WorldWideScience

Sample records for toluene degradation mechanistic

  1. Review: Microbial degradation of toluene | Gopinath | African ...

    African Journals Online (AJOL)

    In spite of positive potential application, toluene results in many mishaps especially health hazards; hence amputation of toluene is crucial for human welfare as well as environmental issues. This review deals with destruction of toluene using microbial degradation. The overall aerobic biodegradation of toluene into carbon ...

  2. Biodegradation and growth characteristics of a toluene-degrading ...

    African Journals Online (AJOL)

    A toluene-degrading strain was isolated from active sludge in this study. Both growth characteristic and the performance to degrade toluene by the strain in batch culture mode were evaluated. Results showed that the isolated strain presented a good ability to remove toluene with the maximum removal efficiency of 93.8%.

  3. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil.

    OpenAIRE

    Mu, D Y; Scow, K M

    1994-01-01

    Toluene is one of several cosubstrates able to support the cometabolism of trichloroethylene (TCE) by soil microbial communities. Indigenous microbial populations in soil degraded TCE in the presence, but not the absence, of toluene after a 60- to 80-h lag period. Initial populations of toluene and TCE degraders ranged from 0.2 x 10(3) to 4 x 10(3) cells per g of soil and increased by more than 4 orders of magnitude after the addition of 20 micrograms of toluene and 1 microgram of TCE per ml ...

  4. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  5. Organic aerosol formation during the atmospheric degradation of toluene.

    Science.gov (United States)

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.

  6. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria

    NARCIS (Netherlands)

    Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; Koning, Wim de; Janssen, Dick B.

    The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a

  7. The function of a toluene-degrading bacterial community in a waste gas trickling filter

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1999-01-01

    oligonucleotide 16S ribosomal RNA probe targeting the toluene-degrading species Pseudomonas putida, and by computer simulations (AQUASIM) of the biofilm growth based on a food web model. Biofilms were taken from a lab-scale trickling filter for treatment of toluene-polluted air. The biofilm growth...

  8. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation.

    Science.gov (United States)

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D K; Sharma, G D

    2012-06-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate.

  9. Detection of Toluene Degradation in Bacteria Isolated from Oil Contaminated Soils

    International Nuclear Information System (INIS)

    Ainon Hamzah; Tavakoli, A.; Amir Rabu

    2011-01-01

    Toluene (C 7 H 8 ) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monooxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/ mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene. (author)

  10. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  11. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation

    OpenAIRE

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D. K.; Sharma, G. D.

    2011-01-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPTT) which ...

  12. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    NARCIS (Netherlands)

    Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Pemen, A.J.M.; Heesch, van E.J.M.; Kling, W.L.

    2012-01-01

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The

  13. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation

    International Nuclear Information System (INIS)

    Ahad, Jason M.E.; Slater, Greg F.

    2008-01-01

    Hydrogen peroxide (H 2 O 2 )-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H 2 O 2 -mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H 2 O 2 -mediated subsurface oxygenation. Despite substantial decreases (> 68%) in groundwater toluene concentrations carbon isotope signatures of toluene (δ 13 C tol ) showed no significant variation (mean = - 27.5 ±0.3 per mille, n = 13) over a range of concentrations from 11.1 to 669.0 mg L -1 . Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation

  15. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    International Nuclear Information System (INIS)

    Hoeben, W F L M; Beckers, F J C M; Pemen, A J M; Van Heesch, E J M; Kling, W L

    2012-01-01

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The observed oxidation product range features an energy density-dependent spectrum of oxygen-functional hydrocarbons, which has been qualitatively discussed on the basis of literature studies. Typically, observed stable oxidation products for both target compounds are the biocompatible carboxylic acids acetic and formic acid. Measured degradation G-values are 23 nmol J -1 at 74% conversion of 70 ppm toluene and 181 nmol J -1 at 81% conversion of 10 ppm limonene. (paper)

  16. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    Science.gov (United States)

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  17. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  18. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    Science.gov (United States)

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  19. Session 6: photo-catalytic degradation of Toluene using sunlight-type excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerte, A.; Hernandez-Alonso, M.D.; Martinez-Arias, A.; Conesa, J.C.; Soria, J.; Fernandez-Garcia, M. [Instituto de Catalisis y Petroleoquimica, CSIC, -Madrid (Spain)

    2004-07-01

    In this report we investigate the doping of anatase-TiO{sub 2} with nine different cations. It is shown that W can be one of the best options for toluene photo-degradation using sunlight-type excitation. Thermal and hydrothermal treatments were applied to amorphous Ti-W mixed oxide precursors with varying W:Ti atomic ratio for obtaining nano-structured particles having different properties. All Ti-W precursors were prepared by a microemulsion method and the mixed oxides characterized by using XRD, XPS, as well as XAFS, Raman and UV-Vis Spectroscopies. (authors)

  20. Start-up and performance characteristics of a trickle bed reactor degrading toluene

    Directory of Open Access Journals (Sweden)

    Ondrej Misiaczek

    2007-09-01

    Full Text Available The objective of this work was to evaluate toluene degradation in a trickle bed reactor when the loading was carried out by changing the air flow rate. The biofiltration system was inoculated with a mixed microbial population, adapted to degradation of hydrophobic compounds. Polypropylene high flow rings were used as a packing material. The system was operated for a period of 50 days at empty bed residence times ranging from 106s to 13s and with a constant inlet concentration of toluene of 100 mg.m-3. The reactor showed high removal efficiency at higher contact times and increasing elimination capacity with higher air-flow rates. The highest EC value reached was 9.8 gC.m-3.h-1 at EBRT = 13s. During the experiment, the consumption of NaOH solution was also measured. No significant variation of this value was found and an average value of 3.84 mmol of NaOH per gram of consumed carbon was recorded.

  1. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries

    International Nuclear Information System (INIS)

    Alvarez, P.J.J.; Vogel, T.M.

    1991-01-01

    Release of petroleum hydrocarbons in the environment is a widespread occurrence. One particular concern is the contamination of drinking water sources by the toxic, water-soluble, and mobile petroleum components benzene, toluene, and xylene (BTX). Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds

  2. Isolation and characterization of Magnetospirillum sp strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model

    DEFF Research Database (Denmark)

    Meyer-Cifuentes, Ingrid; Lavanchy, Paula Maria Martinez; Marin-Cevada, Vianey

    2017-01-01

    -independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15-1 was selected for further...

  3. Low irradiance photocatalytic degradation of toluene in air by screen-printed titanium dioxide layers

    International Nuclear Information System (INIS)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Sangiorgi, Alex; Schiavi, Luca

    2013-01-01

    Screen-printed titania photocatalytic layers made from Degussa P25 were studied in order to assess the potential of this deposition technology for the production of catalytic surfaces for airborne pollutant degradation. The deposited catalytic TiO 2 layers were characterized by a low density (about 25% of the titania bulk crystal) typical of very porous films. The study was carried out using toluene at low concentration (12 ppb) as model pollutant and with a low UV-A irradiance level on the sample surface (200 μW cm −2 ). The catalyst layers were deposited on alumina and quartz substrates demonstrating a good catalytic depollution activity. The relationship between the layer thickness and the catalytic activity was studied in the 1 to 6.8 μm range indicating an optimal 3–4 μm film thickness. Thicker layers do not show significant increases in the catalytic activity. The optical transmittance was studied using quartz substrate samples, showing a severely reduced photon flux for layers deeper than 5 μm. The effect of post-printing thermal treatment was studied in the 500–900 °C range, demonstrating good catalytic activity for processing temperatures ≤ 700 °C. These results indicate that the screen-printing process can be a promising technology for the realization of high efficiency photocatalytic materials for air depollution applications at low UV-A irradiance. - Highlights: • Screen-printed TiO 2 has a good catalytic activity in toluene air depollution. • The overall density of screen-printed TiO 2 layer is ∼ 25% of the bulk crystal density. • The catalytic activity is demonstrated at low UV-A irradiance (200 µW cm –2 ). • The catalytic activity is dependent on the layer thickness until ∼ 4 µm thickness. • The catalytic layer has good activity up to 700 °C post-printing thermal treatment

  4. Kinetics of pyridine degradation along with toluene and methylene chloride with Bacillus sp. in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uma, B.; Sandhya, S. [National Environmental Engineering Research Institute, CSIR-Complex, Madras (India)

    1998-04-01

    Bacillus coagulans strain isolated from contaminated soil was immobilised on activated carbon for degradation of pyridine, toluene and methylene chloride containing synthetic wastewaters. Pyridine was supplied as the only source of nitrogen in the wastewaters. Continuous runs in a packed bed laboratory reactor showed that immobilized B. coagulans can degrade pyridine along with other organics rapidly and the effluent ammonia is also controlled in presence of ``organic carbon``. About 644 mg/l of influent TOC was efficiently degraded (82.85%) at 64.05 mg/l/hr loading. (orig.) With 2 figs., 4 tabs., 15 refs.

  5. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  6. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Robertson, G.P.; Spindler, M.W.; Harrison, W.N.; Somers, P.J.

    1993-07-01

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  7. Amyotrophic lateral sclerosis-A case report and mechanistic review of the association with toluene and other volatile organic compounds.

    Science.gov (United States)

    Ratner, Marcia H; Jabre, Joe F; Ewing, William M; Abou-Donia, Mohamed; Oliver, L Christine

    2018-03-01

    Unmasking of latent neurodegenerative disease has been reported following exposure to chemicals that share one or more mechanisms of action in common with those implicated in the specific disease. For example, unmasking of latent Parkinson's disease (PD) has been associated with exposure to anti-dopaminergic agents, while the progression of pre-existing mild cognitive impairment and unmasking of latent Alzheimer's disease has been associated with exposure to general anesthetic agents which promote Aβ protein aggregation. This literature review and clinical case report about a 45-year-old man with no family history of motor neuron disease who developed overt symptoms of a neuromuscular disorder in close temporal association with his unwitting occupational exposure to volatile organic compounds (VOCs) puts forth the hypothesis that exposure to VOCs such as toluene, which disrupt motor function and increase oxidative stress, can unmask latent ALS type neuromuscular disorder in susceptible individuals. © 2017 Wiley Periodicals, Inc.

  8. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    Science.gov (United States)

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  9. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode

    Directory of Open Access Journals (Sweden)

    Hossein Ali Rangkooy

    2017-01-01

    Full Text Available The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO2 nano coupled oxide and application of absorbent (activated carbon may be efficient and effective technique for refinement of toluene from air flow.

  10. Start-up and Performance Characteristics of a Trickle Bed Reaktor Degrading Toluene

    Czech Academy of Sciences Publication Activity Database

    Misiaczek, O.; Paca, J.; Halecký, M.; Gerrard, A. M.; Sobotka, Miroslav; Soccol, C. R.

    2007-01-01

    Roč. 50, č. 5 (2007), s. 871-877 ISSN 1516-8913 Grant - others:GA ČR(CZ) GA104/05/0194 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : biotrickling filter * constructed mixed population * toluene Subject RIV: EE - Microbiology, Virology Impact factor: 0.349, year: 2007

  11. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    Science.gov (United States)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  12. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Science.gov (United States)

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  13. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  14. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  15. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand.

    Directory of Open Access Journals (Sweden)

    Marian Morales

    Full Text Available The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX may be accelerated by inoculation of specific biodegraders (bioaugmentation. Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction of multiple gene clusters, such as toluene degradation pathway(s, chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis, osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.

  16. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    Science.gov (United States)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  17. DNA synthesis and degradation in UV-irradiated toluene treated cells of E. coli K12: the role of polynucleotide ligase

    International Nuclear Information System (INIS)

    Strike, P.

    1977-01-01

    Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step. (orig.) [de

  18. Preparation and Characterization of Au/Pd Modified-TiO2 Photocatalysts for Phenol and Toluene Degradation under Visible Light—The Effect of Calcination Temperature

    Directory of Open Access Journals (Sweden)

    Anna Cybula

    2014-01-01

    Full Text Available Rutile loaded with Au/Pd nanoparticles was prepared using a water-in-oil microemulsion system of water/AOT/cyclohexane followed by calcination. The effect of calcination temperature (from 350 to 700°C on the structure of Au/Pd nanoparticles deposited at rutile matrix and the photocatalytic properties of Au/Pd-TiO2 was investigated in two model reactions (toluene degradation in gas phase and phenol degradation in aqueous phase. Toluene was irradiated over Au/Pd-TiO2 using light emitting diodes (LEDs, λmax⁡ = 415 nm. The sample 0.5 mol% Pd/TiO2 exhibited the highest activity under visible light irradiation in gas and aqueous phase reaction among all photocatalysts calcined at 350°C, while the sample modified only with gold nanoparticles showed the lowest activity. The Au/Pd-TiO2 sample calcinated at 350°C possesses the highest photocatalytic activity when degrading phenol under visible light, which is 14 times higher than that of the one calcinated at 450°C. It was observed that increasing temperature from 350 to 700°C during calcination step caused segregation of metals and finally resulted in photoactivity drop.

  19. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Møller, S.; Molin, S.

    1997-01-01

    A biological trickling filter for treatment of toluene-containing waste gas was studied. The overall kinetics of the biofilm growth was followed in the early growth phase. A rapid initial colonization took place during the first three days. The biofilm thickness increased exponentially, whereas...

  20. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation

    Science.gov (United States)

    Wang, Meng; Hua, Jianhao; Yang, Yaling

    2018-06-01

    An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of rad OH and rad O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1 h and toluene in 2 h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

  1. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  2. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  3. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  4. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation

    International Nuclear Information System (INIS)

    Li Xiaobin; Wang Linling; Lu Xiaohua

    2010-01-01

    Silver-modified TiO 2 (Ag-TiO 2 ) with various Ag/Ti molar ratios were prepared by the microwave-assisted method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). Compared with the hydrothermal method, Ag-TiO 2 of small crystallite size and high crystallinity can be obtained by the microwave-assisted preparation method. When the Ag/Ti molar ratio increased from 0 to 2%, the doping of Ag promoted the phase transformation and inhibited the growth of anatase crystallite. The absorption edge of Ag-TiO 2 shifted to longer wavelength, and the band gap energy of Ag-TiO 2 decreased. However, after increasing the molar ratio Ag/Ti further from 2 to 4%, the anatase content, the crystallite size and the band gap energy of Ag-TiO 2 only increased slightly. In photodegradation gaseous toluene, the photocatalytic activity of Ag-TiO 2 increased with the increase of Ag/Ti molar ratio from 0 to 1%, but declined with the further increase to 2%. The optimal Ag/Ti molar ratio for photocatalytic activity of Ag-TiO 2 was found as 1%, with the content of anatase, rutile and brookite of 71.1, 14.5 and 14.4%, respectively. Compared with TiO 2 , Ag-TiO 2 exhibited a better photostability in toluene degradation.

  5. Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    NARCIS (Netherlands)

    Landa, Andrew S.; Sipkema, E. Marijn; Weijma, Jan; Beenackers, Antonie A.C.M.; Dolfing, Jan; Janssen, Dick B.

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion

  6. The loss of ecosystem services due to land degradation. Integration of mechanistic and probabilistic models in an Ethiopian case study

    Science.gov (United States)

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Peressotti, Alessandro; Black, Helaina

    2017-04-01

    Land and soil degradation are widespread especially in dry and developing countries such as Ethiopia. Land degradation leads to ecosystems services (ESS) degradation, because it causes the depletion and loss of several soil functions. Ethiopia's farmland faces intense degradation due to deforestation, agricultural land expansion, land overexploitation and overgrazing. In this study we modelled the impact of physical factors on ESS degradation, in particular soil erodibility, carbon storage and nutrient retention, in the Ethiopian Great Rift Valley, northwestern of Hawassa. We used models of the Sediment retention/loss, the Nutrient Retention/loss (from the software suite InVEST) and Carbon Storage. To run the models we coupled soil local data (such as soil organic carbon, soil texture) with remote sensing data as input in the parametrization phase, e.g. to derive a land use map, to calculate the aboveground and belowground carbon, the evapotraspiration coefficient and the capacity of vegetation to retain nutrient. We then used spatialised Bayesian Belief Networks (sBBNs) predicting ecosystem services degradation on the basis of the results of the three mechanistic models. The results show i) the importance of mapping of ESS degradation taking into consideration the spatial heterogeneity and the cross-correlations between impacts ii) the fundamental role of remote sensing data in monitoring and modelling in remote, data-poor areas and iii) the important role of spatial BBNs in providing spatially explicit measures of risk and uncertainty. This approach could help decision makers to identify priority areas for intervention in order to reduce land and ecosystem services degradation.

  7. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duk Kyung, E-mail: dkim@aum.edu [Department of Physical Science, Auburn University Montgomery, Montgomery, AL 36117 (United States); O' Shea, Kevin E., E-mail: osheak@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199 (United States); Cooper, William J. [Department of Civil and Environmental Engineering, Urban Water Research Center, University of California Irvine, Irvine, CA 92697-2175 (United States)

    2012-07-15

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from {beta}-H abstraction overlap with those from high temperature pyrolysis, the effect of {beta}-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: Black-Right-Pointing-Pointer Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O{sub 2} saturation. Black-Right-Pointing-Pointer The major degradation pathways were proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. Black-Right-Pointing-Pointer The effect of {beta

  8. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu

    2012-01-01

    Highlights: ► For the first time, degradation of MC-LR by nitrous acid under UV 365 nm was discovered. ► The effects of factors on MC-LR degradation were analyzed based on kinetic study. ► Mass spectrometry was applied for identification of intermediates and products. ► Special intermediates involved in this study were identified. ► Degradation mechanisms were proposed according to the results of LC–MS analysis. - Abstract: Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO 2 ) under irradiation of 365 nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO 2 concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO 2 ; enhanced degradation of MC-LR was observed with 365 nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO 2 . The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC–MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda.

  9. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qingwei; Ren, Jing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Huang, Honghui [Key Laboratory of Fisheries Ecology Environment, Ministry of Agriculture, Guangzhou 510300 (China); Wang, Shoubing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Wang, Xiangrong, E-mail: xrxrwang@vip.sina.com [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Fan, Zhengqiu, E-mail: zhqfan@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer For the first time, degradation of MC-LR by nitrous acid under UV 365 nm was discovered. Black-Right-Pointing-Pointer The effects of factors on MC-LR degradation were analyzed based on kinetic study. Black-Right-Pointing-Pointer Mass spectrometry was applied for identification of intermediates and products. Black-Right-Pointing-Pointer Special intermediates involved in this study were identified. Black-Right-Pointing-Pointer Degradation mechanisms were proposed according to the results of LC-MS analysis. - Abstract: Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO{sub 2}) under irradiation of 365 nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO{sub 2} concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO{sub 2}; enhanced degradation of MC-LR was observed with 365 nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO{sub 2}. The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda.

  10. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation.

    Science.gov (United States)

    Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu

    2012-05-15

    Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO(2)) under irradiation of 365nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO(2) concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO(2); enhanced degradation of MC-LR was observed with 365nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO(2). The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  12. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.

    2001-02-01

    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)

  13. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    Science.gov (United States)

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhanced Visible Light Photocatalytic Activity of V2O5 Cluster Modified N-Doped TiO2 for Degradation of Toluene in Air

    Directory of Open Access Journals (Sweden)

    Fan Dong

    2012-01-01

    Full Text Available V2O5 cluster-modified N-doped TiO2 (N-TiO2/V2O5 nanocomposites photocatalyst was prepared by a facile impregnation-calcination method. The effects of V2O5 cluster loading content on visible light photocatalytic activity of the as-prepared samples were investigated for degradation of toluene in air. The results showed that the visible light activity of N-doped TiO2 was significantly enhanced by loading V2O5 clusters. The optimal V2O5 loading content was found to be 0.5 wt.%, reaching a removal ratio of 52.4% and a rate constant of 0.027 min−1, far exceeding that of unmodified N-doped TiO2. The enhanced activity is due to the deposition of V2O5 clusters on the surface of N-doped TiO2. The conduction band (CB potential of V2O5 (0.48 eV is lower than the CB level of N-doped TiO2 (−0.19 V, which favors the photogenerated electron transfer from CB of N-doped TiO2 to V2O5 clusters. This function of V2O5 clusters helps promote the transfer and separation of photogenerated electrons and holes. The present work not only displays a feasible route for the utilization of low cost V2O5 clusters as a substitute for noble metals in enhancing the photocatalysis but also demonstrates a facile method for preparation of highly active composite photocatalyst for large-scale applications.

  15. A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells

    Science.gov (United States)

    Schindler, Stefan; Danzer, Michael A.

    2017-03-01

    Aiming at a long-term stable and safe operation of rechargeable lithium-ion cells, elementary design aspects and degradation phenomena have to be considered depending on the specific application. Among the degrees of freedom in cell design, electrode balancing is of particular interest and has a distinct effect on useable capacity and voltage range. Concerning intrinsic degradation modes, understanding the underlying electrochemical processes and tracing the overall degradation history are the most crucial tasks. In this study, a model-based, minimal parameter framework for combined elucidation of electrode balancing and degradation pathways in commercial lithium-ion cells is introduced. The framework rests upon the simulation of full cell voltage profiles from the superposition of equivalent, artificially degraded half-cell profiles and allows to separate aging contributions from loss of available lithium and active materials in both electrodes. A physically meaningful coupling between thermodynamic and kinetic degradation modes based on the correlation between altered impedance features and loss of available lithium as well as loss of active material is proposed and validated by a low temperature degradation profile examined in one of our recent publications. The coupled framework is able to determine the electrode balancing within an error range of < 1% and the projected cell degradation is qualitatively and quantitatively in line with experimental observations.

  16. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations

    Directory of Open Access Journals (Sweden)

    Daisuke Minakata

    2018-02-01

    Full Text Available Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N-nitrosodimethylamine (NDMA, N-nitrosomethylethylamine, and N-nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  17. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations.

    Science.gov (United States)

    Minakata, Daisuke; Coscarelli, Erica

    2018-02-28

    Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV) photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N -nitrosodimethylamine (NDMA), N -nitrosomethylethylamine, and N -nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  18. MECHANISTIC STUDIES OF SURFACE CATALYZED H2O2 DECOMPOSITION AND CONTAMINANT DEGRADATION IN THE PRESENCE OF SAND. (R823402)

    Science.gov (United States)

    This study examined the mechanism and kinetics of surface catalyzed hydrogen peroxide decomposition and degradation of contaminants in the presence of sand collected from an aquifer and a riverbed. Batch experiments were conducted using variable sand concentrations (0.2 to 1.0&nb...

  19. Mechanistic Insights into Elastin Degradation by Pseudolysin, the Major Virulence Factor of the Opportunistic Pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection. PMID:25905792

  20. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  1. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  3. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.L. [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1 University Avenue, Tainan 701, Taiwan (China); Kuo, M.C. Tom [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1 University Avenue, Tainan 701, Taiwan (China)], E-mail: mctkuobe@mail.ncku.edu.tw; Tseng, I.C. [Department of Life Sciences, National Cheng Kung University, 1 University Avenue, Tainan 701, Taiwan (China); Lu, C.J. [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China)

    2007-09-30

    A semicontinuous slurry-microcosm method was applied to mimic trichloroethylene (TCE) cometabolic biodegradation field results at the Que-Jen in-situ pilot study. The microcosm study confirmed the process of aerobic cometabolism of TCE using toluene as the primary substrate. Based on the nucleotide sequence of 16S rRNA genes, the toluene-oxidizing bacteria in microcosms were identified, i.e. Ralstonia sp. P-10 and Pseudomonasputida. The first-order constant of TCE-degradation rate was 0.5 day{sup -1} for both Ralstonia sp. P-10 and P.putida. The TCE cometabolic-biodegradation efficiency measured from the slurry microcosms was 46%, which appeared pessimistic compared to over 90% observed from the in-situ pilot study. The difference in the TCE cometabolic-biodegradation efficiency was likely due to the reactor configurations and the effective time duration of toluene presence in laboratory microcosms (1 days) versus in-situ pilot study (3 days). The results of microcosm experiments using different toluene-injection schedules supported the hypothesis. With a given amount of toluene injection, it is recommended to maximize the effective time duration of toluene presence in reactor design for TCE cometabolic degradation.

  4. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene

    International Nuclear Information System (INIS)

    Han, Y.L.; Kuo, M.C. Tom; Tseng, I.C.; Lu, C.J.

    2007-01-01

    A semicontinuous slurry-microcosm method was applied to mimic trichloroethylene (TCE) cometabolic biodegradation field results at the Que-Jen in-situ pilot study. The microcosm study confirmed the process of aerobic cometabolism of TCE using toluene as the primary substrate. Based on the nucleotide sequence of 16S rRNA genes, the toluene-oxidizing bacteria in microcosms were identified, i.e. Ralstonia sp. P-10 and Pseudomonasputida. The first-order constant of TCE-degradation rate was 0.5 day -1 for both Ralstonia sp. P-10 and P.putida. The TCE cometabolic-biodegradation efficiency measured from the slurry microcosms was 46%, which appeared pessimistic compared to over 90% observed from the in-situ pilot study. The difference in the TCE cometabolic-biodegradation efficiency was likely due to the reactor configurations and the effective time duration of toluene presence in laboratory microcosms (1 days) versus in-situ pilot study (3 days). The results of microcosm experiments using different toluene-injection schedules supported the hypothesis. With a given amount of toluene injection, it is recommended to maximize the effective time duration of toluene presence in reactor design for TCE cometabolic degradation

  5. Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    Aerobic biodegradation of toluene in a biofilm system was investigated. Toluene is easily biodegradable, like several other aromatic compounds. The degradation was first order at bulk concentrations lower than 0.14 mg/l and zero order above 6–8 mg/l. An average yield coefficient of 1 mg biomass...

  6. Role of e{sub aq}{sup −}, ·OH and H· in radiolytic degradation of atrazine: A kinetic and mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Javed Ali, E-mail: javed_chemistry@yahoo.com [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Shah, Noor S. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Nawaz, Shah; Ismail, M.; Rehman, Faiza [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Hasan M., E-mail: hmkhan@upesh.edu.pk [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2015-05-15

    Highlights: • Atrazine was efficiently removed from aqueous solution by γ-ray irradiation. • e{sub aq}{sup −} was found to have more crucial role in removal of atrazine than ·OH. • Atrazine degradation was reduced in the presence of t-BuOH and i-PrOH. • Atrazine showed high stability at neutral pH than at very low and high pH conditions. • Potential degradation mechanism was evaluated by GC–MS analysis. - Abstract: The degradation of atrazine was investigated in aqueous solution by gamma-ray irradiation. 8.11 μM initial atrazine concentration could be completely removed in N{sub 2} saturated solution by applying 3500 Gy radiation dose at a dose rate of 296 Gy h{sup −1}. Significant removal of atrazine (i.e., 39.4%) was observed at an absorbed dose of 1184 Gy in air saturated solution and the removal efficiency was promoted to 50.5 and 65.4% in the presence of N{sub 2}O and N{sub 2} gases, respectively. The relative contributions of hydrated electron, hydroxyl radical and hydrogen radical toward atrazine degradation were determined as ratio of observed dose constant (k{sub obs}) and found to be 5: 3: 1 for k{sub eaq}{sup −}: k{sub ·OH}: k{sub H}·, respectively. The degradation efficiency of atrazine was 69.5, 55.6 and 37.3% at pH 12.1, 1.7 and 5.7, respectively. A degradation mechanism was proposed based on the identified degradation by-products by gas chromatography–mass spectrometry. Taking the relative contributions of oxidative and reductive species to atrazine degradation into account, reductive pathway proved to be a better approach for the radiolytic treatment of atrazine contaminated water.

  7. Mechanistic Insight into the Elastin Degradation Process by the Metalloprotease Myroilysin from the Deep-Sea Bacterium Myroides profundi D25

    Science.gov (United States)

    Yang, Jie; Zhao, Hui-Lin; Tang, Bai-Lu; Chen, Xiu-Lan; Su, Hai-Nan; Zhang, Xi-Ying; Song, Xiao-Yan; Zhou, Bai-Cheng; Xie, Bin-Bin; Weiss, Anthony S.; Zhang, Yu-Zhong

    2015-01-01

    Elastases have been widely studied because of their important uses as medicine and meat tenderizers. However, there are relatively few studies on marine elastases. Myroilysin, secreted by Myroides profundi D25 from deep-sea sediment, is a novel elastase. In this study, we examined the elastin degradation mechanism of myroilysin. When mixed with insoluble bovine elastin, myroilysin bound hydrophobically, suggesting that this elastase may interact with the hydrophobic domains of elastin. Consistent with this, analysis of the cleavage pattern of myroilysin on bovine elastin and recombinant tropoelastin revealed that myroilysin preferentially cleaves peptide bonds with hydrophobic residues at the P1 and/or P1′ positions. Scanning electron microscopy (SEM) of cross-linked recombinant tropoelastin degraded by myroilysin showed preferential damages of spherules over cross-links, as expected for a hydrophobic preference. The degradation process of myroilysin on bovine elastin fibres was followed by light microscopy and SEM, revealing that degradation begins with the formation of crevices and cavities at the fibre surface, with these openings increasing in number and size until the fibre breaks into small pieces, which are subsequently fragmented. Our results are helpful for developing biotechnological applications for myroilysin. PMID:25793427

  8. Biodegradation of ortho-Cresol by a Mixed Culture of Nitrate-Reducing Bacteria Growing On Toluene

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Jørgensen, Claus; Arvin, Erik

    1993-01-01

    A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o-cresol st......A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o...... of toluene metabolized, with an average yield of 0.47 mg of o-cresol degraded per mg of toluene metabolized. Experiments with (ring-U-14C)o-cresol indicated that about 73% of the carbon from degraded o-cresol was mineralized to CO-2 and about 23% was assimilated into biomass after the transient accumulation...

  9. Thermophilic biofiltration of benzene and toluene.

    Science.gov (United States)

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  10. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    Science.gov (United States)

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  11. A novel approach for toluene gas treatment using a downflow hanging sponge reactor.

    Science.gov (United States)

    Yamaguchi, Tsuyoshi; Nakamura, Syoichiro; Hatamoto, Masashi; Tamura, Eisuke; Tanikawa, Daisuke; Kawakami, Shuji; Nakamura, Akinobu; Kato, Kaoru; Nagano, Akihiro; Yamaguchi, Takashi

    2018-05-01

    A novel gas-scrubbing bioreactor based on a downflow hanging sponge (DHS) reactor was developed as a new volatile organic compound (VOC) treatment system. In this study, the effects of varying the space velocity and gas/liquid ratio were investigated to assess the effectiveness of using toluene gas as a model VOC. Under optimal conditions, the toluene removal rate was greater than 80%, and the maximum elimination capacity was observed at approximately 13 g-C m -3  h -1 . The DHS reactor demonstrated slight pressure loss (20 Pa) and a high concentration of suspended solids (up to 30,000 mg/L-sponge). Cloning analysis of the 16S rRNA and functional genes of toluene degradation pathways (tmoA, todC, tbmD, xylA, and bssA) revealed that the clones belonging to the toluene-degrading bacterium Pseudomonas putida constituted the predominant species detected at the bottom of the DHS reactor. The toluene-degrading bacteria Pseudoxanthomonas spadix and Pseudomonas sp. were also detected by tmoA- and todC-targeted cloning analyses, respectively. These results demonstrate the potential for the industrial application of this novel DHS reactor for toluene gas treatment.

  12. Anticonvulsant and antipunishment effects of toluene.

    Science.gov (United States)

    Wood, R W; Coleman, J B; Schuler, R; Cox, C

    1984-08-01

    Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety ("anxiolytics"), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, we first demonstrated that pretreatment with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed the time to death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC50, 1311 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines.

