whereas the measures to control fruit load tested in this study did not proof to be advisable.

  13. Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction.

    Science.gov (United States)

    Shahid, Muhammad Shafiq; Ikegami, Masato; Waheed, Abdul; Briddon, Rob W; Natsuaki, Keiko T

    2014-01-14

    Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein virus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB), a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.

  14. Association of an Alphasatellite with Tomato Yellow Leaf Curl Virus and Ageratum Yellow Vein Virus in Japan Is Suggestive of a Recent Introduction

    Directory of Open Access Journals (Sweden)

    Muhammad Shafiq Shahid

    2014-01-01

    Full Text Available Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomato yellow leaf curl virus (TYLCV and Ageratum yellow vein virus (AYVV. Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB, a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.

  15. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans.

    Science.gov (United States)

    Soylu, E Mine; Soylu, Soner; Kurt, Sener

    2006-02-01

    The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 microg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4-2.0 microg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 microg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 microg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on

  16. Root and leaf abscisic acid concentration impact on gas exchange in tomato (Lycopersicon esculentum Mill plants subjected to partial root-zone drying

    Directory of Open Access Journals (Sweden)

    Maria Valerio

    2017-03-01

    Full Text Available Partial root-zone drying (PRD is a deficit irrigation technique with great potential for water saving. A split-root experiment was conducted on tomato in controlled environment in order to test the response of two long-time storage cultivars to PRD. Ponderosa tomato, a cultivar with yellow fruits, was compared to Giallo tondo di Auletta, a local cultivar from southern Campania (Italy. Plants were subjected to three irrigation treatments: plants receiving an amount of water equivalent to 100% of plant evapotranspiration (V100; plants in which 50% of the amount of water given to V100 was supplied (V50; and plants where one root compartment was irrigated at 50% of water requirements and the other compartment was allowed to dry, and thereafter every side was rewetted alternatively (PRD. The highest levels of leaf abscisic acid (ABA [on average equal to 104 ng g–1 fresh weight FW] were measured in PRD and V50, at 70 days after transplantation. Root ABA concentration in both PRD and V50 reached mean values of 149 ng g–1 FW. There were differences for the irrigation regime in root ABA biosynthesis and accumulation under partial root-zone drying and conventional deficit irrigation (V50. Assimilation rate, stomatal conductance and intercellular CO2 concentration decreased in relation to the irrigation regime by 22, 36 and 12%, respectively, in PRD, V50 and V100 at 50 days after transplantation. Ponderosa variety accumulated 20% more dry matter than Auletta and significant differences were observed in leaf area. In both PRD and V50 of the two varieties, it was possible to save on average 46% of water. Our results indicate that there is still space to optimise the PRD strategy, to further improve the cumulative physiological effects of the root-sourced signaling system.

  17. Essential Oils as Biocides for the Control of Fungal Infections and Devastating Pest (Tuta absoluta) of Tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Bouayad Alam, Samira; Dib, Mohammed El Amine; Djabou, Nassim; Tabti, Boufeldja; Gaouar Benyelles, Nassira; Costa, Jean; Muselli, Alain

    2017-07-01

    Thymus capitatus and Tetraclinis articulata essential oils as well their major components (carvacrol and α-pinene) were evaluated for their antifungal and insecticidal activities. Both oils showed good in vitro antifungal activity against Fusarium oxysporum, Aspergillus niger, Penicillium sp., Alternaria alternata, and Botrytis cinerea, the fungi causing tomato rot. In vivo results indicate the efficacies of both essential oils and carvacrol of reduce postharvest fungal pathogens, such as B. cinerea and Al. alternata that are responsible of black and gray rot of tomato fruit. Disease incidence of Al. alternata and B. cinerea decreased on average from 55% to 80% with essential oil of Th. capitatus and pure carcvacrol, while Te. articulata essential oil exhibited inhibition of fungal growth of 55% and 25% against Al. alternata and B. cinerea, respectively, with concentration of 0.4 μl/l air. The insecticidal activity of Th. capitatus and Te. articulata essential oils exhibited also a good insecticidal activity. At the concentration of 0.2 μl/ml air, the oils caused mortality over 80% for all larval stages of Tuta absoluta and 100% mortality for the first-instar after 1.5 h only of exposure. α-Pinene presented lower insecticidal and antifungal activities compared to essential oils of Th. capitatus, Te. articulata and pure carvacrol. Thus, these essential oils can be used as a potential source to develop control agents to manage some of the main pests and fungal diseases of tomato crops. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  19. THE CHARACTERISATION OF FUNGI Passalora fulva (Cooke U.Braun&Crous PATHOTYPES, CAUSER OF TOMATO LEAF MOLD IN CROATIA

    Directory of Open Access Journals (Sweden)

    Adrijana Novak

    2012-12-01

    Full Text Available Tomato is considered one of the most widely grown vegetable crops in the world and production of it is rising every year in Croatia as well as in the world. This research paper shows results on tomato leaf mould caused by Passalora fulva (Cooke U.Braun & Crous (syn. Cladosporium fulvum (Cooke, which can cause significant reduction of yield and quality of tomato. Other than economic loss, tomato leaf mould can be the cause of allergies because it produces lots of spores. During research, the following materials and methods have been used: collecting samples of plant material infected with tomato leaf mould and assessments of disease intensity, isolation and determination of the pathogen, detecting pathotypes using biassay, susceptibility testing of different tomato genotypes infected with P. fulva, molecular identification and testing the effects of essential oils in vitro on conidia germination. Visual controls of greenhouse and outdoor growing tomato were conducted during the period from 2006 to 2011. Samples (17 from 14 localities in 10 counties (Istra County, Koprivnica-Križevci County, KrapinaZagorje County, Međimurje County, Osijek-BaranjaCounty, Primorje-Gorski Kotar County, Varaždin County, Virovitica-Podravina County, Zadar County and Zagreb County were collected. Symptoms were detected on 6 different tomato genotypes: Belle, Jeremy, Minaret, Amaneta, Gravitet and test genotype. Outdoors, P. fulva was not found. For isolation and determination of P. fulva 4 different growing media were used: PDA (potato – dextrose agar, tomato – agar, carrot – agar and V8 – agar. By measuring the size of conidia on carrot – agar it was determined that they were the closest in size to the conidia from infected tomato leaf. Bioassay for the first time in Croatia confirmed presence of two different physiological pathotypes of P. fulva, Cf – 0 and Cf – 5. Other pathotypes obtained by bioassay were not confirmed by sequencing because the

  20. Two sides of the same coin: Xyloglucan endotransglucosylases/hydrolases in host infection by the parasitic plant Cuscuta.

    Science.gov (United States)

    Olsen, Stian; Popper, Zoë A; Krause, Kirsten

    2016-01-01

    The holoparasitic angiosperm Cuscuta develops haustoria that enable it to feed on other plants. Recent findings corroborate the long-standing theory that cell wall modifications are required in order for the parasite to successfully infect a host, and further suggest that changes to xyloglucan through the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) are essential. On the other hand, XTH expression was also detected in resistant tomato upon an attack by Cuscuta, which suggests that both host and parasite use these enzymes in their "arms race." Here, we summarize existing data on the cell wall-modifying activities of XTHs during parasitization and present a model suggesting how XTHs might function to make the host's resources accessible to Cuscuta.

  1. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  2. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  3. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  4. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection

    Directory of Open Access Journals (Sweden)

    Martens Cindy

    2010-06-01

    Full Text Available Abstract Background Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. Results Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD. Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. Conclusions The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.

  5. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants.