  13. Airborne toluene removal for minimizing occupational health exposure by means of a trickle-bed biofilter.

    Science.gov (United States)

    Raboni, Massimo; Torretta, Vincenzo; Viotti, Paolo

    2016-06-01

    The paper presents the experimental results on a biotrickling pilot plant, with a water scrubber as pre-treatment, finalized to the treatment of an airborne toluene stream in a working place. The air stream was characterized by a very high variability of the inlet concentrations of toluene (range: 4.35-68.20 mg Nm(-3)) with an average concentrations of 16.41 mg Nm(-3). The pilot plant has proved its effectiveness in toluene removal, along a 90-day experimentation period, in steady-state conditions. The scrubbing pre-treatment has achieved an average removal efficiency of 69.9 %, but in particular it has proven its suitability in the rough removal of the toluene peak concentrations, allowing a great stability to the following biological process. The biotrickling stage has achieved an additional average removal efficiency of 75.6 %, confirming the good biodegradability of toluene. The biofilm observation by a scanning confocal laser microscope has evidenced a biofilm thickness of 650 μm fully penetrated by toluene degrading bacteria. Among the micro-population Pseudomonas putida resulted the dominant specie. This bacterium can therefore be considered the responsible for most of the toluene degradation. The whole experimented process has determined an average 92.7 % for toluene removal efficiency. This result meets the most stringent limits and recommendations for occupational safety, given by authoritative organizations in the USA and EU; it also meets the odorous threshold concentration of 11.1 mg Nm(-3).

  14. Radiolysis of Aqueous Toluene Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Gustafson, R

    1971-04-15

    Aqueous toluene solutions have been irradiated with Co gamma-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N{sub 2}O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G = 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N{sub 2}O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H{sub 2}). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  15. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Christensen, H.C.; Gustafson, R.

    1971-04-01

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N 2 O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N 2 O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H 2 ). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  16. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  17. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  18. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  19. The oxidative conversion of toluene to benzene

    NARCIS (Netherlands)

    Jong, de J.G.; Batist, P.A.

    1971-01-01

    An oxidative reaction is described in which toluene is converted into benzene. The reaction is catalyzed by bismuth uranate. Selectivities up to 70% are obtained if toluene vapor reacts with the catalyst without O (g) being present; the catalyst becomes partially reduced, but is easily reoxidized

  20. Toluene depresses plasma corticosterone in pregnant rats

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Hansen, A. M.; Hass, Ulla

    2003-01-01

    of corticosteroids from the maternal to the foetal compartment. Pregnant rats were subjected to either 1500 ppm toluene 6 hr/day and/or a schedule of "Chronic mild stress" during the last two weeks of gestation. Exposure to toluene was associated with reduced birth weight and lower maternal weight gain, the latter...

  1. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene

    DEFF Research Database (Denmark)

    Molina-Santiago, Carlos; Udaondo, Zulema; Gómez Lozano, María

    2017-01-01

    for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA-seq analysis compared the short- and long-term responses of the toluene-sensitive KT...... pathways, using toluene as source of energy. Among the unique genes encoded by DOT-T1E is a 70kb island composed of genes of unknown function induced in response to toluene....

  2. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    Science.gov (United States)

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Irradiation with benzene, toluene and phenol electron beams in aqueous solution

    International Nuclear Information System (INIS)

    Santoyo O, E.L.; Lopez V, H.; Vazquez A, O.; Lizama S, B.E.; Garcia F, M.

    1998-01-01

    It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO 2 and H 2 O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author

  4. Atmospheric oxidation mechanism of toluene.

    Science.gov (United States)

    Wu, Runrun; Pan, Shanshan; Li, Yun; Wang, Liming

    2014-06-26

    The atmospheric oxidation mechanism of toluene initiated by OH radical addition is investigated by quantum chemistry calculations at M06-2X, G3MP2-RAD, and ROCBS-QB3 levels and by kinetics calculation by using transition state theory and unimolecular reaction theory coupled with master equation (RRKM-ME). The predicted branching ratios are 0.15, 0.59, 0.05, and 0.14 for OH additions to ipso, ortho, meta, and para positions (forming R1-R4 adducts), respectively. The fate of R2, R4, and R1 is investigated in detail. In the atmosphere, R2 reacts with O2 either by irreversible H-abstraction to form o-cresol (36%), or by reversible recombination to R2-1OO-syn and R2-3OO-syn, which subsequently cyclize to bicyclic radical R2-13OO-syn (64%). Similarly, R4 reacts with O2 with branching ratios of 61% for p-cresol and 39% for R4-35OO-syn, while reaction of R1 and O2 leads to R1-26OO-syn. RRKM-ME calculations show that the reactions of R2/R4 with O2 have reached their high-pressure limits at 760 Torr and the formation of R2-16O-3O-s is only important at low pressure, i.e., 5.4% at 100 Torr. The bicyclic radicals (R2-13OO-syn, R4-35OO-syn, and R1-26OO-syn) will recombine with O2 to produce bicyclic alkoxy radicals after reacting with NO. The bicyclic alkoxy radicals would break the ring to form products methylglyoxal/glyoxal (MGLY/GLY) and their corresponding coproducts butenedial/methyl-substituted butenedial as proposed in earlier studies. However, a new reaction pathway is found for the bicyclic alkoxy radicals, leading to products MGLY/GLY and 2,3-epoxybutandial/2-methyl-2,3-epoxybutandial. A new mechanism is proposed for the atmospheric oxidation mechanism of toluene based on current theoretical and previous theoretical and experimental results. The new mechanism predicts much lower yield of GLY and much higher yield of butenedial than other atmospheric models and recent experimental measurements. The new mechanism calls for detection of proposed products 2

  5. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-03-06

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10-100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems.

  6. Primary atmospheric oxidation mechanism for toluene.

    Science.gov (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  7. Reassessing the atmospheric oxidation mechanism of toluene

    OpenAIRE

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie

    2017-01-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmo...

  8. PHOTOCATALYTIC DECOMPOSITION OF GASEOUS TOLUENE BY TIO2 NANOPARTICLES COATED ON ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    A. Rezaee ، Gh. H. Pourtaghi ، A. Khavanin ، R. Sarraf Mamoory ، M. T. Ghaneian ، H. Godini

    2008-10-01

    Full Text Available Volatile organic compounds are considered as a group of major environmental pollutants and toluene is recognized as one of the representatives. In this research, the photocatalytic activity for toluene removal was studied over TiO2 nanoparticles embeded on activated carbon. Laboratory-scale experiments were conducted in a fixed-bed reactor equipped with 4 w and 8 w UV lamps (peak wavelength at 365 nm to determine the oxidation rates of toluene. The photocatalyst was extensively characterized by means of X- ray diffraction and scan electronmicroscopy. Experiments were conducted under general laboratory temperature (25ºC±2 while the irradiation was provided by the UV lamps. The dependence of the reaction rate on light intensity as well as the deactivation of the catalyst were determined. The results indicated that the rate of the photocatalytic process increased with increasing the intensity of UV irradiation. Using the UV-A lamps, the decomposition rate of toluene was 98%. The stabilized photocatalyst presented remarkable stability (no deactivation and excellent repeatability. The catalyst could be regenerated by UV irradiation in the absence of gas phase. The control experiments confirmed that the photocatalytic effects of toluene onto the TiO2/activated carbon catalysts in the dark conditions were negligible. Reproducibility tests proved that the photocatalytic activity of the photocatalyst remains intact even after several experiments of new added toluene quantities. The study demonstrated that the TiO2/activated carbon catalyst may be a practical and promising way to degrade the toluene under ultraviolet irradiation.

  9. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...

  10. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach...

  11. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  12. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition

    International Nuclear Information System (INIS)

    Jothiramalingam, R.; Wang, M.K.

    2007-01-01

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R 2 and standard error. The goodness to the linear fit was observed for Elovich model with high R 2 (≥0.9477) value

  13. On the atmospheric oxidation of liquid toluene.

    Science.gov (United States)

    Pritchard, Huw O

    2006-10-21

    This communication presents preliminary computational results on the interaction between triplet (3Sigma) and singlet (1Sigma, 1Delta) oxygen molecules with toluene. All three oxygen species form very weak complexes with toluene and all also appear capable of abstracting a benzylic hydrogen atom to form the HO2 radical. Reaction with singlet molecular oxygen does not convincingly explain the formation of benzylhydroperoxide from toluene residues stored over a long time in brown glass bottles, and it is speculated that this may be a surface-catalysed photochemical reaction. The possible involvement of singlet oxygen molecules in the spontaneous ignition of tyre rubber and of soft coal is discussed briefly and the need for new experimental studies is stressed.

  14. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    Science.gov (United States)

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  15. Sonochemical treatment of benzene/toluene contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, G.; Gleason, M. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering; Popov, V. [Scientific Production Association Typhoon, Obninsk (Russian Federation). Inst. of Experimental Meterology

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  16. Developmental toxicity of prenatal exposure to toluene.

    Science.gov (United States)

    Bowen, Scott E; Hannigan, John H

    2006-01-01

    Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are increasingly exposed to solvents such as toluene in occupational settings (ie, long-term, low-concentration exposures) or through inhalant abuse (eg, episodic, binge exposures to high concentrations). The risk for teratogenic outcome is much less with low to moderate occupational solvent exposure compared with the greater potential for adverse pregnancy outcomes, developmental delays, and neurobehavioral problems in children born to women exposed to high concentrations of abused organic solvents such as toluene, 1,1,1-trichloroethane, xylenes, and nitrous oxide. Yet the teratogenic effects of abuse patterns of exposure to toluene and other inhalants remain understudied. We briefly review how animal models can aid substantially in clarifying the developmental risk of exposure to solvents for adverse biobehavioral outcomes following abuse patterns of use and in the absence of associated health problems and co-drug abuse (eg, alcohol). Our studies also begin to establish the importance of dose (concentration) and critical perinatal periods of exposure to specific outcomes. The present results with our clinically relevant animal model of repeated, brief, high-concentration binge prenatal toluene exposure demonstrate the dose-dependent effect of toluene on prenatal development, early postnatal maturation, spontaneous exploration, and amphetamine-induced locomotor activity. The results imply that abuse patterns of toluene exposure may be more deleterious than typical occupational exposure on fetal development and suggest that animal models are effective in studying the mechanisms and risk factors of organic solvent teratogenicity.

  17. Human response to varying concentrations of toluene

    DEFF Research Database (Denmark)

    Bælum, Jesper; Lundqvist, G R; Mølhave, Lars

    1990-01-01

    less than 0.1) towards irritation in the throat, headache and dizziness. In the four performance tests there was a tendency towards a lower score in a vigilance test while no effect of toluene exposure was seen in a peg board test, a five choice serial reaction test, or a colour test, indicating only...

  18. Chromatographic Determination of Toluene and its Metabolites in Urine for Toluene Exposure - A Review

    International Nuclear Information System (INIS)

    Mohamad Raizul Zinalibdin; Abdul Rahim Yacob; Mohd Marsin Sanagi

    2016-01-01

    The determinations of toluene and their metabolites in biological samples such as urine and blood allow the estimation of the degree of exposure to this chemical. Chromatographic methods and preliminary methods are now universally employed for this purpose. Preliminary color test methods are well established for qualitative determination of toluene and its metabolites. Mobile test kits using color test methods are a vast tool for screening urine samples but chromatographic methods are still needed for confirmation and quantitative analysis. Gas chromatography (GC) methods are well-adapted for the determination of toluene metabolite in urine, but these methods often require several pretreatment steps. Meanwhile, high performance liquid chromatography (HPLC) is becoming a powerful tool for the accurate and easy determination of toluene metabolites considering its decisive advantages for routine monitoring. Furthermore, recent development in HPLC could widen the usefulness of this method to solve the most complex analytical problems that could be encountered during the measurement. (author)

  19. Hepatic metabolism of toluene after gastrointestinal uptake in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Honoré Hansen, S

    1993-01-01

    The metabolism of toluene and the influence of small doses of ethanol were measured in eight male volunteers after gastrointestinal uptake, the toluene concentration in alveolar air and the urinary excretion of hippuric acid and ortho-cresol being used as the measures of metabolism. During toluene...

  20. Nonionic surfactant Brij35 effects on toluene biodegradation in a ...

    African Journals Online (AJOL)

    Nonionic surfactant effects on the toluene dissolved in the water phase and biodegradation kinetic behaviors of toluene in a composite bead biofilter were investigated. The toluene dissolved in the water phase was enhanced by the addition of surfactant into aqueous solution and the enhancing effect was more pronounced ...

  1. Thermally enhanced bioremediation of a gasoline-contaminated aquifer using toluene oxidizing bacteria

    International Nuclear Information System (INIS)

    Deeb, R.; Alvarez-Cohen, L.

    1994-01-01

    The combined application of steam injection and vacuum extraction has proved to be very effective for the in situ remediation of a gasoline contaminated aquifer. It is expected that the steam treated zone with its near-sterile nature, increased temperature, and decreased level of contaminant concentration will provide a superior environment for enhanced bioremediation, and will favor the survival of an introduced microbial culture for the destruction of residual gasoline hydrocarbons and especially BTEX compounds (Benzene, Toluene, Ethyl benzene, and Xylene). A mixed microbial culture seeded from the pre-steamed aquifer material was enriched in a laboratory chemostat on toluene, a major gasoline aromatic. Studies were conducted to determine the optimal conditions for microbial growth and activity. Growth rate studies conducted at different temperatures revealed that cell growth was optimal at 35 C, a temperature at which the aquifer can be maintained using the existing steam injection wells. The enriched culture was shown to degrade all BTEX compounds successfully both individually and in mixtures. Substrate toxicity was observed for some of the gasoline aromatics but at concentration levels well above those found in groundwater. When cells were exposed to mixtures of BTEX compounds, the biodegradation of xylene, the most recalcitrant aromatic among BTEX compounds, was stimulated. When cells were exposed to gasoline, BTEX degradation proceeded with no apparent inhibition by gasoline aliphatics; little aliphatic degradation took place, however, suggesting the absence of monooxygenase enzymes in the mixed culture. In mixtures of both toluene and propane enriched cultures, only dioxygenase activity was observed

  2. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  3. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  4. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  5. Reassessing the atmospheric oxidation mechanism of toluene

    Science.gov (United States)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  6. ASSESSMENT OF HUMAN EXPOSURE TO TOLUENE DIISOCYANATE

    Directory of Open Access Journals (Sweden)

    OLIVIA ANCA RUSU

    2011-03-01

    Full Text Available Assessment of human exposure to toluene diisocyanate. Toluene diisocyanate (TDI, an aromatic compound, may be dangerous for human health. Diisocyanates have wide industrial use in the fabrication of flexible and rigid foams, fibers, elastomers, and coatings such as paints and varnishes. Isocyanates are known skin and respiratory sensitizers, and proper engineering controls should be in place to prevent exposure to isocyanate liquid and vapor; exposure to TDI vapors is well documented to increase asthma risk. The study focused on the exposure of workers and nearby populations to toluene diisocyanate in a Polyurethane Foam Factory located in Baia Mare, Romania. Workplace air measurements were performed in different departments of the plant, after sampling either in fixed points or as personal monitoring. Sampling in four different locations of Baia Mare town was carried out, - during and after the foaming process. TDI sampling was performed on silica cartridge followed by GC-MS analysis. TDI concentration at workplace was lower than 0,035 mg/m³, which represents the permissible exposure limit, while in the city the TDI concentration had shown values below 0,20 μg/m³. Health assessment of a group of 49 workers was based on questionnaire interview, determination of TDI antibodies and lung function tests. Data collected until this stage do not show any negative effects of TDI on the employees health. Since this plant had only recently begun operating, continuous workplace and ambient air TDI monitoring, along with workers health surveillance, is deemed necessary.

  7. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  8. Inhibition of cardiac sodium currents by toluene exposure

    Science.gov (United States)

    Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M

    2003-01-01

    Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149

  9. Effect of ethanol, cimetidine and propranolol on toluene metabolism in man

    DEFF Research Database (Denmark)

    Døssing, M; Bælum, Jesper; Hansen, S H

    1984-01-01

    In a climatic exposure chamber four healthy volunteers were exposed to 100ppm toluene, 100ppm toluene + ethanol, 100ppm toluene + cimetidine, and 100ppm toluene + propranolol for 7h each at random over four consecutive days. A control experiment and 3.5h of exposure to 200ppm toluene were also...

  10. Assessing uncertainty in mechanistic models

    Science.gov (United States)

    Edwin J. Green; David W. MacFarlane; Harry T. Valentine

    2000-01-01

    Concern over potential global change has led to increased interest in the use of mechanistic models for predicting forest growth. The rationale for this interest is that empirical models may be of limited usefulness if environmental conditions change. Intuitively, we expect that mechanistic models, grounded as far as possible in an understanding of the biology of tree...

  11. Phytoremediation removal rates of benzene, toluene, and chlorobenzene.

    Science.gov (United States)

    Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G

    2018-06-07

    Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.

  12. Alkylation of toluene with isopropyl alcohol over SAPO-5 catalyst

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Isopropylation of toluene with isopropyl alcohol was studied over the large pore silicon alu- mino phosphate molecular sieves (SAPO-5) with varying Si content. Toluene conversion was found to increase with increase in the Si of the catalysts. The effect of temperature on yields of cymene was studied in the range ...

  13. Antipyrine clearance during experimental and occupational exposure to toluene

    DEFF Research Database (Denmark)

    Døssing, M; Bælum, Jesper; Lundqvist, G R

    1983-01-01

    into four groups. Eighteen printers and 21 controls were exposed to 100 ppm of toluene during 6.5 hours in an exposure chamber. The remaining 18 printers and 18 controls were exposed to 0 ppm of toluene under similar conditions. The salivary clearance of antipyrine was measured immediately after the stay...

  14. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0...

  15. Toluene inducing acute respiratory failure in a spray paint sniffer.

    Science.gov (United States)

    Peralta, Diego P; Chang, Aymara Y

    2012-01-01

    Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure.

  16. Biofiltration of odours - industrial pilot to treat methyl ethyl ketone and toluene

    International Nuclear Information System (INIS)

    Otten, L.; Elsie, K.

    2002-01-01

    Methyl ethyl ketone and toluene in the off-gases of a plant producing polyvinyl chloride sheeting for the automotive industry and swimming pools caused frequent odour complaints from the neighbourhood. A pilot project was developed to investigate the removal of the compounds under actual operating conditions by passing part of the exhaust through a compost-based, three-stage biofilter. It was determined over the 156 days of operation that the removal efficiencies of methyl ethyl ketone and toluene averaged 73% and 49%, respectively. It was also shown that shutdowns and disruptions of the laminating process for short and extended periods did not affect the biofilter performance. Addition of 100g/L solution of KNO 3 as a nitrogen source did not improve the performance. Carbon dioxide concentration data and the presence of an average microbial population of 52 million colony forming units per gram provided evidence that biological degradation played a significant role in the reduction of methyl ethyl ketone and toluene in the off-gases of the laminator. (author)

  17. Simultaneous formation of 3-deoxy-d-threo-hexo-2-ulose and 3-deoxy-d-erythro-hexo-2-ulose during the degradation of d-glucose derived Amadori rearrangement products: Mechanistic considerations.

    Science.gov (United States)

    Kaufmann, Martin; Krüger, Sophie; Mügge, Clemens; Kroh, Lothar W

    2018-03-22

    Analyzing classical model reaction systems of Amadori rearrangement products (ARP) it became apparent that the formation of 3-deoxy-d-threo-hexo-2-ulose (3-deoxygalactosone, 3-DGal) during the degradation of ARPs is highly dependent on pH and the amino acid residue of the respective ARP. Based on a detailed analysis of the NMR chemical shifts of the sugar moieties of different ARPs, it could be derived that the formation of 3-DGal is sensitive to the stability of a co-operative hydrogen bond network which involves HO-C3, the deprotonated carboxyl functionality and the protonated amino nitrogen of the amino acid substituent. Participating in this bond network, HO-C3 is partially protonated which facilitates the elimination of water at C3. Based on that, a new mechanism of 3-deoxyglycosone formation is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Irradiation with benzene, toluene and phenol electron beams in aqueous solution; Irradiacion con haces de electrones de benceno, tolueno y fenol en solucion acuosa

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E L; Lopez V, H; Vazquez A, O; Lizama S, B E; Garcia F, M [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO{sub 2} and H{sub 2}O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author.

  19. All rights reserved Competitive Adsorption of Xylene and Toluene on ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-23

    Mar 23, 2018 ... However, when the assay was performed under agitation, it yielded higher ... petrochemical industries for removal of hydrocarbons (m- xylene and toluene) from their waste ... a result of chemical alteration of the volcanic ash.

  20. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    Science.gov (United States)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  1. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Administrator

    reaction on medium pore HZSM-5 zeolites differing in crystal size and ... effect of various parameters on the yield and cy- ... toluene. (DIPT) + water (cymene isopropylation) .... tain the stability of the mordenite catalysts. .... From the slope of the.

  2. HYDROGENATION OF TOLUENE ON Ni-Co-Mo SUPPORTED ...

    African Journals Online (AJOL)

    HOD

    Keywords: Hydro treating catalysts; Hydrogenation; Toluene conversion; Surface area; Pore diameter. 1. ... decades in refineries to upgrade heavy oil fractions and residue. Metals often ...... "Hydroprocessing of heavy petroleum feeds: Tutorial ...

  3. Atrioventricular conduction abnormality and hyperchloremic metabolic acidosis in toluene sniffing

    Directory of Open Access Journals (Sweden)

    Jian-Hsiung Tsao

    2011-10-01

    Full Text Available Toluene is an aromatic hydrocarbon with widespread industrial use as an organic solvent. As a result of the euphoric effect and availability of these substances, inhalation of toluene-based products is popular among young adults and children. Chronic or acute exposure is known to cause acid–base and electrolyte disorders, and to be toxic to the nervous and hematopoietic systems. We report a 38-year-old man who suffered from general muscular weakness of all extremities after toluene sniffing, which was complicated with hypokalemic paralysis, atrioventricular conduction abnormality, and normal anion gap hyperchloremic metabolic acidosis. Renal function, serum potassium and acid–base status normalized within 3 days after aggressive potassium chloride and intravenous fluid replacement. Electrocardiography showed regression of first-degree atrioventricular block. Exposure to toluene can lead to cardiac arrhythmias and sudden sniffing death syndrome. Tachyarrhythmia is the classical manifestation of toluene cardiotoxicity. Atrioventricular conduction abnormalities have been rarely mentioned in the literature. Knowledge of the toxicology and medical complications associated with toluene sniffing is essential for clinical management of these patients.

  4. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  5. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  6. Effects of ethanol and phenobarbital treatments on the pharmacokinetics of toluene in rats.

    OpenAIRE

    Wang, R S; Nakajima, T

    1992-01-01

    Rats were exposed to toluene at a wide range of concentrations from 50 to 4000 ppm for six hours, and the effects of ethanol and phenobarbital (PB) treatments on the pharmacokinetics of toluene metabolism were investigated. Ethanol treatment influenced toluene metabolism mainly at low exposure concentrations. Thus ethanol accelerated the clearance of toluene from blood only when the blood concentration of toluene was not high (less than 360 microM), and ethanol increased hippuric acid (HA) ex...

  7. Demonstration of In situ Anaerobic Transformation of Toluene and Xylene Using Single-Well Push-Pull Tests and Deuterated BTEX Surrogates

    Science.gov (United States)

    Field, J. A.; Reusser, D. E.; Beller, H. R.; Istok, J. D.

    2001-12-01

    Obtaining unambiguous evidence of in-situ transformation of benzene, toluene, ethylbenzene and xylene (BTEX) in the subsurface is a difficult task. Recently, benzylsuccinic acid and its methyl analogues were shown to be unequivocal degradation products of anaerobic toluene and xylene biodegradation. Conducting tracer tests at BTEX-contaminated field sites is problematic because background contaminant concentrations potentially interfere with the interpretation of field test data. To avoid the time and cost associated with removing background contaminants, alternative approaches are needed. Deuterated analogs of toluene and xylene are well-suited for use in field tracer tests because they are inexpensive and can be distinguished analytically from background toluene and xylene. In this study, single-well push-pull tests, in which deuterated toluene and xylene were injected, were performed to assess the in-situ anaerobic biotransformation of toluene and xylene in BTEX-contaminated wells. A total of 4 single-well push-pull tests were conducted at BTEX-contaminated field sites near Portland, OR and Kansas City, KS. Test solutions consisting of 100 mg/L bromide, 250 mg/L nitrate, 0.4 to 2.5 mg/L toluene-d8, and 0.4 to 1.0 mg/L o-xylene-d10.were injected at a rate of 0.5 - 2 L/min. During the extraction phase, samples were taken daily to biweekly for up to 30 days. Samples for volatile organic analytes were collected in 40-mL volatile organic analysis (VOA) vials without headspace. Samples for BSA and methyl-BSA were collected in 1 L glass bottles and preserved with 5% (w/w) formalin. Samples were shipped on ice and stored at 4 C until analysis. Unambiguous evidence of toluene and xylene biotransformation was obtained with the in-situ formation of BSA and methyl-BSA. The concentrations of BSA ranged from below the detection limit (0.2 ug/L) to 1.5 ug/L. The concentrations of methyl-BSA ranged from below detection to the quantitation limit (0.7 ug/L). The highest BSA

  8. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process

    International Nuclear Information System (INIS)

    Wei Zaishan; Sun Jianliang; Xie Zhirong; Liang Mingyan; Chen Shangzhi

    2010-01-01

    Photocatalysis is a promising technology for treatment of gaseous waste; its disadvantages, however, include causing secondary pollution. Biofiltration has been known as an efficient technology for treatment volatile organic compounds (VOCs) at low cost of maintenance, and produces harmless by-products; its disadvantages, include large volume of bioreactor and slow adaptation to fluctuating concentrations in waste gas. A bench scale system integrated with a photocatalytic oxidation and a biofilter unit for the treatment of gases containing toluene was investigated. The integrated system can effectively oxidize toluene with high removal efficiency. The photocatalytic activity of N-TiO 2 /zeolite was evaluated by the decomposition of toluene in air under UV and visible light (VL) illumination. The N-TiO 2 /zeolite has more photocatalytic activity under complex light irradiation of UV and visible light for toluene removal than that of pure TiO 2 /zeolite under UV or visible light irradiation. N-TiO 2 /zeolite was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum analysis (XPS), Fourier transform infrared spectroscopy (FT-IR), and as-obtained products were identified by means of gas chromatography/mass spectrometry (GC/MS). Results revealed that the photocatalyst was porous and was high photoactive for mineralizing toluene. The high activity can be attributed to the results of the synergetic effects of strong UV and visible light absorption, surface hydroxyl groups. The photocatalytic degradation reaction of toluene with the N-TiO 2 /zeolite follows Langmuir-Hinshelwood kinetics. Toluene biodegradation rate matches enzymatic oxidation kinetics model.

  9. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment

    Science.gov (United States)

    Herzyk, Agnieszka; Fillinger, Lucas; Larentis, Michael; Qiu, Shiran; Maloszewski, Piotr; Hünniger, Marko; Schmidt, Susanne I.; Stumpp, Christine; Marozava, Sviatlana; Knappett, Peter S. K.; Elsner, Martin; Meckenstock, Rainer; Lueders, Tillmann; Griebler, Christian

    2017-12-01

    Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132 days of toluene exposure followed by nearly 600 days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35 days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters.

  10. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.

    Science.gov (United States)

    Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun

    2014-06-30

    The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biofiltration of air contaminated with methanol and toluene

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2005-12-01

    Full Text Available Biofiltration of air contaminated with VOCs is inexpensive compared with the conventional techniques and very effective for treating large volumes of moist air streams with low concentrations of VOCs. In this study, biofiltration for the purification of polluted air from methanol, a hydrophilic VOC, and toluene, a hydrophobic VOC, was investigated. The experiments were operated using three separated stainless steel biofilters, for methanol, toluene, and a mixture of methanol and toluene, respectively. Biofilter consisted of a mixture of palm shells and activated sludge as a filter-bed material. Only the indigenous microorganisms of the bed medium without any addition of extra inoculum were used throughout the whole process. The polluted air inlet concentration was varied from 0.3-4.7 g/m3 with flow rates ranging from 0.06-0.45 m3/h, equivalent to the empty bed residence times of 9-71 sec. Polluted air was successfully treated by biofiltration, 100% removal efficiencies would be obtained when the air flow rate was lower than 0.45 m3/h. The presence of toluene did not affect the removal rate of methanol while the removal rate of toluene was decreased with the presence of methanol in air stream according to the competition phenomenon.

  12. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  13. Audition and exhibition to toluene - a contribution for the theme

    Directory of Open Access Journals (Sweden)

    Kulay, Luiz Alexandre

    2012-01-01

    Full Text Available Introduction: With the technological advances and the changes in the productive processes, the workers are displayed the different physical and chemical agents in its labor environment. The toluene is solvent an organic gift in glues, inks, oils, amongst others. Objective: To compare solvent the literary findings that evidence that diligent displayed simultaneously the noise and they have greater probability to develop an auditory loss of peripheral origin. Method: Revision of literature regarding the occupational auditory loss in displayed workers the noise and toluene. Results: The isolated exposition to the toluene also can unchain an alteration of the auditory thresholds. These audiometric findings, for ototoxicity the exposition to the toluene, present similar audiograms to the one for exposition to the noise, what it becomes difficult to differentiate a audiometric result of agreed exposition - noise and toluene - and exposition only to the noise. Conclusion: The majority of the studies was projected to generate hypotheses and would have to be considered as preliminary steps of an additional research. Until today the agents in the environment of work and its effect they have been studied in isolated way and the limits of tolerance of these, do not consider the agreed expositions. Considering that the workers are displayed the multiples agent and that the auditory loss is irreversible, the implemented tests must be more complete and all the workers must be part of the program of auditory prevention exactly displayed the low doses of the recommended limit of exposition.

  14. Toluene in sewage and sludge in wastewater treatment plants.

    Science.gov (United States)

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  15. A Field Method For Determination of Groundwater and Groundwater-sediment Associated Potentials for Degradation of Xenobiotic Organic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund; Holm, Peter Engelund

    1992-01-01

    Determination of the degradation potentials for a mixture of eight organic trace contaminants (benzene, toluene, o-xylene, naphthalene, tetrachloromethane, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene) has been made by specially developed in situ microcosms under aerobic and anaerobi...

  16. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  17. Sizes of vanadyl petroporphyrins and asphaltene aggregates in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Dechaine, Greg Paul; Gray, Murray R. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], email: gpd@ualberta.ca

    2010-07-01

    This work focuses on the importance of removing vanadyl porphyrins components from crude oils and the methodology for doing it. The diffusion of asphaltene and vanadium components in diluted toluene was measured using a stirred diaphragm diffusion cell, which was equipped with a number of different cellulosic membranes of different pore size. In-situ UV/visible spectroscopy was used to observe filtrates of the process. The effective diffusivity of asphaltene structures was plotted for different pore sized membranes. It was noticed that asphaltene concentrations increased with increased pore sizes; particularly increasing at pore diameter of 5 nm. Moreover the effects of temperature and mass concentration were also investigated in this study. It was shown that increasing the temperature of the toluene causes the mobility of asphaltene to increase as well. Nevertheless, decreasing the concentration of asphaltene does not affect its mobility. It was shown that toluene samples from different sources showed different mobility.