    Directory of Open Access Journals (Sweden)

    Cica Urbino

    Full Text Available Tomato yellow leaf curl virus (TYLCV is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi, and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our

  6. Study the Effect of Three Species of Medicinal Plants of the Mint Family on Pathogenicity and Damage Root Knot Nematode Meloidogyne javanica in Tomato

    Directory of Open Access Journals (Sweden)

    Maryam Fayaz

    2017-03-01

    , and savory are pathogenic nematode damage in tomato was examined. Materials and Methods: In this study, the effect of the medicinal plants of the mint family on root knot nematode, three herb thyme (Thymus vulgaris, savory (Sature jahortensis and hyssop (Hyssopus officinalis was used. In order to prepare the inoculum required for the test, root-knot nematode- contaminated tomato samples were collected from the farms or greenhouses of Chaharmahal Bakhtiari Province (one of the provinces of Iran. To separate and extract eggs and larvae, contaminated roots were chopped into 1-2 cm pieces by the method of Hussey & Jonsen were mixed in 10% hypochlorite sodium solution in a mixer for one minute. Then the mixture was put in the 400-mesh sieve under water current so as to remove hypochlorite sodium. Finally, the eggs were collected in distilled water. Furthermore, to prepare sufficient larvae, nematode egg masses were transferred to petri dishes and kept in the incubator for 24 hours until the eggs hatched. Finally, the obtained eggs and larvae were used to carry out the test. A greenhouse experiment was as factorial in a completely randomized design with single culture tomato and mixed with herbal hyssop (Hyssopus officinalis, thyme (Thymus vulgaris, and savory (Sature sp, in the presence and absence of nematodes. Results and Discussion: The tomato growth parameters (dry weight of root, stem, leaf, root length, shoot length and nematode pathogenicity (Number of galls, egg massesin1/g of root of ,the number of eggs in each egg masses, second instar larvae per 100 gr of soil and reproductive factors were evaluated three months after nematode inoculations. Data were analyzed using SAS statistical software comparing MSTATC software and LSD test was performed. Statistical analysis of data showed the significance difference between treatments. ANOVA results demonstrated that the use of three species of medicinal plants of the mint family is a significant effect on the

  7. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  8. Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    B. Kahlaoui

    2018-01-01

    Full Text Available In scope of crop salinity tolerance, an experiment was carried out in a field using saline water (6.57 dS m−1 and subsurface drip irrigation (SDI on two tomato cultivars (Solanum lycopersicum, cv. Rio Grande and Heinz-2274 in a salty clay soil. Exogenous application of proline was done by foliar spray at two concentrations: 10 and 20 mg L−1, with a control (saline water without proline, during the flowering stage. Significant higher increases in proline and total soluble protein contents, glutamine synthetase (GS, EC6.3.1.2 activities and decreases in proline oxidase (l-proline: O2 Oxidoreductase, EC1.4.3.1 activities were detected in both tomato cultivars when irrigated with saline water (6.57 dS m−1 and exogenously applied by the lower concentration of proline. Taking in consideration the obtained results, it was concluded that the foliar spray of low concentration of proline can increase the tolerance of both cultivars of tomato to salinity under field conditions.

  9. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2013-01-01

    Full Text Available This research was carried to determine the effects of sewage sludge applications on the yield and yield components of plants under crop rotation system. The field experiments were conducted in the Bafra Plain, located in the north region of Turkey. In this research, the “wheat-white head cabbage-tomato” crop rotation systems have been examined and the same crop rotation has been repeated in two separate years and field trials have been established. Seven treatments were compared: a control without application of sludge nor nitrogen fertilization, a treatment without sludge, but nitrogen and phosphorus fertilization, applied at before sowing of wheat and five treatments where, respectively 10, 20, 30, 40 and 50 tons sludge ha-1. The experimental design was a randomized complete block with three replications. The results showed that all the yield components of wheat and yield of white head cabbage and tomato increased significantly with increasing rates of sewage sludge as compared to control. As a result, 20 t ha-1 of sewage sludge application could be recommended the suitable dose for the rotation of wheat-white head cabbage-tomato in soil and climatic conditions of Bafra Plain.

  10. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Preplanting irradiation of tomato seeds

    International Nuclear Information System (INIS)

    Maltseva, S.

    1976-01-01

    Seeds of the tomato varieties Pioneer-2, Drouzhba and Ace were treated prior to planting with Co 60 gamma rays in optimal doses of 2000 R and the varieties No 10 x Bison, Triumph and Extase with 1500 R. This treatment raised the germination energy and the plants started flowering and ripening earlier. The index of earliness was enhanced but the overall yield was equal to that of the control plants. (author)

  12. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    International Nuclear Information System (INIS)

    Barrios, Ana Cecilia; Rico, Cyren M.; Trujillo-Reyes, Jesica; Medina-Velo, Illya A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2016-01-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO_2, CA + nCeO_2) bulk cerium oxide (bCeO_2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO_2 increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO_2 and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO_2 at 250 mg/kg, but reduced by bCeO_2 at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO_2 increased Ce in roots by 10 and 7 times, compared to CA + nCeO_2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO_2 nor CA + nCeO_2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO_2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO_2 at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO_2 on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9%, respectively. • Coated NPs at 500 mg/kg increased CAT activity in

  13. Callus formation and organogenesis of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... propagated plants upon transfer to soil under natural conditions. ... Effect of high temperature and heat shock on tomato (Lycopersicon esculentum Mill) genotypes .... Modulation of mineral and fatty acid profiles during ...

  14. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    Science.gov (United States)

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  15. Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production.

    Science.gov (United States)

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-04-21

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.

  16. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  17. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    Science.gov (United States)

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  19. Studies on the reaction in tissue culture of tomato genotypes under biotic stress

    Directory of Open Access Journals (Sweden)

    Ewa Hanus-Fajerska

    2014-01-01

    Full Text Available Plant regeneration in vitro from virus-infected somatic tomato (Lycopersicon sp. tissue was performed. Regeneration experiments were started after the determination of virus presence, using enzyme-linked immunosorbent assay, in leaves used as a source of explants. Leaf explants infected with selected strains of tomato mosaic Tobamovirus or cucumber mosaic Cucumovirus respectively, were cultured on a standarised MS agar medium to induce adventitious shoots, which were afterwards excised, rooted in vitro and cultured to plants. Explants were also screened for their ability to produce callus. Diverse effects of viral infection, ranging from stimulation to inhibition of callus formation and of morphogenesis rate, were observed. The health condition of the tissue proved to affect regeneration potential of Lycopersicon esculentum, whereas wild accesions did not react in that case so distinctly. In cultivated tomato was encountered the decline in competence to reproduce shoots adventitiously in infected tissue. There was also relationship between donor plant health condition and adventitious root formation in regenerated shoots. Experiments with short-term cultures of L. esculenum reveled also that a certain number of shoots regenerated from diseased tissue can be virus-free.

  20. Cytopathological evidence for transport of phytoplasma in infected plants

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available Pleomorphic phytoplasmas were observed in sieve tubes, companion cells and in phloem parenchyma of Tagetes patula L., Helichrysum bracteatum Willd. and Gladiolus sp. L. plants with morphological changes typical for phytoplasma infection. In the pores of the sieve plate phytoplasma cells were seen which suggests that the vertical transport of this pathogen goes in the sieve tubes of infected plants throughout the sieve tube pores. The contact of the sieve tube with the neighbouring cells goes through the plasmodesmata, but no changes of the plasmodesmata were observed in the phloem of infected plants. The size and structure of unchanged plasmodesmata does not allow passing through such big structures like phytoplasma. Instead close contact between phytoplasma cells and vertical sieve tube walls takes place. Damages to the cell wall were observed forming cavities in which the phytoplasma cells were present. The damages of parenchyma and companion cells walls also were seen. In cells where the damages of the walls were observed phytoplasmas were present. The phytoplasma cells were sporadically seen also in the intercellular spaces of parenchyma. These data suggest that horizontal transport depends on damages to the infected plant cell walls caused by the phytoplasma itself.

  1. Philadelphia and the Tomato.

    Science.gov (United States)

    Smith, Andrew F.; Kling, Tatiana

    This booklet describes for elementary students the many contributions of people, traveling many places, over many years to bring the tomato to Philadelphia. The booklet includes the following: (1) "Introduction to the Tomato"; (2) "Where Does the Tomato Come From?"; (3) "The Spanish Tomato"; (4) "The Philadelphia…

  2. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  3. Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions

    Directory of Open Access Journals (Sweden)