  18. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  19. Information draft on the development of air standards for toluene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Toluene is a colorless, volatile liquid with a benzene-like odour. Its predominant use is in the production of benzene, as an octane enhancer in gasoline, as a solvent in aerosol spray paints, wall paints, lacquers, inks, adhesives, resins, and in such consumer products as spot removers, paint strippers, cosmetics, perfumes and antifreezes. Approximately 150 Ontario industrial sources reported toluene releases to the air totaling 4,245 to 5,300 tonnes during the reporting years from 1993 to 1996, making toluene one of the top pollutants by release quantities in Ontario and Canada for all these years. It is absorbed via the lungs and the gastrointestinal tract, both in humans and animals. Once absorbed, it tends to accumulate in the fatty tissues, and in vascularized tissues such as nerve cells and brain tissue. Toluene adversely affects the central nervous system (CNS) of humans and experimental animals. Observed symptoms in exposed humans range from decrease in psychometric performance, to headache, intoxication, convulsions, narcosis and death. Health Canada concluded that toluene is unlikely to be carcinogenic, although the available data is insufficient for definite classification. Ontario has 24-hour ambient air quality criterion and a half-hour Point of Impingement standard for toluene of 2,000 microgram/cubic meter, based on odour effects. The US Environmental Protection Agency inhalation reference concentration (also adopted by most of the American states) is 400 microgram/cubic meter. The WHO recommended a guideline value of 7500 microgram/cubic meter. Health Canada And Environment Canada established a tolerable concentration of 3750 microgram/cubic meter. 69 refs., 2 tabs., appendix

  20. Toluene metabolism during exposure to varying concentrations combined with exercise

    DEFF Research Database (Denmark)

    Bælum, Jesper; Døssing, M; Hansen, S H

    1987-01-01

    . In Study A, four males were exposed to clean air and to constant and varying concentrations of toluene in combination with rest and with 100 W exercise in 140 min. Exercise increased end exposure excretion rate of HA and O-cr by 47 and 114%, respectively. After exposure, all excess HA was excreted within 4...... weight and smoking habits, thus influencing the metabolite concentration standardised in relation to creatinine. It is concluded that both metabolites are estimates of toluene exposure. O-cr is more specific than HA, but the individual variation in excretion of both metabolites is large, and when...

  1. Synergistic effect of catalyst for oxidation removal of toluene

    International Nuclear Information System (INIS)

    Zhu Tao; Li Jian; Liang Wenjun; Jin Yuquan

    2009-01-01

    A series of experiments was performed for toluene removal from a gaseous influent at the normal temperature and atmospheric pressure by decomposition due to dielectric barrier discharge generated non-thermal plasma, by using MnO 2 /γ-Al 2 O 3 as catalyst. The removal efficiency of toluene was significantly increased by combining MnO 2 /γ-Al 2 O 3 with NTP. At the same time, the goal of improving energy efficiency and decreasing O 3 from exhaust gas treatment was accomplished.

  2. Synergistic effect of catalyst for oxidation removal of toluene.

    Science.gov (United States)

    Zhu, Tao; Li, Jian; Liang, Wenjun; Jin, Yuquan

    2009-06-15

    A series of experiments was performed for toluene removal from a gaseous influent at the normal temperature and atmospheric pressure by decomposition due to dielectric barrier discharge generated non-thermal plasma, by using MnO(2)/gamma-Al(2)O(3) as catalyst. The removal efficiency of toluene was significantly increased by combining MnO(2)/gamma-Al(2)O(3) with NTP. At the same time, the goal of improving energy efficiency and decreasing O(3) from exhaust gas treatment was accomplished.

  3. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT

    International Nuclear Information System (INIS)

    Butler, L.G.

    1999-01-01

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 microm; a search with EPMA for vesicles in the range of 1-20 microm proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from 29 Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, 2 H NMR of d 8 -toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste)

  4. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB.

    Science.gov (United States)

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan

    2015-07-01

    A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.

  5. Benzene, toluene and p-xylene interactions and the role of microbial communities in remediation using bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H. [Tianjin Univ., Tianjin (China). School of Chemical Engineering and Technology; Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology; Li, X.G.; Jiang, B. [Tianjin Univ., Tianjin (China). National Engineering Research Center for Distillation Technology

    2005-04-01

    Bioventing is a promising in-situ soil remediation technology used to clean soils and groundwater contaminated by aromatic hydrocarbon components benzene, toluene and xylene (BTX). These contaminants are present at numerous hazardous waste sites. Bioventing provides enough oxygen to stimulate aerobic biodegradation by indigenous microorganisms. It is not constrained by contaminant volatility and can therefore be applied to contaminants that are readily biodegradable even if they are not highly volatile. This study examined the volatilization and biodegradation of BTX during bioventing from unsaturated soil. It focused on the occurrence of any substrate interaction and the effects of indigenous microbial inocula. The soil was inoculated with indigenous microorganisms obtained from the Dagang Oil Field in Tianjin, China. Then, different amounts of BTX were added to the soil in a stainless steel column through which carbon dioxide free air and pure nitrogen flowed. The volatilization-to-biodegradation ratios of BTX were 6:1, 2:1 and 2:1 respectively. After 3 weeks, the final concentration in the soil gas was 0.128 mg/L benzene, 0.377 mg/L toluene and 0.143 mg/L xylene. The substrate interactions that occurred were as follows: benzene and xylene degradation was accelerated while toluene was being degraded; and, the presence of xylene increased the lag period for benzene degradation. It was concluded that bioventing is an effective remediation technology for aromatic hydrocarbons and can significantly reduce the remediation time if target residual BTX concentration of 0.1 mg/L is to be reached. BTX removal becomes more significant with time, particularly when soils are inoculated with indigenous microbial communities from contaminated soil. 22 refs., 5 tabs., 7 figs.

  6. DNA synthesis in toluene-treated bacteriophage-infected minicells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Amann, E.; Reeve, J.N.

    1978-01-01

    Bateriophage (phi29, SPP1, or SP01)-infected, toluene-treated minicells of Bacillus subtilis are capable of limited amounts of non-replicative DNA synthesis as measured by incorporation of [ 3 H]dTTP into a trichloroacetic acid-precipitable form. The [ 3 H]dTTP is covalently incorporated into small DNA fragments which result from the degradation of a small percentage of the infecting phage genomes (molecular weights in the range of 2.10 5 ). Short exposure of the DNA molecules containing the incorporated [ 3 H]dTMP to Escherichia coli exonuclease III results in over 90% of the [ 3 H]dTMP being converted to a trichloroacetic acid-soluble form. The synthesis is totally dependent on host-cell enzymes and is not inhibited by the addition of chloramphenicol, rifampicin, nalidixic acid and mitomycin C and only slightly (approx. 20%) inhibited by the addition of 6-(p-hydroxyphenylazo)-uracil. (Auth.)

  7. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, S H

    1998-01-01

    This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane.......This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane....

  8. Modelling toluene oxidation : Incorporation of mass transfer phenomena

    NARCIS (Netherlands)

    Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.

    The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the

  9. Developmental neurotoxicity after toluene inhalation exposure in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, Søren Peter; Hougaard, Karin Sørig

    1999-01-01

    Rats were exposed to 1200 ppm or 0 ppm toluene (CAS 108-88-3) for 6 h per day from day 7 of pregnancy until day 18 postnatally. Developmental and neurobehavioral effects in the offspring were investigated using a test battery including assessment of functions similar to those in the proposed OECD...

  10. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  11. Toluene model for molecular dynamics simulations in the ranges 298

    NARCIS (Netherlands)

    Fioroni, M.; Vogt, D.

    2004-01-01

    An all-atom model for toluene is presented in the framework of classical molecular dynamics (MD). The model has been parametrized under the GROMOS96 force field to reproduce the physicochemical properties of the neat liquid. Four new atom types have been introduced, distinguishing between carbons

  12. 78 FR 37818 - Request for Information on Toluene Diisocyanates

    Science.gov (United States)

    2013-06-24

    ...) information on possible health effects observed in workers exposed to toluene diisocyanate, including exposure... information demonstrating potential health effects in workers exposed to TDI. (6) Research findings from in... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [CDC-2013-0011...

  13. Transalkylation of toluene with trimethylbenzenes over large-pore zeolites

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Andrea; Al-Khattal, S.; Ashraf Ali, M.; Voláková, Martina; Čejka, Jiří

    2010-01-01

    Roč. 377, 1-2 (2010), s. 99-106 ISSN 0926-860X R&D Projects: GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : transalkylation * toluene * zeolites Beta Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.383, year: 2010

  14. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Mordenite (HM) catalysts with three different Si/Al ratios were compared for their activity and selectivities in gas phase toluene isopropylation with isopropanol. Catalyst with Si/Al ratio 44.9 offered better cumene selectivity, hence, it was chosen for detailed kinetic investigations. The influence of various process parameters ...

  15. Fenton-like initiation of a toluene transformation mechanism

    Science.gov (United States)

    In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

  16. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts

    KAUST Repository

    Alabi, Wahab; Atanda, Luqman; Jermy, Rabindran; Al-Khattaf, Sulaiman

    2012-01-01

    fluidized bed reactor at temperatures of 300, 350 and 400 °C and reaction times of 3, 5, 7, 10, 13, 15 and 20. s. The rate of toluene methylation and toluene disproportionation were studied on the three catalysts (toluene alkylation is usually accompanied

  17. Theoretical Interpretation of the Fluorescence Spectra of Toluene and P- Cresol

    Science.gov (United States)

    1994-07-01

    NUMBER OF PAGES Toluene Geometrica 25 p-Cresol Fluorescence Is. PRICE CODE Spectra 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 19...State Frequencies of Toluene ................ 19 6 Computed and exp" Ground State Frequencies of p-Cresol ............... 20 7 Correction Factors for...Computed Ground State Vibrational Frequencies ....... 21 8 Computed and Corrected Excited State Frequencies of Toluene ............. 22 9 Computed and

  18. Toluene-induced hearing loss in the guinea pig.

    Science.gov (United States)

    Waniusiow, Delphine; Campo, Pierre; Venet, Thomas; Cossec, Benoît; Cosnier, Frédéric; Beydon, Dominique; Rieger, Benoît; Burgart, Manuella; Ferrari, Luc; Parietti-Winkler, Cécile

    2009-10-01

    Toluene is a high-production industrial solvent, which can disrupt the auditory system in rats. However, toluene-induced hearing loss is species dependent. For instance, despite long-lasting exposures to high concentrations of aromatic solvent, no study has yet succeeded in causing convincing hearing loss in the guinea pig. This latter species can be characterized by two metabolic particularities: a high amount of hepatic cytochrome P-450s (P-450s) and a high concentration of glutathione in the cochlea. It is therefore likely that the efficiency of both the hepatic and cochlear metabolisms plays a key role in the innocuousness of the hearing of guinea pigs to exposure to solvent. The present study was carried out to test the auditory resistance to toluene in glutathione-depleted guinea pigs whose the P-450 activity was partly inhibited. To this end, animals on a low-protein diet received a general P-450 inhibitor, namely SKF525-A. Meanwhile, they were exposed to 1750 ppm toluene for 4 weeks, 5 days/week, 6 h/day. Auditory function was tested by electrocochleography and completed by histological analyses. For the first time, a significant toluene-induced hearing loss was provoked in the P-450-inhibited guinea pigs. However, the ototoxic process caused by the solvent exposure was different from that observed in the rat. Only the stria vascularis and the spiral fibers were disrupted in the apical coil of the cochlea. The protective mechanisms developed by guinea pigs are discussed in the present publication.

  19. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene.

    Science.gov (United States)

    Mancini, Silvia A; Hirschorn, Sarah K; Elsner, Martin; Lacrampe-Couloume, Georges; Sleep, Brent E; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-12-15

    The effects of iron concentration on carbon and hydrogen isotopic fractionation during aerobic biodegradation of toluene by Pseudomonas putida mt-2 were investigated using a low iron medium and two different high iron media. Mean carbon enrichment factors (epsilonc) determined using a Rayleigh isotopic model were smaller in culture grown under high iron conditions (epsilonc = -1.7+/-0.1%) compared to low iron conditions (epsilonc = -2.5+/-0.3%). Mean hydrogen enrichment factors (epsilonH) were also significantly smaller for culture grown under high iron conditions (epsilonH = -77 +/-4%) versus low iron conditions (EpsilonH = -159+/-11%). A mechanistic model for enzyme kinetics was used to relate differences in the magnitude of isotopic fractionation for low iron versus high iron cultures to the efficiency of the enzymatic transformation. The increase of carbon and hydrogen enrichment factors at low iron concentrations suggests a slower enzyme-catalyzed substrate conversion step (k2) relative to the enzyme-substrate binding step (k-l) at low iron concentration. While the observed differences were subtle and, hence, do not significantly impact the ability to use stable isotope analysis in the field, these results demonstrated that resolvable differences in carbon and hydrogen isotopic fractionation were related to low and high iron conditions. This novel result highlights the need to further investigate the effects of other trace elements known to be key components of biodegradative enzymes.

  20. Radiolytic degradation of octachlorodibenzo-p-dioxin and octachlorodibenzofuran in organic solvents and treatment of dioxin-containing liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Hirota, Koichi; Taguchi, Mitsumasa; Takigami, Machiko; Kojima, Takuji

    2007-01-01

    Degradations of octachlorodibenzo-p-dioxin (OCDD) and octachlorodibenzofuran (OCDF) were studied by 60 Co γ-ray in organic solvents: ethanol, n-nonane, and toluene. Both OCDD and OCDF were degraded more efficiently in ethanol than in n-nonane or toluene. The degradation is mainly attributed to electrons and in part to solvent radicals. The addition of ethanol to dioxin-containing liquid wastes enhanced effectively the degradation of dioxins; the liquid wastes did not exhibit the dioxin toxicity at a dose of 100 kGy

  1. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  2. Solvothermal Synthesis of Copper Indium Diselenide in Toluene

    International Nuclear Information System (INIS)

    Chang, Ju Yeon; Han, Jae Eok; Jung, Duk Young

    2011-01-01

    Polycrystalline CuInSe 2 (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared CuInSe 2 were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy

  3. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, Luz A. [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Grupo Catalizadores y Adsorbentes, Universidad de Antioquia 1-317, A.A. 1226 Medellin (Colombia); Velasquez, Juliana; Echavarria, Adriana [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia 1-317, A.A. 1226 Medellin (Colombia); Faro, Arnaldo [Departamento de Fisicoquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CT bloco A, Rio de Janeiro (Brazil); Ramoa Ribeiro, F. [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ribeiro, M. Filipa, E-mail: filipa.ribeiro@ist.utl.pt [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-05-15

    Two trimetallic ZnCuAl and MnCuAl hydrotalcites have been successfully synthesized by a co-precipitation method. The manganese based material was identified as a new hydrotalcite phase. Both lamellar precursors were calcined at 450 and 600 deg. C and the resulting catalysts were tested on reaction of total oxidation of toluene. The solids were characterized by X-ray diffraction, thermal analysis, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, N{sub 2} adsorption and H{sub 2} temperature-programmed reduction. It was found that ZnCuAl materials are composed of copper and zinc oxides supported on alumina; while MnCuAl ones comprise basically spinel phases, which were not completely identified. The catalytic behavior of the calcined samples showed that Mn hydrotalcite calcined at 450 deg. C exhibited the best catalytic performance that corresponds to 100% toluene conversion into CO{sub 2} at about 300 deg. C.

  4. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts

    International Nuclear Information System (INIS)

    Palacio, Luz A.; Velasquez, Juliana; Echavarria, Adriana; Faro, Arnaldo; Ramoa Ribeiro, F.; Ribeiro, M. Filipa

    2010-01-01

    Two trimetallic ZnCuAl and MnCuAl hydrotalcites have been successfully synthesized by a co-precipitation method. The manganese based material was identified as a new hydrotalcite phase. Both lamellar precursors were calcined at 450 and 600 deg. C and the resulting catalysts were tested on reaction of total oxidation of toluene. The solids were characterized by X-ray diffraction, thermal analysis, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, N 2 adsorption and H 2 temperature-programmed reduction. It was found that ZnCuAl materials are composed of copper and zinc oxides supported on alumina; while MnCuAl ones comprise basically spinel phases, which were not completely identified. The catalytic behavior of the calcined samples showed that Mn hydrotalcite calcined at 450 deg. C exhibited the best catalytic performance that corresponds to 100% toluene conversion into CO 2 at about 300 deg. C.

  5. Eco friendly nitration of toluene using modified zirconia

    Directory of Open Access Journals (Sweden)

    K.R. Sunaja Devi

    2013-03-01

    Full Text Available Nitration of toluene has been studied in the liquid phase over a series of modified zirconia catalysts.  Zirconia, zirconia- ceria (Zr0.98Ce0.02O2, sulfated zirconia and sulfated zirconia- ceria were synthesised by co precipitation method and were characterised by X-ray diffraction, BET surface area, Infra red spectroscopy analysis (FTIR, Thermogravimetric analysis (TGA, Scanning Electron Microscopy (SEM and Energy Dispersive X ray analysis (EDAX. The acidity of the prepared catalysts was determined by FTIR pyridine adsorption study. X-ray diffraction studies reveal that the catalysts prepared mainly consist of tetragonal phase with the crystallite size in the nano range and the tetragonal phase of zirconia is stabilized by the addition of ceria. The modified zirconia samples have higher surface area and exhibits uniform pore size distribution aggregated by zirconia nanoparticles. The onset of sulfate decomposition was observed around 723 K for sulfated samples. The catalytic performance was determined for the liquid phase nitration of toluene to ortho-, meta- and para- nitro toluene. The effect of reaction temperature, concentration of nitric acid, catalyst reusability and reaction time was also investigated. © 2013 BCREC UNDIP. All rights reservedReceived: 20th November 2012; Revised: 8th December 2012; Accepted: 7th January 2013[How to Cite: K. R. S. Devi, S. Jayashree, (2013. Eco friendly nitration of toluene using modified zirconia. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 205-214. (doi:10.9767/bcrec.7.3.4154.205-214][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4154.205-214 ] View in  |

  6. Comparison of measurement methods for benzene and toluene

    Science.gov (United States)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorström-Lundén, E.; Sjöberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.80±1.6) μg m -3 for diffusive sampling and (11.3±1.6) μg m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.91±0.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  7. Catalytic Oxidation of Toluene on Hydrothermally Prepared Ceria Nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Duplančić

    2018-01-01

    Full Text Available Ceria nanocrystals were prepared hydrothermally and tested as potential catalysts for oxidation of volatile organic compounds using toluene as a model compound. Pure ceria with a crystallite size of 4 nm, determined by the Scherrer method from XRD pattern has been obtained. The specific surface area of the prepared nanoparticles determined by BET analysis yielded 201 m2 g–1, while the band gap of 3.2 eV was estimated from DRS spectrum via Tauc’s plot. Catalytic tests were performed on calcined ceria (500 °C with increased crystallite size (9 nm caused by thermal treatment. The tests showed good activities for the toluene oxidation with T50 temperatures, corresponding to 50 % toluene conversion, observed at 250 °C and even lower temperatures depending on the total flow rate of the gas mixture. The one-dimensional pseudo-homogeneous model of the fixed bed reactor was proposed to describe the reactor performance and the appropriate kinetic parameters were estimated. Good agreement between experimental data and the proposed model was observed.

  8. Ignition studies of n-heptane/iso-octane/toluene blends

    KAUST Repository

    Javed, Tamour

    2016-07-09

    Ignition delay times of four ternary blends of n-heptane/iso-octane/toluene, referred to as Toluene Primary Reference Fuels (TPRFs), have been measured in a high-pressure shock tube and in a rapid compression machine. The TPRFs were formulated to match the research octane number (RON) and motor octane number (MON) of two high-octane gasolines and two prospective low-octane naphtha fuels. The experiments were carried out over a wide range of temperatures (650–1250 K), at pressures of 10, 20 and 40 bar, and at equivalence ratios of 0.5 and 1.0. It was observed that the ignition delay times of these TPRFs exhibit negligible octane dependence at high temperatures (T > 1000 K), weak octane dependence at low temperatures (T < 700 K), and strong octane dependence in the negative temperature coefficient (NTC) regime. A detailed chemical kinetic model was used to simulate and interpret the measured data. It was shown that the kinetic model requires general improvements to better predict low-temperature conditions and particularly requires improvements for high sensitivity (high toluene concentration) TPRF blends. These datasets will serve as important benchmark for future gasoline surrogate mechanism development and validation. © 2016 The Combustion Institute

  9. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether.

    Science.gov (United States)

    Shim, Eun-Hwa; Kim, Jaisoo; Cho, Kyung-Suk; Ryu, Hee Wook

    2006-05-01

    This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed

  10. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts

    KAUST Repository

    Alabi, Wahab

    2012-07-01

    A kinetic study of toluene alkylation with methanol was performed over pure HZSM-5, mordenite/ZSM-5 (hybrid of mordenite and HZSM-5), and ZM13 (composite mixture of HZSM-5 and MCM-41 at pH 13). Experimental runs were conducted using a batch fluidized bed reactor at temperatures of 300, 350 and 400 °C and reaction times of 3, 5, 7, 10, 13, 15 and 20. s. The rate of toluene methylation and toluene disproportionation were studied on the three catalysts (toluene alkylation is usually accompanied by toluene disproportionation on acid catalyst). Based on the results obtained, a simplified power law kinetic model consisting of three reactions was developed to estimate the activation energies of toluene methylation and disproportionation simultaneously. Coke formation on catalysts was accounted for using both reaction time and reactant conversion decay functions. All parameters were estimated based on quasi-steady state approximation. Estimated kinetic parameters were in good agreement with experimental results. The order of alkylation ability of the catalysts was found to be ZM13 > HZSM-5 > mordenite/ZSM-5, while the reverse is for toluene disproportionation (mordenite/ZSM-5 > HZSM-5 > ZM13). Thus, alkylation of toluene is most favorable on ZM13 due to combined effect of mesoporosity induced through its synthetic route and acid content. Toluene/MeOH molar ratio of 1:1 was most suitable for toluene alkylation reaction. © 2012 Elsevier B.V.

  11. Optimization and scale up of trickling bed bioreactors for degradation of volatile organic substances

    International Nuclear Information System (INIS)

    Schindler, I.

    1996-01-01

    For optimization and scale up of trickling bed bioreactors used in waste gas cleaning following investigations were made: the degradation of toluene was measured in reactors with various volumes and diameter to high ratios. The degradation of toluene was investigated in bioreactors with different carrier materials. It turned out, that the increase of the elimination capacity with the height of the reactor depends on the carrier material. At low gas velocities PU-foam allows higher elimination capacities than pallrings, VSP and DINPAC. On the other hand for PU-foam there is a permanent danger of clogging. The other materials allowed a stable operation for several months. Mass transfer of toluene was studied by absorption experiments in a 100 litre plant without microorganisms. The experiments lead to a henry coefficient of 0,23 (kg/m3)g/(kg/m3)l. Mass transfer coefficients were calculated between 3,6 and 5,2 depending an the space velocity of the gas and the trickling density of the water phase. The degradation of ethyl acetate, toluene and heptane was investigated considering the different water solubility of these substances. Further on degradation of toluene and heptane in several mixtures was investigated. (author)

  12. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  13. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  14. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods

    Science.gov (United States)

    Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711

  15. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  16. Induction of resistance to X-rays in E. coli by toluene

    International Nuclear Information System (INIS)

    Gillies, N.E.; Ratnajothi, N.H.

    1980-01-01

    Incubation of unirradiated bacteria with 10 M toluene in buffer for 30 min at 22 0 C did not affect their viability. When E. Coli K12AB1157 were incubated in buffer/toluene (10 M) for 30 min and then X-irradiated under either aerobic or anaerobic conditions in the presence of toluene the derived curves contained large shoulders; the Dsub(q) values were calculated to be 271 Gy and 921 Gy for bacteria irradiated under oxic and anoxic conditions respectively. The final exponential slopes for both curves were less steep than those for the strictly exponential curves obtained for X-irradiated bacteria which had neither been pre-incubated with toluene nor X-irradiated in the presence of toluene. When bacteria were exposed to toluene during the time of X-irradiation only, exponential survival curves were observed with slopes approximately the same as the terminal slopes of the curves for the bacteria pretreated and irradiated in the presence of toluene. When the bacteria were exposed initially to X-rays and then incubated with toluene, the survival curves were identical to those obtained for bacteria untreated with toluene. Survival after U.V. irradiation was the same whether or not the bacteria were treated with toluene before exposure to U.V. The modification of radioresistance by toluene appeared to be independent of the presence of oxygen at the time of irradiation. It is suggested that toluene does not effect the primary fixation of lesions, but may influence their subsequent removal. (U.K.)

  17. Physical properties of (propyl propanoate + hexane + toluene) at 298.15 K

    International Nuclear Information System (INIS)

    Freire, S.; Segade, L.; Cabeza, O.; Jimenez, E.

    2007-01-01

    The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures

  18. High formation of secondary organic aerosol from the photo-oxidation of toluene

    OpenAIRE

    L. Hildebrandt; N. M. Donahue; S. N. Pandis

    2009-01-01

    Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA) precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental co...

  19. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    Directory of Open Access Journals (Sweden)

    Roumporn Nikom

    2006-11-01

    Full Text Available Toluene, an important volatile organic compound (VOC, is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous sodium hypochlorite (NaOCl solution was used as the scrubbing liquid in the system. NaOCl, the strongest oxidative agent, presents an effective toluene removal. As the scrubbed toluene is reacted, recirculation of the scrubbing liquid could be operated with a constant removal efficiency throughout the operting time. The investigated variables affecting the removal efficiency were air flow rate, inlet toluene concentration, NaOCl concentration, scrubbing liquid flow rate and size of spray nozzle. Influence of the scrubbing parameters was experimentally studied to develop a mathematical model of the toluene removal efficiency. The removal model reveals that the increase of scrubbing liquid flow rate, toluene concentration, and NaOCl concentration together with the decrease of air flow rate and size of spray nozzle can increase the toluene removal efficiency. Optimization problem with an objective function and constraints was set to provide the maximum toluene removal efficiency and solved by Matlab optimization toolbox. The optimization constraints were formed from the mathematical model and process limitation. The solution of the optimization was an air flow rate of 100 m3/h, toluene concentration of 1500 ppm, NaOCl concentration of 0.02 mol/l, NaOCl solution feed rate of 0.8 m3/h, and spray nozzle size of 0.5 mm. Solution of the optimization gave the highest toluene removal efficiency of 91.7%.

  20. Toluene metabolism in isolated rat hepatocytes: effects of in vivo pretreatment with acetone and phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, A. (National Inst. of Forensic Toxicology, Oslo (Norway))

    1993-02-01

    Hepatocytes isolated from control, acetone- and phenobarbital-pretreated rats were used to study the metabolic conversion of toluene to benzyl alcohol, benzaldehyde, benzoic acid and hippuric acid at low (<100 [mu]M) and high (100-500 [mu]M) toluene concentrations. The baseline formation rates of toluene metabolites (benzyl alcohol, benzoic acid and hippuric acid) were 2.9[+-]1.7 and 10.0[+-]2.3 nmol/mg cell protein/60 min at low and high toluene concentrations, respectively. In vivo pretreatment of rats with acetone and phenobarbital increased the formation of metabolites: at low toluene concentrations 3- and 5-fold, respectively; at high toluene concentrations no significant increase (acetone) and 8-fold increase (phenobarbital). Apparent inhibition by ethanol, 7 and 60 mM, was most prominent at low toluene concentrations: 63% and 69%, respectively, in control cells; 84% and 91% in acetone-pretreated cells, and 32% (not significant) and 51% in phenobarbital-pretreated cells. Ethanol also caused accumulation of benzyl alcohol. The apparent inhibition by isoniazid was similar to that of ethanol at low toluene concentrations. Control and acetone-pretreated cells were apparently resistant towards metyrapone; the decrease was 49% and 64% in phenobarbital-pretreated cells at low and high toluene concentrations, respectively. In these cells, the decrease in presence of combined ethanol and metyrapone was 95% (low toluene concentrations). 4-Methylpyrazole decreased metabolite formation extensively in all groups. Benzaldehyde was only found in the presence of an aldehyde dehydrogenase inhibitor. Increased ratio benzoic/hippuric acid was observed at high toluene concentrations. These results demonstrate that toluene oxidation may be studied by product formation in isolated hepatocytes. However, the influence of various enzymes in the overall metabolism could not be ascertained due to lack of inhibitor specificity. (orig.).

  1. TOLUENE DEGRADATION IN THE RECYCLE LIQUID OF BIOTRICKLING FILTERS FOR AIR POLLUTION CONTROL. (R825392)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Molecular characterization of Tex (Toluene, Ethylbenzene, and Xylene) degrading microbial communities from air bio filters

    International Nuclear Information System (INIS)

    Prenafeta-Boldu, F. X.; Vinas, M.; Guivernau, M.; Elias, A.; Barona, A.

    2009-01-01

    Potentially toxic elements (PTE) deposition in soils due to mine exploitation has been recorded since XVI century for Mexico. Plants established in such environments have developed tolerance and adaptation to PTE. The objective of this study was to determine the accumulation sites and spatial distribution of PTE in plant tissues and mycorrhizal mycelium. (Author)

  3. Cerebellar atrophy related to chronic exposure to toluene: case report

    Directory of Open Access Journals (Sweden)

    Benito Pereira Damasceno

    1994-03-01

    Full Text Available A 31-year-old woman presented slowly progressing ataxia and neurasthenic symptoms after 14-year occupational exposure to low concentration toluene vapour. Examination disclosed only cerebellar signs. Cognitive functions were normal except moderate visuo-spatial and constructive deficit CT imaging showed severe pancerebellar atrophy without pathological signs in other brain structures. Two years after she was removed from workplace, CT imaging and ataxia showed no worsening, while visuo-constructive function improved. The authors warn against possible neurotoxic risk associated with this kind of exposure.

  4. Benzylation of Toluene over Iron Modified Mesoporous Ceria

    Directory of Open Access Journals (Sweden)

    K.J. Rose Philo

    2012-12-01

    Full Text Available Green chemistry has been looked upon as a sustainable science which accomplishes both economical and environmental goals, simultaneously.With this objective, we developed an alternative process to obtain the industrially important benzyl aromatics by benzylation of aromatics using benzyl chloride, catalysed by mesoporous solid acid catalysts. In this work mesoporous ceria is prepared using neutral surfactant which helped the calcination possible at a lower temperature enabling a higher surface area. Mesoporous ceria modified with Fe can be successfully utilized for the selective benzylation of toluene to more desirable product methyl diphenyl methane with 100% conversion and selectivity in 2 hours using only 50mg of the catalyst under milder condition. The reusability, regenerability, high selectivity, 100% conversion, moderate reaction temperature and absence of solvent, etc. make these catalysts to be used in a truly heterogeneous manner and make the benzylation reaction an environment friendly one. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 30th June 2012; Revised: 7th November 2012; Accepted: 10th November 2012[How to Cite: K.J. Rose Philo, S. Sugunan. (2012. Benzylation of Toluene over Iron Modified Mesoporouxs Ceria. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 158-164. (doi:10.9767/bcrec.7.2.3759.158-164][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3759.158-164 ] | View in 

  5. A pilot study on the stability of toluene in blood from workers

    Directory of Open Access Journals (Sweden)

    Ogawa Masanori

    2012-12-01

    Full Text Available Abstract Background Biological monitoring is used to assess toluene exposure in medical examinations. The American Conference of Industrial Hygienists, Japanese Society for Occupational Health and Deutsche Forschungsgemeinschaft have proposed various biological exposure determinants, such as toluene in blood and urine, and o-cresol in urine. Toluene in blood is a common biomarker among them. Toluene is a volatile organic solvent; therefore, sample preservation under appropriate conditions before measurement is necessary. However, little study has been done on the stability of toluene in workers’ blood samples under conditions simulating those of a medical examination. Finding We carried out a pilot study on the stability of toluene in blood from humans, according to different methods of sample preservation. Toluene in blood was analyzed by head space-gas chromatography/mass spectrometry. The sealing performance of the vial was examined by using toluene-added blood and the stability of toluene in blood according to the preservation period was examined by using blood from toluene-handling workers, which was collected with vacuum blood tubes. The sealing performance of the headspace vial used in this study was good for three days and toluene in blood in tubes from workers was stable at least within 8 hours up to blood packing at 4°C. Conclusion We could propose that the collected blood need only be transferred into headspace vials on the collection day and analyzed within a few days, if the samples are preserved at 4°C. Our data size is limited; however, it may be considered basic information for biological monitoring in medical examinations.