    Giovanna GILARDI

    2014-09-01

    Full Text Available Five trials were carried out under greenhouse conditions to test the efficacy of spray programmes based on biocontrol agents, phosphite-based fertilizers and a chemical inducer of resistance (acibenzolar-S-methyl, phosethyl-Al to control crown and root rot of tomato incited by Phytophthora nicotianae. The best disease control, under high disease pressure resulting from artificial inoculation, was obtained with three pre-plant leaf sprays at 7 d intervals with acibenzolar-S-methyl and with two mineral phosphite-based fertilizers. The disease reduction achieved was similar to that obtained with a single application of azoxystrobin and metalaxyl-M. Phosetyl-Al and the biocontrol agents Glomus spp. + Bacillus megaterium + Trichoderma, B. subtilis QST713, B. velezensis IT45 and the mixture T. asperellum ICC012 + T. gamsii ICC080 provided a partial disease control. Brassica carinata pellets did not control the disease.

  4. One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacteria and Viruses in Pepper and Tomato Seeds

    Directory of Open Access Journals (Sweden)

    Kyusik Jeong

    2011-04-01

    Full Text Available The aim of this study was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant seed infection pathogenic bacteria and virus, Xanthomonns campestris pv. vesicatoria (Xcv, Clavibacter michiganensis subsp. michiganensis (Cmm, Erwinia carotovora subsp. carotovora (Ecc, Pepper mild mottle virus (PMMoV and Tobacco mild green mosaic virus (TMGMV in pepper and tomato seeds. Most of pepper and tomato bacterial and virus diseases are responsible for germination and growth obstruction. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcv, Cmm, Ecc, PMMoV and TMGMV in pepper and tomato seeds, five pairs (Cmm-F/R, Ecc-F/R, Xcv-F/R, PMMoV-F/R, TMGMV-F/R of specific primer were synthesized by primer-blast program. The multiplex PCR for the five pathogens in pepper and tomato seeds could detect specially without interference among primers and/or cDNA of plant seeds and other plant pathogens. The PCR result for pathogen detection using 20 commercial pepper and 10 tomato seed samples, Ecc was detected from 4 pepper and 2 tomato seed samples, PMMoV was detected from 1 pepper seed sample, and PMMoV and TMGMV were simultaneously detected from 1 pepper seed sample.

  5. Small RNAs were involved in homozygous state-associated silencing of a marker gene (Neomycin phosphotransferase II: nptII) in transgenic tomato plants.

    Science.gov (United States)

    Deng, Lei; Pan, Yu; Chen, Xuqing; Chen, Guoping; Hu, Zongli

    2013-07-01

    Homozygous state-associated co-suppression is not a very common phenomenon. In our experiments, two transgenic plants 3A29 and 1195A were constructed by being transformed with the constructs pBIN-353A and pBIN119A containing nptII gene as a marker respectively. The homozygous progeny from these two independent transgenic lines 3A29 and 1195A, displayed kanamycin-sensitivity and produced a short main root without any lateral roots as untransformed control (wild-type) seedlings when germinated on kanamycin media. For the seedlings derived from putative hemizygous plants, the percentage of the seedlings showing normal growth on kanamycin media was about 50% and lower than the expected percentage (75%). Southern analysis of the genomic DNA confirmed that the homozygous and hemizygous plants derived from the same lines contained the same multiple nptII transgenes, which were located on the same site of chromosome. Northern analysis suggested that the marker nptII gene was expressed in the primary and the hemizygous transformants, but it was silenced in the homozygous transgenic plants. Further Northern analysis indicated that antisense and sense small nptII-derived RNAs were present in the transgenic plants and the blotting signal of nptII-derived small RNA was much higher in the homozygous transgenic plants than that of hemizygous transgenic plants. Additionally, read-through transcripts from the TRAMP gene to the nptII gene were detected. These results suggest that the read-through transcripts may be involved in homozygous state-associated silencing of the nptII transgene in transgenic tomato plants and a certain threshold level of the nptII-derived small RNAs is required for the homozygous state-associated co-suppression of the nptII transgene. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits ( Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are contaminated soils, which were not included in this study.

  7. Synergistic and individual effect of glomus etunicatum root colonization and acetyl salicylic acid on root activity and architecture of tomato plants under moderate nacl stress

    International Nuclear Information System (INIS)

    Ghanzanfar, B.; Cheng, Z.; Ahmad, I.; Khan, A. R.; Hanqiang, L.; Haiyan, D.; Fang, C.