  6. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Meckenstock, Rainer U. [Eberhard-Karls University of Tuebingen, Center for Applied Geoscience (Germany)], E-mail: rainer.meckenstock@uni-tuebingen.de; Morasch, Barbara [University of Konstanz, Faculty of Biology (Germany); Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann [Center for Environmental Research, Department of Remediation Research (Germany)

    2002-05-15

    {sup 13}C/{sup 12}C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent {sup 13}C/{sup 12}C carbon isotope fractionation with fractionation factors between {alpha}C = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of {alpha}C = 1.0027 (Pseudomonasputida strain mt-2), {alpha}C = 1.0011 (Ralstonia picketii), and{alpha}C = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the {sup 13}C/{sup 12}C isotope fractionation factors of the batch culture experiments together with the observed {sup 13}C/{sup 12}C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main

  7. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    International Nuclear Information System (INIS)

    Meckenstock, Rainer U.; Morasch, Barbara; Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann

    2002-01-01

    13 C/ 12 C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13 C/ 12 C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13 C/ 12 C isotope fractionation factors of the batch culture experiments together with the observed 13 C/ 12 C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing

  8. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor.

    Science.gov (United States)

    Aranda, Elisabet; Marco-Urrea, Ernest; Caminal, Gloria; Arias, María E; García-Romera, Inmaculada; Guillén, Francisco

    2010-09-15

    Advanced oxidation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) by the extracellular hydroxyl radicals (*OH) generated by the white-rot fungus Trametes versicolor is for the first time demonstrated. The production of *OH was induced by incubating the fungus with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. Under these conditions, *OH were generated through DBQ redox cycling catalyzed by quinone reductase and laccase. The capability of T. versicolor growing in malt extract medium to produce *OH by this mechanism was shown during primary and secondary metabolism, and was quantitatively modulated by the replacement of EDTA by oxalate and Mn2+ addition to DBQ incubations. Oxidation of BTEX was observed only under *OH induction conditions. *OH involvement was inferred from the high correlation observed between the rates at which they were produced under different DBQ redox cycling conditions and those of benzene removal, and the production of phenol as a typical hydroxylation product of *OH attack on benzene. All the BTEX compounds (500 microM) were oxidized at a similar rate, reaching an average of 71% degradation in 6 h samples. After this time oxidation stopped due to O2 depletion in the closed vials used in the incubations. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Fate and potential environmental effects of methylenediphenyl diisocyanate and toluene diisocyanate released into the atmosphere.

    Science.gov (United States)

    Tury, Bernard; Pemberton, Denis; Bailey, Robert E

    2003-01-01

    Information from a variety of sources has been collected and summarized to facilitate an overview of the atmospheric fate and potential environmental effects of emissions of methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) to the atmosphere. Atmospheric emissions of both MDI and TDI are low, both in terms of concentration and mass, because of their low volatility and the need for careful control over all aspects of their lifecycle from manufacture through disposal. Typical emission losses for TDI are 25 g/t of TDI used in slabstock foam production. MDI emission losses are lower, often less than 1 g/t of MDI used. Dispersion modeling predicts that concentrations at the fenceline or beyond are very low for typical releases. Laboratory studies show that TDI (and by analogy MDI) does not react with water in the gas phase at a significant rate. The primary degradation reaction of these aromatic diisocyanates in the atmosphere is expected to be oxidation by OH radicals with an estimated half-life of one day. Laboratory studies also show that this reaction is not expected to result in increased ground-level ozone accumulation.

  10. Prilling and Coating of Ammonium Dinitramide (ADN Solid Green Propellant in Toluene Mixture Using Ultrasound Sonication

    Directory of Open Access Journals (Sweden)

    Asad Rahman

    2018-03-01

    Full Text Available Ammonium Dinitramide (ADN in its generic form has a long needle shaped structure, which hinders higher solid loading. Therefore, it is of utmost importance to optimize its crystal morphology into octagonal shapes. Moreover, the low critical humidity level of ADN renders it unusable in a humid climate. Hence, encapsulation with a hydrophobic polymer is necessary. In the present work, ADN was synthesized by nitration of potassium sulfamate with mixed acid nitration. The product was then mixed with toluene, graphene, citryl ammonium butyl, Cab-o-sil, and coating polymer (Polystyrene or HTPB and treated with ultrasound to obtain semi-spherical ADN-coated particles. The method offers a reduction in operating temperature and elimination of ADN melting in the shape-altering process. In addition, the ADN product has a similar particle size and thermal stability compared to those in a conventional ADN melt-prilling method. The ADN product investigated under SEM confirms the particle morphological change from long needles into semi-spherical shapes. The particle size obtained, in the micrometer range, is ideal for higher theoretical maximum density. Furthermore, the ultrasound-treated ADN particles show significant reduction in moisture absorption, from 68% to 16% at 65% relative humidity. The DSC result shows no degradation of thermal stability of the coated particles.

  11. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma.

    Science.gov (United States)

    Liang, Wenjun; Li, Jian; Li, Jie; Jin, Yuquan

    2009-10-30

    Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO3 reactor had the highest toluene removal efficiency among the reactors. For NaNO2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent.

  12. Differential cardiac effects in rats exposed to atmospheric smog generated from isoprene versus toluene

    Science.gov (United States)

    The results of this study demonstrate that atmospheric smog generated from both isoprene and toluene cause cardiac effects in rats. In addition, it appears that smog from toluene is more toxic in terms of cardiac arrhythmogenicity. Smog, which is a comple...

  13. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma

    International Nuclear Information System (INIS)

    Liang Wenjun; Li Jian; Li Jie; Jin Yuquan

    2009-01-01

    Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO 3 reactor had the highest toluene removal efficiency among the reactors. For NaNO 2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent.

  14. WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?

    Science.gov (United States)

    Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

  15. Selective alkylation of toluene over basic zeolites: an in situ infrared spectroscopic investigation

    NARCIS (Netherlands)

    Palomares gimeno, A.E.; Palomares, A.E.; Eder-Mirth, G.; Mirth, G.C.; Lercher, J.A.

    1997-01-01

    In situinfrared spectroscopy was used to study the sorption and reaction of toluene and methanol over various alkali exchanged X zeolites. The size of the metal cations controls the preference of sorbing methanol or toluene. The smaller the cation, the higher the preference for methanol is. A

  16. alkylation of toluene over basic catalysts - key requirements for side chain alkylation

    NARCIS (Netherlands)

    Palomares gimeno, A.E.; Palomares, A.E.; Eder-Mirth, G.; Mirth, G.C.; Rep, M.; Rep, M.; Lercher, J.A.

    1998-01-01

    In situinfrared spectroscopy was used to study sorption and reaction of toluene and methanol over various basic catalysts (MgO, hydrotalcites, and basic zeolites). The size of the metal cations controls the preference of sorbing methanol or toluene; i.e., the larger the metal cation, the higher the

  17. Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.|info:eu-repo/dai/nl/239425952; Vijverberg, H.P.M.|info:eu-repo/dai/nl/068856474

    2002-01-01

    Acute effects of toluene on vesicular catecholamine release from intact PC12 phaeochromocytoma cells have been investigated using carbon fiber microelectrode amperometry. The frequency of vesicles released is low under basal conditions and is enhanced by depolarization. Toluene causes an increase in

  18. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.

    2011-03-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  19. Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure

    DEFF Research Database (Denmark)

    Bælum, Jesper; Andersen, I B; Lundqvist, G R

    1985-01-01

    of intoxication, and irritation of the eyes, nose and throat. Furthermore, the subjects exposed to toluene showed decreased manual dexterity, decreased color discrimination, and decreased accuracy in visual perception. There was no significant difference in the effects of toluene on printers compared to those......The acute effects of toluene were studied in 43 male printers and 43 control subjects matched according to sex, age, educational level, and smoking habits. The mean age of the subjects was 36 (range 29-50) years. The printers had been exposed to solvents for 9 to 25 years during employment at flexo...... and rotogravure printing plants, while the controls had no history of solvent exposure. Each subject was exposed once in a climate chamber to either 100 ppm of toluene or clean air for 6.5 h preceded by a 1-h acclimatization period. The effects of toluene were measured from subjective votes with linear analogue...

  20. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.; Bhandari, Dhaval A.; Miller, Stephen J.; Koros, William J.

    2011-01-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  1. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2011-03-01

    Full Text Available A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone concentrations. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. A sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While it increases in-cloud secondary organic aerosol substantially, its impact on total fine particle mass concentration is small.

  2. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO2 for oxidation of toluene

    International Nuclear Information System (INIS)

    Yang Liu; Yan Li; Wang Yuntao; Xie Lei; Zheng Jie; Li Xingguo

    2008-01-01

    Meso-and macro-porous TiO 2 were synthesized by ultrasonic induced solvothermal method. Octadecylamine as a soft template was used to direct the formation of porous structure. The as-prepared porous TiO 2 was characterized by low angle and wide angle X-ray diffraction, N 2 adsorption-desorption isotherms and BET surface area. The energy influence of ultrasound and heat and concentration of nitric acid for post extraction on formation of porous structure were investigated. The photocatalytic activities of TiO 2 were investigated by degrading toluene gas under UV light. The results revealed that proper energy facilitates the formation of porous structure and too low concentration of nitric acid cannot extract template from pores. The photocatalytic activities of TiO 2 with porous structure are higher than those of nonporous ones

  3. Determination of biodegradation process of benzene, toluene, ethylbenzene and xylenes in seabed sediment by purge and trap gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics; China Pharmaceutical Univ., Nanjing (China). Physics Teaching and Research Section, Dept. of Basic Sciences; Ma, Wanyun; Chen, Dieyan [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics

    2007-12-15

    Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3-13.2 ng L{sup -1} and a recovery rate of 91.6-95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas. (orig.)

  4. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  5. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  6. Viscometric study of high-cis polybutadiene in toluene solution

    International Nuclear Information System (INIS)

    Mwllo, Ivana L.; Coutinho, Fernanda M.B.; Delpech, Marcia C.; Albino, Fernanda F.M.

    2006-01-01

    Viscometric measurements, in toluene solution at 30 deg C, were performed with high-cis polybutadiene synthesized by neodymium based catalyst. Six different equations were used to calculate intrinsic viscosities and viscosimetric constant values: Huggins, Kraemer, Martin and Schulz-Blaschke by graphic extrapolation, and Solomon-Ciuta, Deb-Chanterjee and again Schulz- Blaschke, through a single point determination. The molecular weight of the polymers was also determined applying Mark-Houwink-Sakurada equation using the values of intrinsic viscosity obtained by the six equations. The values of intrinsic viscosity and viscosity-average molecular weight obtained by the two methods were compared in order to verify the validity of the single point determination for high-cis polybutadiene. (author)

  7. Warfarin binding to plasma of workers exposed to toluene diisocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, K.; Shapiro, R.; Forney, R.B. Jr.

    1982-02-01

    The extent of (14)C-warfarin binding to plasma proteins was evaluated in a group of normal, healthy volunteers and in two groups of individuals occupationally exposed to toluene diisocyanate (TDI). Plasma binding was assessed by ultrafiltration after the addition of racemic (14)C-warfarin to a final concentration of 0.8 microgram/ml. Chronic occupational exposure to TDI did not affect the extent of warfarin binding since warfarin free fractions (normalized to an albumin concentration of 4.5 g/dl) were 1.09 +/- 0.23 (mean +/- SD), 0.98 +/- 0.19, and 0.97 +/- 0.15 for controls and the two groups of TDI-exposed individuals, respectively.

  8. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  9. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  10. Nonlinear Parameter Estimation in Microbiological Degradation Systems and Statistic Test for Common Estimation

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik

    1995-01-01

    Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...

  11. Liver function in patients exposed to a toluene in a hydrocarbon processing plant

    International Nuclear Information System (INIS)

    Sanchez, E; Fernandez D'Pool, J.

    1996-01-01

    Since the hepatotoxic role of toluene in exposed workers from the petroleum and petrochemical industries chronically exposed to low concentration has no been entirely dilucidated, this transversal study was undertaken in order to clarify the situation in the local industries. A group of 33 non-exposed men workers of such industries (group control, aged 33.0 +/- 4.88 years) were compared with 33 toluene-exposed men (aged 35.0 +/- 9.33 years) from the related industries, with a minimal of 6 months exposition time to toluene and without liver disease history. In addition to a complete occupational diseases medical history, each subject was tested by both a venous blood sample (to determine prothrombin, total and fractioned bilirubin, total and fractioned proteins, liver enzymes and cholesterol) and urine sample (hippuric acid). Also the environmental concentration of toluene in working areas was determined by gas chromatography, which was below the recommended standard levels in working areas. Although the analyzed parameters were in the normal range, it was observed that those workers with known alcohol ingestion and toluene exposition had several abnormalities. The results of this study confirm that toluene may have a synergistic hepatotoxic effect in toluene-exposed workers that are alcohol consumers. The alcohol in considered as a confounding factor and it is not possible to rule out in the etiology of hepatic changes detected in the study

  12. Analysis of residual toluene in food packaging via headspace extraction method using gas chromatography

    International Nuclear Information System (INIS)

    Lim, Ying Chin; Mohd Marsin Sanagi

    2008-01-01

    Polymeric materials are used in many food contact applications as packaging material. The presence of residual toluene in this food packaging material can migrate into food and thus affect the quality of food. In this study, a manual headspace analysis was successfully designed and developed. The determination of residual toluene was carried out with standard addition method and multiple headspace extraction, MHE) method using gas chromatography-flame ionization detector, GC-FID). Identification of toluene was performed by comparison of its retention time with standard toluene and GC-MS. It was found that the suitable heating temperature was 180 degree Celsius with an optimum heating time of 10 minutes. The study also found that the concentration of residual toluene in multicolored sample was higher compared to mono colored sample whereas residual toluene in sample analyzed using standard addition method was higher compared to MHE method. However, comparison with the results obtained from De Paris laboratory, France found that MHE method gave higher accuracy for sample with low analyte concentration. On the other hand, lower accuracy was obtained for sample with high concentration of residual toluene due to systematic errors. Comparison between determination methods showed that MHE method is more precise compared to standard addition method. (author)

  13. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  14. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  15. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    Science.gov (United States)

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  16. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  17. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  18. Modeling position-specific isotope fractionation of organic micropollutants degradation via different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    : dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model successfully reproduces the multi-element isotope data, and precisely captures the dual element isotope trends, characterizing the different degradation pathways. Besides illustrating the model capability of mechanistic evaluation...

  19. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  20. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  1. Mechanistic Indicators of Childhood Asthma (MICA) Study

    Science.gov (United States)

    The Mechanistic Indicators of Childhood Asthma (MICA) Study has been designed to incorporate state-of-the-art technologies to examine the physiological and environmental factors that interact to increase the risk of asthmatic responses. MICA is primarily a clinically-bases obser...

  2. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  3. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.

    Science.gov (United States)

    Morales, Paulina; Cáceres, Manuel; Scott, Felipe; Díaz-Robles, Luis; Aroca, Germán; Vergara-Fernández, Alberto

    2017-09-01

    Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO 2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO 2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.

  4. Degradation of BTEX in aqueous solution by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Braeutigam, P.; Wu, Z.-L.; Stark, A.; Ondruschka, B. [Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University, Jena (Germany)

    2009-05-15

    A self-made low-pressure device (up to 100 psi) for hydrodynamic cavitation was tested with the reaction of BTEX (benzene, toluene, ethylbenzene, and xylenes) in water. Experimental parameters, such as inlet pressure, solution temperature, and concentration of the chosen substrates, as well as the effect of different restrictions were investigated. The energy efficiency of the process was measured in comparison to two acoustic cavitation systems (24 and 850 kHz). The products of the BTEX degradation were identified and a pyrolytic degradation pathway is concluded. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  6. Solvothermal syntheses of Bi and Zn co-doped TiO_2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    International Nuclear Information System (INIS)

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-01-01

    Highlights: • Bi-Zn co-doped TiO_2 catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO_2 generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi_1_._9_%Zn_1_%O_2 exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO_2 on photodegradation of gaseous toluene. The doped TiO_2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi_1_._9_%O_2 and TiBi_1_._9_%Zn_1_%O_2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO_2. Bi doping into TiO_2 lattice generates new intermediate energy level of Bi below the CB edge of TiO_2. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO_2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  7. TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS

    Science.gov (United States)

    Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...

  8. The influence of p H during growth of bacteria in toluene

    International Nuclear Information System (INIS)

    Nahar, N.; Quilty, B.; Alauddin, M.

    2000-01-01

    Five toluene tolerant species were isolated from the activated sludge of a wastewater treatment plant (Dublin). The isolate were investigated for influence of pH on the growth in toluene. Four of the bacteria have been identified as Pseudomonas putida and one as an Aeromonas caviae. When these bacteria were grown with toluene as the sole source of carbon and energy, the pH of the culture medium became acidic and dropped. 0.5 M sodium phosphate buffer was selected to investigate the optimum pH for growth in the presence of 500 mu l of toluene. In general, the growth was optimum between pH 5.8 and 7.4. (author)

  9. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.

  10. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    International Nuclear Information System (INIS)

    Mohan, N.; Kannan, G.K.; Upendra, S.; Subha, R.; Kumar, N.S.

    2009-01-01

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l -1 ) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l -1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  11. Developmental toxicity of toluene in male rats: effects on semen quality, testis morphology, and apoptotic neurodegeneration

    DEFF Research Database (Denmark)

    Dalgaard, M.; Hossaini, A.; Hougaard, K.S.

    2001-01-01

    , the number of apoptotic cells in the hippocampus and cerebellum were counted after visualisation by means of the TUNEL assay. Mean body weight in pups of exposed darns was lower than in pops from control litters. This decrease was still statistically significant at PND 11, but at PND 21 and 90 the body...... in the toluene-exposed group. Thus, the granular cell layer in cerebellum is a highly relevant tissue with which to study toluene-induced apoptosis, because of the continuous migration of neurons and high frequency of neuronal apoptosis during the weaning period. In summary, it is concluded, that neither pre......- and postnatal exposure to 1200 ppm toluene nor prenatal exposure to 1800 ppm induced significant effects on the reproductive parameters investigated. However, prenatal exposure to 1800 ppm toluene did increase neuronal apoptosis in the cerebellum of weaned male rats, possibly by delaying postnatal migration...

  12. Hydrogenation of toluene on Ni-Co-Mo supported zeolite catalysts ...

    African Journals Online (AJOL)

    -a, HY-b and Mordenite were prepared and characterized using many techniques for use as hydrotreating catalysts. In a preliminary investigation, toluene was employed as model compound to test the catalysts in hydrogenation, as a major ...

  13. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  14. Impact of coexposure on toluene biomarkers in rats.

    Science.gov (United States)

    Cosnier, Frédéric; Nunge, Hervé; Brochard, Céline; Burgart, Manuella; Rémy, Aurélie; Décret, Marie-Josèphe; Cossec, Benoît; Campo, Pierre

    2014-03-01

    1. Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol. Levels of these biomarkers may depend on factors potentially interfering with TOL biotransformation, such as the presence of other solvents in the workplace. Mercapturic acids (MAs) could be an alternative to the "traditional" TOL biomarkers. 2. This study aims (1) to investigate in rat the effects of an exposure to vapours mixtures on the TOL metabolism, and (2) to assess how well MAs performed in these contexts compared to the traditional TOL biomarkers. 3. Rats were exposed by inhalation to binary mixtures of TOL with n-butanol (BuOH), ethyl acetate (EtAc), methyl ethyl ketone (MEK) or xylenes (XYLs); biological exposure indicators were then measured. 4. Depending on the compounds in the mixture and their concentrations, TOL metabolism was accelerated (with BuOH), unchanged (with EtAc) or inhibited (with XYLs and MEK). Inhibition leads to an increase in blood TOL concentrations, even at authorized atmospheric concentrations, which may potentiate the effect of TOL. 5. MAs excretions are little affected by coexposure scenarios, their levels correlating well with atmospheric TOL levels. They could thus be suitable bioindicators of atmospheric TOL exposure.

  15. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  16. Separating Iso-Propanol-Toluene mixture by azeotropic distillation

    Science.gov (United States)

    Iqbal, Asma; Ahmad, Syed Akhlaq

    2018-05-01

    The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.

  17. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  18. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    OpenAIRE

    M. L. White; R. S. Russo; Y. Zhou; J. L. Ambrose; K. Haase; E. K. Frinak; R. K. Varner; O. W. Wingenter; H. Mao; R. Talbot; B. C. Sive

    2009-01-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) con...

  19. Metabolic interaction between n-hexane and toluene in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perbellini, L.; Brugnone, F.; Leone, R.; Fracasso, M.E.; Venturini, M.S.

    1982-01-01

    Metabolic interference between n-hexane and toluene was studied both in vivo and in vitro. In in vivo experiments the urinary excretion of n-hexane and toluene metabolites was tested in rats treated with the two solvents separately or in combination. The same experimental program was repeated in rats pretreated with phenobarbital (PB). The urinary excretion of n-hexane metabolites in rats treated with the two solvents showed a significantly decreased excretion of all n-hexane metabolites in comparison with those treated with n-hexane alone. In rats pretreated with PB the excretion of n-hexane metabolites was significantly higher compared with that of unpretreated rats; the combined administration of the two solvents showed in this case, too, that n-hexane metabolite excretion was less than that found in rats treated with n-hexane alone. The biotransformation of toluene to o-cresol and hippuric acid studied in the urine of rats treated with or without n-hexane and pretreated or not with PB did not show any difference. The in vitro metabolic interference was studied by measuring the disappearance of solvents from rat's incubated liver microsomes. The inhibition constant of toluene on n-hexane biotransformation was 7.5 ..mu..M and that of n-hexane on toluene was 30 ..mu..M. The data show that a mutual non-competitive interference exists in vitro between n-hexane and toluene. The interference of toluene on n-hexane biotransformation was detectable also in vivo experiments, while n-hexane did not modify the biotransformation of toluene.

  20. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    Science.gov (United States)

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  1. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  2. Liquid scintillation measurements of aqueous 14C or 3H containing samples in a toluene cocktail

    International Nuclear Information System (INIS)

    Engelmann, A.; Reinhard, G.

    1980-01-01

    On the basis of investigations of the ternary system toluene/methanol/water that composition of toluene/methanol scintillation cocktails has been determined, which allows liquid scintillation measurements of 14 C or 3 H containing samples in homogeneous distribution. Because of more pronounced quenching the optimum sample quantity was less for blood solutions extracted with a HClO 4 /H 2 O 2 mixture than for water. The effect of beta radiation energy has to be taken into account. (author)

  3. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  4. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  5. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  7. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  8. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  9. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    Science.gov (United States)

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  10. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  11. Ordered nanoporous carbon as an effective adsorbent in solid-phase microextraction of toluene and chlorinated toluenes in water samples

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-09-01

    Full Text Available Ordered nanoporous carbon (CMK-3 has been synthesized and immobilized onto a copper wire, and subsequently applied to headspace solid phase microextraction (HS-SPME of toluene, 4-chlorotoluene, 2,4-dichlorotoluene and 2,6-dichlorotoluene following gas chromatography–flame ionization detection (GC–FID. The structural order and textural properties of the prepared materials have been characterized by N2 sorption analyses, scanning electron microscopy (SEM and X-ray diffraction (XRD. Five experimental parameters such as extraction temperature, extraction time, salt concentration and stirring speed have been evaluated and optimized by means of a Taguchi’s OA16(45 orthogonal array experimental design. The experimental results indicate that extraction temperature and extraction time are the most significant factors in the analysis procedure. The optimum extraction conditions were as follows: 12 mL sample volume; ambient temperature; 10% (w/v NaCl; 35 min extraction time and stirring rate of 600 rpm. Under the optimized conditions for all analyzed compounds, the linearity was from 2.5 to 400 μg L−1, and limit of detections (LODs were between 0.02 and 0.08 μg L−1. The relative standard deviation values were ⩽5.25% and recovery values were between 85.60% and 104.12%. This method has been successfully used for preconcentration and analysis of above mentioned compounds in different real water samples.

  12. Magnesium degradation under physiological conditions - Best practice.

    Science.gov (United States)

    Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank

    2018-06-01

    This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  13. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    International Nuclear Information System (INIS)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 μM) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, 14 C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively. (author)

  14. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 ..mu..M) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, /sup 14/C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively.

  15. Conceptual models for waste tank mechanistic analysis

    International Nuclear Information System (INIS)

    Allemann, R.T.; Antoniak, Z.I.; Eyler, L.L.; Liljegren, L.M.; Roberts, J.S.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is conducting a study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from double-shell waste storage tanks at the Hanford Site in Richland, Washington. This interim report emphasizing the modeling work follows two other interim reports, Mechanistic Analysis of Double-Shell Tank Gas Release Progress Report -- November 1990 and Collection and Analysis of Existing Data for Waste Tank Mechanistic Analysis Progress Report -- December 1990, that emphasized data correlation and mechanisms. The approach in this study has been to assemble and compile data that are pertinent to the mechanisms, analyze the data, evaluate physical properties and parameters, evaluate hypothetical mechanisms, and develop mathematical models of mechanisms

  16. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The effects of toluene plus noise on hearing thresholds: an evaluation based on repeated measurements in the German printing industry.

    Science.gov (United States)

    Schäper, Michael; Seeber, Andreas; van Thriel, Christoph

    2008-01-01

    The ototoxicity of occupational exposure to toluene plus noise was investigated in a longitudinal study in rotogravure printing and existing findings in the literature were evaluated. The study comprised four repeated examinations during 5 years and started with 333 male workers. Lifetime weighted average exposures (LWAE) to toluene and noise were determined from individual work histories and historic recordings; recent individual exposures were measured 10 times during the study (toluene, active sampling; noise, stationary measurements). Auditory thresholds were measured with pure tone audiometry at 0.125, 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12 kHz. Mean LWAE exposures to toluene and noise were 45+/-17 ppm plus 82+/-7 dB(A) for high toluene exposed and 10+/-7 ppm plus 82+/-4 dB(A) for low toluene exposed subjects, mean current exposures were 26+/-20 ppm plus 81+/-4 dB(A) and 3+/-3 ppm plus 82+/-4 dB(A). Mean exposure duration was 21.3+/-6.5 years for long exposed and 5.9+/-2.2 years for short exposed subjects. Repeated measurement analyses of variance did not reveal effects of toluene intensity, exposure duration and interactions between toluene intensity and noise intensity. Noise intensity [79+/-3 dB(A) vs. 84+/-1 dB(A)] was significant for auditory thresholds. A case concept utilising developments of individual auditory thresholds did not reveal significant toluene effects. Logistic models including age, exposure duration, toluene in ambient air, current noise and either hippuric acid or ortho-cresol (o-cresol) found only age to be significant for elevated OR of high frequency hearing loss. Due to missing toluene effects, it was concluded that the threshold level for developing hearing loss as a result of occupational exposure to toluene plus noise might be above the current limit of 50 ppm toluene.

  18. Supporting Mechanistic Reasoning in Domain-Specific Contexts

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides…

  19. Effects of Isoprene- and Toluene-Generated Smog on Allergic ...

    Science.gov (United States)

    Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible populations including asthmatics are unclear. We assessed effects of smog generated from mixtures of NO with isoprene (IS) or toluene (TL) on allergic inflammatory responses in Balb/cJ mice. House dust mite (HDM)-sensitized or control mice were all challenged with HDM intranasally 1 d prior to whole-body inhalation exposure to IS (chamber average 509 ppb NO2, 246 ppb O3, and 160 g/m3 SOA), TL (217 ppb NO2, 129 ppb O3, and 376 g/m3 SOA), or HEPA-filtered air (4 h/d for 2 days). Mice were necropsied within 3 h after the second exposure (2 d post-HDM challenge). Assessment of breathing parameters during exposure with double-chamber plethysmography showed a trend for increased specific airway resistance and decreased minute volume during the second day of TL exposure in both non-allergic and HDM-allergic mice. HDM-allergic air-exposed mice had significant increases in numbers of bronchoalveolar lavage (BAL) alveolar macrophages (AM) and eosinophils (EO), and trends for increases in BAL indices of lung injury in comparison with non-allergic air-exposed mice. Exposure to either IS or TL attenuated the increases in AM, EO, and lung injury markers in HDM-allergic mice. The results of this

  20. An SOA model for toluene oxidation in the presence of inorganic aerosols.

    Science.gov (United States)

    Cao, Gang; Jang, Myoseon

    2010-01-15

    A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene

  1. Developmental toxicity of toluene in male rats: effects on semen quality, testis morphology, and apoptotic neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, M.; Hossaini, A.; Hass, U.; Ladefoged, O. [Inst. of Food Safety and Toxicology, Danish Veterinary and Food Administration, Soborg (Denmark); Hougaard, K.S. [National Inst. of Occupational Health, Copenhagen (Denmark)

    2001-04-01

    In one study, pregnant Wistar rats were exposed to 1200 ppm toluene by inhalation 6 h a day from gestational day (GD) 7 to postnatal day (PND) 18. Sperm analysis was performed in the adult male offspring at PND 110 by using computer-assisted sperm analysis. Toluene did not affect the semen quality of exposed rats. In another study, pregnant rats were exposed to 1800 ppm from GD 7 to GD 20, and the male offspring were killed at PND 11, 21 or 90. Paired testes weight, histopathology and immunoexpression of vimentin in Sertoli cells were used as markers of testis toxicity. In the brain, the number of apoptotic cells in the hippocampus and cerebellum were counted after visualisation by means of the TUNEL assay. Mean body weight in pups of exposed dams was lower than in pups from control litters. This decrease was still statistically significant at PND 11, but at PND 21 and 90 the body weight of toluene-exposed males tended to approach that of the controls. Absolute and relative testes weights were reduced in all three age groups, although not to a statistically significant degree. Histopathological examinations of the testis and immuno-expression of vimentin did not reveal any differences between toluene-exposed animals and control animals. In the hippocampus, almost no apoptosis was observed in any age group, and there were no differences in apoptotic neurodegeneration between male rats exposed to 1800 ppm and control animals at PND 11, 21 or 90. Generally, a marked increase in number of apoptotic cells was observed in cerebellar granule cells at PND 21 compared with the other age groups. Toluene induced a statistically significant increase in the number of apoptotic cells in the cerebellar granule layer at PND 21. The mean was increased from 37 in the control group to 71 in the toluene-exposed group. Thus, the granular cell layer in cerebellum is a highly relevant tissue with which to study toluene-induced apoptosis, because of the continuous migration of neurons and

  2. Relating BTEX degradation to the biogeochemistry of an anaerobic aquifer

    International Nuclear Information System (INIS)

    Toze, S.G.; Power, T.R.; Davis, G.B.

    1995-01-01

    Trends in chemical and microbiological parameters in a petroleum hydrocarbon plume within anaerobic groundwater have been studied. Previously, microbial degradation of the hydrocarbon compounds had been substantiated by the use of deuterated hydrocarbons to determine natural (intrinsic) degradation rates within the contaminant plume. Here, sulfate concentration decreases, Eh decreases, and hydrogen sulfide and bicarbonate concentration increases are shown to be associated with the contaminant plume. These trends indicate microbial degradation of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by sulfate-reducing bacteria. Stoichiometry indicates that other consortia of bacteria play a role in the degradation of the hydrocarbons. Total microbial cell numbers were higher within the plume than in the uncontaminated groundwater. There is, however, no direct correlation between total microbial cell numbers, and BTEX, sulfate, bicarbonate, and hydrogen sulfide concentrations within the plume

  3. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower...

  4. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    Science.gov (United States)

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  5. High formation of secondary organic aerosol from the photo-oxidation of toluene

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2009-05-01

    Full Text Available Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental conditions: yields are higher under higher UV intensity, under low-NOx conditions and at lower temperatures. The extent of oxidation of the aerosol also varies with experimental conditions, consistent with ongoing, progressive photochemical aging of the toluene SOA. Measurements using a thermodenuder system suggest that the aerosol formed under high- and low-NOx conditions is semi-volatile. These results suggest that SOA formation from toluene depends strongly on ambient conditions. An approximate parameterization is proposed for use in air-quality models until a more thorough treatment accounting for the dynamic nature of this system becomes available.

  6. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Mitesh Parmar

    2013-12-01

    Full Text Available The present work discusses and compares the toluene sensing behavior of polyaniline (PANI and graphene/polyaniline nanocomposite (C-PANI films. The graphene–PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM as well Fourier transform infrared spectroscopy (FTIR and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C, response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time.

  7. Mechanistic studies of carbon monoxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoffroy, G.L.

    1990-06-12

    The progress made during the current grant period (1 January 1988--1 April 1990) in three different areas of research is summarized. The research areas are: (1) oxidatively-induced double carbonylation reactions to form {alpha}-ketoacyl complexes and studies of the reactivity of the resulting compounds, (2) mechanistic studies of the carbonylation of nitroaromatics to form isocyanates, carbamates, and ureas, and (3) studies of the formation and reactivity of unusual metallacycles and alkylidene ligands supported on binuclear iron carbonyl fragments. 18 refs., 5 figs., 1 tab.

  8. Mechanistic facility safety and source term analysis

    International Nuclear Information System (INIS)

    PLYS, M.G.

    1999-01-01

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here

  9. Melanie Klein's metapsychology: phenomenological and mechanistic perspective.

    Science.gov (United States)

    Mackay, N

    1981-01-01

    Freud's metapsychology is the subject of an important debate. This is over whether psychoanalysis is best construed as a science of the natural science type or as a special human science. The same debate applies to Melanie Klein's work. In Klein's metapsychology are two different and incompatible models of explanation. One is taken over from Freud's structural theory and appears to be similarly mechanistic. The other is clinically based and phenomenological. These two are discussed with special reference to the concepts of "phantasy" and "internal object".

  10. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  11. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  12. Development and validation of deterioration models for concrete bridge decks - phase 2 : mechanics-based degradation models.

    Science.gov (United States)

    2013-06-01

    This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...

  13. Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol.

    Science.gov (United States)

    Li, Yong; Liu, Yanjun; Luo, Dan

    2017-10-16

    We demonstrate an optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. The thermal response mechanism is mainly based on the thermal expansion effect induce by toluene, where the ethanol is used for refractive index adjustment to determine the initial refection band position of cholesteric film. The ethanol-toluene mixture was used to adjust the color tunability with the temperature in relation with the habits of people (blue as cold, green as safe and red as hot). A broad temperature range of 86 °C and highly sensitivity of 1.79 nm/ °C are achieved in proposed thermal sensor, where the reflective color red-shifts from blue to red when environmental temperature increases from -6 °C to 80 °C. This battery-free thermal sensor possesses features including simple fabrication, low-cost, and broad temperature sensing range, showing potential application in scientific research and industry.

  14. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    Science.gov (United States)

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-07

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM.

  15. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    Diffusive isotope fractionation of organic contaminants in aqueous solution is difficult to quantify, and only a few experimental data sets are available for compounds of environmental interest. In this study, we investigate diffusive fractionation of perdeuterated and nondeuterated benzene...... and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  16. Non-invasive toluene sensor for early diagnosis of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Rahul; Srivastava, Sudha, E-mail: sudha.srivastava@jiit.ac.in [Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307,Uttar Pradesh (India)

    2016-04-13

    Here we present, quantification of volatile organic compounds in human breath for early detection of lung cancer to increase survival probability. Graphene oxide nanosheets synthesized by modified Hummer’s method were employed as a sensing element to detect the presence of toluene in the sample. Optical and morphological characterization of synthesized nanomaterial was performed by UV-Visible spectroscopy and scanning electron microscopy (SEM) respectively. Spectroscopic assay shows a linearly decreasing intensity of GO absorption peak with increasing toluene concentration with a linear range from 0-200 pM. While impedimetric sensor developed on a graphene oxide nanosheetsmodified screen printed electrodes displayed a decreasing electron transfer resistance increasing toluene with much larger linear range of 0-1000 pM. Reported techniques are advantageous as these are simple, sensitive and cost effective, which can easily be extended for primary screening of other VOCs.

  17. Fuel swelling importance in PCI mechanistic modelling

    International Nuclear Information System (INIS)

    Arimescu, V.I.

    2005-01-01

    Under certain conditions, fuel pellet swelling is the most important factor in determining the intensity of the pellet-to-cladding mechanical interaction (PCMI). This is especially true during power ramps, which lead to a temperature increase to a higher terminal plateau that is maintained for hours. The time-dependent gaseous swelling is proportional to temperature and is also enhanced by the increased gas atom migration to the grain boundary during the power ramp. On the other hand, gaseous swelling is inhibited by a compressive hydrostatic stress in the pellet. Therefore, PCMI is the net result of combining gaseous swelling and pellet thermal expansion with the opposing feedback from the cladding mechanical reaction. The coupling of the thermal and mechanical processes, mentioned above, with various feedback loops is best simulated by a mechanistic fuel code. This paper discusses a mechanistic swelling model that is coupled with a fission gas release model as well as a mechanical model of the fuel pellet. The role of fuel swelling is demonstrated for typical power ramps at different burn-ups. Also, fuel swelling plays a significant role in avoiding the thermal instability for larger gap fuel rods, by limiting the potentially exponentially increasing gap due to the positive feedback loop effect of increasing fission gas release and the associated over-pressure inside the cladding. (author)

  18. Appropriateness of mechanistic and non-mechanistic models for the application of ultrafiltration to mixed waste

    International Nuclear Information System (INIS)

    Foust, Henry; Ghosehajra, Malay

    2007-01-01

    This study asks two questions: (1) How appropriate is the use of a basic filtration equation to the application of ultrafiltration of mixed waste, and (2) How appropriate are non-parametric models for permeate rates (volumes)? To answer these questions, mechanistic and non-mechanistic approaches are developed for permeate rates and volumes associated with an ultrafiltration/mixed waste system in dia-filtration mode. The mechanistic approach is based on a filtration equation which states that t/V vs. V is a linear relationship. The coefficients associated with this linear regression are composed of physical/chemical parameters of the system and based the mass balance equation associated with the membrane and associated developing cake layer. For several sets of data, a high correlation is shown that supports the assertion that t/V vs. V is a linear relationship. It is also shown that non-mechanistic approaches, i.e., the use of regression models to are not appropriate. One models considered is Q(p) = a*ln(Cb)+b. Regression models are inappropriate because the scale-up from a bench scale (pilot scale) study to full-scale for permeate rates (volumes) is not simply the ratio of the two membrane surface areas. (authors)

  19. Degradation chemistry of RuLL´(NCS)2 complexes in the Dye-sensitized solar cell

    DEFF Research Database (Denmark)

    Lund, Torben

    will present and overview of our degradation investigations of the ruthenium dyes N719, Z907 and C106 with the general structure RuLL´(NCS)2 and show how detailed degradation mechanistic knowledge is important in the developing of DSC cells with improved thermal dye stability. The various ruthenium dye...

  20. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2009-01-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet US EPA summertime volatility standards, (2 local industrial emissions and (3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  1. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    Directory of Open Access Journals (Sweden)

    M. L. Hinks

    2018-02-01

    Full Text Available The effect of relative humidity (RH on the chemical composition of secondary organic aerosol (SOA formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS. Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  2. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  3. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  4. Influence of Gold on Hydrotalcite-like Compound Catalysts for Toluene and CO Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2013-12-01

    Full Text Available X6Al2HT500 hydrotalcites, where X represents Mg, Fe, Cu or Zn were synthetized and investigated before and after gold deposition for toluene and CO total oxidation reactions. The samples have been characterized by specific areas, XRD measurements and Temperature Programmed Reduction. Concerning the toluene total oxidation, the best activity was obtained with Au/Cu6Al2HT500 catalyst with T50 at 260 °C. However, catalytic behavior of Au/X6Al2HT500 sample in both reactions depends mainly on the nature of the support.

  5. Electrokinetic mobilisation of toluene and chlorinated ethenes in low permeable soils

    Energy Technology Data Exchange (ETDEWEB)

    Middeldorp, P.; Sinke, A. [TNO Environment Energy and Process Innovation, Apeldoorn (Netherlands)

    2001-07-01

    An electrokinetic horizontal soil column setup was developed to study the effect of electric current on the mobilisation and biodegradation of organic pollutants in soil. Toluene and tetrachloroethene (PCE) were injected between the two electrodes in the center of the soil column and a DC current of 1 V/cm was applied. We observed a breakthrough of PCE and toluene at the cathode side after 8 days and 11 days respectively. This short experiment shows the possibility to enhance the mobility of non-ionic organic pollutants through electro-osmosis. (orig.)

  6. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Petersen, Allan Robertson; Dethlefsen, Johannes Rytter

    2016-01-01

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the t......The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates...

  7. Causation at Different Levels: Tracking the Commitments of Mechanistic Explanations

    DEFF Research Database (Denmark)

    Fazekas, Peter; Kertész, Gergely

    2011-01-01

    connections transparent. These general commitments get confronted with two claims made by certain proponents of the mechanistic approach: William Bechtel often argues that within the mechanistic framework it is possible to balance between reducing higher levels and maintaining their autonomy at the same time...... their autonomy at the same time than standard reductive accounts are, and that what mechanistic explanations are able to do at best is showing that downward causation does not exist....

  8. Effect of growth conditions on the biodegradation kinetics of toluene by P. putida 54G in a vapor phase bioreactor

    International Nuclear Information System (INIS)

    Mirpuri, R.; Jones, W.; Krieger, E.; McFeters, G.

    1994-01-01

    Biodegradation of volatile organic compounds such as petroleum hydrocarbons and xenobiotic agents in the vapor phase is a promising new concept in well-head and end-of-pipe treatment which may have wide application where in-situ approaches are not feasible. The microbial degradation of the volatile organics can be carried out in vapor phase bioreactors which contain inert packing materials. Scale-up of these reactors from a bench scale to a pilot plant can best be achieved by the use of a predictive model, the success of which depends on accurate estimates of parameters defined in the model such as biodegradation kinetic and stoichiometric coefficients. The phenomena of hydrocarbon stress and injury may also affect performance of a vapor phase bioreactor. Batch kinetic studies on the biodegradation of toluene by P. Putida 54G will be compared to those obtained from continuous culture studies for both suspended and biofilm cultures of the same microorganism. These results will be compared to the activity of the P. putida 54G biofilm in a vapor phase bioreactor to evaluate the impact of hydrocarbon stress and injury on biodegradative processes

  9. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Takahata, Yoh; Hoaki, Toshihiro [Taisei Corp., Yokohama (Japan). Civil Engineering Research Inst.; Kasai, Yuki; Watanabe, Kazuya [Marine Biotechnology Institute, Kamaishi (Japan)

    2006-12-15

    A groundwater plume contaminated with gasoline constituents [mainly benzene, toluene, and xylenes (BTX)] had been treated by pumping and aeration for approximately 10 years, and the treatment strategy was recently changed to monitored natural attenuation (MNA). To gain information on the feasibility of using MNA to control the spread of BTX, chemical and microbiological parameters in groundwater samples obtained inside and outside the contaminated plume were measured over the course of 73 weeks. The depletion of electron acceptors (i.e., dissolved oxygen, nitrate, and sulfate) and increase of soluble iron were observed in the contaminated zone. Laboratory incubation tests revealed that groundwater obtained immediately outside the contaminated zone (the boundary zone) exhibited much higher potential for BTX degradation than those in the contaminated zone and in uncontaminated background zones. The boundary zone was a former contaminated area where BTX were no longer detected. Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments revealed that DGGE profiles for groundwater samples obtained from the contaminated zone were clustered together and distinct from those from uncontaminated zones. In addition, unique bacterial rRNA types were observed in the boundary zone. These results indicate that the boundary zone in the contaminant plumes served as a natural barrier for preventing the BTX contamination from spreading out. (orig.)

  10. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  11. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  12. Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

    Directory of Open Access Journals (Sweden)

    Trusek-Holownia Anna

    2015-12-01

    Full Text Available Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR that is directed to an additional membrane separation mode (NF/RO. Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.

  13. In vitro metabolism of [14C]-toluene by human and rat liver microsomes and liver slices

    International Nuclear Information System (INIS)

    Chapman, D.E.; Moore, T.J.; Michener, S.R.; Powis, G.

    1990-01-01

    Toluene metabolites produced by liver microsomes from six human donors included benzylalcohol (Balc), benzaldehyde (Bald) and benzoic acid (Bacid). Microsomes from only one human donor metabolized toluene to p-cresol and o-cresol. Human liver microsomes also metabolized Balc to Bald. Balc metabolism required NADPH, was inhibited by carbon monoxide, and was decreased at a buffer pH of 10. Balc metabolism was not inhibited by ADP-ribose or sodium azide. These results suggest that cytochrome P450 is responsible for the in vitro metabolism of Balc by human liver microsomes. Toluene metabolites formed by human liver slices and released into the incubation media included hippuric acid, and Bacid. Cresols or cresol-conjugates were not detected in liver slice incubation media from any human donor. Toluene metabolism by human liver was compared to metabolism by comparable liver preparations from male Fischer F344 rats. Rates of toluene metabolism by human liver microsomes and liver slices were 9-fold and 1.3-fold greater than for rat liver, respectively. Covalent binding of toluene to human liver microsomes and liver slices was 21-fold and 4-fold greater than for comparable rat liver preparations. Covalent binding of toluene to human microsomes required NADPH, was significantly decreased by coincubation with 4 mM cysteine or 4 mM glutathione, and radioactivity associated with microsomes was decreased by subsequent digestion of microsomes with protease. These results suggest that toluene metabolism and covalent binding of toluene are underestimated if the male Fischer 344 rat is used as a model for human toluene metabolism

  14. Molecular interactions in the complexes of toluene with butyronitrile: A DFT approach

    Science.gov (United States)

    Karthick, N. K.; Arivazhagan, G.

    2018-04-01

    Density Functional Theory (DFT) has been employed to investigate the self association of butyronitrile and the heterointeractions in the 1:2 (toluene: butyronitrile) and 1:1 complexes of toluene with butyronitrile. For this investigation the B3LYP functional with Grimme's dispersion correction (D3) term and ωB97XD functionals were used. The theoretical frequency analysis shows the unsuitability of B3LYP with D3 for the present investigation. Therefore, Natural Bonding Orbital analysis was done at the functional ωB97XD. It is found through this work that only the methylene hydrogens of butyronitrile are responsible for the self association among the butyronitrile molecules. In 1:1 complex, the red shift in the butyronitrile methyl asymmetric stretching mode is not due to the active participation of this group in heterointeractions and it is solely due to the other interactions happening in its vicinity. Only the interaction (TOL) C - H ⋯ N(BN) is present in the complex. In 1:2 complex the butyronitrile methyl/methylene hydrogens interact with the delocalized electron cloud of toluene and the toluene hydrogens interact with the butyronitrile nitrogen. Comparison of interaction energies shows that the stability of 1:2 complex is more than that of butyronitrile dimer and 1:1 complex.

  15. Epr, structural characteristics and intramolecular movements of some phenoxyl radicals in toluene

    OpenAIRE

    Nizameev, I.; Pudovkin, M.; Kadirov, M.

    2010-01-01

    The method of electron paramagnetic resonance (EPR) spectroscopy was used for studying magnetic and dynamic properties of phenoxyl radicals in toluene at 170-370 K. Characteristics of intramolecular motion and structure of phenoxyl radicals were determined from the temperature dependence of EPR spectra. For all the given compounds the activation energies of transitions between the conformers were calculated.

  16. Selective Production of Toluene from Biomass-Derived Isoprene and Acrolein.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Zhang, Bo; Guo, Haiwei; Pan, Xiaoli; Li, Lin; Wang, Aiqin; Zhang, Tao

    2016-12-20

    Toluene is a basic chemical that is currently produced from petroleum resources. In this paper, we report a new route for the effective synthesis of toluene from isoprene and acrolein, two reactants readily available from biomass, through a simple two-step reaction. The process includes Diels-Alder cycloaddition of isoprene and acrolein in a Zn-containing ionic liquid at room temperature to produce methylcyclohex-3-enecarbaldehydes (MCHCAs) as intermediates, followed by M (M=Pt, Pd, Rh)/Al 2 O 3 -catalyzed consecutive dehydrogenation-decarbonylation of the MCHCAs at 573 K to generate toluene with an overall yield up to 90.7 %. Model reactions indicated that a synergistic inductive effect of the C=C double bond and the aldehyde group in MCHCA plays a key role in initiating the consecutive dehydrogenation-decarbonylation, and that methyl benzaldehydes are the key intermediates in the gas-phase transformation of MCHCAs. Microcalorimetric adsorption of CO on different catalysts showed that decarbonylation of the substrate occurs more likely on the strong adsorption sites. To the best of our knowledge, it is the first report of Pt/Al 2 O 3 -catalyzed consecutive dehydrogenation-decarbonylation of a given compound in one reactor. This work provides a highly efficient and environmental friendly route to toluene by utilizing two compounds that can be prepared from biomass. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The effect of temperature on the bioventing of soil contaminated with toluene and decane

    NARCIS (Netherlands)

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    1999-01-01

    The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC

  18. Effects of prenatal exposure to toluene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Hass, Ulla; Lund, S. P.

    1999-01-01

    Development and neurobehavioral effects of prenatal exposure to toluene (CAS 108-88-3) were studied after exposing pregnant rats (Mol:WIST) to 1800 ppm of the solvent for 6 h daily on days 7-20 of gestation. Body weights of exposed offspring were lower until day 10 after parturition. Neurobehavio...

  19. The extraction constant of mercury(II) o-o'-dimethyldithizonate into toluene

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Agterdenbos, J.; Welle, R.A. van der

    An attempt was made to determine spectrophotometrically the extraction constant of mercury(II) o-o'-dimethyldithizonate into toluene by means of a known excess of iodide as a masking agent. The results found, however, could not be explained by a simple reaction between mercury(II)

  20. Effects of Acute Toluene Toxicity on Different Regions of Rabbit Brain

    Directory of Open Access Journals (Sweden)

    Mehmet Demır

    2017-01-01

    Full Text Available The acute phase effects of toluene on the brain have been investigated in this study using rabbit brain via histopathological, immunohistochemical, and biochemical methods. A total of 20 male rabbits were used as control and experimental groups. Moreover, nerve growth factor (NGF, tumor necrosis factor-alpha (TNF-alpha, dopamine (DA, and glial fibrillary acidic protein (GFAP tests were performed in order to designate the severity of the biochemical damage. In the biochemical evaluation of the prefrontal cortex, hippocampus, hypothalamus, substantia nigra, and entorhinal cortex, the TNF-alpha levels in the brain were found to be significantly higher than in the control group. Levels of dopamine, secreted from the substantia nigra, nerve growth factor (NGF developed from the hippocampal neurons, and GFAP, secreted from astrocyte cells, were detected to be significantly lower in the toluene-administration group than in the control group (p<0.05. In addition, areas of focal vacuolar degeneration (abscess formation, gliosis, and perivascular demyelination, many pyknotic cells and necrosis were observed. In the toluene-administration group compared to the control group, distinct excessive expansions of the blood vessels and severe degeneration in the structure of cells and also dispersed cell borders were observed. Furthermore, abnormal malformations of the nuclei structure of the oligodendrocyte cells were seen. Bodies of the sequential neurons of the hippocampus in the toluene-administration group were distinctly structurally damaged compared to the control group. In addition, cytoplasm of the cortex cell showed serious immune reactivity in the experimental group.

  1. Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube

    Science.gov (United States)

    Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.

    2011-11-01

    Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.

  2. Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores.

    Science.gov (United States)

    Kim, Ji Min; Kim, Ji Hoon; Lee, Chang Yeon; Jerng, Dong Wook; Ahn, Ho Seon

    2018-02-15

    Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1-0.5g on a 50×50mm 2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m 3 /g and 630m 3 /g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Measurement method for benzene, toluene, and xylene in the atmosphere by the gas chromatographic method

    Energy Technology Data Exchange (ETDEWEB)

    Shiroyama, H

    1975-08-01

    The chromatographic method for measuring benzene, toluene, and xylene (three isomers) in the atmosphere was evaluated using the Varian model 2740-10 gas chromatograph. As a solvent, n-hexane was most suitable, and the detection limit was improved by increasing the purity of n-hexane. The calibration curves were prepared, the recovery rate was calculated (76.0-99.4 percent), and the correlation coefficient was obtained from regression curves (r equals 0.97-0.99). Samples collected at a naphtha cracking plant, an aluminum smelting mill, a pharmaceutical plant, a carbon electrode manufacturing plant, a plywood manufacturing plant, a plastic bathtub manufacturing plant, and along a major highway were analyzed. All three substances were detected in all samples with the concentration of toluene high compared to the other two. Among xylene isomers, the concentration of p-xylene was always the lowest while m- and o-xylene varied from place to place. In the atmosphere along the highway, the benzene, toluene, and xylene determined were 0.01-0.09 ppM. No benzene, toluene, and xylene were detected in atmospheric samples used as controls.

  4. Low temperature oxidation of benzene and toluene in mixture with n-decane.

    Science.gov (United States)

    Herbinet, Olivier; Husson, Benoit; Ferrari, Maude; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2013-01-01

    The oxidation of two blends, benzene/ n -decane and toluene/ n -decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n -decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results.

  5. Diels–Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene

    Energy Technology Data Exchange (ETDEWEB)

    Green, Sara K.; Patet, Ryan E.; Nikbin, Nima; Williams, C. Luke; Chang, Chun-Chih; Yu, Jingye; Gorte, Raymond J.; Caratzoulas, Stavros; Fan, Wei; Vlachos, Dionisios G.; Dauenhauer, Paul J.

    2016-01-01

    Diels–Alder cycloaddition of biomass-derived 2-methylfuran and ethylene provides a thermochemical pathway to renewable toluene. In this work, the kinetics and reaction pathways of toluene formation have been evaluated with H-BEA and Sn-BEA catalysts. Kinetic analysis of the main reaction chemistries reveals the existence of two rate-controlling reactions: (i) Diels–Alder cycloaddition of 2-methylfuran and ethylene where the production rate is independent of the Brønsted acid site concentration, and (ii) dehydration of the Diels–Alder cycloadduct where the production rate is dependent on the Brønsted acid site concentration. Application of a reduced kinetic model supports the interplay of these two regimes with the highest concentration of toluene measured at a catalyst loading equal to the transition region between the two kinetic regimes. Selectivity to toluene never exceeded 46%, as 2-methylfuran was consumed by several newly identified reactions to side products, including dimerization of 2-methylfuran, the formation of a trimer following hydrolysis and ring-opening of 2-methylfuran, and the incomplete dehydration of the Diels–Alder cycloadduct of 2-methylfuran and ethylene.

  6. Different roles of water in secondary organic aerosol formation from toluene and isoprene

    Science.gov (United States)

    Jia, Long; Xu, YongFu

    2018-06-01

    Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O-H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.

  7. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    Science.gov (United States)

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  8. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  9. Generation of polyyne and methylpolyyne molecules from toluene by intense femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Ramadhan, Ali; Wesolowski, Michal; Duley, Walter; Sanderson, Joseph; Wakabayashi, Tomonari; Shiromaru, Haruo; Fujino, Tatsuya; Kodama, Takeshi

    2015-01-01

    Hydrogen-capped and methyl-capped carbon chains (polyynes) have been generated by intense femtosecond laser irradiation of pure liquid toluene. UV-Vis and Raman spectroscopy were used to confirm the presence of polyynes in the irradiated samples, and high performance liquid chromatography (HPLC) was used to separate polyynes up to C 18 H 2 and HC 13 CH 3 . (paper)

  10. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  11. Postnatal development and behaviour of Wistar rats after prenatal toluene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Fachbereich Humanmedizin, Universitaetsklinikum Benjamin Franklin, Inst. fuer Toxikologie und Embryopharmakologie, Freie Univ. Berlin (Germany); Chahoud, I. [Fachbereich Humanmedizin, Universitaetsklinikum Benjamin Franklin, Inst. fuer Toxikologie und Embryopharmakologie, Freie Univ. Berlin (Germany)

    1997-02-01

    Pregnant Wistar rats were treated with different concentrations of toluene by inhalation (300, 600, 1000 and 1200 ppm) from day 9 to day 21 of pregnancy for 6 h a day in a whole-body inhalation chamber (controls inhaled fresh air only). From day 22, rats were kept single-caged and were allowed to deliver. Besides a detailed evaluation of the physical development of the offspring we performed the following tests: forelimb-grasp reflex, righting reflex, cliff-drop aversion reflex, maintainance of balance on a rotating rod, measurement of locomotor activity and learning ability in a discrimination learning test. A toluene exposure of 1200 ppm resulted in a reduced body weight of rat dams and offspring and a higher mortality until weaning. The physical development (incisor eruption, eye opening and vaginal opening) was retarded in this group. There were no clear-cut and concentration-dependent differences in the development of reflexes, rota rod performance and locomotor activity between the offspring of animals exposed to toluene and the controls. Likewise, no effects were found on learning ability in the operant conditioning task. Compared to the controls there were no differences in mating, fertility and pregnancy indexes in the F{sub 1}-generation. The tests performed have provided no evidence that toluene exposures {<=} 1200 ppm induce adverse effects on the behaviour of rat offspring exposed during late embryonic and fetal development. (orig.). With 8 figs., 7 tabs.

  12. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, Steen Honoré

    1998-01-01

    OBJECTIVES: This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane. METHODS: Eight healthy male volunteers were exposed to combinations of toluene (1.5 or 4 mg/min), trichloroethylene (1.5 or 4 mg/min), and n-hexane (0.3 or 1.0 mg......: When the low dose rates were combined, the end exhaled concentrations were at or below the detection limit, while an increase in the dose rate of toluene increased the area under the end exhaled air concentration curve (AUC) of toluene, trichloroethylene, and n-hexane by factors of 44 (16......-117) [geometric mean and 95% confidence interval], 12.8 (4.1-40.0), and 2.2 (1.2-4.1), respectively. Trichloroethylene, in turn, increased the AUC 5.0 (1.9-13.4), 25.8 (8.2-80.8) and 2.9 (1.6-5.4), respectively, whereas the corresponding values for n-hexane were 1.9 (0.7-5.1), 1.5 (0.5-4.6), and 3.2 (1...

  13. AGING AND SUSCEPTIBILITY TO TOLUENE IN RATS: A PHARMACOKINETIC, BIOMARKER, AND PHYSIOLOGICAL APPROACH.

    Science.gov (United States)

    Aging adults are a growing segment of the U.S. population and are likely to exhibit increased susceptibility to many environmental toxicants. However, there is little information on the susceptibility of the aged to toxicants. The toxicity of toluene has been well characterized i...

  14. Renal effects of acute exposure to toluene. A controlled clinical trial

    DEFF Research Database (Denmark)

    Nielsen, H K; Krusell, Lars Romer; Bælum, Jesper

    1985-01-01

    Urinary excretion rates of beta 2-microglobulin and albumin were measured in 43 male printing trade workers and 43 age-matched male controls before and during exposure to toluene, 382 mg/m3, for 6 1/2 hours in a climate chamber. There were no significant changes in renal excretion rates of albumin...

  15. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Energy Technology Data Exchange (ETDEWEB)

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  16. Microbiological and kinetic aspects of a biofilter for the removal of toluene from waste gases

    Science.gov (United States)

    Acuna; Perez; Auria; Revah

    1999-04-20

    Microbiological and kinetic aspects of a biofilter inoculated with a consortium of five bacteria and two yeast adapted to remove toluene vapors were investigated. Initially the toluene sorption isotherm on peat and the effect of different environmental conditions on the toluene consumption rates of this consortium were measured. The fast start-up of the biofilter and the decay in the elimination capacity (EC) were reproduced using microcosm assays with toluene successive additions. Nutrient limitation and a large degree of heterogeneity were also detected. EC values, extrapolated from microcosms, were higher than biofilter EC when it was operating close to 100% efficiency but tended to relate better as the biofilter EC diminished. In studies on the microbial evolution in the biofilter, an increase in the cell count and variation in the ecology of the consortium were noted. Bacterial counts up to 10 x 10(11) cfu/gdry peat were found in 88 days, which corresponds to about a 10(4) increase from inoculum. Observations with SEM showed a nonuniform biofilm development on the support and the presence of an extracellular material. The results obtained in this work demonstrated that activity measurement in microcosms concomitant to the biofilter operation could be an important tool for understanding, predicting and improving the biofiltration performance. Copyright 1999 John Wiley & Sons, Inc.

  17. Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Sun, Wei; Liu, Junteng; Zhang, Weidong; Ren, Zhongqi [Beijing University of Chemical Technology, Beijing (China)

    2014-06-15

    A supported liquid membrane with ionic liquid was used for the separation of toluene/cyclohexane. The interactions of ionic liquid with toluene and cyclohexane were calculated and experimentally studied by quantum chemical calculation and liquid-liquid extraction process. The results showed [BPy][BF{sub 4}] have stronger interaction with toluene than that with cyclohexane. The selectivity of SILM processes was larger than 10 at the temperature of 323 K and the flow rate of 13.5 mL·min{sup -1} on both shell side and lumen side. Due to the higher viscosity of IL, SILM process had good long-term stability. As the effects of mass transfer driving force of SILM process, the flux and removal efficiency increased with increase of initial toluene concentration, while the selectivity decreased because of the competitive transport. Base on the resistance in-series model and experimental results, the mass transfer resistance was mainly lay liquid membrane phase. The influence of flow rates on both sides was slight. The higher temperature could enhance the mass transfer performance significantly. The removal efficiency increased from 28.2% to 45.1% with the increasing of operation temperature from 298 K to 323 K.

  18. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-01-01

    Results are presented from experimental studies of decomposition of toluene (C 6 H 5 CH 3 ) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C 6 H 5 CH 3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N 2 : O 2 : H 2 O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C 6 H 5 CH 3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C 6 H 5 CH 3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  19. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  20. Acute Toluene Exposure alters expression of genes associated with synaptic structure and function

    Science.gov (United States)

    Toluene (TOL), a volatile organic compound, is a ubiquitous air pollutant of interest to EPA regulatory programs. Whereas its acute functional effects are well described, several potential modes of action in the CNS have been proposed. Therefore, the genomic response to acute TOL...

  1. The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation

    Czech Academy of Sciences Publication Activity Database

    Jo, Ch.; Ryoo, R.; Žilková, Naděžda; Vitvarová, Dana; Čejka, Jiří

    2013-01-01

    Roč. 3, č. 8 (2013), s. 2119-2129 ISSN 2044-4753 R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : Adsorption measurement * Alkylation of toluene * Isopropyl alcohols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.760, year: 2013

  2. A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene

    International Nuclear Information System (INIS)

    Li Shande; Tian Shuanghong; Feng Yunfeng; Lei Jiajia; Wang, Piaopiao; Xiong Ya

    2010-01-01

    Three kinds of expanded graphite-based complex materials were prepared to absorb toluene by dispersing plant oil, animal oil and mineral oil on the surface of expanded graphite, respectively. These complex materials were characterized by scanning electronic micrograph, contact angle meter and Brunauer-Emmett-Teller surface area. And their absorption capacities for toluene were comparatively investigated. The results showed that the surfaces of the three types of sorbents were very hydrophobic and nonporous, but they all had excellent absorption capacities for toluene. And their absorption capacities were proportional to the toluene concentration in streams and decreased differently with increasing the absorption temperature. It was noteworthy that the absorption capacities varied with the unsaturated degree of the complex materials and kept unchanged under different relative humidities of streams. Moreover, the regeneration experiments showed that after 15-run regeneration the absorption capacities of expanded graphite modified by mineral oil almost kept unchanged, while that of expanded graphite loaded plant oil and animal oil dropped by 157 and 93.6 mg g -1 , respectively. The losses of their absorption capacities were ascribed to the destruction of their unsaturated carbon bounds.