    2015-01-01

    A pot based experiment in plastic tunnel was conducted to investigate the changes in root morphology and root activity of the tomato plants grown under moderate NaCl stress (100 mM), pretreated with arbuscular mycorrhizal fungus AMF (Glomus etunicatum) root colonization and acetyl salicylic acid (ASA) as salinity ameliorative agents. The results revealed that both AMF and ASA treatments significantly enhanced the fresh root weight and root morphological parameters; net length, surface area, volume, mean diameter, nodal count and number of tips to different extents as compared to those of sole salinity treatment at 90 days after transplantation. Both treatments; AMF alone and in combination with ASA significantly enhanced the root activity level in terms of triphenyl tetrazolium chloride (TTC) reduction (2.37 and 2.40 mg g /sup -1/ h /sup -1/ respectively) as compared to the sole salinity treatment (0.40 mg g /sup -1/ h /sup -1/ ) as well as the salt free control (1.69 mg g /sup -1/ h /sup -1/) On the other hand, ASA treatment alone also uplifted root activity (1.53 mg g /sup -1/ h /sup -1/ ) which was significantly higher than that of sole salt treatment. It was inferred that under moderate saline conditions (100 mM NaCl), AMF (Glomus etunicatum) and ASA (individually or in combination) confer protective effect on plant growth by enhanced root activity and improved root architecture. Therefore, synergistic use of AMF (G. etunicatum) and ASA can be eco-friendly and economically feasible option for tomato production in marginally salt affected lands and suggests further investigations. (author)

  8. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000.

    Science.gov (United States)

    Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray

    2015-11-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Dual infections of ToMV and TYLCV, or ToMV and ToCV, detected in tomato fields located in Chungchungnam-Do in 2017

    Science.gov (United States)

    Demand for tomatoes has been increasing every year as people desire more healthful food. In Korea tomatoes are mainly grown in Chungnam, Chunnam and Kyungnam provinces. Recently, reports of whitefly-transmitted viral diseases have increased due to newly emerging whitefly pressures caused by climate ...

  10. Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot

    Directory of Open Access Journals (Sweden)

    Matthew F. Pye

    2018-04-01

    Full Text Available Salt stress predisposes plants to Phytophthora root and crown rot in an abscisic acid (ABA-dependent manner. We used the tomato–Phytophthora capsici interaction to examine zoospore chemoattraction and assessed expression of pathogenesis-related (PR genes regulated by salicylic acid (SA and jasmonic acid (JA following a salt-stress episode. Although salt treatment enhances chemoattraction of tomato roots to zoospores, exudates from salt-stressed roots of ABA-deficient mutants, which do not display the predisposition phenotype, have a similar chemoattraction as exudates from salt-stressed, wild-type roots. This suggests that ABA action during predisposing stress enhances disease through effects on plant responses occurring after initial contact and during ingress by the pathogen. The expression of NCED1 (ABA synthesis and TAS14 (ABA response in roots generally corresponded to previously reported changes in root ABA levels during salt stress onset and recovery in a pattern that was not altered by infection by P. capsici. The PR genes, P4 and PI-2, hallmarks in tomato for SA and JA action, respectively, were induced in non-stressed roots during infection and strongly suppressed in infected roots exposed to salt-stress prior to inoculation. However, there was a similar proportional increase in pathogen colonization observed in salt-stressed plants relative to non-stressed plants in both wild-type and a SA-deficient nahG line. Unlike the other tomato cultivars used in this study that showed a strong predisposition phenotype, the processing tomato cv. ‘Castlemart’ and its JA mutants were not predisposed by salt. Salt stress predisposition to crown and root rot caused by P. capsici appears to be strongly conditioned by ABA-driven mechanisms in tomato, with the stress compromising SA-and JA-mediated defense-related gene expression during P. capsici infection.