  3. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    Science.gov (United States)

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  4. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    Science.gov (United States)

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  5. COMPARING BEHAVIORAL DOSE-EFFECT CURVES FOR HUMANS AND LABORATORY ANIMALS ACUTELY EXPOSED TO TOLUENE.

    Science.gov (United States)

    The utility of laboratory animal data in toxicology depends upon the ability to generalize the results quantitatively to humans. To compare the acute behavioral effects of inhaled toluene in humans to those in animals, dose-effect curves were fitted by meta-analysis of published...

  6. Diffusion coefficients of Co, CO2, N20, and N2 in ethanol and toluene

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; te Riele, M.J.M.; van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1995-01-01

    The Taylor dispersion technique was applied for the measurement of diffusion coefficients of dissolved gases in ethanol and toluene. Experiments with the system COz in H20 have been made to evaluate the accuracy of the method. The experimental procedure as described provides a fast and highly

  7. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol.

    Science.gov (United States)

    Li, Yuyang; Yuan, Wenhao; Li, Tianyu; Li, Wei; Yang, Jiuzhong; Qi, Fei

    2018-04-25

    n-Butanol is a promising renewable biofuel and has a lot of advantages as a gasoline additive compared with ethanol. Though the combustion of pure n-butanol has been extensively investigated, the chemical structures of large hydrocarbons doped with n-butanol, especially for aromatic fuels, are still insufficiently understood. In this work, rich premixed toluene/n-butanol/oxygen/argon flames were investigated at 30 Torr with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The blending ratio of n-butanol was varied from 0 to 50%, while the equivalence ratio was maintained at a quite rich value (1.75) for the purpose of studying the influence of n-butanol on the aromatic growth process. Flame species including radicals, reactive molecules, isomers and polycyclic aromatic hydrocarbons (PAHs) were identified and their mole fraction profiles were measured. A kinetic model of toluene/n-butanol combustion was developed from our recently reported toluene and n-butanol models. It is observed that the production of most toluene decomposition products and larger aromatics was suppressed as the blending ratio of n-butanol increases. Meanwhile, the addition of n-butanol generally enhanced the formation of most observed C2-C4 hydrocarbons and C1-C4 oxygenated species. The rate of production (ROP) analysis and experimental observations both indicate that the interaction between toluene and n-butanol in their decomposition processes mainly occurs at the formation of small intermediates, e.g. acetylene and methyl. In particular, the interaction between toluene and n-butanol in methyl formation influences the formation of large monocyclic aromatics such as ethylbenzene, styrene and phenylacetylene, making their maximum mole fractions decay slowly upon increasing the blending ratio of n-butanol compared with toluene and benzyl. The increase of the blending ratio of n-butanol reduces the formation of key PAH precursors such as benzyl, fulvenallenyl

  8. Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, p-xylene + OH reaction.

    Science.gov (United States)

    Noda, Jun; Volkamer, Rainer; Molina, Mario J

    2009-09-03

    The OH-radical initiated oxidation of a series of monocyclic aromatic hydrocarbons (benzene, toluene, o-, m-, and p-xylene) in the presence of oxygen and NO(x) was investigated in a flowtube coupled with a chemical ionization mass spectrometer (CIMS). OH-radical addition to the aromatic ring--the major reaction pathway--has previously been shown to have a particular sensitivity to experimental conditions. This is the first flowtube study that demonstrates the atmospheric relevance of product yields from the OH-addition channel on the millisecond time scale (35-75 ms); the phenol yield from benzene and cresol yields from toluene are found to be 51.0 +/- 4.3% and 17.7 +/- 2.1%, in excellent agreement with previous studies under close to atmospheric conditions. We further report unambiguous experimental evidence that dealkylation is a novel and significant pathway for toluene and o-, m-, and p-xylene oxidation. At 150 Torr of O2 partial pressure, toluene is found to dealkylate with a yield of 5.4 +/- 1.2% phenol; similarly, m-, o-, and p-xylene dealkylate with yields of 11.2 +/- 3.8%, 4.5 +/- 3.2%, and 4.3 +/- 3.1% cresol, respectively. A dealkylation mechanism via OH-addition in the ipso position is feasible (DeltaH = -9 kcal/mol for phenol formation from toluene) but does not lend itself easily to explain the significant isomer effect observed among xylenes; instead an alternative mechanism is presented that can explain this isomer effect and forms phenol and likely epoxide type products with identical m/z (indistinguishable in our CIMS analysis) via a carbene-type intermediate. Dealkylation adds to the atmospheric production of phenol- and likely epoxide-type products, with aldehydes as expected co-products, and helps improve the carbon balance in the initial stages of aromatic oxidation.

  9. Mechanistic curiosity will not kill the Bayesian cat

    NARCIS (Netherlands)

    Borsboom, D.; Wagenmakers, E.-J.; Romeijn, J.-W.

    2011-01-01

    Jones & Love (J&L) suggest that Bayesian approaches to the explanation of human behavior should be constrained by mechanistic theories. We argue that their proposal misconstrues the relation between process models, such as the Bayesian model, and mechanisms. While mechanistic theories can answer

  10. Mechanistic curiosity will not kill the Bayesian cat

    NARCIS (Netherlands)

    Borsboom, Denny; Wagenmakers, Eric-Jan; Romeijn, Jan-Willem

    Jones & Love (J&L) suggest that Bayesian approaches to the explanation of human behavior should be constrained by mechanistic theories. We argue that their proposal misconstrues the relation between process models, such as the Bayesian model, and mechanisms. While mechanistic theories can answer

  11. "Ratio via Machina": Three Standards of Mechanistic Explanation in Sociology

    Science.gov (United States)

    Aviles, Natalie B.; Reed, Isaac Ariail

    2017-01-01

    Recently, sociologists have expended much effort in attempts to define social mechanisms. We intervene in these debates by proposing that sociologists in fact have a choice to make between three standards of what constitutes a good mechanistic explanation: substantial, formal, and metaphorical mechanistic explanation. All three standards are…

  12. Biodegradation of BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) composites present in the petrochemical effluents industries; Biodegradacao dos compostos BTX (Benzeno, Tolueno e Xilenos) presentes em efluentes petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Minatti, Gheise; Mello, Josiane M.M. de; Souza, Selene M.A. Guelli Ulson de; Ulson de, Antonio Augusto [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2008-07-01

    The compounds BTX inside of the petrochemical effluent have presented a high potential of pollution, representing a serious risk to the environment and to the human. The great improvements in the field of biological treatment of liquid effluent were reached through the process using biofilm capable of degrading toxic compounds. The objective of this paper is to determine the degradation kinetics of BTX using biofilm. The experimental data were compared with two kinetic models, kinetic of first order and model of Michaelis-Menten. The kinetic parameters of BTX compounds were experimentally obtained in a bioreactor in batch with biomass immobilized in activated-carbon, being fed daily with solution of nutrients and BTX. For the kinetic models studied in this paper, the best performance was achieved with the model of Michaelis-Menten showing a good correlation coefficient for the three compounds. The biomass amount in these bioreactors was 49.18, 28.35 and 5.15 mg of SSV per gram of support for the toluene, benzene and o-xylene, respectively. The experimental tests showed that the biomass inside of bioreactor is capable to degrade all compounds in a time of approximately 300 minutes. (author)

  13. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  14. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    International Nuclear Information System (INIS)

    Ling, K.H.; Hanzlik, R.P.

    1989-01-01

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover

  15. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  16. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  17. Mechanistic Indicators of Childhood Asthma (MICA): piloting ...

    Science.gov (United States)

    Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to reach their full potential. Objective: We used a case-control study to investigate whether genomic data (blood gene expression), viewed together with a spectrum of exposure effects and susceptibility markers (blood, urine and nail), can provide a mechanistic explanation for the increased susceptibility of asthmatics to ambient air pollutants. Methods: We studied 205 non-asthmatic and asthmatic children, (9-12 years of age) who participated in a clinical study in Detroit, Michigan. The study combines a traditional epidemiological design with an integrative approach to investigate the environmental exposure of children to indoor-outdoor air. The study includes measurements of internal dose (metals, allergen specific IgE, PAH and VOC metabolites) and clinical measures of health outcome (immunological, cardiovascular and respiratory). Results: Expected immunological indications of asthma have been obtained. In addition, initial results from our analyses point to the complex nature of childhood health and risk factors linked to metabolic syndrome (obesity, blood pressure and dyslipidemia). For example, 31% and 34% of the asthmatic MICA subjects were either overweight (BMI > 25) o

  18. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Mechanistic movement models to understand epidemic spread.

    Science.gov (United States)

    Fofana, Abdou Moutalab; Hurford, Amy

    2017-05-05

    An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  20. Determination of reactor operation for the microbial hydroxylation of toluene in a two-liquid phase process

    DEFF Research Database (Denmark)

    Collins, AM; Woodley, John; Liddell, JM

    1995-01-01

    Application of biotransformations to the synthesis of industrial chemicals is in part limited by a number of process challenges. We discuss the conversion of toxic, poorly water-soluble organic substrates by whole cells, using as an illustrative example the specific hydroxylation of toluene...... to toluene cis-glycol by Pseudomonas putida UV4. Toxic effects may be eliminated through the introduction of tetradecane, to partition toluene away from the biocatalyst, to give product concentrations of 30-60 g L(-1), in a two-liquid-phase reactor. The operational limits of this system have been...

  1. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    of model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...... biodegradative or catabolic performance. To date, details concerning the physiology of degrader microorganisms and their ability to express the relevant catabolic genes in the context of a complex and stressful environment have yet to be elucidated. In order to fully exploit the catabolic potential of degrader......- and xylene degrading bacterium Pseudomonas putida mt-2 and the phenoxy acid herbicide degrading bacterium Cupriavidus pinatubonensis JMP134, have a high defense capacity towards archetypical environmental stressors. However, the results also showed that induction of a stress defense may have a cost in regard...

  2. Solvothermal syntheses of Bi and Zn co-doped TiO{sub 2} with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan-Juan [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Cai, Song-Cai [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Xu, Zhen [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xi [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Chen, Jin [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Hong-Peng, E-mail: hpjia@iue.ac.cn [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Jing, E-mail: jing.chen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2017-03-05

    Highlights: • Bi-Zn co-doped TiO{sub 2} catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO{sub 2} generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi{sub 1.9%}Zn{sub 1%}O{sub 2} exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO{sub 2} on photodegradation of gaseous toluene. The doped TiO{sub 2} with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi{sub 1.9%}O{sub 2} and TiBi{sub 1.9%}Zn{sub 1%}O{sub 2} can reach to 51% and 93%, respectively, which are much higher than 25% of TiO{sub 2}. Bi doping into TiO{sub 2} lattice generates new intermediate energy level of Bi below the CB edge of TiO{sub 2}. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO{sub 2} agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  3. New Biochemical Pathway for Biphenyl Degradation in Plants: Structural, Mechanistic and Biotechnological Aspects

    International Nuclear Information System (INIS)

    Pacios, L. F.; Campos, V. M.; Merino, I.; Gomez, L.

    2009-01-01

    Polychlorinated biphenyls (PVBs) and other structurally-related xenobiotics are amongst the most relevant organic pollutants known today. while some bacterial species can metabolize PCBs, with varying efficiency, no catabolic pathways have yet been described in plants. This is so despite the great potential of (at least some) plant species for soil and groundwater decontamination, a technology known as phyto remediation. (Author)

  4. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.

    2012-05-15

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach would be to quantitate the degree of similarity between the responses that cells show when exposed to drugs, so that consistencies in the regulation of cellular response processes that produce success or failure can be more readily identified.Results: We track drug response using fluorescent proteins as transcription activity reporters. Our basic assumption is that drugs inducing very similar alteration in transcriptional regulation will produce similar temporal trajectories on many of the reporter proteins and hence be identified as having similarities in their mechanisms of action (MOA). The main body of this work is devoted to characterizing similarity in temporal trajectories/signals. To do so, we must first identify the key points that determine mechanistic similarity between two drug responses. Directly comparing points on the two signals is unrealistic, as it cannot handle delays and speed variations on the time axis. Hence, to capture the similarities between reporter responses, we develop an alignment algorithm that is robust to noise, time delays and is able to find all the contiguous parts of signals centered about a core alignment (reflecting a core mechanism in drug response). Applying the proposed algorithm to a range of real drug experiments shows that the result agrees well with the prior drug MOA knowledge. © The Author 2012. Published by Oxford University Press. All rights reserved.

  5. Mechanistic modeling for mammography screening risks

    International Nuclear Information System (INIS)

    Bijwaard, Harmen

    2008-01-01

    Full text: Western populations show a very high incidence of breast cancer and in many countries mammography screening programs have been set up for the early detection of these cancers. Through these programs large numbers of women (in the Netherlands, 700.000 per year) are exposed to low but not insignificant X-ray doses. ICRP based risk estimates indicate that the number of breast cancer casualties due to mammography screening can be as high as 50 in the Netherlands per year. The number of lives saved is estimated to be much higher, but for an accurate calculation of the benefits of screening a better estimate of these risks is indispensable. Here it is attempted to better quantify the radiological risks of mammography screening through the application of a biologically based model for breast tumor induction by X-rays. The model is applied to data obtained from the National Institutes of Health in the U.S. These concern epidemiological data of female TB patients who received high X-ray breast doses in the period 1930-1950 through frequent fluoroscopy of their lungs. The mechanistic model that is used to describe the increased breast cancer incidence is based on an earlier study by Moolgavkar et al. (1980), in which the natural background incidence of breast cancer was modeled. The model allows for a more sophisticated extrapolation of risks to the low dose X-ray exposures that are common in mammography screening and to the higher ages that are usually involved. Furthermore, it allows for risk transfer to other (non-western) populations. The results have implications for decisions on the frequency of screening, the number of mammograms taken at each screening, minimum and maximum ages for screening and the transfer to digital equipment. (author)

  6. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  7. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  8. Microstructural characteristics of toluene and quinoline-insolubles from coal-tar pitch and their cokes

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania); Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania)

    2007-08-01

    The structural composition of coal-tar pitch used in the preparation of the special binder-pitch, was determined with special emphasis on the optical properties of the {beta}-resins, as typical components necessary to obtain electrodes of best quality through the pyrogenetic processes of baking and graphitization. In addition to raw toluene- and quinoline-insolubles (TI, QI), the corresponding cokes were analysed to evaluate, by structural composition and microtexture, the behaviour of pitch fractions during carbonization. The results suggest the dependence of the texture development on the type of toluene- and quinoline-insolubles and {beta}-resins during processing conditions, which influence the mesophase formation. An original and important result of the carbopetrographical study is represented by the identification and evaluation of {beta}-resins in the coke texture. (author)

  9. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  10. An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering

    Directory of Open Access Journals (Sweden)

    Rajagopal K.

    2004-01-01

    Full Text Available The particle size of asphaltene flocculates has been the subject of many recent studies because of its importance in the control of deposition in petroleum production and processing. We measured the size of asphaltene flocculates in toluene and toluene - n-heptane mixtures, using the light-scattering technique. The asphaltenes had been extracted from Brazilian oil from the Campos Basin, according to British Standards Method IP-143/82. The asphaltene concentration in solution ranged between 10-6 g/ml and 10-7 g/ml. Sizes was measured for a period of about 10000 minutes at a constant temperature of 20°C. We found that the average size of the particles remained constant with time and increase with an increase in amount of n-heptane. The correlation obtained for size with concentration will be useful in asphaltene precipitation models.

  11. Effects of prenatal exposure to chronic mild stress and toluene in rats

    DEFF Research Database (Denmark)

    Hougaard, Karin; Andersen, Maibritt B; Hansen, Ase M

    2005-01-01

    The aim of the present study was to elucidate whether prenatal chronic stress, in combination with exposure to a developmental neurotoxicant, would increase effects in the offspring compared with the effects of either exposure alone. Development and neurobehavioral effects were investigated...... in female offspring of pregnant rats (Mol:WIST) exposed to chronic mild stress (CMS) during gestational days (GD) 9-20, or 1500 ppm toluene, 6 h/day during gestational days 7-20, or a combination of the two. Prenatal CMS was associated with decreased thymic weight and increased auditory startle response....... The corticosterone response to restraint seemed modified by prenatal exposure to toluene. Lactational body weight was decreased in offsprings subjected to CMS, primarily due to effects in the combined exposure group. Cognitive function was investigated in the Morris water maze, and some indications of improved...

  12. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  13. Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase

    DEFF Research Database (Denmark)

    Chaurasia, Akhilesh Kumar; Tremblay, Pier-Luc; Holmes, Dawn E.

    2015-01-01

    -CoA dehydrogenase (bbsG), an enzyme required for toluene degradation by G. metallireducens that is homologous to the p-hydroxybenzylsuccinyl-CoA dehydrogenase involved in p-cresol degradation by Desulfobacula toluolica Tol2 via fumarate addition, and the gene encoding the alpha prime subunit of PCMH (pcmI), were...... deleted to investigate the possibility of co-existing p-cresol degradation pathways in G. metallireducens. The absence of a functional PcmI protein completely inhibited p-cresol degradation, while deletion of the bbsG gene had little impact. These results further support the observation that G...

  14. Evaluation of Toluene Exposure in Workers at Industrial Area of Sidoarjo, Indonesia by Measurement of Urinary Hippuric Acid

    Directory of Open Access Journals (Sweden)

    Moch Sahri

    2013-12-01

    How to cite this article: Sahri M, Widajati N. Evaluation of Toluene Exposure in Workers at Industrial Area of Sidoarjo, Indonesia by Measurement of Urinary Hippuric Acid. Asia Pac J Med Toxicol 2013;2:145-9.

  15. Toluene Effects on Gene Expression in the Hippocampus of Young-Adult, Middle-Age and Senescent Brown Norway Rats

    Science.gov (United States)

    Differential susceptibility to environmental exposure(s) across life stages is an area of toxicology about which little is known. We examined the effects of toluene, a known neurotoxicant with reported behavioral, electrophysiological and pathological effects, on transcriptomic...

  16. Molecular Diffusion of Toluene through CaCO3-Filled Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Hedayatollah Sadeghi Ghari

    2012-12-01

    Full Text Available The transport properties of liquids and gases through polymeric materialsplay a very important role in some areas of industrial applications. In thisstudy, natural rubber (NR/CaCO3 composites were prepared by melt mixingmethod. By equilibrium swelling test, the transport process of toluene in the prepared natural rubber composites was investigated. The diffusion and transport of toluene through calcium carbonate-filled natural rubber composites have been studied in the temperature range 25–45°C. The diffusion of toluene through these composites was studied with special reference to the effect of filler concentration and temperature.The transport coefficients such as diffusion, permeation and sorption coefficients were estimated from the swelling data. To find out the mechanism of diffusion in prepared composites, the results of swelling studies were applied to an empirical equation. In these composites, diffusion is approximately based on Fickian diffusion mechanism and by increases in temperature; diffusion mechanism is more close to Fickian mechanism. Increase of filler content in composite would result in decreased ultimateswelling and slower diffusion rate of solvent. The diffusion rate, diffusion coefficient and the permeability increased by temperature. The study of the diffusion of toluene through filled natural rubber indicated that the concentration of filler plays an important role in the diffusion, sorption and permeation coefficients. Also interfacial interactions in NR composites were checked by dynamic-mechanical analysis. The microstructure and dispersion of calcium carbonate particles in natural rubber matrix were studiedby field emission scanning electron microscopy (FE-SEM. In general, the results of swelling tests, dynamic-mechanical analysis and FE-SEM images show that the optimized value of filler in NR composites is equal to 10 phr calcium carbonate.

  17. Studies on 2-(toluene-4-sulfonylamino)-benzoic acid: structure spectroscopic properties

    International Nuclear Information System (INIS)

    Tarcan, E.; Atalay, Y.; Guenay, N.

    2010-01-01

    The molecular geometry, vibrational (IR) spectrum, vibrational frequencies and 1 H and 1 3C NMR chemical shifts were carried out of 2-(toluene-4-sulfonylamino)-benzoic acid with ab initio and density functional computations. On the basis of the comparison between calculated and experimental results assignments of fundamental vibrational modes are examined. The X-ray geometry, experimental frequencies and chemical shifts are compared with the results of our theoretical calculations

  18. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    Gonzalez Vanderhaghen, D.E.

    1998-01-01

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  19. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    International Nuclear Information System (INIS)

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-01-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG 1 antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk

  20. Development of benzene, toluene, ethylbenzene and xylenes certified gaseous reference materials

    Science.gov (United States)

    Brum, M. C.; Sobrinho, D. C. G.; Fagundes, F. A.; Oudwater, R. J.; Augusto, C. R.

    2016-07-01

    The work describes the production of certified gaseous reference materials of benzene, toluene, ethylbenzene and xylenes (BTEX) in nitrogen from the gravimetric production up to the long term stability tests followed by the certifying step. The uncertainty in the amount fractions of the compounds in these mixtures was approximately 4% (relative) for the range studied from 2 to 16 µmol/mol. Also the adsorption of the BTEX on the cylinder surface and the tubing were investigated as potential uncertainty source.

  1. Investigations on Chlorophytum comosum ability to remove toluene from air in a closed environment

    Science.gov (United States)

    Bulteau, G.; Lakel, A.

    Plants play a major role in bioregenerative systems for air and water supplies. They may also contribute to the removal of volatile organic compounds (VOC) from the air in a closed environment, based on the ability to absorb toxic compounds and to detoxify them. The aim of our work was to study the capabilities of Chlorophytum comosum for toluene removal and to identify the main parts of the plants which are responsible for the elimination. A 1-m3 sealed chamber was designed and built in 8-mm window glass assembled with UV-polymerized glue. It was equipped with one internal fan for air mixing. The other materials (low-emitting and low-adsorptive) were aluminium and PTFE. A cooling system was also used to regulate humidity content which was monitored continuously as well as temperature and carbon dioxide concentration. Experiments were carried out in this chamber with Chlorophytum comosum plants exposed to an initial concentration of 11.5x103 μg toluene m-3. Pollutant concentration was measured every five minutes during several days. Toluene removal was studied in various configurations (potting media, hydroponic conditions{ldots}) in order to document the level of contribution of each component (leaves, roots, microorganisms and soil) of the potted plants. Results show that 54 % of toluene was removed in 72 h with the whole potted plant. A large participation of the soil in the purification process was noticed whereas foliage seemed to have little effect at the light intensity used in the experiments. Moreover, the tests realized with both natural and sterilized soils suggest that soil bacteria (in potting media) play a significant role in the removal process showing that soil and its microorganisms may have complementary roles in the elimination phenomena. Detoxifying function of potted plants could find current applications in improving air quality, in particular indoor air from domestic buildings.

  2. Performance of rare earth modified faujasites in the process of toluene disproportionation

    International Nuclear Information System (INIS)

    Azzouz, A.; Fourar, M.; Berrak, A.

    1984-06-01

    The purpose of the present paper is the study of the performances of some catalysts based on y-type faujasite exchanged with La (3+) and Ce (3+) cations in the process of toluene disproportionation to benzene and xylenes. In the first stage the crystallographic study by the X-rays diffraction method shows that the cation exchange causes 311 plane displacements in the zeolite structure, accompanied by a decrease of diffraction limit intensity. Further the faujasite pretreatment with NH4 (4+) ions plays some role in the protection of the crystallinity. Moreover the cation exchange seems to take an optimum value around 73% for which the toluene conversion is maximum. This phenomenon is probably due to a decrease of the internal free volume for a pronounced cation exchange. The best performances are obtained by the zeolite that has undergone a slow and programmed thermal activation after cation exchange. This is probably due to the slowness of ion rearrangement phenomena, and of the catalytic surface restructuration. In the second stage the realization of toluene disproportionation process shows that the cation exchange with such elements confers to the faujasite an appreciable catalytic activity in the temperature range of 350-500 degC. The catalysts obtained permit about 20-60% toluene conversions. The catalytic activity is slightly higher in La-modified samples, whereas those containing Ce (3+) present relatively a better selectivity to the main process. Nevertheless, both types of catalysts show approximately a similar behaviour, favourizing the p-xylene formation. The proportion of the latter exceeds that of thermodynamic equilibrium at temperatures less than 430 degC. The temperature increase affects this selectivity. This is probably due to dehydration phenomenon which are frequent around this value

  3. Monte Carlo calculation of the total probability for gamma-Ray interaction in toluene

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1983-01-01

    Interaction and absorption probabilities for gamma-rays with energies between 1 and 1000 KeV have been computed and tabulated. Toluene based scintillator solution has been assumed in the computation. Both, point sources and homogeneously dispersed radioactive material have been assumed. These tables may be applied to cylinders with radii between 1.25 cm and 0.25 cm and heights between 4.07 cm and 0.20 cm. (Author) 26 refs

  4. Extraction of U(VI) with unsymmetrical N-methyl-N-octyl alkylamides in toluene

    International Nuclear Information System (INIS)

    Sun Guoxin; Li Yexin; Zhang Zhenwei; Cui Yu; Shandong University, Jinan; Sun Sixiu

    2005-01-01

    Extraction of U(VI) with three new unsymmetrical monoamides, N-methyl-N-octyloctylamide (MOOA), N-methyl-N-octyldecanamide (MODA), and N-methyl-N-octyldodecanamide (MODOA), from nitric acid solution employing toluene as diluent is discussed. The effects of nitric acid, sodium nitrate and extractant concentrations and also the temperature on the distribution ratio have been investigated. The extracted species were studied by IR spectrometry. (author)

  5. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    International Nuclear Information System (INIS)

    Kodavanti, Prasada Rao S.; Royland, Joyce E.; Richards, Judy E.; Besas, Jonathan; MacPhail, Robert C.

    2011-01-01

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at − 80 °C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative

  6. Heterogeneous Reactions between Toluene and NO2 on Mineral Particles under Simulated Atmospheric Conditions.

    Science.gov (United States)

    Niu, Hejingying; Li, Kezhi; Chu, Biwu; Su, Wenkang; Li, Junhua

    2017-09-05

    Heterogeneous reactions between organic and inorganic gases with aerosols are important for the study of smog occurrence and development. In this study, heterogeneous reactions between toluene and NO 2 with three atmospheric mineral particles in the presence or absence of UV light were investigated. The three mineral particles were SiO 2 , α-Fe 2 O 3 , and BS (butlerite and szmolnokite). In a dark environment, benzaldehyde was produced on α-Fe 2 O 3 . For BS, nitrotoluene and benzaldehyde were obtained. No aromatic products were produced in the absence of NO 2 in the system. In the presence of UV irradiation, benzaldehyde was detected on the SiO 2 surface. Identical products were produced in the presence and absence of UV light over α-Fe 2 O 3 and BS. UV light promoted nitrite to nitrate on mineral particles surface. On the basisi of the X-ray photoelectron spectroscopy (XPS) results, a portion of BS was reduced from Fe 3+ to Fe 2+ with the adsorption of toluene or the reaction with toluene and NO 2 . Sulfate may play a key role in the generation of nitrotoluene on BS particles. From this research, the heterogeneous reactions between organic and inorganic gases with aerosols that occur during smog events will be better understood.

  7. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol

    Directory of Open Access Journals (Sweden)

    Debarpita Ghosal

    2015-07-01

    Full Text Available The performance of toluene methylation reaction was studied on H-ZSM-5 catalyst modified with La, Ce and Nb at different percentage loading. It was found that 10% metal loading produced the best performance in the reaction in terms of toluene conversion. The catalyst was coated on silicon carbide foam support which showed better conversion than the pelleted catalyst. Again, among the treated and untreated H-ZSM-5, the La-ZSM-5 catalyst is chosen for the reaction for its highest selectivity towards xylene, the main product. All catalysts were characterized in terms of surface properties, SEM, XRD and NH3-TPD. Kinetic study was done on La-ZSM-5 catalyst with 10% loading. In this kineticstudy, Langmuir Hinshelwood kinetic model with surface reaction as rate controlling step was selected as the rate equation. The activation energy was found to be 47 kJ/mol. © 2015 BCREC UNDIP. All rights reserved. Received: 9th December 2014; Revised: 27th April 2015; Accepted: 29th April 2015  How to Cite: Ghosal, D., Basu, J.K., Sengupta, S. (2015. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 201-209. (doi:10.9767/bcrec.10.2.7872.201-209 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7872.201-209  

  8. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.

  9. UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene

    International Nuclear Information System (INIS)

    Vandaele, A.C.; Tsouli, A.; Carleer, M.; Colin, R.

    2002-01-01

    Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO 2 , SO 2 , O 3 , benzene, and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O 3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO 2 concentrations were anti-correlated to the O 3 concentrations, is expected. SO 2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO 2 concentrations and to a lesser extent, those of NO 2 and O 3 , were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that O 3 and SO 2 data are in general in good agreement, but our NO 2 concentrations seem to be generally higher. (author)

  10. Benzene and toluene concentrations in a hemodialysis room in a medium sized South Korean city.

    Science.gov (United States)

    Kang, Moon-Soo; Hong, Joong-Rock; Gil, Hyo-Wook; Yang, Jong-Oh; Lee, Eun-Young; Hong, Sae-Yong; Jun, Yong-Taek; Son, Bu-Soon

    2008-09-01

    The current study was designed to determine whether the indoor air pollution in a hemodialysis room (HD) was different from that of other comparable areas in a hospital. Five air monitor samplers were hung on the ceiling and placed on the table in both the HD and general ward nursing stations, respectively. In addition, five samplers were placed in the nurse's breathing zone of the HD and the general ward, respectively. Ten air monitor samplers were also placed on the edge of the bed in the HD, which represented the patient's breathing zone. The levels of benzene and toluene were analyzed by GC/MS. In the general ward, the toluene concentration was significantly higher in the nurse breathing zone than that for the ceiling or table samples (p=0.001). The benzene concentration was also significantly higher in the general ward nurse breathing zone than that in the HD (p=0.006). In addition, the benzene concentrations on the table were higher at the general ward as compared to the HD (p=0.028), but there was no significant difference between the ceiling, general ward station and HD. Both the benzene and toluene concentrations in the HD appear to be more affected by the outdoor atmospheric conditions than by any potential indoor internal sources.

  11. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    Science.gov (United States)

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  12. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2014-01-01

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10 5 K s −1 follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed

  13. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    Science.gov (United States)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  14. Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2017-07-01

    Full Text Available Thermal plasma pyrolysis is a powerful technology for converting waste or low-value materials to valuable gaseous hydrocarbons. This paper presents for the first time the hydropyrolysis of n-hexane and toluene in a rotating-arc plasma reactor. Effects of the mole ratio of H/C in the feed, power input and magnetic induction were investigated to evaluate the reaction performance. A lower H/C ratio could lead to a lower yield of C2H2 and lower specific energy consumption, and there existed an optimum range of power input for both n-hexane and toluene pyrolysis within the investigated range. The yield of C2H2 in n-hexane and toluene pyrolysis could reach 85% and 68%, respectively, with respective specific energy consumption (SEC of 13.8 kWh/kg·C2H2 and 19.9 kWh/kg·C2H2. Compared with the results reported in literature, the rotating-arc plasma process showed higher C2H2 yield and lower energy consumption, which is attributed to the better initial mixing of the reactant with the hot plasma gas and the more uniform temperature distribution.