  11. Isolation and composition of chromoplasts from tomatoes.

    Science.gov (United States)

    Hansen, Linn U; Chiu, Mei-Chen M

    2005-08-24

    The fruit of the tomato plant is composed of elongated tomato cells filled with organelles called chromoplasts (plastids). These plastids scattered throughout the cell are rich in nutrients, particularly protein (33%) and lipids (20%). They can be released from the cells by rupture of their cell membranes and then isolated. Plastids and their cell contents can be utilized by the food-processing industry for the preparation of special food products. This study was designed to examine the macronutrient content of isolated tomato plastids and, therefore, determine its potential nutritional value. Use of tomato plastids in pasta sauces and rice dishes, salsa, and extrusion products would increase the nutritional value of the product. Because glucose has been removed in the process of plastid isolation, tomato plastids are useful in the diets of diabetics and cardiovascular patients, as well as for patients in need of weight reduction. Composition comparison of tomato plastid is made with tomato paste, from which glucose has not been removed. Many people require low-sugar products for medical reasons (diabetics and those with cardiovascular disease) and others for weight loss. Therefore, tomato chromoplasts having high protein and lipid contents and low sugar content may be useful in meeting these particular human needs.

  12. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    Science.gov (United States)

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of a prebiotic and potassium for the control of anthracnose in the tree tomato

    OpenAIRE

    Luengas Gómez, Carlos Alberto; Roa Vásquez, Maro David; Orrego Vásquez, Juan David

    2012-01-01

    Anthracnose is the most limiting disease in the production of the tree tomato; losses may exceed 50% if control measures are not appropriate. For this reason, farmers use continuous applications of fungicides. Prebiotics have been successfully tested in animals and humans in order to stimulate the growth of intestinal flora and fauna to improve digestion, achieve greater increases in weight, reduce infections and stimulate the immune system. In plants, there are no data on their effectiveness...

  14. Not in your usual Top 10: protists that infect plants and algae.

    Science.gov (United States)

    Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; Falloon, Richard E; Gachon, Claire M M; Legreve, Anne; Lukeš, Julius; Merz, Ueli; Nenarokova, Anna; Strittmatter, Martina; Sullivan, Brooke K; Neuhauser, Sigrid

    2018-04-01

    Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  15. Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes

    Directory of Open Access Journals (Sweden)

    Hélvio Gledson Maciel Ferraz

    2014-09-01

    Full Text Available Fusarium wilt, caused by Fusarium oxysporum f.sp. lycopersici (Fol, is one of the most important diseases that affect tomato yield worldwide. This study investigated the potential of three antagonists, Streptomyces setonii (UFV 618, Bacillus cereus (UFV 592 and Serratia marcescens (UFV 252, and as positive control the hormone jasmonic acid (JA, to reduce Fusarium wilt symptoms and to potentiate the defense enzymes in the stem tissues of tomato plants infected by Fol. The seeds were microbiolized with each antagonist, and the soil was also drenched with them. The plants were sprayed with JA 48 h before Fol inoculation. The area under the Fusarium wilt index progress curve was reduced by 54, 48, 47 and 45% for the UFV 618, JA, UFV 592 and UFV 252 treatments, respectively. The three antagonists, and even the JA spray, efficiently reduced the Fusarium wilt symptoms on the tomato plant stems, which can be explained by the lower malondialdehyde concentration (an indication of oxidative damage to lipids in the plasma membranes and the greater activities of peroxidases, polyphenoloxidases, glucanases, chitinases, phenylalanine ammonia-lyases and lipoxygenases, which are commonly involved in host resistance against fungal diseases. These results present a novel alternative that can be used in the integrated management of Fusarium wilt on tomatoes.

  16. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... type of F. oxysporum f. sp. lycopersici observed commonly which require presence of I1 gene in tomato plant for the incompatibility ... Key words: Fusarium wilt, race, R-gene, resistance, tomato. ... MATERIALS AND METHODS.

  17. Culture of the Tomato Micro-Tom Cultivar in Greenhouse.

    Science.gov (United States)

    Rothan, Christophe; Just, Daniel; Fernandez, Lucie; Atienza, Isabelle; Ballias, Patricia; Lemaire-Chamley, Martine

    2016-01-01

    Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.