  15. A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene

    International Nuclear Information System (INIS)

    Iranshahi, Davood; Saeedi, Reza; Azizi, Kolsoom; Nategh, Mahshid

    2017-01-01

    Highlights: • A novel thermally coupled reactor in CCR naphtha reforming process is modeled. • The required heat of Naphtha process is attained with toluene hydrodealkylation. • A new kinetic model involving 32 pseudo-component and 84 reactions is proposed. • The aromatics and hydrogen production increase 19% and 23%, respectively. - Abstract: Due to the importance of catalytic naphtha reforming process in refineries, development of this process to attain the highest yield of desired products is crucial. In this study, continuous catalyst regeneration naphtha reforming process with radial flow is coupled with hydrodealkylation of toluene to prevent energy loss while enhancing aromatics and hydrogen yields. In this coupled process, heat is transferred between hot and cold sections (from hydrodealkylation of toluene to catalytic naphtha reforming process) using the process integration method. A steady-state two-dimensional model, which considers coke formation on the catalyst pellets, is developed and 32 pseudo-components with 84 reactions are investigated. Kinetic model utilized for HDA process is homogeneous and non-catalytic. The modeling results reveal an approximate increase of 19% and 23% in aromatics and hydrogen molar flow rates, respectively, in comparison with conventional naphtha reforming process. The improvement in aromatics production evidently indicates that HDA is a suitable process to be coupled with naphtha reforming.

  16. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    Energy Technology Data Exchange (ETDEWEB)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

    2012-10-15

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  17. 2-{1-[2-(Bis{2-[1-(5-chloro-2-hydroxyphenylethylideneamino]ethyl}aminoethyliminio]ethyl}-4-chlorophenolate toluene hemisolvate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2009-02-01

    Full Text Available In the toluene hemisolvated tripodal tris(2-aminoethylamine Schiff base, C30H33Cl3N4O3·0.5C7H8, one of the three imino N atoms is protonated, forming a hydrogen bond with the O atom at an adjacent benzene ring. The other two imino N atoms act as hydrogen-bond acceptors from phenolate OH groups. The toluene solvent molecule is disordered about a centre of inversion.

  18. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    Science.gov (United States)

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  19. Overview of the South African mechanistic pavement design analysis method

    CSIR Research Space (South Africa)

    Theyse, HL

    1996-01-01

    Full Text Available A historical overview of the South African mechanistic pavement design method, from its development in the early 1970s to the present, is presented. Material characterization, structural analysis, and pavement life prediction are discussed...

  20. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.

    Science.gov (United States)

    Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter

    2016-11-07

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  2. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  3. Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid [EMim][MSO4

    International Nuclear Information System (INIS)

    Corderí, Sandra; Calvar, Noelia; Gómez, Elena; Domínguez, Ángeles

    2014-01-01

    Highlights: • EMim[MSO 4 ] was proposed as solvent for the extraction of toluene from alkanes. • The quaternary system {heptane + cyclohexane + toluene + [EMim][MSO 4 ]} was evaluated. • The extraction of toluene would be facilitated in the presence of one alkane. • Experimental LLE data were successfully correlated with the NRTL model. - Abstract: (Liquid + liquid) equilibrium (LLE) studies for the extraction of aromatics from alkanes present in the petroleum fractions are important to develop theoretical/semiempirical (liquid + liquid) equilibrium models, which are used in the design of extraction processes. In this work, the ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO 4 ], was evaluated as potential solvent for the separation of toluene from heptane and cyclohexane. The LLE data for the quaternary system {heptane (1) + cyclohexane (2) + toluene (3) + [EMim][MSO 4 ] (4)} were experimentally determined at T = 298.15 K and atmospheric pressure. Moreover, the LLE data for the ternary systems {heptane or cyclohexane (1) + toluene (2) + [EMim][MSO 4 ] (3)} were also determined. Solute distribution ratios and selectivities were calculated and analysed in order to evaluate the capability of the ionic liquid to accomplish the separation target. A comparison between the solute distribution ratios and selectivities for the quaternary and the ternary systems was also made. Finally, the experimental tie-line data were correlated with the NRTL model

  4. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  5. Magnesium degradation under physiological conditions – Best practice

    Directory of Open Access Journals (Sweden)

    Jorge Gonzalez

    2018-06-01

    Full Text Available This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  6. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  7. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Garza, Octavio, E-mail: ojimenezgarza@ugto.mx [Health Sciences Division, University of Guanajuato Campus León, Blvd. Puente del Milenio 1001, Fracción del Predio San Carlos, C.P. 37670 León, Guanajuato (Mexico); Baccarelli, Andrea A.; Byun, Hyang-Min [Laboratory of Environmental Epigenetics, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 (United States); Márquez-Gamiño, Sergio [Health Sciences Division, University of Guanajuato Campus León, Blvd. Puente del Milenio 1001, Fracción del Predio San Carlos, C.P. 37670 León, Guanajuato (Mexico); Barrón-Vivanco, Briscia Socorro [Environmental Toxicology and Pollution Laboratory, Nayarit Autonomous University, Av. Ciudad de la Cultura s/n, “Amado Nervo”, Tepic, Nayarit C.P. 63155 (Mexico); Albores, Arnulfo [Department of Toxicology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico DF (Mexico)

    2015-08-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1

  8. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    International Nuclear Information System (INIS)

    Jiménez-Garza, Octavio; Baccarelli, Andrea A.; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro; Albores, Arnulfo

    2015-01-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m 3 ) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m 3 ) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1 promoter

  9. Degradation of lipids in yeast (Saccharomyces cerevisiae) at the early phase of organic solvent-induced autolysis

    International Nuclear Information System (INIS)

    Ishida-Ichimasa, Michiko

    1978-01-01

    Initial stage of organic solvent-induced autolysis in yeast was studied with 14 C-acetate labeled cells. In the case of toluene-induced autolysis, primary cell injury which was estimated by leakage of UV absorbing substances from cell accompanied rapid deacylation of phospholipids. Lysophospholipids did not occur during autolysis. When autolysis was induced by addition of ethyl acetate, phospholipids of yeast cells were not degraded so much. Ethyl acetate rather inhibited yeast phospholipase activity under the condition tested. (auth.)

  10. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  11. Degradation of organic pollutants by methane grown microbial consortia.

    Science.gov (United States)

    Hesselsoe, Martin; Boysen, Susanne; Iversen, Niels; Jørgensen, Lars; Murrell, J Colin; McDonald, Ian; Radajewski, Stefan; Thestrup, Helle; Roslev, Peter

    2005-10-01

    Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge ("AAE-A2"), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 degrees C was 3.1 +/- 1.2 mg l(-1) and 8.7 +/- 1.1 mg DBP (g protein x h)(-1), respectively. AAE-A2 also showed fast degradation of BTX (230 +/- 30 nmol benzene (mg protein x h)(-1) at 20 degrees C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83-92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).

  12. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    Science.gov (United States)

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  13. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia

    Directory of Open Access Journals (Sweden)

    Ted Menghsiung Hsu

    2014-05-01

    Full Text Available Both obesity and Alzheimer’s disease are major health burdens in Western societies. While commonly viewed as having separate etiologies, this review highlights data suggesting that intake of Western diets, diets high in saturated fatty acids and simple carbohydrates, may pose a common environmental risk factor contributing to the development of both of these adverse pathologies. We discuss the effects of Western Diet intake on learning and memory processes that are dependent on the hippocampus, as well as the importance of this brain region in both obesity development and the onset of Alzheimer’s and other dementias. A putative mechanism is discussed that mechanistically links Western diet consumption, blood brain barrier degradation, and subsequent hippocampal damage and dementia pathology.

  14. Exposure factors for marine eutrophication impacts assessment based on a mechanistic biological model

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    2015-01-01

    marine ecosystem (LME), five climate zones, and site-generic. The XFs obtained range from 0.45 (Central Arctic Ocean) to 15.9kgO2kgN-1 (Baltic Sea). While LME resolution is recommended, aggregated PE or XF per climate zone can be adopted, but not global aggregation due to high variability. The XF......Emissions of nitrogen (N) from anthropogenic sources enrich marine waters and promote planktonic growth. This newly synthesised organic carbon is eventually exported to benthic waters where aerobic respiration by heterotrophic bacteria results in the consumption of dissolved oxygen (DO......). This pathway is typical of marine eutrophication. A model is proposed to mechanistically estimate the response of coastal marine ecosystems to N inputs. It addresses the biological processes of nutrient-limited primary production (PP), metazoan consumption, and bacterial degradation, in four distinct sinking...

  15. High photocatalytic performance of BiOI/Bi{sub 2}WO{sub 6} toward toluene and Reactive Brilliant Red

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiquan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Cui Yumin, E-mail: cuiyumin0908@163.com [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Hong Wenshan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China)

    2013-01-01

    Graphical abstract: When BiOI/Bi{sub 2}WO{sub 6} catalyst was exposed to UV or visible light, the electrons in the valence band of Bi{sub 2}WO{sub 6} would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi{sub 2}WO{sub 6} and transferred across the interface between BiOI and Bi{sub 2}WO{sub 6} to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi{sub 2}WO{sub 6}. In this way, the photoinduced electron-hole pairs were effectively separated. Highlights: Black-Right-Pointing-Pointer BiOI sensitized Bi{sub 2}WO{sub 6} catalysts were successfully prepared by a facile method. Black-Right-Pointing-Pointer The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits higher photoactivities than P25. Black-Right-Pointing-Pointer A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi{sub 2}WO{sub 6} photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV-vis diffuse reflection spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi{sub 2}WO{sub 6} was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi{sub 2}WO{sub 6} catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi{sub 2}WO{sub 6} phases. With increasing BiOI content, the absorption intensity of BiOI/Bi{sub 2}WO{sub 6} catalysts increases in the 380-600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi{sub 2}WO{sub 6}. The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits

  16. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  17. Predicting interactions from mechanistic information: Can omic data validate theories?

    International Nuclear Information System (INIS)

    Borgert, Christopher J.

    2007-01-01

    To address the most pressing and relevant issues for improving mixture risk assessment, researchers must first recognize that risk assessment is driven by both regulatory requirements and scientific research, and that regulatory concerns may expand beyond the purely scientific interests of researchers. Concepts of 'mode of action' and 'mechanism of action' are used in particular ways within the regulatory arena, depending on the specific assessment goals. The data requirements for delineating a mode of action and predicting interactive toxicity in mixtures are not well defined from a scientific standpoint due largely to inherent difficulties in testing certain underlying assumptions. Understanding the regulatory perspective on mechanistic concepts will be important for designing experiments that can be interpreted clearly and applied in risk assessments without undue reliance on extrapolation and assumption. In like fashion, regulators and risk assessors can be better equipped to apply mechanistic data if the concepts underlying mechanistic research and the limitations that must be placed on interpretation of mechanistic data are understood. This will be critically important for applying new technologies to risk assessment, such as functional genomics, proteomics, and metabolomics. It will be essential not only for risk assessors to become conversant with the language and concepts of mechanistic research, including new omic technologies, but also, for researchers to become more intimately familiar with the challenges and needs of risk assessment

  18. Explanation and inference: Mechanistic and functional explanations guide property generalization

    Directory of Open Access Journals (Sweden)

    Tania eLombrozo

    2014-09-01

    Full Text Available The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1, experimentally provided (Experiment 2, or experimentally induced (Experiment 2. The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  19. Explanation and inference: mechanistic and functional explanations guide property generalization.

    Science.gov (United States)

    Lombrozo, Tania; Gwynne, Nicholas Z

    2014-01-01

    The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  20. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    Science.gov (United States)

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  1. Removal performance of toluene, p-xylene and ethylene using a plasma-pretreated biotrickling system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J.; Han, B.; Kim, S.J.; Kim, Y.J. [Korea Inst. of Machinery and Materials (Korea, Republic of)

    2010-07-01

    The use of biological systems for removing volatile organic compounds (VOCs) from gaseous emissions was discussed. The systems rely on microorganism activity and do not produce any secondary pollution. Recently, the integration of biofiltration and UV photooxidation has been performed to remove VOCs in air. The systems using both UV photooxidation and biofiltration removed recalcitrant and VOCs more effectively than a stand-alone process using only biofiltration, because the UV pre-treatment not only removes the gases, but also changes them to easily biodegradable and water soluble byproducts such as acids and aldehydes. The biotrickling filter in this study was exposed to toluene gas only for over one month to cultivate specific microorganisms. The non-thermal plasma was a dielectric barrier discharge (DBD) plasma. The performance for removing toluene, p-xylene, and ethylene by the biotrickling filter, the plasma reactor and the plasma-pretreated bio-trickling system was investigated at a variety of flow rates and inlet concentrations of the test gases. The experimental results showed that the removal efficiencies of the integrated system of non-thermal plasma and biotrickling filter for p-xylene and ethylene were enhanced by 28.0 and 29.7 percent respectively, and increased by only 5.3 percent for toluene, as compared to those of the stand-alone biotrickling filtration. It was concluded that the plasma-pretreated biofiltration system could enhance the performance of the biotrickling filter for removing VOC gases, particularly for reducing low biodegradable pollutants with high loading which are chemically different from the cultivated gases. 12 refs., 7 figs.

  2. Acute toxicity of toluene, hexane, xylene, and benzene to the rotifers Brachionus calyciflorus and Brachionus plicatilis

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, M.D.; Andreu-Moliner, E. (Univ. of Valencia (Spain))

    1992-08-01

    A large number of studies on the biological effects of oil pollution in the aquatic environment deal with the effects of whole crude or refined oils or their water-soluble fractions. However, low boiling, aromatic hydrocarbons, which are probably the most toxic constituents of oil, have until now not been examined in sufficient detail. Toluene, benzene and xylene, constitute a major component of various oils. They may be readily lost by weathering but are toxic in waters that are relatively stagnant and are chronically polluted. Korn et al. have stated that toluene is more toxic than many other hydrocarbons such as benzene, though the latter are more water-soluble. Report of the effects of exposure to organic solvents like hexane or toluene are still limited although organic solvents are a well-known group of neurointoxicants. Various benzene derivates continue to be used as chemical intermediates, solvents, pesticides, so on, in spite of incomplete knowledge of their chronic toxicity. The majority of toxicity studies about the effects of pollution on aquatic organisms under controlled conditions have used either fish or the cladoceran Daphnia magna and there are few studies reported using rotifers. The effects of herbicides on population variables of laboratory rotifer cultures have been investigated. Rotifers are one of the main sources of zooplankton production and they have an important ecological significance in the aquatic environment. The present work was designed to investigate the effect of short-term exposure to some petroleum derivates which might be expected to occur immediately under an oil-slick, on freshwater and brackish environment rotifers. 18 refs., 1 tab.

  3. Toluene concentrations reduction by using photocatalytic coating methods for cementitious materials

    Directory of Open Access Journals (Sweden)

    Hussein Ayat

    2018-01-01

    Full Text Available Volatile organic compounds (VOC generated from various sources like car combustion is one of the most surrounding pollutants, which can be transferred from one form to another in the presence of sunlight. In the present work the ability of the reduction of VOC have been conducted on cementitious samples surfaces by using toluene as a pollutant gas and TiO2 as an environmentally friendly photocatalyst . Two coating methods have been used (dip and spray with two types of aqueous solution, prepared by spreading 3g/L micro and nano TiO2 powder with deionized water. A laboratory test procedure was adopted to assess the performance of the coated specimens. The specimens were subjected to toluene gas and there efficiency in gas removal was monitored with time. Furthermore, contact angle for the coated samples was also examined to investigate the hydrophilicity of the coated substrate. The results showed that TiO2 give high activity and work as a good photocatalyst for mitigation of air pollutants, and that it could be used in different ways and concentrations to obtain better air quality and aesthetic building appearance. The observed coating efficiency in reducing the toluene was more pronounced in higher than lower gas concentrations for the micro coated samples with removal efficiency equals to 13% and 10% for dipping and spraying method, respectively. While the higher removal was about 20% for both nano dipping and nanospray methods for the inlet gas concentration 3ppm. This behavior reflects the beneficial effects of TiO2 coating procedure in highly pollutant environments, like Iraq.

  4. Nitration of toluene with N[sub 2]O[sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kikuo.; Yoshizawa, Fujiroku.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. (The University of Tokyo, Tokyo (Japan). School of Engineering)

    1999-06-30

    In order to clarify the mechanism of aromatic nitration with N[sub 2]O[sub 5], the nitration of toluene with N[sub 2]O[sub 5] in CCl[sub 4] was carried out and was investigated the yields of the products and the isomer distributions. As a result, the reaction should be very rapid and should involve a typical electrophilic substitution. Moreover, in order to investigate the effect of the solvent, the nitration of toluene with N[sub 2]O[sub 5] powder without CCl[sub 4] was also carried out. The nitration of toluene with N[sub 2]O[sub 5]/N[sub 2]O[sub 4] was also carried out, and the dependence of the isomer distribution and the ratio of produced nitrotoluenes on the ratio of N[sub 2]O[sub 5] was showed. As a result, it is suggested that N[sub 2]O[sub 5] should be dissociated homolytically in CCl[sub 4] and that the aromatic nitration with N[sub 2]O[sub 5] in CCl[sub 4] should proceed with NO[sub 3] as the initial attacking species. The thermal decomposition of N[sub 2]O[sub 5] over 25 degree C should produce a large amount of N[sub 2]O[sub 4](2NO[sub 2]), and the attack of NO[sub 2] on the intermediate [Ar(H)(ONO[sub 2])] should form the intermediates [AR(H)(ONO[sub 2])(H)(NO[sub 2])] following the specific isomer distributions. (author)

  5. Nitration of toluene with N{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kikuo.; Yoshizawa, Fujiroku.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-06-30

    In order to clarify the mechanism of aromatic nitration with N{sub 2}O{sub 5}, the nitration of toluene with N{sub 2}O{sub 5} in CCl{sub 4} was carried out and was investigated the yields of the products and the isomer distributions. As a result, the reaction should be very rapid and should involve a typical electrophilic substitution. Moreover, in order to investigate the effect of the solvent, the nitration of toluene with N{sub 2}O{sub 5} powder without CCl{sub 4} was also carried out. The nitration of toluene with N{sub 2}O{sub 5}/N{sub 2}O{sub 4} was also carried out, and the dependence of the isomer distribution and the ratio of produced nitrotoluenes on the ratio of N{sub 2}O{sub 5} was showed. As a result, it is suggested that N{sub 2}O{sub 5} should be dissociated homolytically in CCl{sub 4} and that the aromatic nitration with N{sub 2}O{sub 5} in CCl{sub 4} should proceed with NO{sub 3} as the initial attacking species. The thermal decomposition of N{sub 2}O{sub 5} over 25 degree C should produce a large amount of N{sub 2}O{sub 4}(2NO{sub 2}), and the attack of NO{sub 2} on the intermediate [Ar(H)(ONO{sub 2})] should form the intermediates [AR(H)(ONO{sub 2})(H)(NO{sub 2})] following the specific isomer distributions. (author)

  6. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  7. Modelling of the photooxidation of toluene: conceptual ideas for validating detailed mechanisms

    Directory of Open Access Journals (Sweden)

    V. Wagner

    2003-01-01

    Full Text Available Toluene photooxidation is chosen as an example to examine how simulations of smog-chamber experiments can be used to unravel shortcomings in detailed mechanisms and to provide information on complex reaction systems that will be crucial for the design of future validation experiments. The mechanism used in this study is extracted from the Master Chemical Mechanism Version 3 (MCM v3 and has been updated with new modules for cresol and g-dicarbonyl chemistry. Model simulations are carried out for a toluene-NOx experiment undertaken at the European Photoreactor (EUPHORE. The comparison of the simulation with the experimental data reveals two fundamental shortcomings in the mechanism: OH production is too low by about 80%, and the ozone concentration at the end of the experiment is over-predicted by 55%. The radical budget was analysed to identify the key intermediates governing the radical transformation in the toluene system. Ring-opening products, particularly conjugated g-dicarbonyls, were identified as dominant radical sources in the early stages of the experiment. The analysis of the time evolution of radical production points to a missing OH source that peaks when the system reaches highest reactivity. First generation products are also of major importance for the ozone production in the system. The analysis of the radical budget suggests two options to explain the concurrent under-prediction of OH and over-prediction of ozone in the model: 1 missing oxidation processes that produce or regenerate OH without or with little NO to NO2 conversion or 2 NO3 chemistry that sequesters reactive nitrogen oxides into stable nitrogen compounds and at the same time produces peroxy radicals. Sensitivity analysis was employed to identify significant contributors to ozone production and it is shown how this technique, in combination with ozone isopleth plots, can be used for the design of validation experiments.

  8. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  9. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  10. Viscosities of binary mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    VASILE DUMITRESCU

    2005-11-01

    Full Text Available The viscosities of binary liquid mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol have been determined at 298.15, 303.15, 308.15, 313.15 and 318.15 K over the whole concentration range. The Hind, Grunberg–Nissan, Wijk, Auslander and McAllister models were used to calculate the viscosity coefficients and these were compared with the experimental data for the mixtures. Excess viscosities were also calculated and fitted to the Redlich–Kister equation. Various thermodynamic properties of viscous flow activation were determined and their variations with composition are discussed.

  11. Volumetric properties under pressure for the binary system ethanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, Luis; García, Josefa

    2005-01-01

    . The VLE behavior of this binary system within the considered temperature range is represented satisfactory by the perturbed-chain statistical association fluid theory (PC-SAFT) equation of state with a single interaction parameter, although no cross association between ethanol and toluene is taken...... into account. The densities of this binary system (pure compounds and mixtures) are satisfactory predicted by PC-SAFT with an overall AAD of 0.8%, but the behavior of the excess molar volume is not described correctly....

  12. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase.

    OpenAIRE

    Resnick, S M; Torok, D S; Lee, K; Brand, J M; Gibson, D T

    1994-01-01

    The biotransformation of 1-indanone and 2-indanone to hydroxyindanones was examined with bacterial strains expressing naphthalene dioxygenase (NDO) and toluene dioxygenase (TDO) as well as with purified enzyme components. Pseudomonas sp. strain 9816/11 cells, expressing NDO, oxidized 1-indanone to a mixture of 3-hydroxy-1-indanone (91%) and 2-hydroxy-1-indanone (9%). The (R)-3-hydroxy-1-indanone was formed in 62% enantiomeric excess (ee) (R:S, 81:19), while the 2-hydroxy-1-indanone was racemi...

  13. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  14. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  15. Managing mechanistic and organic structure in health care organizations.

    Science.gov (United States)

    Olden, Peter C

    2012-01-01

    Managers at all levels in a health care organization must organize work to achieve the organization's mission and goals. This requires managers to decide the organization structure, which involves dividing the work among jobs and departments and then coordinating them all toward the common purpose. Organization structure, which is reflected in an organization chart, may range on a continuum from very mechanistic to very organic. Managers must decide how mechanistic versus how organic to make the entire organization and each of its departments. To do this, managers should carefully consider 5 factors for the organization and for each individual department: external environment, goals, work production, size, and culture. Some factors may push toward more mechanistic structure, whereas others may push in the opposite direction toward more organic structure. Practical advice can help managers at all levels design appropriate structure for their departments and organization.

  16. Why did Jacques Monod make the choice of mechanistic determinism?

    Science.gov (United States)

    Loison, Laurent

    2015-06-01

    The development of molecular biology placed in the foreground a mechanistic and deterministic conception of the functioning of macromolecules. In this article, I show that this conception was neither obvious, nor necessary. Taking Jacques Monod as a case study, I detail the way he gradually came loose from a statistical understanding of determinism to finally support a mechanistic understanding. The reasons of the choice made by Monod at the beginning of the 1950s can be understood only in the light of the general theoretical schema supported by the concept of mechanistic determinism. This schema articulates three fundamental notions for Monod, namely that of the rigidity of the sequence of the genetic program, that of the intrinsic stability of macromolecules (DNA and proteins), and that of the specificity of molecular interactions. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Cognitive science as an interface between rational and mechanistic explanation.

    Science.gov (United States)

    Chater, Nick

    2014-04-01

    Cognitive science views thought as computation; and computation, by its very nature, can be understood in both rational and mechanistic terms. In rational terms, a computation solves some information processing problem (e.g., mapping sensory information into a description of the external world; parsing a sentence; selecting among a set of possible actions). In mechanistic terms, a computation corresponds to causal chain of events in a physical device (in engineering context, a silicon chip; in biological context, the nervous system). The discipline is thus at the interface between two very different styles of explanation--as the papers in the current special issue well illustrate, it explores the interplay of rational and mechanistic forces. Copyright © 2014 Cognitive Science Society, Inc.

  18. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit.

    Science.gov (United States)

    Jiménez-Garza, Octavio; Baccarelli, Andrea A; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro; Albores, Arnulfo

    2015-08-01

    CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86+/-7mg/m(3)) and 24 administrative workers (reference group, mean levels 0.21+/-0.02mg/m(3)) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r=-.36, psmoke are in higher risk due to a possible CYP2E1 repression. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    Directory of Open Access Journals (Sweden)

    X. Fang

    2016-03-01

    Full Text Available Benzene (C6H6 and toluene (C7H8 are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD and Hong Kong (HK, which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12–75 and 5 (2–7 Gg yr−1 for the PRD and HK, respectively, and the toluene emissions were 131 (44–218 and 6 (2–9 Gg yr−1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant emissions in the PRD and HK in the future.

  20. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    Science.gov (United States)

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-03-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12-75) and 5 (2-7) Gg yr-1 for the PRD and HK, respectively, and the toluene emissions were 131 (44-218) and 6 (2-9) Gg yr-1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant) emissions in the PRD and HK in the future.

  1. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  2. Fractional rate of degradation (kd) of starch in the rumen and its ...

    African Journals Online (AJOL)

    Fractional rate of degradation (kd) of fermentable nutrients in the rumen is an important parameter in modern feed evaluation systems based on mechanistic models. Estimates of kd for starch was obtained on 19 starch sources originating from barley, wheat, oat, maize and peas and treated in different ways both chemically ...

  3. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Johansson, Pär I

    2012-01-01

    There is emerging evidence that early trauma-induced coagulopathy (TIC) is mechanistically linked to disruption of the vascular endothelium and its glycocalyx, assessed by thrombomodulin and syndecan 1, respectively. This study evaluated if degradation of the endothelial glycocalyx and ensuing...... release of its heparin-like substances induce autoheparinization and thereby contributes to TIC....

  4. β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir, E-mail: tahir.muhammad_nazir@courrier.uqam.ca [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark); Department of Chemistry, University of Quebec at Montreal, QC, H3C 3P8 (Canada); Nielsen, Thorbjørn T.; Larsen, Kim L. [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark)

    2016-12-15

    Highlights: • Functionalization of βCD onto glass micro-particles (GMP-βCD). • Application of GMP-βCD as a green catalyst for the oxidation of toluene. • 82% yield at room temperature. • Repeated use of the catalyst for several cycles. - Abstract: Oxidation of toluene is considered an important process which often requires high temperatures and specific conditions along with heavy-metals based catalysts. In this study, we have developed a green catalyst by functionalizing beta-cyclodextrin onto glass micro-particle surfaces. All surfaces were characterized by X-ray photoelectron spectroscopy and applied to catalyze the selective oxidation of toluene into benzaldehyde (82% yield) at room temperature. The catalyst was stable and could be used repeatedly for several cycles without losing efficiency.

  5. Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition

    Science.gov (United States)

    Bo, Zheng; Hao, Han; Yang, Shiling; Zhu, Jinhui; Yan, Jianhua; Cen, Kefa

    2018-04-01

    This work reports the catalytic performance of vertically-oriented graphenes (VGs) supported manganese oxide catalysts toward toluene decomposition in post plasma-catalysis (PPC) system. Dense networks of VGs were synthesized on carbon paper (CP) via a microwave plasma-enhanced chemical vapor deposition (PECVD) method. A constant current approach was applied in a conventional three-electrode electrochemical system for the electrodeposition of Mn3O4 catalysts on VGs. The as-obtained catalysts were characterized and investigated for ozone conversion and toluene decomposition in a PPC system. Experimental results show that the Mn3O4 catalyst loading mass on VG-coated CP was significantly higher than that on pristine CP (almost 1.8 times for an electrodeposition current of 10 mA). Moreover, the decoration of VGs led to both enhanced catalytic activity for ozone conversion and increased toluene decomposition, exhibiting a great promise in PPC system for the effective decomposition of volatile organic compounds.

  6. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, L.F. [Petroleos de Venezuela - Intevep, Caracas (Venezuela). Departamento de Tecnologias Emergentes; Rincon, L.; Ortiz, R. [Universidad de los Andes, Merida (Venezuela). Departamento de Quimica

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2} O{sub 5} surface. (author)

  7. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, Luis F. [Petroleos de Venezuela (PDVSA)-Intevep, Departamento de Tecnologias Emergentes, Apartado 76343, Caracas 1070-A (Venezuela)]. E-mail: delialf@pdvsa.com; Rincon, L. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Grupo de Quimica Teorica, Merida 5101 (Venezuela); Ortiz, R. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Laboratorio de Electroquimica, Merida 5101 (Venezuela)

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2}O{sub 5} surface.

  8. Removal of toluene by sequential adsorption-plasma oxidation: Mixed support and catalyst deactivation.

    Science.gov (United States)

    Qin, Caihong; Huang, Xuemin; Zhao, Junjie; Huang, Jiayu; Kang, Zhongli; Dang, Xiaoqing

    2017-07-15

    A sequential adsorption-plasma oxidation system was used to remove toluene from simulated dry air using γ-Al 2 O 3 , HZSM-5, a mixture of the two materials or their supported Mn-Ag catalyst as adsorbents under atmospheric pressure and room temperature. After 120min of plasma oxidation, γ-Al 2 O 3 had a better carbon balance (∼75%) than HZSM-5, but the CO 2 yield of γ-Al 2 O 3 was only ∼50%; and there was some desorption of toluene when γ-Al 2 O 3 was used. When a mixture of HZSM-5 and γ-Al 2 O 3 with a mass ratio of 1/2 was used, the carbon balance was up to 90% and 82% of this was CO 2 . The adsorption performance and electric discharge characteristics of the mixed supports were tested in order to rationalize this high CO x yield. After seven cycles of sequential adsorption-plasma oxidation, support and Mn-Ag catalyst deactivation occurred. The support and catalyst were characterized before and after deactivation by SEM, a BET method, XRD, XPS and GC-MS in order to probe the mechanism of their deactivation. 97.6% of the deactivated supports and 76% of the deactivated catalysts could be recovered by O 2 temperature-programmed oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    Science.gov (United States)

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  11. Determination of isocyanate specific albumin-adducts in workers exposed to toluene diisocyanates.

    Science.gov (United States)

    Sabbioni, Gabriele; Gu, Qi; Vanimireddy, Lakshiminiranjan Reddy

    2012-03-01

    Toluene diisocyanates (2,4-TDI and 2,6-TDI) are important intermediates in the chemical industry. Among the main damages after low levels of TDI exposure are lung sensitization and asthma. It is therefore necessary to have sensitive and specific methods to monitor isocyanate exposure of workers. Urinary metabolites or protein adducts have been used as biomarkers in workers exposed to TDI. However, with these methods it was not possible to determine if the biomarkers result from exposure to TDI or to the corresponding toluene diamines (TDA). This work presents a new procedure for the determination of isocyanate-specific albumin adducts. Isotope dilution mass spectrometry was used to measure the adducts in albumin present in workers exposed to TDI. 2,4-TDI and 2,6-TDI formed adducts with lysine: N(ϵ)-[({3-amino-4-methylphenyl}amino)carbonyl]-lysine, N(ϵ)-[({5-amino-2-methylphenyl}amino)carbonyl]-lysine, and N(ϵ)- [({3-amino-2-methylphenyl}amino)carbonyl]-lysine. In future studies, this new method can be applied to measure TDI-exposures in workers.

  12. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene.

    Science.gov (United States)

    Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; da Conceição Alvim-Ferraz, Maria; Delerue-Matos, Cristina

    2013-10-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

  13. Nanocolloidal Ru/MgF2 Catalyst for Hydrogenation of Chloronitrobenzene and Toluene

    Directory of Open Access Journals (Sweden)

    Pietrowski Mariusz

    2014-06-01

    Full Text Available The use of magnesium fluoride support for ruthenium active phase allowed obtaining new catalysts of high activities in the hydrogenation of toluene and ortho-chloronitrobenzene. Ruthenium colloid catalysts (1 wt.% of Ru were prepared by impregnation of the support with the earlier produced polyvinylpyrrolidone (PVP-stabilized ruthenium colloids. The performances of the colloidal catalysts and those obtained by traditional impregnation were tested in the reactions of toluene hydrogenation to methylcyclohexane and selective hydrogenation of ortho-chloronitrobenzene (o-CNB to ortho-chloroaniline (o-CAN. It was shown that the use of chemical reduction method allows obtaining highly monodisperse ruthenium nanoparticles of 1.6–2.6 nm in size. After reduction in hydrogen at 400oC, the colloidal ruthenium nanoparticles were found to strongly interact with MgF2 surface (SMSI, which decreased the catalyst ability to hydrogen chemisorption, but despite this, the colloid catalysts showed higher activity in o-CNB hydrogenation and higher selectivity to o-CAN than the traditional ones. It is supposed that their higher activity can be a result of high dispersion of Ru in colloid catalysts and the higher selectivity can be a consequence of the lower availability of hydrogen on the surface.

  14. Pulse radiolyses of anthraquinone and anthraquinone-triethylamine in acetonitrile and toluene at room temperature

    International Nuclear Information System (INIS)

    Nakayama, Toshihiro; Ushida, Kiminori; Hamanoue, Kumao; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho

    1990-01-01

    Nanosecond pulse radiolysis of anthraquinone (AQ) in several solvents has been performed at room temperature, and the following results are obtained: (1) in acetonitrile (CH 3 CN), the formation of triplet AQ and a free-radical anion (AQ .- ) of AQ is observed. The former is produced by energy transfer from an excited neutral of CH 3 CN which may be produced via the geminate recombination of a radical cation and a radical anion of CH 3 CN in a spur, while the latter is produced by electron transfer from anionic species such as a solvated electron, a monomeric and/or a dimeric radical anion of CH 3 CN. In CH 3 CN-triethylamine (TEA), both free AQ .- and triplet AQ mentioned above are also produced; however, the latter reacts with TEA, giving rise to the formation of free AQ .- (from the second triplet state of AQ) and an exciplex of the lowest triplet state of AQ with ground-state TEA. This exciplex decomposes to free AQ .- and the radical cation of TEA. (2) In toluene, only triplet AQ is produced by energy transfer from triplet toluene to AQ, and, in the presence of TEA, the formation of the triplet exciplex of AQ-TEA is observed. On a microsecond timescale, however, this exciplex changes to a contact ion pair followed by proton transfer, generating anthrasemiquinone radical and triethylamine radical in accordance with the result of photolysis. (author)

  15. Supercritical CO2 fluid radiochromatography system used to purify [11C]toluene for PET

    International Nuclear Information System (INIS)

    Muller, Ryan D.; Ferrieri, Richard A.; Gerasimov, Madina; Garza, Victor

    2002-01-01

    Abuse of inhalants in today's society has become such a widespread problem among today's adolescents that in many parts of the world their use exceeds that of many other illicit drugs or alcohol. Even so, little is known how such inhalants affect brain function to an extent that can lead to an abuse liability. While methodologies exist for radiolabeling certain inhalants of interest with short-lived positron emitting radioisotopes that would allow their investigation in human subjects using positron emission tomography (PET), the purification methodologies necessary to separate these volatile substances from the organic starting materials have not been developed. We've adapted supercritical fluid technology to this specific PET application by building a preparative-scale supercritical CO 2 fluid radiochromatograph, and applied it to the purification of [ 11 C]toluene. We've demonstrated that [ 11 C]toluene can be separated from the starting materials using a conventional C 18 HPLC column and pure supercritical CO 2 fluid as the mobile phase operating at 2000 psi and 40 deg. C. We've also shown that the purified radiotracer can be quantitatively captured on Tenax GR, a solid support material, as it exits the supercritical fluid stream, thus allowing for later desorption into a 1.5% cyclodextrin solution that is suitable for human injection, or into a breathing tube for direct inhalation

  16. [Determination of residual toluene diisocyanate in sponge bra by gas chromatography].

    Science.gov (United States)

    Wang, Aixia; Ye, Ping; Huang, Nan; Chen, Yan; Li, Xinggen

    2017-06-08

    A gas chromatography (GC) with internal standard method was developed for the determination of residual toluene diisocyanate (TDI) in sponge bra. The samples were extracted with ethyl acetate dehydrated, and cleaned up with 0.22 μm microfiltration membrane. The residual toluene diisocyanate was separated on a DB-624 capillary column using temperature programming. The flame ionization detector (FID) was used at 250 ℃. The inlet temperature was 180 ℃ with nitrogen as carrier gas. The linear range was 10-200 mg/L ( R 2 =0.9989) for TDI. The average recovery ranged from 80.5% to 91.6% with RSD not more than 7.9%( n =6). The limit of detection (LOD) and limit of quantification (LOQ) were 10 mg/kg and 100 mg/kg, respectively. The developed method was then utilized to analyse the 100 batches of sponge bra samples from the manufacturing enterprises, the entity shops and electric business platforms. The method is simple, time-saving and environment friendly with high sensitivity and good reproducibility, and has practical application value due to its low-cost and short-circle.

  17. Investigation of benzene and toluene layers on 0001 surface of graphite by means of neutron scattering

    International Nuclear Information System (INIS)

    Monkenbusch, M.

    1981-01-01

    The structures of benzene (C 6 H 6 , C 6 D 6 ) and toluene (C 6 H 5 -CH 3 , C 6 D 5 -CD 3 ) monolayers on the basal planes of graphite have been investigated by neutron diffraction. The dynamics of the benzene layer has been studied by observing the incoherently, inelastically scattered neutrons using the time-of-flight method. The main results are: Above a phase transition temperature Tsub(c)approx.=145 K benzene on the basal planes of graphite forms a quasi 2D-fluid with high compressibility. For toluene a fluid phase exists above 140 K, between 70 K and 140 K it forms an incommensurate layer and below 70 K a 3x3 structure has been observed. The fluid phase of adsorbed benzene shows a broad quasielastic scattering indicating an effective surface diffusion coefficient of 10 -4 cm 2 /s at 200 K. The inelastic spectrum has been compared with an appropriate lattice dynamical model. The comparison with the data reveals, can be considered as a fairly anharmonic 2D-solid with a static external potential due to the substrate. (orig./HK)

  18. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  19. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  20. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A.

    2014-01-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  1. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  2. Biological monitoring of blood toluene in exposed printing shop workers; Biologisches Monitoring von Toluol am Beispiel belasteter Druckereiarbeiter

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, K.D. [Hamburg Univ. (Germany). Ordinariat fuer Hygiene; Pietsch, S. [Hamburg Univ. (Germany). Ordinariat fuer Hygiene; Pfeiffer, E.H. [Hamburg Univ. (Germany). Ordinariat fuer Hygiene

    1993-11-01

    42 toluene exposed printing workers were monitored and the results compared with those of a control group of 45 blood donors. Monitoring was done by means of blood toluene and hippuric acid excretion measurements. The mean indoor air concentration of toluene amounted to 230 mg/m{sup 3}. The blood toluene averaged up to 830 {mu}g/l. The median of hippuric acid excretion was in the range of 0,405 mg/mg creatinine for the control group and 1,938 mg/mg creatinine for the exposed group respectively. Hippuric acid showed a positive correlation toward ORSA-tube toluene measurements with good significance (p=0,000). Considerable high individual deviations in toluene metabolism occurred, and were discussed as a result of smoking and drinking behavior. (orig.) [Deutsch] 42 Druckereiarbeiter, die einer Raumluft mit einer mittleren Toluolkonzentration von 230 {mu}g/m{sup 3} exponiert waren, wurden untersucht und die Ergebnisse einer unbelasteten Kontrollgruppe bestehend aus 45 Blutspendern gegenuebergestellt. Als Parameter fuer ein biologisches Monitoring wurde die Blut-Toluolkonzentration und die Exkretion von Hippursaeure verwendet. Die Blut-Toluolkonzentration lag im Mittel bei 830 {mu}g/l. Der Mittelwert der Hippursaeure im Urin der unbelasteten Gruppe lag bei 0,405 mg/mg Kreatinin und der belasteten Gruppe bei 1,938 mg/mg Kreatinin. Die Hippursaeureausscheidung war hoch signifikant mit den Werten der ORSA-Roehrchen fuer die Luft-Toluolkonzentration korreliert (p=0,000). Erhebliche individuelle Abweichungen im Toluol-Metabolismus wurden deutlich und anhand von Rauch- und Trinkgewohnheiten diskutiert. (orig.)

  3. Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene

    Science.gov (United States)

    Mechanistic information is needed to link effects of chemicals at molecular targets in high­ throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...

  4. Profiling the biological activity of oxide nanomaterials with mechanistic models

    NARCIS (Netherlands)

    Burello, E.

    2013-01-01

    In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties

  5. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  6. Descriptive and mechanistic models of crop–weed competition

    NARCIS (Netherlands)

    Bastiaans, L.; Storkey, J.

    2017-01-01

    Crop-weed competitive relations are an important element of agroecosystems. Quantifying and understanding them helps to design appropriate weed management at operational, tactical and strategic level. This chapter presents and discusses simple descriptive and more mechanistic models for crop-weed

  7. A mechanistic model on methane oxidation in the rice rhizosphere

    NARCIS (Netherlands)

    Bodegom, van P.M.; Leffelaar, P.A.; Goudriaan, J.

    2001-01-01

    A mechanistic model is presented on the processes leading to methane oxidation in rice rhizosphere. The model is driven by oxygen release from a rice root into anaerobic rice soil. Oxygen is consumed by heterotrophic and methanotrophic respiration, described by double Monod kinetics, and by iron

  8. Precision and accuracy of mechanistic-empirical pavement design

    CSIR Research Space (South Africa)

    Theyse, HL

    2006-09-01

    Full Text Available are discussed in general. The effects of variability and error on the design accuracy and design risk are lastly illustrated at the hand of a simple mechanistic-empirical design problem, showing that the engineering models alone determine the accuracy...

  9. The mechanistic bases of the power-time relationship

    DEFF Research Database (Denmark)

    Vanhatalo, Anni; Black, Matthew I; DiMenna, Fred J

    2016-01-01

    .025) and inversely correlated with muscle type IIx fibre proportion (r = -0.76, P = 0.01). There was no relationship between W' (19.4 ± 6.3 kJ) and muscle fibre type. These data indicate a mechanistic link between the bioenergetic characteristics of different muscle fibre types and the power-duration relationship...

  10. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  11. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  12. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  13. Does Mechanistic Thinking Improve Student Success in Organic Chemistry?

    Science.gov (United States)

    Grove, Nathaniel P.; Cooper, Melanie M.; Cox, Elizabeth L.

    2012-01-01

    The use of the curved-arrow notation to depict electron flow during mechanistic processes is one of the most important representational conventions in the organic chemistry curriculum. Our previous research documented a disturbing trend: when asked to predict the products of a series of reactions, many students do not spontaneously engage in…

  14. Solid-Liquid Equilibria for the Binary Mixtures 1,4-Xylene + Ethylbenzene and 1,4-Xylene + Toluene

    DEFF Research Database (Denmark)

    Huyghe, Raphaël; Rasmussen, Peter; Thomsen, Kaj

    2004-01-01

    Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K.......Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K....

  15. Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure.

    Science.gov (United States)

    Sydoryk, Ihor; Lim, Alan; Jäger, Wolfgang; Tulip, John; Parsons, Matthew T

    2010-02-20

    We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm(-1) (9.88 and 9.41 microm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

  16. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    OpenAIRE

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and ...

  17. Top-down estimates of benzene and toluene emissions in Pearl River Delta and Hong Kong, China

    OpenAIRE

    X. Fang; M. Shao; A. Stohl; Q. Zhang; J. Zheng; H. Guo; C. Wang; M. Wang; J. Ou; R. L. Thompson; R. G. Prinn

    2015-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and tolu...

  18. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.

  19. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  20. Substrate Interactions during the Biodegradation of Benzene, Toluene, Ethylbenze, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1

    NARCIS (Netherlands)

    Prenafeta-Boldú, F.X.; Vervoort, J.; Grotenhuis, J.T.C.; Groenestijn, van J.W.

    2002-01-01

    The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene,

  1. Effects of vehicle ventilation system, fuel type, and in-cabin smoking on the concentration of toluene and ethylbenzene in Pride cars

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2013-01-01

    Conclusion: The ventilation condition, fuel type, and in-cabin smoking were not significantly impressive on the toluene and ethylbenzene concentrations inside the cars. However, simultaneous usage of the vehicle ventilation system and natural ventilation (windows could lead to little decrease in toluene concentration levels inside the car, while smoking consumption by passengers can increase them.

  2. Renewable aromatics from the degradation of polystyrene under mild conditions

    Directory of Open Access Journals (Sweden)

    Nouf M. Aljabri

    2017-12-01

    Full Text Available A bimetallic FeCu/alumina catalyst was prepared and characterized. It showed excellent catalytic activity to quantitatively convert polystyrene (PS into aromatics at low temperatures. A clear goldish yellow liquid was produced at 250 °C in a batch reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum conditions to minimize the styrene re-polymerization. The gas chromatography/mass spectrometry (GC/MS analysis confirms that the primary products are styrene, ethylbenzene, cumene, toluene and α-methylstyrene. Keywords: Polystyrene, Bimetallic, Low-temperature, Catalytic degradation

  3. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities.

    Science.gov (United States)

    Daghio, Matteo; Espinoza Tofalos, Anna; Leoni, Barbara; Cristiani, Pierangela; Papacchini, Maddalena; Jalilnejad, Elham; Bestetti, Giuseppina; Franzetti, Andrea

    2018-01-05

    BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m 2 with a maximum peak at 480mA/m 2 ) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days -1 , 0.34±0.09days -1 and 0.16±0.02days -1 , respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mechanistic Aspects of the Thermal Decomposition of Dicyclopentadienyl Titanium(IV) Dibenzyl

    NARCIS (Netherlands)

    Boekel, C.P.; Teuben, J.H.; Liefde Meijer, H.J. de

    1975-01-01

    The thermal decomposition of dicyclopentadienyltitanium(IV) dibenzyl in the solid state and in hydrocarbon solvents has been investigated. The compound decomposes via intermolecular abstraction of hydrogen atoms from the cyclopentadienyl rings with quantitative formation of toluene. The reaction was

  5. Modeling the degradation of a metallic waste form intended for geologic disposal

    International Nuclear Information System (INIS)

    Bauer, T.H.; Morris, E.E.

    2007-01-01

    Nuclear reactors operating with metallic fuels have led to development of robust metallic waste forms intended to immobilize hazardous constituents in oxidizing environments. Release data from a wide range of tests where small waste form samples have been immersed in a variety of oxidizing solutions have been analyzed and fit to a mechanistically-derived 'logarithmic growth' form for waste form degradation. A bounding model is described which plausibly extrapolates these fits to long-term degradation in a geologic repository. The resulting empirically-fit degradation model includes dependence on solution pH, temperature, and chloride concentration as well as plausible estimates of statistical uncertainty. (authors)

  6. Characterization of the dimensions of colloidal calcium carbonate dispersions in toluene with neutron small-angle scattering

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.; Dorrepaal, J.

    1987-02-01

    Calcium carbonate particles, stabilized by a surface layer, and dispersed in toluene are investigated with neutron small-angle scattering. Estimates for the dimensions of the core particle and the layer have been obtained: the layer thickness is 8.6 A and the core particle radius is 16.5 A. The limits within which these results are valid are indicated. (Auth.)

  7. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    Science.gov (United States)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.

    Science.gov (United States)

    Lin, Peng; Liu, Jiumeng; Shilling, John E; Kathmann, Shawn M; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365 nm = 0.78 m(2) g(-1)) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene atmosphere.

  9. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    Science.gov (United States)

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at toluene-derived SOM and aqueous ammonium sulfate across a limited range of organic volume fractions differentiates this SOM from previous reports for isoprene-derived SOM of full miscibility and for α-pinene-derived SOM of nearly full immiscibility with aqueous ammonium sulfate.

  10. Active sites in the alkylation of toluene with methanol : a study by selective acid-base poisoning

    NARCIS (Netherlands)

    Borgna, A.; Sepulveda, J.; Magni, S.I.; Apesteguia, C.R.

    2004-01-01

    Selective acid–base poisoning of the alkylation of toluene with methanol was studied over alkali and alkaline-earth exchanged Y zeolites. Surface acid–base properties of the samples were determined by infrared spectroscopy using carbon dioxide and pyridine as probe molecules. Selective poisoning

  11. Preliminary study to prepare a reference material of toluene metabolite - o-cresol and benzene metabolite-phenol - in human

    Czech Academy of Sciences Publication Activity Database

    Šperlingová, I.; Dabrowská, L.; Stránský, V.; Kučera, Jan; Tichý, M.

    2006-01-01

    Roč. 11, č. 5 (2006), s. 231-235 ISSN 0949-1775 R&D Projects: GA MZd NR7831 Institutional research plan: CEZ:AV0Z10480505 Keywords : reference material * toluene metabolites * o-cresol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.640, year: 2006

  12. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  13. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Hoorn, J.A.A.; Alsters, P.L.; Versteeg, Geert

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  14. Heterogeneous Catalysis by Tetraethylammonium Tetrachloroferrate of the Photooxidation of Toluene by Visible and Near-UV Light

    Directory of Open Access Journals (Sweden)

    Kelsie R. Barnard

    2018-02-01

    Full Text Available Titanium dioxide is the most extensively used heterogeneous catalyst for the photooxidation of toluene and other hydrocarbons, but it has low utility for the synthesis of benzyl alcohol, of which little is produced, or benzaldehyde, due to further oxidation to benzoic acid and cresol, among other oxidation products, and eventually complete mineralization to CO2. Et4N[FeCl4] functions as a photocatalyst through the dissociation of chlorine atoms, which abstract hydrogen from toluene, and the photooxidation of toluene proceeds only as far as benzyl alcohol and benzaldehyde. Unlike TiO2, which requires ultraviolet (UV irradiation, Et4N[FeCl4] catalyzes the photooxidation of toluene with visible light alone. Even under predominantly UV irradiation, the yield of benzyl alcohol plus benzaldehyde is greater with Et4N[FeCl4] than with TiO2. Et4N[FeCl4] photocatalysis yields benzyl chloride as a side product, but it can be minimized by restricting irradiation to wavelengths above 360 nm and by the use of long irradiation times. The photonic efficiency of oxidation in one experiment was found to be 0.042 mol/einstein at 365 nm. The use of sunlight as the irradiation source was explored.

  15. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    Science.gov (United States)

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  16. Acute Toluene Exposure Alters Expression of Genes in the Central Nervous System Associated With Synaptic Structure and Function

    Science.gov (United States)

    Toluene is a volatile organic compound (VOC) and a ubiquitous air pollutant of interest to EPA regulatory programs. Whereas its acute functional effects are well described, several modes of action in the CNS have been proposed. Therefore, we sought to identify potential pathways ...

  17. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    Science.gov (United States)

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  18. A DYNAMIC PHYSIOLOGICALLY-BASED TOXICOKINETIC (DPBTK) MODEL FOR SIMULATION OF COMPLEX TOLUENE EXPOSURE SCENARIOS IN HUMANS

    Science.gov (United States)

    A GENERAL PHYSIOLOGICAL AND TOXICOKINETIC (GPAT) MODEL FOR SIMULATION OF COMPLEX TOLUENE EXPOSURE SCENARIOS IN HUMANS. E M Kenyon1, T Colemen2, C R Eklund1 and V A Benignus3. 1U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; 2Biological Simulators, Inc., Jackson MS, USA, 3U.S. EP...

  19. Part 2: A field study of enhanced remediation of Toluene in the vadose zone using a nutrient solution

    Science.gov (United States)

    Tindall, J.A.; Weeks, E.P.; Friedel, M.

    2005-01-01

    The objective of this study was to test the effectiveness of a nitrate-rich nutrient solution and hydrogen peroxide (H2O2) to enhance in-situ microbial remediation of toluene in the unsaturated zone. Three sand-filled plots were tested in three phases (each phase lasting approximately 2 weeks). During the control phase, toluene was applied uniformly via sprinkler irrigation. Passive remediation was allowed to occur during this phase. A modified Hoagland nutrient solution, concentrated in 150 L of water, was tested during the second phase. The final phase involved addition of 230 moles of H2O2 in 150 L of water to increase the available oxygen needed for aerobic biodegradation. During the first phase, measured toluene concentrations in soil gas were reduced from 120 ppm to 25 ppm in 14 days. After the addition of nutrients during the second phase, concentrations were reduced from 90 ppm to about 8 ppm within 14 days, and for the third phase (H 2O2), toluene concentrations were about 1 ppm after only 5 days. Initial results suggest that this method could be an effective means of remediating a contaminated site, directly after a BTEX spill, without the intrusiveness and high cost of other abatement technologies such as bioventing or soil-vapor extraction. However, further tests need to be completed to determine the effect of each of the BTEX components. ?? Springer 2005.

  20. AGING AND LIFE-STAGE SUSCEPTIBILITY: TOLUENE EFFECTS ON BRAIN OXIDATIVE STRESS PARAMETERS IN BROWN NORWAY RATS.

    Science.gov (United States)

    The influence of aging on susceptibility to environmental contaminants is poorly understood. The objectives of this study were to test whether oxidative stress (OS) is a potential toxicity pathway following toluene exposure and to determine if these effects are age-dependent. We ...

  1. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol)

    NARCIS (Netherlands)

    Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend

  2. Dynamic viscosity modeling of methane plus n-decane and methane plus toluene mixtures: Comparative study of some representative models

    DEFF Research Database (Denmark)

    Baylaucq, A.; Boned, C.; Canet, X.

    2005-01-01

    Viscosity measurements of well-defined mixtures are useful in order to evaluate existing viscosity models. Recently, an extensive experimental study of the viscosity at pressures up to 140 MPa has been carried out for the binary systems methane + n-decane and methane toluene, between 293.15 and 3...

  3. U-Shaped Fiber-Optic Detection Elements for Investigation of Photocatalytic Decomposition of Toluene Dissolved in Water

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Bartoň, Ivo; Mrázek, Jan; Podrazký, Ondřej

    2014-01-01

    Roč. 27, May (2014), s. 244-252 ISSN 2306-8515 R&D Projects: GA ČR GAP102/12/2361 Institutional support: RVO:67985882 Keywords : Toluene detection * Photocatalytic decomposition * U-Shaped fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Determination of microquantities of methanol and ethanol in toluene by gas chromatography

    International Nuclear Information System (INIS)

    Perez, M. M.

    1970-01-01

    A study is made of the detection of methanol and ethanol in toluene by means of gas chromatography, using Porapak Q columns, 1 m long at 189 degree centigree, employing a flame ionization detector, with propanol as an internal standard. The variation od the detector absolute and relative response was found to be linear within the range of concentration studied, that is, from 5 to 1000 ppm. The limit of sensitivity for the detection of ethanol in a column of 2% Ucon, over Chromosorob G deactivated with 0,1% Carbowax 400, was 20 ppm, which was four times higher than the limit of sensitivity of the Porapak Q column. Also in this case, the absolute and relative response of the detector was linear. (Author) 3 refs

  5. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    Science.gov (United States)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  6. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  7. Longitudinal and Cross-sectional Analyses of Lung Function in Toluene Diisocyanate Production Workers.

    Science.gov (United States)

    Wang, Mei Lin; Storey, Eileen; Cassidy, Laura D; Doney, Brent; Conner, Patrick R; Collins, James J; Carson, Michael; Molenaar, Don

    2017-12-01

    The aim of this study was to investigate lung function among toluene diisocyanate (TDI) production workers. One hundred ninety-seven U.S workers performed spirometry from 2006 through 2012. Results were compared within the study cohort and with U.S. population measures. A mixed-effects model assessed factors affecting repeated forced expiratory volume in 1 second (FEV1) measurements. The cohort's mean FEV1 and forced vital capacity (FVC) percent reference values, although greater than 90%, were significantly lower and the prevalence of abnormal spirometry (predominantly restrictive pattern) was significantly higher than in the U.S. Differences in lung function among workers with higher cumulative TDI exposure were in the direction of an exposure effect, but not significant. We found little evidence of an adverse effect of TDI exposure on longitudinal spirometry in these workers. The association between TDI exposure and the increasing prevalence of a restrictive pattern needs further exploration.

  8. Experimental and Simulation Studies of the Toluene on Pure-Silica MEL Zeolite

    DEFF Research Database (Denmark)

    Sanchez-Gil, Vicente; Noya, Eva G.; Sanz, Alejandro

    2016-01-01

    of roughly 4 molecules per unit cell that shifts to higher pressures at higher temperatures and that coincides with a sudden increase in the isosteric heat of adsorption. Grand canonical Monte Carlo simulations reveal that the substep at half load is caused by the adsorption of toluene molecules at different......-ray powder diffraction experiments of the zeolite at three different loads: empty, at half load (before the substep), and at high load (after the substep). Numerous new low intensity peaks and splittings of existing peaks at the empty and half-loaded diffractograms appear in the diffraction pattern...... possible when the flexibility of the zeolite is incorporated. In this structural model, the channel cross sections are deformed from a nearly circular shape in the empty zeolite to a more elliptical shape in the case of the high load zeolite....

  9. A DFT study of permanganate oxidation of toluene and its ortho-nitroderivatives.

    Science.gov (United States)

    Adamczyk, Paweł; Wijker, Reto S; Hofstetter, Thomas B; Paneth, Piotr

    2014-02-01

    Calculations of alternative oxidation pathways of toluene and its ortho-substituted nitro derivatives by permanganate anion have been performed. The competition between methyl group and ring oxidation has been addressed. Acceptable results have been obtained using IEFPCM/B3LYP/6-31+G(d,p) calculations with zero-point (ZPC) and thermal corrections, as validated by comparison with the experimental data. It has been shown that ring oxidation reactions proceed via relatively early transition states that become quite unsymmetrical for reactions involving ortho-nitrosubstituted derivatives. Transition states for the hydrogen atom abstraction reactions, on the other hand, are late. All favored reactions are characterized by the Gibbs free energy of activation, ΔG(≠), of about 25 kcal mol(-1). Methyl group oxidations are exothermic by about 20 kcal mol(-1) while ring oxidations are around thermoneutrality.

  10. On the origin of benzene, toluene, ethylbenzene and xylene in extra virgin olive oil.

    Science.gov (United States)

    Biedermann, M; Grob, K; Morchio, G

    1995-04-01

    Concentrations of benzene, toluene, C2-benzenes and styrene were determined in olives and the oils produced thereof, as well as at various intermediate steps during production. Concentrations were compared to those found in samples of air taken from the olive grove and the olive mills. In an exposition experiment in the laboratory, olives absorbed aromatic compounds, approaching saturation corresponding to the partition coefficient between air and oil. However, concentrations in olives delivered to the mills were 4-10 times higher than expected from the analysis of the air in the olive grove. In the olive mills, concentrations were increased further by a factor of up to 2 because of uptake from air which contained high concentrations of aromatics. Styrene concentrations strongly increased during storage of crushed olives at ambient temperature, which confirms the hypothesis that styrene is a product of metabolism.

  11. Fabrication of Ordered Nanopattern by using ABC Triblock Copolymer with Salt in Toluene.

    Science.gov (United States)

    Huang, Hailiang; Zhong, Benbin; Zu, Xihong; Luo, Hongsheng; Lin, Wenjing; Zhang, Minghai; Zhong, Yazhou; Yi, Guobin

    2017-08-15

    Ordered nanopatterns of triblock copolymer polystyrene-block-poly(2-vinylpyridine)-block- poly (ethylene oxide)(PS-b-P2VP-b-PEO) have been achieved by the addition of lithium chloride (LiCl). The morphological and structural evolution of PS-b-P2VP-b-PEO/LiCl thin films were systematically investigated by varying different experimental parameters, including the treatment for polymer solution after the addition of LiCl, the time scale of ultrasonic treatment and the molar ratio of Li + ions to the total number of oxygen atoms (O) in PEO block and the nitrogen atoms (N) in P2VP block. When toluene was used as the solvent for LiCl, ordered nanopattern with cylinders or nanostripes could be obtained after spin-coating. The mechanism of nanopattern transformation was related to the loading of LiCl in different microdomains.

  12. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  13. Study of substitution reactions of ligands in VO2+ complexes in toluene solutions by ESR method

    International Nuclear Information System (INIS)

    Lundkvist, R.; Panfilov, A.T.; Kalinichenko, N.B.; Marov, I.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1976-01-01

    Kinetics and equilibrium of stepwise substitution of ligands have been investigated at different temperatures for the complexes of oxovanadium (4) with salicylaldoxime, 8-oxyquinoline, acetylacetone, benzoylacetone, and tenoyltrifluoroacetone. The relative complexability of these ligands in toluene has been studied. The parameters of spin-Hamiltonian of EPR spectra of the VO 2+ complexes have been determined. The equilibrium constants, the rate constants, and activation energy have been found for the substitution reactions of ligands in the complexes VOA 2 : VOA 2 +HB=VOAB+HA; VOAB+HB=VOB 2 +HA, where HA and HB are the ligands with different donor atoms. The mixed complexes have been detected of the general formula VOAB, where HA is salicylaldoxime or 8-oxyquinoline and HB is β-diketone

  14. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    Science.gov (United States)

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  16. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  17. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    Science.gov (United States)

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  18. Toxicologia do tolueno: aspectos relacionados ao abuso Toluene toxicology: abuse aspects

    Directory of Open Access Journals (Sweden)

    Letícia M.K. Forster

    1994-04-01

    Full Text Available O tolueno está presente em muitos produtos de uso doméstico e industrial e é o principal solvente envolvido no abuso de substâncias e na exposição ocupacional. O problema mais grave no estudo de patologias relacionadas ao tolueno é que este está geralmente associado, em suas preparações comerciais, a outras substâncias. O potencial tóxico do tolueno foi abordado nos seguintes aspectos: parâmetros farmacológicos; características físico-químicas; exposição; estudos clínicos; diagnóstico; pesquisa experimental; tolerância e dependência; efeitos agudos e crônicos; neurotoxicidade; teratogenicidade; doenças psiquiátricas; carcinogenicidade e tratamento. Conclui-se ser de grande importância e urgência que se realizem estudos clínicos com amostras maiores para definição mais precisa das conseqüências do uso crônicoToluene, present in many industrial and domestic products, is the main solvent involved in solvent abuse and occupational exposure. The main problem in studying toluene-related pathologies is the fact that it is frequently combined with other substances. This review focuses on its potential toxicity. The following subjects are discussed: pharmacologic parameters; physico-chemical features; exposure; clinical trials; experimental research; diagnosis; tolerance and dependence; acute and chronic effects; neurotoxicity; teratogenicity; psychiatric disorders; carcinogenicity; and treatment. It is concluded that is important more research on larger population samples with a view to better definition of the consequences.of chronic use should be undertaken.

  19. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben [Department; Huang, Gaochao [Department; Meekins, David A. [Department; Geisbrecht, Brian V. [Department; Li, Ping [Department

    2017-08-18

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.

  20. A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis

    Science.gov (United States)

    Ingraham, Neil L.; Shadel, Craig

    1992-12-01

    Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted. Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method. The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is