  18. Evaluation of salt tolerance in ectoine-transgenic tomato plants (Lycopersicon esculentum) in terms of photosynthesis, osmotic adjustment, and carbon partitioning.

    Science.gov (United States)

    Moghaieb, Reda E A; Nakamura, Akiko; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-01-01

    Ectoine is a common compatible solute in halophilic bacteria. Its biosynthesis originates from L-aspartate β-semialdehyde and requires three enzymes: L-2, 4-diaminobutyric acid aminotransferase (gene: ect B), L-2,4-diaminobutyric acid acetyl transferase (gene: ect A) and L-ectoine synthase (gene: ect C). Genetically engineered tomato plants expressing the three H. elongata genes (ectA, ectB, and ectC) generated showed no phenotypic abnormality. Expression of the ectoine biosynthetic genes was detected in the T3 transgenic plants by Northern blot analysis. The ectoine accumulating T3 plants were evaluated for salt tolerance by examining their photosynthestic activity, osmotic adjustment and carbon partitioning. Nuclear magnetic resonance (NMR) detected the accumulation of ectoine. The concentration of ectoine increased with increasing salinity. The transgenic lines showed higher activities of peroxidase, while the malondialdehyde (MDA) concentration was decreased under salinity stress condition. In addition, preservation of higher rates of photosynthesis and turgor values as compared to control was evident. Within a week of ( 13) CO 2 feeding, salt application led to increases in the partitioning of ( 13) C into roots at the expense of ( 13) C in the other plant parts. These results suggest that under saline conditions ectoine synthesis is promoted in the roots of transgenic plants, leading to an acceleration of sink activity for photosynthate in the roots. Subsequently, root function such as water uptake is improved, compared with wild-type plants. In this way, the photosynthetic rate is increased through enhancement of cell membrane stability in oxidative conditions under salt stress.

  19. Antiviral Activity of Sukomycin Against Potato Virus Y And Tomato Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-12-01

    Full Text Available Potato virus Y (PVY and Tomato mosaic virus (ToMV are one of the most important plant viruses that strongly influence the quality and quantity of vegetable production and cause substantial losses to farmers. The most convetional and common method of pest and disease control is trough the use of pesticides. Unfortunately, most of them are synthetic compounds without antiviral activities and possess inherent toxicities that endanger the health of the farm operators, consumers and the environment. In order to carry out a control of viral infections in plants and to reduce the loss of production it is necessary the search for alternative and environmentally friendly methods for control. Sukomycin is a complex of substances with antimicrobial and antiviral activities produced from Streptomyces hygroscopicus isolated from soil. This natural complex reduces significantly symptoms and DAS-ELISA values of Potato virus Y and Tomato mosaic virus in tobacco plants.

  20. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Alharby Hesham F.

    2016-01-01

    Full Text Available The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen contents and changes in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl, and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1. The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1 was more effective than a higher concentration (30 mg L-1. This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

  1. Evaluation of weeds as possible hosts of the potyviruses associated with tree tomato (Solanum betaceum Cav. viroses

    Directory of Open Access Journals (Sweden)

    Sierra S. Adela

    2012-04-01

    Full Text Available

    To determine possible weed hosts of potyviruses associated with the disease known as “tree tomato virus disease” in Antioquia department (Colombia, a sampling was conducted to identify weed species commonly found in commercial crops of S. betaceum affected by the virus and the possible presence of the virus in these plants. The encountered weed species were grouped into seven different taxonomic families, within which we evaluated the ten most common species. The selected weeds, three indicator species of the virus and tree tomato plants were grown in a greenhouse and mechanically inoculated with an extract of infected tree tomato tissue. One month after inoculation, the tree tomato plants and Nicotiana tabacum showed symptoms of the disease and were serologically positive, whereas none of the weeds showed symptoms or were positive for potyviruses serology. In order to confirm that the detection of the virus was not caused by low viral titers that did not reach the minimum detection level of the test used, the tomato tree plants were reinoculated with an extract of sap from the studied weeds and potyviruses was not detected in any of the tested weeds and therefore cannot be considered, with the utilized methodology, as hosts for the potyviruses affecting tree tomato plants.

  2. Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis