WorldWideScience

Sample records for tolerates high levels

  1. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  2. Comparison of tolerance to soil acidity among crop plants. II. Tolerance to high levels of aluminum and manganese. Comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Hayakawa, Y

    1975-01-01

    Research was conducted by growing various species of plants in solutions containing high concentrations of manganese or aluminum. A comparison was made of the tolerance of these plants to low pH and to the manganese and aluminum. In addition, the element content of the plants was compared. Plants high in calcium were found to have an intermediate tolerance to high concentrations of manganese and aluminum. Gramineae had a high tolerance to these elements and to low pH. They also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Cruciferae had a low tolerance to the elements and to low pH. They contained low levels of manganese and aluminum. Chenopodiaceae had a low tolerance to the elements as well as low element contents. However, they were highly tolerant to low pH.

  3. Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance

    International Nuclear Information System (INIS)

    Antosiewicz, Danuta Maria

    2005-01-01

    The main aim of the study was to determine the role of calcium in the amelioration of lead toxic effects in plants with accordingly high/low level of Pb-tolerance and high/low Ca-deficiency tolerance. The study was performed on maize, rye, tomato and mustard. Plants were cultivated in modified Knop's solution. They were subjected to Ca-deficiency, and to lead nitrate administered in the presence of four calcium nitrate concentrations 3.0, 2.4, 1.2, 0.3 mM. Lead-tolerance and tolerance to Ca-deficiency were determined, as were concentration of the studied elements in plant tissues, and the Pb deposition pattern at the ultrastructural level (electron microscopy study, X-ray microanalysis). In all studied plants, lead toxicity increased as medium calcium content decreased, however, only in the Ca-deficiency sensitive mustard with low Pb-tolerance was it accompanied by a rise in tissue lead concentration. In contrast, lead root and shoot levels did not increase in the highly Ca-deficiency tolerant tomato, mustard and rye with high Pb-tolerance irrespective of the Ca 2+ regimens applied. Thus, in these plants, lead's unfavourable effects resulted only from the higher toxicity of the same amount of lead in tissues at low calcium in the medium. Of particular relevance is the finding by electron microscopy and X-ray microanalysis, that under low calcium in both highly Ca-deficiency tolerant and Ca-deficiency sensitive plants, less efficient Pb 2+ detoxification was accompanied by the restriction of the formation of large lead deposits in cell walls. Obtained results are novel in demonstrating calcium involvement in the lead deposition in the cell wall, thus in the regulation of the internal lead detoxification. - Calcium regulated lead deposition in cell walls of plants

  4. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  5. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    Science.gov (United States)

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. High-level Zn and Cd tolerance in Silene paradoxa L. from a moderately Cd- and Zn-contaminated copper mine tailing

    International Nuclear Information System (INIS)

    Arnetoli, Miluscia; Vooijs, Riet; Gonnelli, Cristina; Gabbrielli, Roberto; Verkleij, Jos A.C.; Schat, Henk

    2008-01-01

    Cadmium and zinc tolerance were examined in populations of Silene paradoxa, one from uncontaminated calcareous soil (CVD) and one from a mine tailing (FC) (Cd < 1-15 ppm, Zn 400-1300 ppm, pH 2-6). The mine population exhibited extremely high Zn and Cd tolerance levels, although the degrees of Cd and Zn enrichment relatively low at the population site. Cd and Zn hypertolerance in FC were associated with reduced rates of accumulation of these metals, both in roots and shoots (Cd), or exclusively in shoots (Zn). However, exclusion potentially explained only a minor part of the superior tolerance in FC. Cd hypertolerance in FC was associated with decreased, rather than enhanced phytochelatin accumulation. The remarkably high levels of Cd and Zn hypertolerance in FC might relate to the low soil pH, due to oxidation of sulphide minerals, and the absence of soil organic matter at the FC site. - Silene paradoxa from a copper mine exhibits extreme levels of Zn and Cd tolerance

  7. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 {mu}M). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one.

  8. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    International Nuclear Information System (INIS)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-01-01

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 μM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one

  9. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  10. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    Science.gov (United States)

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling

  11. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application ... sources include cashew, apple juice (Osho, 2005), palm ... choice for fermentation (Chandra and Panchal, 2003). Yeasts ...

  12. Changes in bacillus thuringiensis tolerance levels due to hybridization of Bt-tolerant and susceptible silkworm populations

    International Nuclear Information System (INIS)

    Begumad, H.A.; Hassana, E.; Dingleb, J.; Alshehic, A.A.

    2012-01-01

    Males and females of a Bt-tolerant mulberry silkworm (Bombyx mori L.) population were crossed with females and males of a Bt-susceptible population, to produce Bt-tolerant silkworm hybrids, and to determine the expression of the Bt-tolerance pattern in the F 1 hybrids. It was observed that when a Bt-tolerant (42% larval mortality) female (BtT ) silkworm was crossed with a Bt-susceptible (85% larval mortality) male (BtS ), the resultant F 1 offspring showed lower levels of Bt-tolerance (87% larval mortality). On the other hand, when a Bt-tolerant male (BtT ) was crossed with a Bt-susceptible female (BtS ), the F 1 hybrid showed higher levels of Bt-tolerance (35% larval mortality) characteristic. The probit statistics showed that both hybrids expressed Bt-tolerance or susceptible levels similar to their male parents. These different patterns of Bt-tolerance in F 1 hybrids might be due to the transferring of a Bt-tolerant gene, from the parents to offspring, through the homozygotic male (ZZ) silkworm. (author)

  13. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    Directory of Open Access Journals (Sweden)

    Thiago M Pais

    2013-06-01

    Full Text Available The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

  14. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  15. Implementations of a four-level mechanical architecture for fault-tolerant robots

    International Nuclear Information System (INIS)

    Hooper, Richard; Sreevijayan, Dev; Tesar, Delbert; Geisinger, Joseph; Kapoor, Chelan

    1996-01-01

    This paper describes a fault tolerant mechanical architecture with four levels devised and implemented in concert with NASA (Tesar, D. and Sreevijayan, D., Four-level fault tolerance in manipulator design for space operations. In First Int. Symp. Measurement and Control in Robotics (ISMCR '90), Houston, Texas, 20-22 June 1990.) Subsequent work has clarified and revised the architecture. The four levels proceed from fault tolerance at the actuator level, to fault tolerance via in-parallel chains, to fault tolerance using serial kinematic redundancy, and finally to the fault tolerance multiple arm systems provide. This is a subsumptive architecture because each successive layer can incorporate the fault tolerance provided by all layers beneath. For instance a serially-redundant robot can incorporate dual fault-tolerant actuators. Redundant systems provide the fault tolerance, but the guiding principle of this architecture is that functional redundancies actively increase the performance of the system. Redundancies do not simply remain dormant until needed. This paper includes specific examples of hardware and/or software implementation at all four levels

  16. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    Directory of Open Access Journals (Sweden)

    Mauraine Carlier

    Full Text Available Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV, a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  17. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    Science.gov (United States)

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  18. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  19. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  20. High Defect Tolerance in Lead Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Kang, Jun; Wang, Lin-Wang

    2017-01-19

    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.

  1. Variable Levels of Tolerance to Water Stress (Drought and Associated Biochemical Markers in Tunisian Barley Landraces

    Directory of Open Access Journals (Sweden)

    Sameh Dbira

    2018-03-01

    Full Text Available Due to its high tolerance to abiotic stress, barley (Hordeum vulgare is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought in nine accessions of “Ardhaoui” barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.

  2. A high precision radiation-tolerant LVDT conditioning module

    CERN Document Server

    Masi, A; Losito, R; Peronnard, P; Secondo, R; Spiezia, G

    2014-01-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. ...

  3. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    Science.gov (United States)

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  4. TOLERANCE OF REGIONAL HIGH SCHOOL STUDENTS: ASSESSMENT AND DEVELOPMENT METHODS

    Directory of Open Access Journals (Sweden)

    Elena V. Kalachinskaya

    2015-01-01

    Full Text Available The purpose of the investigation is to define the quality and tolerance level among students; and generalize pedagogical experience of intercultural tolerance formation (as exemplified in Vladivostok State University of Economics and Service.Methods. Theoretical methods of research involve analysis of approaches and results of tolerance among young people; Practical methods – content analysis of the essay content on a given topic, questioning. An empirical case study, described in this article, was carried out by questionnaire survey of 200 VSUES (Vladivostok State University of Economics and Service students from 2–3 courses of various undergraduate training areas.Scientific novelty. The level of students’ tolerant attitude to a series of countries and their residents is specified; combined with the respondents’ knowledge on these countries. Most distinctive students’ views on the «tolerance» concept and reasons for their intolerant behavior are analyzed and presented in this article. Pedagogical and educational technologies used by University for the youth tolerance formation are summarized.Results. Based on the survey, the issues such as limits of applicability of “tolerance” concept in students’ perception, declarative and real tolerance level, and tolerance level to certain countries, as well as in business are investigated. According to the survey, the author makes the conclusion of correlation existence between level of tolerance towards country (nation and level of awareness of it. The author has analysed the students’ essays on tolerance problems; and it was found out that international relations are the most relevant aspect to respondents of tolerant or intolerant behavior. Results of students’ sociological research are compared with results of surveys on similar topics made by All-Russia Public Opinion Research Center and other researchers. Implemented VSUES projects aimed at creating and promoting tolerance

  5. LEVEL-1 DATA DRIVER CARD - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The detectors located at the muon Small Wheels will be replaced by a set of precision tracking and trigger detectors, the resistive Micromegas (MM) and the small-strip Thin Gap Chambers (sTGC). After the upgrade, the number of interactions per bunch-crossing will be increased up to 140, resulting in a dramatically large amount of produced data. The high number of electronic channels (about two million for the MM and about 300k for the sTGC) along with a harsh environment (radiation dose up to 1700Gy (inner radius) and a magnetic field up to 0:4T in the end cap region) led to the development of new radiation tolerant electronics and a scalable readout scheme able to handle the new data rates. In addition, correction mechanisms for Single Event Upsets (SEU) and communication errors must be implemented to assure the integrity of the transmitted data. The L1DDC i...

  6. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  7. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  8. A high precision radiation-tolerant LVDT conditioning module

    Energy Technology Data Exchange (ETDEWEB)

    Masi, A. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Danzeca, S. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); IES, F-34000 Montpellier (France); Losito, R.; Peronnard, P. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Secondo, R., E-mail: raffaello.secondo@cern.ch [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Spiezia, G. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  9. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  10. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  11. Butter improves glucose tolerance compared with at highly polyunsaturated diet in the rat

    DEFF Research Database (Denmark)

    Hellgren, Lars

    in epidemiological studies, where the typical fatty acid composition of milk-fat, i.e. a high level of saturated fatty acids (SFA) and low concentration of polyunsaturated fatty acids (PUFAs), has been correlated to increased insulin-resistance. It is therefore essential to characterize the impact of milk......-fat on glucose-tolerance in intervention studies. Methods: 16 rats were divided into two groups and fed a semisynthetic diet containing 31 E-% fat, either as butter or highly polyunsaturated grapeseed oil. After 12 weeks on the diets, glucose-tolerance was assayed with the oral-glucose tolerance test (OGTT......). Results and Discussion: The OGTT revealed that the rats on the butter-containing diet, had a substantially higher glucose tolerance than the rats, which were fed grapeseed oil (area under the curve =195  31 mM*min-2 vs. 310  13 mM*min-2, n= 8, p=0.004). There were no differences in serum triacylglycerol...

  12. Elevated level of polysaccharides in a high level UV-B tolerant cell ...

    African Journals Online (AJOL)

    Jane

    2011-04-26

    Apr 26, 2011 ... A cell line of Bupleurum scorzonerifolium Willd with high level ... mechanisms to repair UV-induced damages via repairing ... for treatment or prevention of solar radiation. ..... working as both UV-B absorbing compounds and.

  13. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men.

    Science.gov (United States)

    Riales, R; Albrink, M J

    1981-12-01

    Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.

  14. Enhanced fault-tolerant quantum computing in d-level systems.

    Science.gov (United States)

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  15. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  16. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  17. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  18. Adaptation of copper community tolerance levels after biofilm transplantation in an urban river.

    Science.gov (United States)

    Fechner, Lise C; Versace, François; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2012-01-15

    The Water Framework Directive requires the development of biological tools which can act as early-warning indicators of a sudden increase (accidental pollution) or decrease (recovery due to prevention) of the chemical status of aquatic systems. River biofilms, which respond quickly to modifications of environmental parameters and also play a key part in the functioning of aquatic ecosystems, are therefore good candidates to monitor an increase or a decrease of water pollution. In the present study, we investigated the biological response of biofilms transplanted either upstream (recovery) or downstream (deterioration of exposure levels) the urban area of Paris (France). Both modifications of Cu community tolerance levels and of global bacterial and eukaryotic community structure using automated ribosomal intergenic spacer analysis (ARISA) fingerprints were examined 15 and 30 days after the transplantation. Cu tolerance levels of the heterotrophic component of biofilms were assessed using a short-term toxicity test based on β-glucosidase (heterotrophic) activity. Cu tolerance increased for biofilms transplanted upstream to downstream Paris (5-fold increase on day 30) and conversely decreased for biofilms transplanted downstream to upstream (8-fold decrease on day 30). ARISA fingerprints revealed that bacterial and eukaryotic community structures of transplanted biofilms were closer to the structures of biofilms from the transplantation sites (or sites with similar contamination levels) than to biofilms from their sites of origin. Statistical analysis of the data confirmed that the key factor explaining biofilm Cu tolerance levels is the sampling site and not the site of origin. It also showed that Cu tolerance levels are related to the global urban contamination (both metals and nutrients). The study shows that biofilms adapt fast to modifications of their surroundings. In particular, community tolerance varies quickly and reflects the new exposure levels only 15

  19. High levels of IgG4 antibodies to foods during infancy are associated with tolerance to corresponding foods later in life.

    Science.gov (United States)

    Tomicić, Sara; Norrman, Gunilla; Fälth-Magnusson, Karin; Jenmalm, Maria C; Devenney, Irene; Böttcher, Malin Fagerås

    2009-02-01

    Children with eczema and sensitization to foods are recommended skin care and, if food allergy is proven by challenge, an elimination diet. For most children the diet period is transient, but the process behind tolerance development and the influence of decreased allergen exposure is not fully known. The aim of the study was to investigate the effect of elimination diet on serum and salivary antibodies and to identify immunological parameters related to the ability to tolerate foods. Eighty-nine children, below 2 yr of age, with eczema and suspected food allergy were included. Recommended treatment was skin care to all children, and 60 children had a period of elimination diet. At 4(1/2) yr of age, the children were divided into two groups, based on if they had been able to introduce the eliminated foods, or not. Serum and salivary antibodies were analyzed with enzyme-linked immunosorbent assay and UniCAP before and after a 6-wk treatment period and at 4(1/2) yr of age. Children sensitized to egg and/or milk that could eat and drink the offending foods at 4(1/2) yr of age, had higher levels of Immunoglobulin G(4) antibodies to ovalbumin and beta-lactoglobulin and also higher IgG(4)/Immunoglobulin E ratios on inclusion in the study, than those who had to eliminate egg and/or milk from their diet, beyond 4(1/2) yr of age. The highest IgG(4)/IgE ratios were found in children with circulating IgE antibodies to egg and/or milk but negative skin prick test on inclusion. The 6-wk treatment period did not significantly affect the levels of serum and salivary antibodies. In conclusion, eczematous, food sensitized infants with high levels of IgG(4) and high ratios of IgG(4)/IgE antibodies to food allergens are more likely to consume these foods at 4(1/2) yr than infants with low levels and ratios.

  20. On the Breeding of Bivoltine Breeds of the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae, Tolerant to High Temperature and High Humidity Conditions of the Tropics

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    2010-01-01

    Full Text Available The hot climatic conditions of tropics prevailing particularly in summer are contributing to the poor performance of the bivoltine breeds and the most important aspect is that many quantitative characters such as viability and cocoon traits decline sharply when temperature is high. Hence, in a tropical country like India, it is very essential to develop bivoltine breeds/hybrids which can withstand the high temperature stress conditions. This has resulted in the development of CSR18 × CSR19, compatible hybrid for rearing throughout the year by utilizing Japanese thermotolerant hybrids as breeding resource material. Though, the introduction of CSR18 × CSR19 in the field during summer months had considerable impact, the productivity level and returns realized do not match that of other productive CSR hybrids. Therefore, the acceptance level of this hybrid with the farmers was not up to the expected level. This has necessitated the development of a temperature tolerant hybrid with better productivity traits than CSR18 × CSR19. Though, it was a difficult task to break the negative correlation associated with survival and productivity traits, attempts on this line had resulted in the development of CSR46 × CSR47, a temperature tolerant bivoltine hybrid with better productivity traits than CSR18 × CSR19. However, though, these hybrids are tolerant to high temperature environments, they are not tolerant to many of the silkworm diseases. Keeping this in view, an attempt is made to develop silkworm hybrids tolerant to high temperature environments.

  1. High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    2017-07-01

    Full Text Available On Mars, significant amounts (0.4–0.6% of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6% during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7% sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.

  2. Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  3. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  4. Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction.

    Science.gov (United States)

    Dai, Zi-yun; Shu, Wen-sheng; Liao, Bin; Wan, Cai-yun; Li, Jin-tian

    2011-06-01

    Averrhoa carambola L., a high-biomass tropical tree, has recently been shown to be a strong accumulator of cadmium (Cd) and has great potential for Cd phytoextraction. In the present study, field studies and a controlled-environment experiment were combined to establish the extent of variation in Cd tolerance and accumulation at the cultivar level using 14 to 19 cultivars of A. carambola. The results indicated that all cultivars tested could accumulate Cd at high but different levels, and that Cd tolerance also varied greatly between these cultivars. It is confirmed that the high Cd tolerance and accumulation capacity are species-level and constitutional traits in A. carambola. However, no correlation was detected between tolerance index and accumulation of Cd in different cultivars, suggesting that the two traits are independent in this woody Cd accumulator. More importantly, cultivar Wuchuan Sweet (WCT) was shown to have the highest Cd-extraction potential; it yielded a high shoot biomass of 30 t ha(-1) in 230 d, and extracted 330 g ha(-1) Cd in the aerial tissues grown in Cd-contaminated field soil, which accounted for 12.8% of the total soil Cd in the top 20 cm of the soil profile.

  5. Factors driving public tolerance levels and information-seeking behaviour concerning insects in the household environment.

    Science.gov (United States)

    Schoelitsz, Bruce; Poortvliet, P Marijn; Takken, Willem

    2018-06-01

    The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the relationships between personal factors and information-seeking behaviour. We combined IPM and RISP to determine important relationships between factors driving insect tolerance levels and information-seeking behaviour through an online survey and tested whether this model is valid and generally applicable. Relationships between variables from both IPM and RISP models were tested for seven insect species. Tolerance levels were measured with two factors: willingness to pay for pest control and whether insects are tolerated. Willingness to pay for control was positively affected by age, experience, risk perception, insect characteristics, and negative emotions and affected behavioural intention, by influencing information sufficiency and information-seeking behaviour. Tolerability was influenced by perception of insect characteristics and determines whether control measures are taken. It was possible to combine the RISP and IPM models. Relevant driving factors were a person's age, experience, risk perception, negative affective responses, tolerance levels, relevant channel beliefs about online forums, information sufficiency and information-seeking behaviour. There was, however, variation in important factors between different insects. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  6. Chronic free-choice drinking in crossed high alcohol preferring mice leads to sustained blood ethanol levels and metabolic tolerance without evidence of liver damage.

    Science.gov (United States)

    Matson, Liana; Liangpunsakul, Suthat; Crabb, David; Buckingham, Amy; Ross, Ruth Ann; Halcomb, Meredith; Grahame, Nicholas

    2013-02-01

    Crossed high alcohol preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines, and we demonstrate blood ethanol concentrations (BECs) during free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. Therefore, this line may provide an unprecedented opportunity to learn about the consequences of excessive voluntary ethanol (EtOH) consumption, including metabolic tolerance and liver pathology. Cytochrome p450 2E1 (CYP2E1) induction plays a prominent role in driving both metabolic tolerance and EtOH-induced liver injury. In this report, we sought to characterize cHAP drinking by assessing whether pharmacologically relevant BEC levels are sustained throughout the active portion of the light-dark cycle. Given that cHAP intakes and BECs are similar to those observed in mice given an EtOH liquid diet, we assessed whether free-choice exposure results in metabolic tolerance, hepatic enzyme induction, and hepatic steatosis. In experiment 1, blood samples were taken across the dark portion of a 12:12 light-dark cycle to examine the pattern of EtOH accumulation in these mice. In experiments 1 and 2, mice were injected with EtOH following 3 to 4 weeks of access to water or 10% EtOH and water, and blood samples were taken to assess metabolic tolerance. In experiment 3, 24 mice had 4 weeks of access to 10% EtOH and water or water alone, followed by necropsy and hepatological assessment. In experiment 1, cHAP mice mean BEC values exceeded 80 mg/dl at all sampling points and approached 200 mg/dl during the middle of the dark cycle. In experiments 1 and 2, EtOH-exposed mice metabolized EtOH faster than EtOH-naïve mice, demonstrating metabolic tolerance (p alcohol dehydrogenase and aldehyde dehydrogenase. These results demonstrate that excessive intake by cHAP mice results in sustained BECs throughout the active period, leading to the development of metabolic tolerance and evidence of CYP2E1 induction

  7. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Hansen, Per Juel

    2012-01-01

    Harmful microalgal blooms or red tides are often associated with high levels of pH. Similarly, species and strains of microalgae cultivated in the laboratory with enriched media experience recurrent events of high pH between dilutions with fresh medium. To study the potential for laboratory...... of upper pH tolerance limits were higher in the younger (20 years). These results suggest selection of strains best adapted to tolerate or postpone/avoid events of high pH in the laboratory. Our data have implications for experimental studies of pH response and reaction norms in general of microalgae...

  8. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  9. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu.

    Science.gov (United States)

    Senthilkumar, K; Mathialagan, P; Manivannan, C; Jayathangaraj, M G; Gomathinayagam, S

    2016-07-01

    The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC) situations. This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC), human-wild pig conflict (HPC), human-gaur conflict (HGC), and human-monkey conflict (HMC). A scale developed for this purpose was used to find out the tolerance level of the farmers. In general, the majority (61.70%) of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer's encountering HMC is low (8.77) among the other three wild animal conflicts. In tackling HWC, the majority (55.00%) of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70%) drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation.

  10. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  11. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu

    Science.gov (United States)

    Senthilkumar, K.; Mathialagan, P.; Manivannan, C.; Jayathangaraj, M. G.; Gomathinayagam, S.

    2016-01-01

    Aim: The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC) situations. Materials and Methods: This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC), human-wild pig conflict (HPC), human-gaur conflict (HGC), and human-monkey conflict (HMC). A scale developed for this purpose was used to find out the tolerance level of the farmers. Results: In general, the majority (61.70%) of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer’s encountering HMC is low (8.77) among the other three wild animal conflicts. In tackling HWC, the majority (55.00%) of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70%) drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. Conclusion: The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation. PMID:27536037

  12. A study on the tolerance level of farmers toward human-wildlife conflict in the forest buffer zones of Tamil Nadu

    Directory of Open Access Journals (Sweden)

    K. Senthilkumar

    2016-07-01

    Full Text Available Aim: The aim of this work was to study the tolerance level of farmers toward different human-wildlife conflict (HWC situations. Materials and Methods: This study was conducted in 24 villages of nine blocks from Kancheepuram, Coimbatore, Erode, and Krishnagiri districts of Tamil Nadu by personally interviewing 240 farmers affected with four different HWC situations such as human-elephant conflict (HEC, human-wild pig conflict (HPC, human-gaur conflict (HGC, and human-monkey conflict (HMC. A scale developed for this purpose was used to find out the tolerance level of the farmers. Results: In general, the majority (61.70% of the farmers had medium level of tolerance toward HWC, whereas 25.40% and 12.90% belonged to a high and low category, respectively. The mean tolerance level of the farmer’s encountering HMC is low (8.77 among the other three wild animal conflicts. In tackling HWC, the majority (55.00% of the HEC farmers drove the elephant once it entered into their farmland. In the HPC, more than three-fourths of the respondents drove away the wild pig once they were found in farmlands. With regard to the HMC, a less number of them (1.70% drove the monkey away if monkeys were spotted in their village. With regard to HGC, 95.00% of the respondents frightened the gaurs if their family members were threatened by gaurs. Conclusion: The present study suggests that that majority of the farmers had medium level of tolerance toward HWC. The tolerance level of the HMC farmers was lower than other three HWC affected farmers. This study emphasizes the need for necessary training to tackle the problem in an effective manner for wild animal conservation.

  13. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  14. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Westerhoff, P.; Hu, Q.; Esparza-Soto, M.; Vermaas, W. [Dept. of Civil & Environmental Engineering, Tempe, AZ (United States)

    2010-07-01

    Microalgae can be cultured in photobioreactors to sequester carbon dioxide and produce potentially valuable biomaterials. The goal of the present study was to identify and utilize microalgal strains that are capable of tolerating up to 20% CO{sub 2} (gas phase) concentrations under variable light or flue-gas blend conditions and reactor configurations to produce biomass. Scenedesmus sp. and Chlorella sp., both cultured from a Sonoran desert mineral spring, grew well and tolerated exposure to a gas mixture containing up to 20% CO{sub 2} applied continuously in batch reactors to the culture. Experiments were conducted with simulated coal-powered acidic flue gases containing SOx/NOx at concentrations of 200 to 350 ppmV. Microalgae did not grow well without pH control, and high levels (> 250 mM) of nitrite or sulphite in the liquid media inhibited algal growth. Pseudo steady-state experiments were also conducted using helical tubular and flat-plate photobioreactors with continuous flow (water and gas) and with artificial or natural sunlight. With a 2 d hydraulic residence time (HRT), the helical tubular photobioreactor produced 0.50 {+-} 0.11 g C d{sup -1} (0.056 {+-} 0.012 g C L{sup -1} d{sup -1}) dry-weight cell mass during continuous fluorescent-lamp irradiance and 0.048 {+-} 0.018 g C L{sup -1} d{sup -1} during 12 h light/darkness cycling. The flat-plate photobioreactor (2 d HRT) produced 0.42 {+-} 0.28 g C L{sup -1} d{sup -1} with artificial lighting and with natural sunlight; a 4 d HRT produced 0.14 {+-} 0.02 g C L{sup -1} d{sup -1}. Reactor modelling indicated that a threshold of reactor size (i.e. HRT) and reactor depth (path-length of light) exists based upon the optical density of the cells in the water column and their growth rates.

  15. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Gaoyi Cao

    Full Text Available A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  16. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    Science.gov (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  17. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  18. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  19. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    Science.gov (United States)

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014

  20. Factors driving public tolerance levels and information-seeking behaviour concerning insects in the household environment

    NARCIS (Netherlands)

    Schoelitsz, Bruce; Poortvliet, P.M.; Takken, Willem

    2018-01-01

    BACKGROUND: The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the

  1. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    Science.gov (United States)

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.

    Science.gov (United States)

    Akinbobola, A B; Sherry, L; Mckay, W G; Ramage, G; Williams, C

    2017-10-01

    Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid, one of the widely used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high-level peracetic acid disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms aged 24, 48, 96, and 192 h to peracetic acid was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using Crystal Violet assay. Planktonic cells of P. aeruginosa were treated with 5-30 ppm concentration of peracetic acid in the presence of 3.0 g/L of bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various peracetic acid concentrations (100-3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of peracetic acid, whereas biofilms showed an age-dependent tolerance to peracetic acid, and 96 h biofilm was only eradicated at peracetic acid concentration of 2500 ppm. Ninety-six-hour P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of peracetic acid, which is the working concentration used in some endoscope washer-disinfectors. This implies that disinfection failure of flexible endoscopes might occur when biofilms build up in the lumens of endoscopes. Copyright © 2017. Published by Elsevier Ltd.

  3. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  4. Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Ning, Zengping; Sun, Min; Peng, Jingquan; Xiao, Tangfu

    2012-12-15

    Thallium (Tl) contamination in soil exerts a significant threat to the ecosystem health due to its high toxicity. However, little is known about the effect of Tl on the microbial community in soil. The present study aimed at characterizing the culturable microbial groups in soils which experience for a long time high Tl contamination and elevated Hg and As. The contamination originates from As, Hg and Tl sulfide mineralization and the associated mining activities in the Guizhou Province, Southwest China. Our investigation showed the existence of culturable bacteria, filamentous fungi and actinomyces in long-term Tl-contaminated soils. Some fungal groups grow in the presence of high Tl level up to 1000 mg kg⁻¹. We have isolated and identified nine Tl-tolerant fungal strains based on the morphological traits and ITS analysis. The dominant genera identified were Trichoderma, Penicillium and Paecilomyces. Preliminary data obtained in this study suggested that certain microbes were able to face high Tl pollution in soil and maintain their metabolic activities and resistances. The highly Tl-tolerant fungi that we have isolated are potentially useful in the remediation of Tl-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. 21 CFR 109.4 - Establishment of tolerances, regulatory limits, and action levels.

    Science.gov (United States)

    2010-04-01

    ... a food additive, may be established to define a level of contamination at which a food may be... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Establishment of tolerances, regulatory limits, and action levels. 109.4 Section 109.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  6. 21 CFR 509.4 - Establishment of tolerances, regulatory limits, and action levels.

    Science.gov (United States)

    2010-04-01

    ... a food additive, may be established to define a level of contamination at which a food may be... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Establishment of tolerances, regulatory limits, and action levels. 509.4 Section 509.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  7. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  8. Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia

    OpenAIRE

    Messadi, Erij; Vincent, Marie-Pascale; Griol-Charhbili, Violaine; Mandet, Chantal; Colucci, Juliana; Krege, John H.; Bruneval, Patrick; Bouby, Nadine; Smithies, Oliver; Alhenc-Gelas, François; Richer, Christine

    2010-01-01

    Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene ...

  9. Fault-tolerance techniques for high-speed fiber-optic networks

    Science.gov (United States)

    Deruiter, John

    1991-01-01

    Four fiber optic network topologies (linear bus, ring, central star, and distributed star) are discussed relative to their application to high data throughput, fault tolerant networks. The topologies are also examined in terms of redundancy and the need to provide for single point, failure free (or better) system operation. Linear bus topology, although traditionally the method of choice for wire systems, presents implementation problems when larger fiber optic systems are considered. Ring topology works well for high speed systems when coupled with a token passing protocol, but it requires a significant increase in protocol complexity to manage system reconfiguration due to ring and node failures. Star topologies offer a natural fault tolerance, without added protocol complexity, while still providing high data throughput capability.

  10. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  11. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  12. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  13. Initial root length in wheat is highly correlated with acid soil tolerance in the field

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Pereira

    Full Text Available ABSTRACT: In acid soils, toxic aluminum ions inhibit plant root growth. In order to discriminate aluminum (Al tolerance, trustful screening techniques are required. In this study, 20 wheat cultivars, showing different levels of Al tolerance, were evaluated in a short-term soil experiment to access their relative root length (RRL. Moreover, the alleles of two important genes (TaALMT1 and TaMATE1B for Al tolerance in wheat were discriminated. Both of these genes encode membrane transporters responsible for the efflux of organic acids by the root apices that are thought to confer tolerance by chelating Al. Genotypes showing TaALMT1 alleles V and VI and an insertion at the TaMATE1B promoter were among the ones showing greater RRL. Mechanisms of Al tolerance, which are not associated with organic acid efflux, can be potentially present in two cultivars showing greater RRL among the ones carrying inferior TaALMT1 and TaMATE1B alleles. The RRL data were highly correlated with wheat performance in acid soil at three developmental stages, tillering (r = −0.93, p < 0.001, silking (r = −0.91, p < 0.001 and maturation (r = −0.90, p < 0.001, as well as with the classification index of aluminum toxicity in the field (r = −0.92, p < 0.001. Since the RRL was obtained after only six days of growth and it is highly correlated with plant performance in acid soil under field conditions, the short-term experiment detailed here is an efficient and rapid method for reliable screening of wheat Al tolerance.

  14. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  15. Salinity tolerance in barley (hordeum vulgare l.): effects of varying NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ levels on cultivars differing in tolerance

    International Nuclear Information System (INIS)

    Mahmood, K.

    2011-01-01

    Although barley (Hordeum vulgare L.) is regarded as salt tolerant among crop plants, its growth and plant development is severely affected by ionic and osmotic stresses in salt-affected soils. To elucidate the tolerance mechanism, growth and ion uptake of three barley cultivars, differing in salt tolerance, were examined under different levels of NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ in the root medium. The cultivars differed greatly in their responses to varying root medium conditions. Plant growth was more adversely affected by NaHCO/sub 3/ than NaCl. In general, biomass yields were comparable under control and 100 mM NaCl. However, growth of all three cultivars was significantly inhibited by NaHCO/sub 3/ even at low concentration (10 mM). Improved K/sup +/ supply in saline medium increased K/sup +/ uptake and growth of less tolerant cultivars. K/sup +/ uptake was more adversely affected by NaHCO/sub 3/ than NaCl salinity. Selective K/sup +/ uptake and lower Cl/sup -/ in shoots seemed to be associated with the growth responses. K application would help better growth of these cultivars on K-deficient saline-sodic soils and under irrigation with poor quality water having high Residual Sodium Carbonate (RSC) and/or Sodium Adsorption Ratio (SAR). (author)

  16. Effects of indigestible dextrin on glucose tolerance in rats.

    Science.gov (United States)

    Wakabayashi, S; Kishimoto, Y; Matsuoka, A

    1995-03-01

    A recently developed indigestible dextrin (IDex) was studied for its effects on glucose tolerance in male Sprague-Dawley rats. IDex is a low viscosity, water-soluble dietary fibre obtained by heating and enzyme treatment of potato starch. It has an average molecular weight of 1600. An oral glucose tolerance test was conducted with 8-week-old rats to evaluate the effects of IDex on the increase in plasma glucose and insulin levels after a single administration of various sugars (1.5 g/kg body weight). The increase in both plasma glucose and insulin levels following sucrose, maltose and maltodextrin loading was significantly reduced by IDex (0.15 g/kg body weight). This effect was not noted following glucose, high fructose syrup and lactose loading. To evaluate the effects of continual IDex ingestion on glucose tolerance, 5-week-old rats were kept for 8 weeks on a stock diet, a high sucrose diet or an IDex-supplemented high sucrose diet. An oral glucose (1.5 g/kg body weight) tolerance test was conducted in week 8. Increases in both plasma glucose and insulin levels following glucose loading were higher in the rats given a high sucrose diet than in the rats fed a stock diet. However, when IDex was included in the high sucrose diet, the impairment of glucose tolerance was alleviated. Moreover, IDex feeding also significantly reduced accumulation of body fat, regardless of changes in body weight. These findings suggest that IDex not only improves glucose tolerance following sucrose, maltose and maltodextrin loading but also stops progressive decrease in glucose tolerance by preventing a high sucrose diet from causing obesity.

  17. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  18. Acute Toxicity of Castor Oil Bean Extract and Tolerance Level of ...

    African Journals Online (AJOL)

    The experiment was carried out to determine the acute toxicity of raw castor oil bean (Ricinus communis) extract and the tolerance level of raw castor oil bean by broilers. The seeds were ground, defatted with petroleum ether and the residue was subjected to extraction with phosphate-buffered saline. The extract volume ...

  19. Connection Between the Originality Level of Pupils' Visual Expression in Visual Arts Lessons and Their Level of Tolerance for Diversity

    Directory of Open Access Journals (Sweden)

    Miroslav Huzjak

    2017-09-01

    Full Text Available The aim of this research was to examine the connection between the originality level in children's expression during visual art lessons and their level of tolerance for difference. The participants comprised primary school pupils from grades one, two and three, a total of 110. It was confirmed that there was a statistically significant difference between the pupils who had an introduction to the lesson using the didactic model of visual problembased teaching and those who had not. Learning and setting art terminology, the analysis of motifs and explanation, as well as demonstration of art techniques resulted in a higher level of creativity in visual performance, as well as a higher level of tolerance. It can be concluded that, with the proper choice of didactic models in teaching the visual arts, a wide range of pupil attitudes and beliefs can be improved.

  20. Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Zongliang Xia

    2018-03-01

    Full Text Available Sulfite oxidase (SO plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO was characterized. To date, the knowledge of ZmSO’s involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature embryos of maize plants, and were up-regulated markedly by PEG-induced water stress. Overexpression of ZmSO improved drought tolerance in tobacco. ZmSO-overexpressing transgenic plants showed higher sulfate and glutathione (GSH levels but lower hydrogen peroxide (H2O2 and malondialdehyde (MDA contents under drought stress, indicating that ZmSO confers drought tolerance by enhancing GSH-dependent antioxidant system that scavenged ROS and reduced membrane injury. In addition, the transgenic plants exhibited more increased stomatal response than the wild-type (WT to water deficit. Interestingly, application of exogenous GSH effectively alleviated growth inhibition in both WT and transgenic plants under drought conditions. qPCR analysis revealed that the expression of several sulfur metabolism-related genes was significantly elevated in the ZmSO-overexpressing lines. Taken together, these results imply that ZmSO confers enhanced drought tolerance in transgenic tobacco plants possibly through affecting stomatal regulation, GSH-dependent antioxidant system, and sulfur metabolism-related gene expression. ZmSO could be exploited for developing drought-tolerant maize varieties in molecular breeding.

  1. Development of Communicative Tolerance among Teachers of Primary and Senior Level of the General Education School

    Science.gov (United States)

    Povarenkov, Yury P.; Baranova, Nataly A.; Sidorova, Anna D.; Mitiukov, Nicholas W.

    2018-01-01

    The article is devoted to the study of the influence of the level of development of communicative tolerance on the effectiveness of the teaching and educational activity of primary and senior schoolteachers. In the article the concepts of psychophysiological and communicative tolerance are separated. The psychological content of communicative…

  2. The Cumulative Daily Tolerance Levels of Potentially Toxic Excipients Ethanol and Propylene Glycol Are Commonly Exceeded in Neonates and Infants

    DEFF Research Database (Denmark)

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell

    2018-01-01

    neonates and infants and compare these levels to the tolerance limits found in guidelines published by European Medicines Agency (EMA). As part of the SEEN study, all medicinal products administered to neonates and infants were recorded. All included neonates received ≥2 medicinal products/day and infants...... ≥3 medicinal products/day. Daily excipient levels were calculated based on quantities obtained from manufacturers or databases. Excipient levels were compared to tolerance limits proposed by the EMA. Altogether, 470 neonates and 160 infants were included, recording 4207 prescriptions and 316 products...... exceed tolerance limit of 6 mg/kg/day. Of the total number of prescriptions involving PG-containing medicinal products (n = 174), 70% would alone exceed a maximum tolerance limit of 50 mg/kg/day. Maximal daily exposure to ethanol (1563 mg/kg/day) or PG (954 mg/kg/day) exceeded the tolerance limits...

  3. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    Science.gov (United States)

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  4. Coordinated Fault Tolerance for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  5. High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose.

    Directory of Open Access Journals (Sweden)

    Wei Xia

    Full Text Available A novel β-xylosidase gene of glycosyl hydrolase (GH family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0-9.0 (incubated at 37°C for 1 h and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels.

  6. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  7. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD

    Science.gov (United States)

    Gibbs, Elizabeth M.; Marshall, Jamie L.; Ma, Eva; Nguyen, Thien M.; Hong, Grace; Lam, Jessica S.; Spencer, Melissa J.

    2016-01-01

    Abstract Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD. PMID:27798107

  8. Complex patterns of geographic variation in heat tolerance and Hsp70 expression levels in the common frog Rana temporaria

    DEFF Research Database (Denmark)

    Sørensen, Jesper Givskov; Pekkonen, Minna; Lindgren, Beatrice

    2009-01-01

    1. We tested for geographical variation in heat tolerance and Hsp70 expression levels of Rana temporaria tadpoles along a 1500 km long latitudinal gradient in Sweden.   2. Temperature tolerance of the hatchling tadpoles did not differ among populations, but they tolerated stressful hot temperatur...

  9. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  10. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    Science.gov (United States)

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Diagnosis and Tolerant Strategy of an Open-Switch Fault for T-type Three-Level Inverter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo Beum; Blaabjerg, Frede

    2014-01-01

    This paper proposes a new diagnosis method of an open-switch fault and fault-tolerant control strategy for T-type three-level inverter systems. The location of faulty switch can be identified by the average of normalized phase current and the change of the neutral-point voltage. The proposed fault......-tolerant strategy is explained by dividing into two cases: the faulty condition of half-bridge switches and the neutral-point switches. The performance of the T-type inverter system improves considerably by the proposed fault tolerant algorithm when a switch fails. The roposed method does not require additional...... components and complex calculations. Simulation and experimental results verify the feasibility of the proposed fault diagnosis and fault-tolerant control strategy....

  12. Systems and Methods for Implementing High-Temperature Tolerant Supercapacitors

    Science.gov (United States)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80C and approximately 300C; a second electrode that is thermally stable between at least approximately 80C and approximately 300C; an ionically conductive separator that is thermally stable between at least approximately 80C and 300C; an electrolyte that is thermally stable between approximately at least 80C and approximately 300C; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.

  13. The Attitude of socio-harmony and Local Wisdom: an Indicator of the Development of Social Tolerance of High School Students

    Directory of Open Access Journals (Sweden)

    Adi Wijaya Deni

    2018-01-01

    Full Text Available This article discusses the dilematis aspect about the shift in traditional values-based local wisdom about the ecological aspects. Close to the learning in school emphasized the sides of cognitive ability and do not offset the granting of traditional values education. The purpose of this article is to promote tolerance of students to be more sensitive to the surroundings so as not to become individualists. Research results at the high school level, students are not given the attitude of socio-harmony in the form of tolerance. The purpose of this article is to enhance social tolerance that can deliver value to prevent the behavior concept asocial.

  14. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  15. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium

    International Nuclear Information System (INIS)

    Folgar, S.; Torres, E.; Perez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J.

    2009-01-01

    Cadmium tolerance and removal in the marine microalga Dunaliella salina were studied in cultures exposed to different metal concentrations (5-120 mg Cd l -1 ) for 96 h. This microalga can be included in the group of microalgal species most tolerant to cadmium due to the high value of EC50 that it possesses (48.9 mg Cd l -1 at 96 h of culture). The greater percentage of cadmium removed was obtained in cultures exposed to 5 mg Cd l -1 at 96 h, but removing only 11.3% of the added cadmium. In all cultures, the quantity of cadmium removed intracellularly was much lower than the bioadsorbed quantity and it was proportional to the sulfhydryl group levels. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of cadmium by living cells of D. salina.

  16. Safety and tolerability of high doses of glucocorticoides

    Directory of Open Access Journals (Sweden)

    Rakić Branislava D.

    2016-01-01

    Full Text Available Introduction: Treatment of acute lymphoblastic leukemia includes the use of high doses of glucocorticoides (prednisone and dexamethasone, which significantly increase the success of therapy due to lymphocytolitic effect. The aim: The aim of the study was to determine tolerability of high doses of prednisone and dexamethasone in children with acute lymphoblastic leukemia and the structure and the intensity of adverse effects, occurred after application of these medicines. Subjects and methods: In a prospective study, we analyzed adverse effects of high doses of glucocorticoides in children suffering acute lymphoblastic leukemia treated in the Institute for Child and Youth Health Care of Vojvodina, since December 2010. until October 2014, were analyzed. This study included 18 patients, aged from 2 to 15 years. Results: Hyperglycemia appeared in 89% of patients treated with prednisone and in 61% of patients treated with dexamethasone. In order to control the high blood glucose level (above 10 mmol /L, in 11% of patients insulin was used. Hypertension appeared in 28% patients treated with prednisone and dexamethasone. Antihypertensives were needed for regulation in 17% patients. Hypopotassemia and hypocalcaemia were significantly more expressed after the use of prednisone in comparison to dexamethasone. In 11% of patients, the treatment with dexamethasone caused depressive behavior, followed by agitation. Conclusion: Adverse effects of dexamethasone and prednisone, administered in high doses in children with ALL were known, expected and reversible. Adverse reactions usually disappeared spontaneously or after short-term symptomatic therapy.

  17. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  18. SABRE: a bio-inspired fault-tolerant electronic architecture

    International Nuclear Information System (INIS)

    Bremner, P; Samie, M; Dragffy, G; Pipe, A G; Liu, Y; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-01-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. (paper)

  19. Community-Level Analysis of psbA Gene Sequences and Irgarol Tolerance in Marine Periphyton▿

    Science.gov (United States)

    Eriksson, K. M.; Clarke, A. K.; Franzen, L.-G.; Kuylenstierna, M.; Martinez, K.; Blanck, H.

    2009-01-01

    This study analyzes psbA gene sequences, predicted D1 protein sequences, species relative abundance, and pollution-induced community tolerance in marine periphyton communities exposed to the antifouling compound Irgarol 1051. The mechanism of action of Irgarol is the inhibition of photosynthetic electron transport at photosystem II by binding to the D1 protein. The metagenome of the communities was used to produce clone libraries containing fragments of the psbA gene encoding the D1 protein. Community tolerance was quantified with a short-term test for the inhibition of photosynthesis. The communities were established in a continuous flow of natural seawater through microcosms with or without added Irgarol. The selection pressure from Irgarol resulted in an altered species composition and an inducted community tolerance to Irgarol. Moreover, there was a very high diversity in the psbA gene sequences in the periphyton, and the composition of psbA and D1 fragments within the communities was dramatically altered by increased Irgarol exposure. Even though tolerance to this type of compound in land plants often depends on a single amino acid substitution (Ser264→Gly) in the D1 protein, this was not the case for marine periphyton species. Instead, the tolerance mechanism likely involves increased degradation of D1. When we compared sequences from low and high Irgarol exposure, differences in nonconserved amino acids were found only in the so-called PEST region of D1, which is involved in regulating its degradation. Our results suggest that environmental contamination with Irgarol has led to selection for high-turnover D1 proteins in marine periphyton communities at the west coast of Sweden. PMID:19088321

  20. Efficacy and tolerability of high-dose phenobarbital in children with focal seizures.

    Science.gov (United States)

    Okumura, Akihisa; Nakahara, Eri; Ikeno, Mitsuru; Abe, Shinpei; Igarashi, Ayuko; Nakazawa, Mika; Takasu, Michihiko; Shimizu, Toshiaki

    2016-04-01

    We retrospectively reviewed the outcomes of children with focal epilepsy treated with oral high-dose phenobarbital. We reviewed data on children (agedphenobarbital (>5 mg/kg/day to maintain a target serum level >40 μg/mL) for at least 6 months. Seizure frequency was evaluated after phenobarbital titration, and 1 and 2 years after high-dose phenobarbital treatment commenced. Treatment was judged effective when seizure frequencies fell by ⩾75%. Seven boys and eight girls were treated. The median age at commencement of high-dose phenobarbital therapy was 30 months. The maximal serum phenobarbital level ranged from 36.5 to 62.9 μg/mL. High-dose PB was effective in seven. In two patients, treatment was transiently effective, but seizure frequency later returned to the baseline. High-dose PB was ineffective in six. No significant association between effectiveness and any clinical variable was evident. Drowsiness was recorded in nine patients, but no patient developed a behavioral problem or hypersensitivity. Oral high-dose phenobarbital was effective in 7 of 15 patients with focal epilepsy and well tolerated. High-dose PB may be useful when surgical treatment is difficult. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  2. The effect of the disulfideisomerase domain containing protein in the defense against polyhexamethylene biguanide of highly tolerant Acanthamoeba at the trophozoite stage

    Directory of Open Access Journals (Sweden)

    Fu-Chin Huang

    2016-12-01

    Full Text Available Acanthamoeba castellanii is a free-living protozoan pathogen capable of causing a blinding keratitis and fatal granulomatous encephalitis. Current treatment generally involves an hourly application of polyhexamethylene biguanide (PHMB over a period of several days but this is not entirely effective against all strains/isolates. The tolerance mechanisms of PHMB in Acanthamoeba cells remain unclear. In this study, we found that the mRNA expression level of disulfideisomerase domain containing protein (PDI increased rapidly in surviving cells of the highly PHMB-tolerant Acanthamoeba castellanii strain, NCKH_D, during PHMB treatment, but not in the ATCC standard strain. After PDI-specific silencing, NCKH_D was found to be more vulnerable to PHMB treatment. The results described above show that PDI is an important gene for PHMB tolerance ability in a highly PHMB-tolerant strain of Acanthamoeba and provide a new insight for more efficient medicine development for Acanthamoeba keratitis.

  3. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone’s level of tolerance

    Science.gov (United States)

    As many of the tolerant cacao clones are slowly losing the tolerance against Frosty pod rot (FPR) caused by Moniliophthora roreri, the knowledge of this tolerance at the molecular level can help to generate more stable tolerant clone against FPR. RNA-Seq analysis was carried out to obtain a comparat...

  4. Urban physiology: city ants possess high heat tolerance.

    Directory of Open Access Journals (Sweden)

    Michael J Angilletta

    Full Text Available Urbanization has caused regional increases in temperature that exceed those measured on a global scale, leading to urban heat islands as much as 12 degrees C hotter than their surroundings. Optimality models predict ectotherms in urban areas should tolerate heat better and cold worse than ectotherms in rural areas. We tested these predications by measuring heat and cold tolerances of leaf-cutter ants from South America's largest city (São Paulo, Brazil. Specifically, we compared thermal tolerances of ants from inside and outside of the city. Knock-down resistance and chill-coma recovery were used as indicators of heat and cold tolerances, respectively. Ants from within the city took 20% longer to lose mobility at 42 degrees C than ants from outside the city. Interestingly, greater heat tolerance came at no obvious expense of cold tolerance; hence, our observations only partially support current theory. Our results indicate that thermal tolerances of some organisms can respond to rapid changes in climate. Predictive models should account for acclimatory and evolutionary responses during climate change.

  5. Heavy metal tolerance in populations of Agrostis tenuis Sibth and other grasses

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R P.G.; Bradshaw, A D

    1965-01-01

    Populations of Agrostis tenuis can be found growing on a variety of different mine workings in conditions of metal contamination toxic to most higher plants. Samples of such populations together with samples of populations taken from ordinary pastures were tested for tolerance to high concentrations of copper, nickel, lead and zinc by measuring the effect of these metals on the rooting of tillers. The soils in which the populations were originally growing were analyzed for each of the four metals and the tolerances of the populations have been related to the levels of the metals in the soils. In general, the mine populations show remarkable tolerance to the particular metals present in high quantities in the soils of their original habitats: the pasture populations do not show this tolerance. The tolerance is specific, for, except in the case of zinc and nickel, tolerance to one metal is not accompanied by tolerance to any other. There must, therefore, be three specific tolerances in the one species. Individual tolerances can however occur together and this can be related to the occurrence of the two metals together in toxic quantities in the soil. The tolerances must be genetically controlled but the physiological mechanism involved is not clear. A number of other species were also shown to have populations tolerant to high levels of zinc. 27 references, 7 figures, 6 tables.

  6. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  7. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  8. An Investigation into Ambiguity Tolerance in Iranian Senior EFL Undergraduates

    Science.gov (United States)

    Marzban, Amin; Barati, Hossein; Moinzadeh, Ahmad

    2012-01-01

    The present study aimed to explore how tolerant of ambiguity Iranian EFL learners at university level are and if gender plays a role in this regard. To this end, upon filling in the revised SLTAS scale of ambiguity tolerance 194 male and female Iranian teacher trainees were assigned to three ambiguity tolerance groups; namely, high, moderate and…

  9. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  10. Efficacy and Tolerability of High-Dose Escitalopram in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Qi, Wei; Gevonden, Martin; Shalev, Arieh

    2017-02-01

    Open-label trials suggest that escitalopram (up to 20 mg/d) is an effective treatment for some, but not all posttraumatic stress disorder (PTSD) patients. Higher doses of escitalopram effectively reduced major depression symptoms in patients who had not responded to regular doses. The current study examines the efficacy, tolerability, and adherence to high-dose escitalopram in PTSD. Forty-five PTSD patients received 12 weeks of gradually increasing doses of escitalopram reaching 40 mg daily at 4 weeks. Among those, 12 participants received regular doses of antidepressants at study onset including escitalopram (n = 7). The Clinician-Administered PTSD Scale (CAPS) evaluated PTSD symptoms severity before treatment, at 3 months (upon treatment termination), and at 6 months (maintenance effect). A 20% reduction in CAPS scores was deemed clinically significant. Adverse events and medication adherence were monitored at each clinical session. Linear mixed-models analysis showed a significant reduction of mean CAPS scores (11.5 ± 18.1 points) at 3 months and maintenance of gains by 6 months (F2,34.56 = 8.15, P = 0.001). Eleven participants (34.3%) showed clinically significant improvement at 3 months. Only 9 participants (20%) left the study. There were no serious adverse events and few mild ones with only 2 adverse events (diarrhea, 11.1%; drowsiness, 11.1%) reported by more than 10% of participants. High doses of escitalopram are tolerable and well adhered to in PTSD. Their beneficial effect at a group level is due to a particularly good response in a subset of patients.Variability in prior pharmacological treatment precludes a definite attribution of the results to high doses of escitalopram.

  11. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Tolerance and toxicity levels of boron in mung bean (vigna radiata (l.) wilczek) cultivars at early growth stages

    International Nuclear Information System (INIS)

    Hasnain, A.; Mahmood, S.; Akhtar, S.; Malik, S.A.; Bashir, N.

    2011-01-01

    Boron (B) toxicity has been recognized as a serious problem in arid and semi arid regions of the world. This study was aimed to determine critical levels of B by studying phenotypic variation for B-tolerance/ toxicity at the germination and seedling stage in three mung bean (Vigna radiata) cultivars; M-6, M-8 and 96009. Boron levels ranging from 0-20 ppm were applied using Boric acid. Germination, growth and photosynthetic attributes were significantly (p<0.001) influenced by varying B levels. However, the cultivars were significantly invariable for germination, seedling height and leaf number. B levels (5-10 ppm) appeared to be nutritionally critical whereas, 15-20 ppm induced B toxicity. The toxicity was expressed in terms of reduction in plant's growth as well as by visible symptoms which included chlorosis and necrosis of the foliage. The present study also demonstrated variation in B tolerance at the seedling stage in these cultivars. Among the tested cultivars, M-6 and M-8 exhibited better growth responses as compared with 96009. Fresh biomass and shoot: root ratio appeared to serve as selection criteria for B tolerance. The study further suggested screening of cultivars/ accessions on a large scale to explore more diversity of traits as well as the use of biochemical markers for mechanistic understanding of B tolerance. (author)

  13. Simulation of Assembly Tolerance and Characteristics of High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-12-01

    Full Text Available Fuel injector is the key part of a high-pressure common rail fuel injection system. Its manufacturing precision and assembly quality affect system's property and performance. According to the characteristics and demands of assembly of the fuel injector, an intelligent optimization algorithm is proposed to resolve the problem of assembly sequence planning. Based on geometric modeling, assembly dimension chain of the injector control chamber is established, and the relationship between assembly tolerance and volume change of control chamber is analyzed. The optimization model of the assembly is established. The impact of assembly tolerance on injector's performance is simulated according to the optimization algorithm. The simulation result shows that quantity of injection fuel changes correspondingly with the change of assembly tolerance, while injection rate and pressure do not change significantly, and the response rate of needle considerably slow. Similarly, the leakage rate of fuel in control chamber is calculated, indicating that the assembly tolerance has obvious impact on fuel leakage and its rate. The study illuminates that injector's assembly tolerance has prominent effect on injection.

  14. Tolerance of High Inorganic Mercury of Perna viridis : Laboratory ...

    African Journals Online (AJOL)

    Tolerance of High Inorganic Mercury of Perna viridis : Laboratory Studies of Its Accumulation, Depuration and Distribution. ... coefficient, indicating that it could act as one of the excretion routes for Hg and it can be proposed as a sensitive biomonitoring material for Hg. The fecal materials released by the mussel had elevated ...

  15. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    Science.gov (United States)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  16. New sunflower hybrids tolerant to tribenuron-methyl

    Directory of Open Access Journals (Sweden)

    Cvejić Sandra

    2016-01-01

    Full Text Available The creation of sunflower hybrids tolerant to tribenuron-methyl enabled the use of wider palette of herbicides to control effectively weeds during the growing season. Moreover, thanks to this tolerance, chemical control of broad-leaves weeds in sunflower, especially Cirsium arvense, is more efficient. The Institute of Field and Vegetable Crops offers four new hybrids tolerant to tribenuron-methyl: NS SUMO SUN, NS SUMO STAR, NS SUMO SjAj and NS SUMO SOL, released in 2016. Hybrids belong to early and medium-early maturity groups; have high yield potential and high oil content. They are adapted for cultivation in different environmental conditions. All hybrids are resistant to broomrape (Orobanche cumana Wallr races from A-E and have a high level of tolerance to Phomopsis, white rot (Sclerotinia sclorotiorum, rust (Puccinia helianthi and others. The paper presents the results of seed and oil yield from the official trials of the Department of variety registration within the Ministry of Agriculture and Environmental Protection of the Republic of Serbia.

  17. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Directory of Open Access Journals (Sweden)

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  18. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  19. Uptake of manganese in potatoes tolerant of high tissue manganese levels

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.B.

    1987-01-01

    Observations on the accumulations of Mn in potatoes (Solanum tuberosum cv. Norland) focused on factors which enabled plants in field studies to withstand high concentrations of Mn in their foliage. A microculture method for assessing nutrient uptake was introduced and applied to studies of the effects of P and temperature on Mn toxicity. Potato plants in microculture behaved similarly in the symptomatology of Mn toxicity to those grown in solution culture but were more responsive to P. The effects of both P and temperature on Mn toxicity in microculture correlated with changes in Mn uptake and with growth reductions due to low P or temperature stress. The uptake of Mn from solution culture increased with increasing P level in solution. This increase was attributed to an increased health and vitality of potato plants under high P and to changes in pH and nutrient solution concentration as plants matured at different rates. When limited control over solution pH and nutrient concentration was provided the effects of P on Mn uptake were largely eliminated. The well-documented time dependence of Mn accumulation was confirmed in a fractionation experiment.

  20. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  1. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism.

    Science.gov (United States)

    Huang, Suzhen; Xue, Tingli; Wang, Zhiquan; Ma, Yuanyuan; He, Xueting; Hong, Jiefang; Zou, Shaolan; Song, Hao; Zhang, Minhua

    2018-04-01

    Furfural-tolerant strain is essential for the fermentative production of biofuels or chemicals from lignocellulosic biomass. In this study, Zymomonas mobilis CP4 was for the first time subjected to error-prone PCR-based whole genome shuffling, and the resulting mutants F211 and F27 that could tolerate 3 g/L furfural were obtained. The mutant F211 under various furfural stress conditions could rapidly grow when the furfural concentration reduced to 1 g/L. Meanwhile, the two mutants also showed higher tolerance to high concentration of glucose than the control strain CP4. Genome resequencing revealed that the F211 and F27 had 12 and 13 single-nucleotide polymorphisms. The activity assay demonstrated that the activity of NADH-dependent furfural reductase in mutant F211 and CP4 was all increased under furfural stress, and the activity peaked earlier in mutant than in control. Also, furfural level in the culture of F211 was also more rapidly decreased. These indicate that the increase in furfural tolerance of the mutants may be resulted from the enhanced NADH-dependent furfural reductase activity during early log phase, which could lead to an accelerated furfural detoxification process in mutants. In all, we obtained Z. mobilis mutants with enhanced furfural and high concentration of glucose tolerance, and provided valuable clues for the mechanism of furfural tolerance and strain development.

  3. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    Science.gov (United States)

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  4. High-level tolerance to triclosan may play a role in Pseudomonas aeruginosa antibiotic resistance in immunocompromised hosts: evidence from outbreak investigation

    Directory of Open Access Journals (Sweden)

    D'Arezzo Silvia

    2012-01-01

    Full Text Available Abstract Background and methods Pseudomonas aeruginosa is a major infectious threat to immunocompromised patients. We recently reported a fatal epidemic of multidrug-resistant P. aeruginosa in an onchoematology unit, linked to massive contamination of a triclosan-based disinfectant. The aim of this study is to evaluate the antimicrobial activity of triclosan and chlorhexidine digluconate against the epidemic strain of P. aeruginosa, to confirm the hypothesis that the soap dispenser acted as a continuous source of the infection during the outbreak, and to explore the potential role of triclosan in increasing the level of resistance to selected antibiotics. Susceptibility tests and time-kill assays for disinfectans were performed using two commercial formulations containing triclosan and chlorhexidine digluconate, respectively. Antibiotic susceptibility testing was performed by the broth microdilution method. Findings The P. aeruginosa epidemic strain exhibited an extremely high level of triclosan resistance (apparent MIC = 2,125 mg/L, while it was markedly susceptible to chlorhexidine digluconate (apparent MIC = 12.5 mg/L. Upon gradual adaptation to triclosan, the epidemic strain survived for a long period (> 120 h in the presence of 3,400 mg/L (equivalent to 1.6 × MIC of triclosan, concomitantly increasing the resistance to six antibiotics that are typical substrates of drug efflux pumps of the resistance nodulation division family. This effect was reversed by efflux pump inhibitors. Conclusions The epidemic P. aeruginosa strain was resistant to triclosan and its previous exposure to triclosan increases antibiotic resistance, likely through active efflux mechanisms. Since P. aeruginosa can become tolerant to elevated triclosan concentrations, the use of triclosan-based disinfectants should be avoided in those healthcare settings hosting patients at high risk for P. aeruginosa infection.

  5. Intergenerational ethics of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Nasu, Akiko; Maruyama, Yoshihiro [Shibaura Inst. of Tech., Tokyo (Japan)

    2003-03-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  6. Intergenerational ethics of high level radioactive waste

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Nasu, Akiko; Maruyama, Yoshihiro

    2003-01-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  7. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  8. Ammonium and nitrate tolerance in lichens

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Markus, E-mail: mhauck@gwdg.d [Department of Plant Ecology, Albrecht von Haller Institute of Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen (Germany)

    2010-05-15

    Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen. - Eutrophication has become a global threat for lichen diversity.

  9. Fasting plasma glucose and serum uric acid levels in a general Chinese population with normal glucose tolerance: A U-shaped curve.

    Directory of Open Access Journals (Sweden)

    Yunyang Wang

    Full Text Available Although several epidemiological studies assessed the relationship between fasting plasma glucose (FPG and serum uric acid (SUA levels, the results were inconsistent. A cross-sectional study was conducted to investigate this relationship in Chinese individuals with normal glucose tolerance.A total of 5,726 women and 5,457 men with normal glucose tolerance were enrolled in the study. All subjects underwent a 75-g oral glucose tolerance test. Generalized additive models and two-piecewise linear regression models were applied to assess the relationship.A U-shaped relationship between FPG and SUA was observed. After adjusting for potential confounders, the inflection points of FPG levels in the curves were 4.6 mmol/L in women and 4.7 mmol/L in men respectively. SUA levels decreased with increasing fasting plasma glucose concentrations before the inflection points (regression coefficient [β] = -36.4, P < 0.001 for women; β = -33.5, P < 0.001 for men, then SUA levels increased (β = 17.8, P < 0.001 for women; β = 13.9, P < 0.001 for men. Additionally, serum insulin levels were positively associated with FPG and SUA (P < 0.05.A U-shaped relationship between FPG and SUA levels existed in Chinese individuals with normal glucose tolerance. The association is partly mediated through serum insulin levels.

  10. Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction.

    Science.gov (United States)

    Li, J T; Liao, B; Lan, C Y; Ye, Z H; Baker, A J M; Shu, W S

    2010-01-01

    Averrhoa carambola is a high-biomass tropical tree that has been identified as a Cd accumulator. In the present study, field survey, pot, and hydroponic experiments were conducted to investigate the variation of Cd tolerance and accumulation in cultivars of A. carambola as well as its potential for phytoextraction. In the field survey, it was found that concentrations of Cd in aerial tissues of A. carambola varied greatly among sites and cultivars. The Cd bioconcentration factors (BCFs) and Cd removals by the field-grown A. carambola differed significantly among sites but not among cultivars. Nonetheless, all four carambola cultivars investigated were able to accumulate considerably high concentrations of Cd in their shoots, which indicated that the 4-yr-old carambola stands could remove 0.3 to 51.8% of the total Cd content in the top 20-cm soil layer. When cultured in Cd-spiked soils, the carambola cultivar Hua-Di always showed higher Cd tolerance than the other cultivars; however, this tendency was not confirmed by hydroponic experiment. The Cd BCFs of cultivar Thailand grown in soils with 6 and 12 mg Cd kg(-1) were highest among cultivars, whereas this trend was reversed at 120 mg Cd kg(-1) treatment. Nevertheless, the pot- and hydroponics-grown carambola cultivars generally showed higher capacities to tolerate and accumulate Cd, compared with the control species. The present results indicate that a strong ability to tolerate and accumulate Cd seems to be a trait at the species level in A. carambola, although some degree of variances in both Cd tolerance and accumulation exists among cultivars.

  11. Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway

    Directory of Open Access Journals (Sweden)

    Li HQ

    2017-05-01

    Full Text Available Haiqin Li, Rong Tao, Jing Wang, Lingjie Xia Department of Clinical Pain, The People’s Hospital of Henan Province, Zhengzhou, People’s Republic of China Abstract: Several lines of evidence indicate that microRNAs (miRNAs modulate tolerance to the analgesic effects of morphine via regulation of pain-related genes, making dysregulation of miRNA levels a clinical target for controlling opioid tolerance. However, the precise mechanisms by which miRNAs regulate opioid tolerance are unclear. In the present study, we noted that the miR-375 level was downregulated but the expression of Janus kinase 2 (JAK2 was upregulated in mouse dorsal root ganglia (DRG following chronic morphine treatment. The miR-375 levels and JAK2 expression were correlated with the progression of morphine tolerance, and upregulation of miR-375 level could significantly hinder morphine tolerance. This was ameliorated by JAK2 knockdown. Prolonged morphine exposure induced the expression of brain-derived neurotrophic factor (BDNF in a time-dependent manner in the DRG. This was regulated by the miR-375 and JAK2–signal transducer and activator of transcription 3 (STAT3 pathway, and inhibition of this pathway decreased BDNF production, and thus, attenuated morphine tolerance. More importantly, we found that miR-375 could target JAK2 and increase BDNF expression in a JAK2/STAT3 pathway-dependent manner. Keywords: morphine tolerance, miR-375, JAK2, BDNF

  12. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  13. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  14. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  15. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  16. Alcohol levels do not accurately predict physical or mental impairment in ethanol-tolerant subjects: relevance to emergency medicine and dram shop laws.

    Science.gov (United States)

    Roberts, James R; Dollard, Denis

    2010-12-01

    The human body and the central nervous system can develop tremendous tolerance to ethanol. Mental and physical dysfunctions from ethanol, in an alcohol-tolerant individual, do not consistently correlate with ethanol levels traditionally used to define intoxication, or even lethality, in a nontolerant subject. Attempting to relate observed signs of alcohol intoxication or impairment, or to evaluate sobriety, by quantifying blood alcohol levels can be misleading, if not impossible. We report a case demonstrating the disconnect between alcohol levels and generally assigned parameters of intoxication and impairment. In this case, an alcohol-tolerant man, with a serum ethanol level of 515 mg/dl, appeared neurologically intact and cognitively normal. This individual was without objective signs of impairment or intoxication by repeated evaluations by experienced emergency physicians. In alcohol-tolerant individuals, blood alcohol levels cannot always be predicted by and do not necessarily correlate with outward appearance, overt signs of intoxication, or physical examination. This phenomenon must be acknowledged when analyzing medical decision making in the emergency department or when evaluating the ability of bartenders and party hosts to identify intoxication in dram shop cases.

  17. Impact of a high intensity training program on glucose tolerance in people with multiple sclerosis

    OpenAIRE

    Patyn, Cédric

    2014-01-01

    Abstract Background: Recent research reported a higher prevalence of impaired glucose tolerance (IGT) in MS patients than in healthy people. The influence of high intensity exercise on IGT in MS was never investigated before. Objective: To investigate the effect of high intensity aerobic interval (HIIT) or continuous endurance (CT) training, both in combination with resistance training, on glucose tolerance muscle strength and body composition. Methods: 34 subjects were randomly as...

  18. Molecular markers associated with aluminium tolerance in Sorghum bicolor.

    Science.gov (United States)

    Too, Emily Jepkosgei; Onkware, Augustino Osoro; Were, Beatrice Ang'iyo; Gudu, Samuel; Carlsson, Anders; Geleta, Mulatu

    2018-01-01

    Sorghum ( Sorghum bicolor , L. Moench) production in many agro-ecologies is constrained by a variety of stresses, including high levels of aluminium (Al) commonly found in acid soils. Therefore, for such soils, growing Al tolerant cultivars is imperative for high productivity. In this study, molecular markers associated with Al tolerance were identified using a mapping population developed by crossing two contrasting genotypes for this trait. Four SSR ( Xtxp34 , Sb5_236 , Sb6_34 , and Sb6_342 ), one STS ( CTG29_3b ) and three ISSR ( 811_1400 , 835_200 and 884_200 ) markers produced alleles that showed significant association with Al tolerance. CTG29_3b, 811_1400 , Xtxp34 and Sb5_ 236 are located on chromosome 3 with the first two markers located close to Alt SB , a locus that underlie the Al tolerance gene ( SbMATE ) implying that their association with Al tolerance is due to their linkage to this gene. Although CTG29_3b and 811_ 1400 are located closer to Alt SB , Xtxp34 and Sb5_236 explained higher phenotypic variance of Al tolerance indices. Markers 835_200 , 884_200 , Sb6_34 and Sb6_342 are located on different chromosomes, which implies the presence of several genes involved in Al tolerance in addition to S bMATE in sorghum. These molecular markers have a high potential for use in breeding for Al tolerance in sorghum.

  19. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yanjuan Jiang; Gang Liang; Diqiu Yu

    2012-01-01

    Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide.However,the mechanism underlying drought tolerance in plants is unclear.WRKY transcription factors are known to function in adaptation to abiotic stresses.By screening a pool of WRKY-associated T-DNA insertion mutants,we isolated a gain-of-function mutant,acquired drought tolerance (adt),showing improved drought tolerance.Under drought stress conditions,adt accumulated higher levels of ABA than wild-type plants.Stomatal aperture analysis indicated that adt was more sensitive to ABA than wild-type plants.Molecular genetic analysis revealed that a T-DNA insertion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein.Constitutive expression of WRKY57 also conferred similar drought tolerance.Consistently with the high ABA content and enhanced drought tolerance,three stress-responsive genes (RD29A,NCED3,and ABA3) were up-regulated in adt.ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences.In addition,during ABA treatment,seed germination and early seedling growth of adt were inhibited,whereas,under high osmotic conditions,adt showed a higher seed germination frequency.In summary,our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels.Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.

  20. Mast cell protease 6 is required for allograft tolerance.

    Science.gov (United States)

    de Vries, V C; Elgueta, R; Lee, D M; Noelle, R J

    2010-09-01

    It has been shown that mast cells (MC) are absolutely required for transplant acceptance. However, only a few of the numerous mediators produced by MC have been proposed as potential mechanisms for the observed immunosuppression. The role of proteases in acquired immune tolerance as such has not yet been addressed. In this study, we have shown the requirement for MC protease 6 (MCP6), an MC-specific tryptase, to establish tolerance toward an allogeneic skin graft. The substrate for MCP6 is interleukin (IL)-6, cytokine generally considered to indicate transplant rejection. Herein we have shown an inverse correlation between MCP6 and IL-6. High expression of MCP6 is accompanied by low levels of IL-6 when the allograft is accepted, whereas low expression of MCP6 in combination with high levels of IL-6 are observed in rejecting grafts. Moreover, tolerance toward an allogeneic graft cannot be induced in MCP6(-/-) mice. Rejection observed in these mice was comparable to that of MC-deficient hosts; it is T-cell mediated. These findings suggest that MCP6 actively depletes the local environment of IL-6 to maintain tolerance. 2010. Published by Elsevier Inc.

  1. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of

  2. Elevated levels of interferon-γ production by memory T cells do not promote transplant tolerance resistance in aged recipients.

    Directory of Open Access Journals (Sweden)

    James I Kim

    Full Text Available Immunosenescence predisposes the elderly to infectious and autoimmune diseases and impairs the response to vaccination. We recently demonstrated that ageing also impedes development of transplantation tolerance. Unlike their young counterparts (8-12 weeks of age aged male recipients (greater than 12 months of age transplanted with a full MHC-mismatched heart are resistant to tolerance mediated by anti-CD45RB antibody. Surprisingly, either chemical or surgical castration restored tolerance induction to levels observed using young recipients. Based on the strong impact of endocrine modulation on transplant tolerance, we explored the impact of ageing and castration on the immune system. Here we report a significant increase in the percentage of T cells that produce interferon-γ (IFN-γ in aged male versus young male animals and that the overall increase in IFN-γ production was due to an expansion of IFN-γ-producing memory T cells in aged animals. In contrast to IFN-γ production, we did not observe differences in IL-10 expression in young versus old male mice. We hypothesized that endocrine modulation would diminish the elevated levels of IFN-γ production in aged recipients, however, we observed no significant reduction in the percentage of IFN-γ+ T cells upon castration. Furthermore, we neutralized interferon-γ by antibody and did not observe an effect on graft survival. We conclude that while elevated levels of interferon-γ serves as a marker of tolerance resistance in aged mice, other as yet to be identified factors are responsible for its cause. Defining these factors may be relevant to design of tolerogenic strategies for aged recipients.

  3. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  4. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    Directory of Open Access Journals (Sweden)

    Marine J. Paupière

    2014-09-01

    Full Text Available Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  5. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.

    Science.gov (United States)

    Paupière, Marine J; van Heusden, Adriaan W; Bovy, Arnaud G

    2014-09-30

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  6. Psychological Stability of a Personality and Capability of Tolerant Interaction as Diverse Manifestations of Tolerance

    Science.gov (United States)

    Belasheva, Irina Valeryevna; Petrova, Nina Fedorovna

    2016-01-01

    Present article addresses studying tolerance as a factor of personality stability, which manifests on the level of interpersonal relationships and on the level of intra-personal system of stressors resistance. The article includes theoretical analysis of the tolerance construct as an integrative personality formation. It explores the question of…

  7. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  8. "Tolerating" Adolescent Needs: Moving beyond Zero Tolerance Policies in High School

    Science.gov (United States)

    Gregory, Anne; Cornell, Dewey

    2009-01-01

    The authors contend that zero tolerance discipline policies are inconsistent with adolescent developmental needs for authoritative, as distinguished from authoritarian, discipline. Previous research has applied the notion of authoritative parenting to teaching styles in classrooms, and a similar model of authoritative discipline can guide…

  9. Size-symmetric competition in a shade-tolerant invasive plant

    DEFF Research Database (Denmark)

    Pan, Xiao-Yun; Weiner, Jacob; Li, Bo

    2013-01-01

    competition need not be size asymmetric, and suggest that tolerance to low light levels involves a reduction in phenotypic plasticity. Responses of the invasive A. philoxeroides to crowding may be an example of an invasive plant’s success in establishing dense stands of closely related individuals......, a shade‐tolerant invasive species. Stem fragments of A. philoxeroides were grown at either low or high densities (6 vs. 24 plants per pot) under three light levels (10%, 34%, and 100% full sun). After 8 weeks, survival was 31% lower in pots with a higher initial density. Both high density and low light...... levels reduced plant size substantially. Mean plant biomass ranged from 0.23 g in high‐density and low‐light pots to 4.41 g in low‐density and high‐light pots. There were no strong or significant effects of density or light level on size inequality of survivors. Most of the variation in allocation...

  10. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  11. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  12. An essential factor for high Mg2+ tolerance of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Joshua Armitano

    2016-11-01

    Full Text Available Internal bacterial concentration of Mg2+, the most abundant divalent cation in living cells, is estimated to be in the single millimolar range. However, many bacteria will thrive in media with only micromolars of Mg2+, by using a range of intensely studied and highly efficient import mechanisms, as well as in media with very high magnesium concentration, presumably mediated by currently unknown export mechanisms. Staphylococcus aureus has a particularly high Mg2+ tolerance for a pathogen, growing unimpaired in up to 770 mM Mg2+, and we here identify SA0657, a key factor in this tolerance. The predicted domain structure of SA0657 is shared with a large number of proteins in bacteria, archaea and even eukarya, for example CorB from Salmonella and the human CNNM protein family. One of the shared domains, a CBS pair potentially involved in Mg2+ sensing, contains the conserved Glycine326 which we establish to be a key residue for SA0657 function. In light of our findings, we propose the name MpfA, Magnesium Protection Factor A, for SA0657.

  13. Salt tolerance at single cell level in giant-celled Characeae

    Directory of Open Access Journals (Sweden)

    Mary Jane eBeilby

    2015-04-01

    Full Text Available Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i very large cell size, (ii position on phylogenetic tree near the origin of land plants and (iii continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt-sensitive Chara australis succumbs to 50 - 100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells

  14. Freezing and low temperature photoinhibition tolerance in cultivated potato and potato hybrids

    Directory of Open Access Journals (Sweden)

    M.M. SEPPÄNEN

    2008-12-01

    Full Text Available Four Solanum tuberosum L. cultivars (Nicola, Pito, Puikula, Timo and somatic hybrids between freezing tolerant S. commersonii and freezing sensitive S. tuberosum were evaluated for their tolerance to freezing and low temperature photoinhibition. Cellular freezing tolerance was studied using ion leakage tests and the sensitivity of the photosynthetic apparatus to freezing and high light intensity stress by measuring changes in chlorophyll fluorescence (FV/FM and oxygen evolution. Exposure to high light intensities after freezing stress increased frost injury significantly in all genotypes studied. Compared with S. tuberosum cultivars, the hybrids were more tolerant both of freezing and intense light stresses. In field experiments the mechanism of frost injury varied according to the severity of night frosts. During night frosts in 1999, the temperature inside the potato canopy was significantly higher than at ground level, and did not fall below the lethal temperature for potato cultivars (from -2.5 to -3.0°C. As a result, frost injury developed slowly, indicating that damage occurred to the photosynthetic apparatus. However, as the temperature at ground level and inside the canopy fell below -4°C, cellular freezing occurred and the canopy was rapidly destroyed. This suggests that in the field visual frost damage can follow from freezing or non-freezing temperatures accompanied with high light intensity. Therefore, in an attempt to improve low temperature tolerance in potato, it is important to increase tolerance to both freezing and chilling stresses.

  15. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  16. Gigarad-tolerant power switches and memory elements

    International Nuclear Information System (INIS)

    Joyner, W.T.; Becknell, G.F.; Donelson, J.M.A.

    1987-01-01

    A new class of silicon devices operating without p-n junctions has been studied for radiation hardness. The electric field in these devices is uniform over most of the device, thus causing high-voltage breakdown to increase with electrode spacing. Deep acceptor levels are created in the silicon by diffusing gold atoms into the lattice, or by electron radiation. These acceptor levels, near the center of the band gap, trap out electrons so that the low resistivity of the n-type doped wafer can be raised to intrinsic resistivity. Switching between a high-resistivity state at low currents and a low-resistivity state at high currents occurs at a definite threshold voltage, exhibiting characteristics similar to silicon-controlled rectifiers. Compensating 0.1 ohm-meter (10 ohm-cm) silicon wafers requires electron fluxes of 10 23 electrons per square meter (10 19 electrons per square centimeter). Experiments demonstrating gamma tolerance to 1 Gigarad(Si) are described. Calculations for maximum tolerable neutron fluence are shown, and a phenomenological explanation for these results is presented

  17. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    Directory of Open Access Journals (Sweden)

    M. Bleich

    2009-10-01

    Full Text Available Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, and even mortality when being exposed to near-future levels (year 2100 scenarios of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, ca. 1000 to 3900 μatm than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, ca. 400 μatm is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular pCO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for

  18. A Consideration of Resistance and Tolerance for Ruminant Nematode Infections

    Directory of Open Access Journals (Sweden)

    Steve eBishop

    2012-12-01

    Full Text Available Debates on the relative merits of resistance (the ability of the host to control the parasite lifecycle and tolerance (the net impact of infection on host performance are often lively and unhindered by data or evidence. Resistance generally shows continuous, heritable variation but data are sparser for tolerance, the utility of which will depend upon the disease prevalence. Prevalence is a function of group mean resistance and infection pressure, which itself is influenced by mean resistance. Tolerance will have most value for endemic diseases with a high prevalence, but will be of little value for low prevalence diseases. The conditionality of tolerance on infection status, and hence resistance, makes it difficult to estimate independently of resistance.Tolerance is potentially tractable for nematode infections, as the prevalence of infection is ca. 100% in animals grazing infected pasture, and infection level can be quantified by faecal egg count (FEC. Whilst individual animal phenotypes for tolerance are difficult to estimate, breeding values are estimable if related animals graze pastures of different contamination levels. Selection for resistance, i.e. FEC, provides both direct and indirect benefits from ever decreased pasture contamination and hence decreased infectious challenge. Modelling and experimental studies have shown that such reductions in pasture contamination may lead to substantially increased performance.It is proposed that selection goals addressing nematode infections should include both resistance and performance under challenging conditions. However, there may be benefits from exploiting large datasets in which sires are used across cohorts differing in infection level, to further explore tolerance. This may help to customise breeding objectives, with tolerance given greater weight in heavily parasitized environments.

  19. Studies on heat tolerance in the freshwater crab, barytelphusa cunicularis (Westwood, 1836)

    Energy Technology Data Exchange (ETDEWEB)

    Didwan, A D; Nagabhushanam, R

    1976-07-31

    The freshwater crab, Barytelphusa cunicularis was used to study the effect of temperature and salinity on heat tolerance. Two sets of experiments were conducted to determine if these factors cause a resulting change in the upper temperature tolerance. Changes in the total water content, total protein, fat, glycogen and blood glucose were studied after acclimation to different temperatures. High temperature acclimation generally increased resistance to lethal temperatures whereas acclimation to salinity, either at high or low temperature, decreased it. A combination of high temperature and normal freshwater was the most favorable to withstand the high test tolerance temperature. The water content, glycogen and blood sugar level increased with the rise in temperature while fat and protein content increased with a decrease in temperature. (MU)

  20. Parental Effect of Long Acclimatization on Thermal Tolerance of Juvenile Sea Cucumber Apostichopus japonicus.

    Directory of Open Access Journals (Sweden)

    Qing-Lin Wang

    Full Text Available To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50, less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change.

  1. Can we define a tolerable level of risk in food allergy? Report from a EuroPrevall/UK Food Standards Agency workshop.

    Science.gov (United States)

    Madsen, C B; Hattersley, S; Allen, K J; Beyer, K; Chan, C-H; Godefroy, S B; Hodgson, R; Mills, E N C; Muñoz-Furlong, A; Schnadt, S; Ward, R; Wickman, M; Crevel, R

    2012-01-01

    There is an emerging consensus that, as with other risks in society, zero risk for food-allergic people is not a realistic or attainable option. Food allergy challenge data and new risk assessment methods offer the opportunity to develop quantitative limits for unintended allergenic ingredients which can be used in risk-based approaches. However, a prerequisite to their application is defining a tolerable level of risk. This requires a value judgement and is ultimately a 'societal' decision that has to involve all relevant stakeholders. The aim of the workshop was to bring together key representatives from the stakeholders (regulators, food industry, clinical researchers and patients), and for the first time ever discuss the definition of a tolerable level of risk with regard to allergic reactions to food. The discussions revealed a consensus that zero risk was not a realistic option and that it is essential to address the current lack of agreed action levels for cross-contamination with allergens if food allergen management practice is to be improved. The discussions also indicated that it was difficult to define and quantify a tolerable level of risk, although both the clinical and the industry groups tried to do so. A consensus emerged that doing nothing was not a viable option, and there was a strong desire to take action to improve the current situation. Two concrete actions were suggested: (1) Action levels should be derived from the data currently available. Different scenarios should be examined and further developed in an iterative process. On the basis of this work, a tolerable level of risk should be proposed. (2) 'One-dose' clinical trial with a low challenge dose should be performed in multiple centres to provide additional information about the general applicability of dose-distribution models and help validate the threshold levels derived. © 2011 Blackwell Publishing Ltd.

  2. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  3. A Review Of Fault Tolerant Scheduling In Multicore Systems

    Directory of Open Access Journals (Sweden)

    Shefali Malhotra

    2015-05-01

    Full Text Available Abstract In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software. Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy in which Agricultural Vulnerability Factor is considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This method gives low overhead fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0 to 18 for selected benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.

  4. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    Science.gov (United States)

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  5. Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, David J. [Wetland Ecology Research Group, Department of Botany, University College Dublin, Belfield, Dublin 4 (Ireland)]. E-mail: davematt00@hotmail.com; Moran, Bridget M. [Wetland Ecology Research Group, Department of Botany, University College Dublin, Belfield, Dublin 4 (Ireland); Otte, Marinus L. [Wetland Ecology Research Group, Department of Botany, University College Dublin, Belfield, Dublin 4 (Ireland)

    2005-03-01

    Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin. - Some wetland angiosperms are tolerant to high concentrations of metals, regardless of conditions in the plants' natural habitat.

  6. Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin

    International Nuclear Information System (INIS)

    Matthews, David J.; Moran, Bridget M.; Otte, Marinus L.

    2005-01-01

    Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin. - Some wetland angiosperms are tolerant to high concentrations of metals, regardless of conditions in the plants' natural habitat

  7. Characterization of Uranium Tolerance and Biomineralization Potential of Caulobacter crescentus

    Science.gov (United States)

    Park, D.

    2015-12-01

    Due to its high toxicity and mobility, U(VI) poses a major environmental threat to ecosystems. The ubiquitous aerobic bacterium Caulobacter cresecentus is an attractive candidate for U(VI) bioremediation because of its ability to survive in low-nutrient environments (5, 6), tolerate high U concentrations and mineralize U(VI) aerobically through the formation of uranyl phosphate (U-Pi) precipitates. Despite these attractive environmental properties, both a systems level understanding of the adaptive response pathways involved in U tolerance and the environmental conditions affecting the biomineralization process and stability of biogenic U-Pi minerals remain limited. By measuring changes in both mRNA and protein expression during exposure to high U levels, we have identified the core stress response pathways involved in U tolerance. Pathways associated with heat shock, lipospolysaccharide biosynthesis and transport, outer membrane lipoprotein transport and outermembrane assembly were highly induced at both the RNA and protein levels. Correspondingly, removal of integral components of proteolysis pathways including clpA, clpS and degP significantly reduced U tolerance under biomineralization conditions. Surprisingly, in contrast to many other heavy metals, U did not cause oxidative stress or DNA damage. Together, these analyses indicate that U predominately targets the outermembrane and causes mis-folding of both cytoplasmic and extracytoplasmic proteins. Efforts are currently underway to characterize the morphological and structural properties of biogenic U-Pi minerals and the environmental factors that influence their production and stability. Preliminary AFM studies suggest that U-Pi minerals formed under biomineralization conditions appear morphologically distinct from those formed abiotically between U(VI) and inorganic phosphate. Additionally, we observed that biomineralization tolerates a wide pH range (pH 6-9). Our long-range goal is the development of a

  8. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    International Nuclear Information System (INIS)

    Dodson, T.; Ellis, R.; Priniski, C.; Raftopoulos, S.; Stevens, D.; Viola, M.

    2009-01-01

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurement based (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes

  9. High levels of IgG4 antibodies to foods during infancy are associated with tolerance to corresponding foods later in life

    OpenAIRE

    Tomičić, Sara; Norrman, Gunilla; Fälth-Magnusson, Karin; Jenmalm, Maria C.; Devenney, Irene; Fagerås Böttcher, Malin

    2009-01-01

    Children with eczema and sensitization to foods are recommended skin care and, if food allergy is proven by challenge, an elimination diet. For most children the diet period is transient, but the process behind tolerance development and the influence of decreased allergen exposure is not fully known. The aim of the study was to investigate the effect of elimination diet on serum and salivary antibodies and to identify immunological parameters related to the ability to tolerate foods. Eighty-n...

  10. An analysis of tolerance levels in IMRT quality assurance procedures

    International Nuclear Information System (INIS)

    Basran, Parminder S.; Woo, Milton K.

    2008-01-01

    Increased use of intensity modulated radiation therapy (IMRT) has resulted in increased efforts in patient quality assurance (QA). Software and detector systems intended to streamline the IMRT quality assurance process often report metrics, such as percent discrepancies between measured and computed doses, which can be compared to benchmark or threshold values. The purpose of this work is to examine the relationships between two different types of IMRT QA processes in order to define, or refine, appropriate tolerances values. For 115 IMRT plans delivered in a 3 month period, we examine the discrepancies between (a) the treatment planning system (TPS) and results from a commercial independent monitor unit (MU) calculation program; (b) TPS and results from a commercial diode-array measurement system; and (c) the independent MU calculation and the diode-array measurements. Statistical tests were performed to assess significance in the IMRT QA results for different disease site and machine models. There is no evidence that the average total dose discrepancy in the monitor unit calculation depends on the disease site. Second, the discrepancies in the two IMRT QA methods are independent: there is no evidence that a better --or worse--monitor unit validation result is related to a better--or worse--diode-array measurement result. Third, there is marginal benefit in repeating the independent MU calculation with a more suitable dose point, if the initial IMRT QA failed a certain tolerance. Based on these findings, the authors conclude at some acceptable tolerances based on disease site and IMRT QA method. Specifically, monitor unit validations are expected to have a total dose discrepancy of 3% overall, and 5% per beam, independent of disease site. Diode array measurements are expected to have a total absolute dose discrepancy of 3% overall, and 3% per beam, independent of disease site. The percent of pixels exceeding a 3% and 3 mm threshold in a gamma analysis should be

  11. Frequency of impaired oral glucose tolerance test in high risk pregnancies for gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Naheed, F.; Narijo, S.; Kammeruddin, K.

    2008-01-01

    To determine the frequency of impaired oral glucose tolerance test in high risk pregnancies for Gestational Diabetes Mellitus (GDM). A total of 50 high risk pregnancies for gestational diabetes mellitus were selected through outpatient department of obstetrics. Data was collected according to certain obstetric and non-obstetric risk factors for GDM as inclusion criteria through a designed proforma i.e. family history of diabetes, macrosomia (i.e, wt > 3.5 kg), abortions, grand multiparity, a sudden increase in weight (>1 kg/wk) during pregnancy, age > 35 years, early neonatal deaths/sudden IUDS, polyhydramnios, urogenital infections (vulvo-vaginal candidiasis and UTI), previous history of GDM, congenital abnormalities (with or without polyhydramnios) and multiple pregnancy. Oral glucose tolerance test was performed and analyzed according to American Diabetic Association criteria, 2004. The most frequent risk factors were family history of diabetes mellitus in 1st degree relative and large for dates babies in 18 patients. Similarly, high risk factors such as history of abortions and grand multiparity were present in 16 and 14 pregnant women respectively. Least common factors, which contributed for GDM, were polyhydramnios in 4 cases and perinatal mortality (due to congenital anomalies of foetus, intrauterine deaths or neonatal deaths) seen only in 5 cases. Overall impaired oral glucose tolerance test was found in 24%. Most patients had one (17%) or two risk factors commonly (23%). Only 2% had shown five or more risk factors. Oral glucose tolerance test is a useful diagnostic tool to detect GDM in high risk pregnancies, depending upon the high frequency of number of risk factors in each individual. (author)

  12. Tolerância de sementes de linhagens de milho à alta temperatura de secagem Tolerance of corn lines seeds to high drying temperature

    Directory of Open Access Journals (Sweden)

    Solange Carvalho Barrios Roveri José

    2004-10-01

    Full Text Available Cultivares tolerantes a altas temperaturas de secagem proporcionam redução no tempo de secagem, uma etapa crítica no sistema de produção de sementes de milho (Zea mays L.. Nesta pesquisa, foi avaliada a tolerância à alta temperatura de secagem de sementes de linhagens de milho, por meio de testes de germinação e vigor. As sementes foram colhidas manualmente em espigas com teor de água em torno de 35% e secas artificialmente à 45 C até atingirem 11% de teor de água. Em seguida, foram submetidas aos testes de primeira contagem e contagem final de germinação, envelhecimento acelerado, teste de frio sem solo e de condutividade elétrica. Houve diferenças significativas nos valores de germinação e vigor de sementes das diferentes linhagens, sendo então classificadas em tolerantes e intolerantes. Pelos resultados, conclui-se que a sensibilidade das sementes à injúria por secagem à alta temperatura é dependente da linhagem.High drying temperature tolerant cultivars provide a reduction in the drying period, a critical phase of the corn seeds (Zea mays L. production system. In this research the tolerance of corn lines seeds to high drying temperature was evaluated by the germination and vigor tests. Seeds were handpicked in ears with water content around 35% and dried artificially at 45ºC up to 11% water content. Then, the seeds were submitted to the first and final germination counting tests, accelerated aging, cold test without soil and electrical conductivity. There were significant differences in the germination and vigor values of seeds from different lines, being classified into tolerant and intolerant. The results permitted to conclude that sensitivity of seeds to high drying temperature injury depends on the lines.

  13. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower.

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano

    2012-02-01

    Ahasl1 is a multilallelic locus where all the induced and natural mutations for herbicide tolerance were described thus far in sunflower (Helianthus annuus L.). The allele Ahasl1-1 confers moderate tolerance to imidazolinone (IMI), Ahasl1-2, and Ahasl1-3 provides high levels of tolerance solely to sulfonylurea (SU) and IMI, respectively. An Argentinean wild sunflower population showing plants with high level of tolerance to either an IMI and a SU herbicide was discovered and used to develop an inbred line designated RW-B. The objectives of this work were to determine the relative level and pattern of cross-tolerance to different AHAS-inhibiting herbicides, the mode of inheritance, and the molecular basis of herbicide tolerance in this line. Slight or no symptoms observed after application of different herbicides indicated that RW-B possesses a completely new pattern of tolerance to AHAS-inhibiting herbicides in sunflower. Biomass response to increasing doses of metsulfuron or imazapyr demonstrated a higher level of tolerance in RW-B with respect to Ahasl1-1/Ahasl1-1 and Ahasl1-2/Ahasl1-2 lines. On the basis of genetic analyses and cosegregation test, it was concluded that tolerance to imazapyr in the original population is inherited as a single, partially dominant nuclear gene and that this gene is controlling the tolerance to four different AHAS-inhibiting herbicides. Pseudo-allelism test permitted us to conclude that the tolerant allele present in RW-B is an allelic variant of Ahasl1-1 and was designated as Ahasl1-4. Nucleotide and deduced amino acid sequence indicated that the Ahasl1-4 allele sequence of RW-B has a leucine codon (TTG) at position 574 (relative to the Arabidopsis thaliana AHAS sequence), whereas the enzyme from susceptible lines has a tryptophan residue (TGG) at this position. The utilization of this new allele in the framework of weed control and crop rotation is discussed.

  14. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    Science.gov (United States)

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  15. Low-Level Corruption Tolerance: An “Action-Based” Approach for Peru and Latin America

    Directory of Open Access Journals (Sweden)

    Joseph Pozsgai Alvarez

    2015-01-01

    Full Text Available Since the beginning of the past decade, the tolerance of corruption by citizens of most Latin American countries has become a concept in its own right within the broader study of corruption. This construct, however, lacks a systematic approach and is yet to account for specific types of corruption tolerance or identify appropriate indicators to measure them. The present study addresses these voids by analyzing data provided by LAPOP’s AmericasBarometer 2006 for Peru (a typical case for the incidence of bribery in Latin America and the Global Corruption Barometer against a carefully constructed framework for the understanding of the phenomenon of corruption tolerance. The results indicate that attitudes toward specific types of low-level corruption should not be equated to citizens’ decisions to engage in such behavior. They further suggest that the study of corruption tolerance has the potential to greatly improve our understanding of the determinants of corruption in developing countries.

  16. Semi-lethal high temperature and heat tolerance of eight Camellia species

    OpenAIRE

    He, XY; Ye, H; Ma, JL; Zhang, RQ; Chen, GC; Xia, YY

    2012-01-01

    Annual leaf segments of eight Camellia species were used to study the heat tolerance by an electrical conductivity method, in combination with a Logistic equation to ascertain the semi-lethal high temperature by fitting the cell injury rate curve. Te relationship between the processing temperature and the cell injury rate in Camellia showed a typical "S" shaped curve, following the Logistic model. Te correlation coeficient was above 0.95. Te semi-lethal high temperature LT50 of the eight Came...

  17. High levels of DDT in breast milk: Intake, risk, lactation duration, and involvement of gender

    International Nuclear Information System (INIS)

    Bouwman, Hindrik; Kylin, Henrik; Sereda, Barbara; Bornman, Riana

    2012-01-01

    We investigated presence and levels of DDT in 163 breast milk samples from four South African villages where, in three of them, malaria is controlled with DDT-sprayed indoors. Mean ΣDDT levels in breast milk were 18, 11, and 9.5 mg/kg mf (milk fat) from the three DDT-sprayed villages, respectively, including the highest ΣDDT level ever reported for breast milk from South Africa (140 mg/kg mf). Understanding the causes for these differences would be informative for exposure reduction intervention. The Provisional Tolerable Daily Intake (PTDI) for DDT by infants, and the Maximum Residue Limit (MRL) were significantly exceeded. DDT had no effect on duration of lactation. There were indications (not significant) from DDT-sprayed villages that first-born female infants drink milk with more ΣDDT than first-born male infants, and vice versa for multipara male and female infants, suggesting gender involvement on levels of DDT in breast milk – requiring further investigation. - Highlights: ► The highest ΣDDT in breast milk ever found in South Africa is reported. ► Maximum Residue Limit is exceeded, up to 99 times. ► Provisional Tolerable Daily Intake is exceeded, up to 310 times. ► High ΣDDT did not affect duration of lactation. ► Infant gender may affect levels of ΣDDT in breast milk. - High levels of DDT in breast milk from a DDT-spayed area exceeded known limits in milk, but did not affect duration lactation. Infant gender may affect levels of ΣDDT in breast milk.

  18. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  19. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  20. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    Science.gov (United States)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable

  1. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  2. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms

    International Nuclear Information System (INIS)

    Fechner, Lise C.; Gourlay-Francé, Catherine; Bourgeault, Adeline; Tusseau-Vuillemin, Marie-Hélène

    2012-01-01

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities. - Highlights: ► A new short-term test based on β-glucosidase activity to assess biofilm metal tolerance. ► Cd, Cu, Ni, Pb and Zn tolerance of natural biofilms collected along an urban gradient. ► Metal tolerance levels increase upstream to downstream the river. ► Community tolerance increases at environmental quality standard exposure concentrations. ► Biofilm tolerance is a sensitive biological response to diffuse urban pollution. - Metal concentrations below environmental quality standards increase tolerance levels of natural, hetetrophic biofilms downstream from an urban area.

  3. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  4. Different-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network.

    Science.gov (United States)

    Jin, Long; Liao, Bolin; Liu, Mei; Xiao, Lin; Guo, Dongsheng; Yan, Xiaogang

    2017-01-01

    By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solved by a discrete-time recurrent neural network. Simulative verifications based on a six-link planar redundant robot manipulator substantiate the efficacy and accuracy of the presented acceleration fault-tolerant scheme, the resultant QP and the corresponding discrete-time recurrent neural network.

  5. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients

    International Nuclear Information System (INIS)

    Marquis, Olivier; Miaud, Claude; Ficetola, Gentile Francesco; Bocher, Aurore; Mouchet, Florence; Guittonneau, Sylvie; Devaux, Alain

    2009-01-01

    Populations of widely distributed species can be subjected to unequal selection pressures, producing differences in rates of local adaptation. We report a laboratory experiment testing tolerance variation to UV-B and polycyclic aromatic hydrocarbons (PAHs) among common frog (Rana temporaria) populations according to their natural exposure level in the field. Studied populations were naturally distributed along two gradients, i.e. UV-B radiation with altitude and level of contamination by PAHs with the distance to emitting sources (road traffic). Tadpoles from eight populations were subjected to (1) no or high level of artificial UV-B; (2) four concentrations of benzo[a]pyrene (BaP) (0, 50, 250, 500 μg L -1 ); (3) simultaneously to UV-B and BaP. Since both stressors are genotoxic, the number of micronucleated erythrocytes (MNE) in circulating red blood cells was used as a bioindicator of tadpole sensitivity. High-altitude populations appear to be locally adapted to better resist UV-B genotoxicity, as they showed the lowest MNE numbers. Conversely, no correlation was observed between levels of PAH contamination in the field and tadpole tolerance to BaP in the laboratory, indicating the absence of local adaptation for BaP tolerance in these populations. Nevertheless, the decrease of MNE formation due to BaP exposure with altitude suggests that high-altitude populations were intrinsically more resistant to BaP genotoxicity. We propose the hypothesis of a co-tolerance between UV-B and BaP in high-altitude common frog populations: local adaptation to prevent and/or repair DNA damage induced by UV-B could also protect these highland populations against DNA damage induced by BaP. The results of this study highlight the role of local adaptation along pollutant gradients leading to tolerance variation, which implies that is it necessary to take into account the history of exposure of each population and the existence of co-tolerance that can hide toxic effects of a new

  6. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Olivier [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Miaud, Claude, E-mail: claude.miaud@univ-savoie.fr [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Ficetola, Gentile Francesco [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Department of Biology, Universita degli Studi di Milano, Milan (Italy); Bocher, Aurore [Laboratoire de Chimie Moleculaire et Environnement, Universite de Savoie, Le Bourget du Lac (France); Mouchet, Florence [Laboratoire d' Ecologie Fonctionnelle, UMR CNRS-UPS-INPT 5245, Institut National Polytechnique-ENSAT, Auzeville-Tolosane (France); Guittonneau, Sylvie [Laboratoire de Chimie Moleculaire et Environnement, Universite de Savoie, Le Bourget du Lac (France); Devaux, Alain [Laboratoire des Sciences de l' Environnement, Ecole Nationale des Travaux Publics de l' Etat, INRA-EFPA, Vaulx-en-Velin (France)

    2009-11-08

    Populations of widely distributed species can be subjected to unequal selection pressures, producing differences in rates of local adaptation. We report a laboratory experiment testing tolerance variation to UV-B and polycyclic aromatic hydrocarbons (PAHs) among common frog (Rana temporaria) populations according to their natural exposure level in the field. Studied populations were naturally distributed along two gradients, i.e. UV-B radiation with altitude and level of contamination by PAHs with the distance to emitting sources (road traffic). Tadpoles from eight populations were subjected to (1) no or high level of artificial UV-B; (2) four concentrations of benzo[a]pyrene (BaP) (0, 50, 250, 500 {mu}g L{sup -1}); (3) simultaneously to UV-B and BaP. Since both stressors are genotoxic, the number of micronucleated erythrocytes (MNE) in circulating red blood cells was used as a bioindicator of tadpole sensitivity. High-altitude populations appear to be locally adapted to better resist UV-B genotoxicity, as they showed the lowest MNE numbers. Conversely, no correlation was observed between levels of PAH contamination in the field and tadpole tolerance to BaP in the laboratory, indicating the absence of local adaptation for BaP tolerance in these populations. Nevertheless, the decrease of MNE formation due to BaP exposure with altitude suggests that high-altitude populations were intrinsically more resistant to BaP genotoxicity. We propose the hypothesis of a co-tolerance between UV-B and BaP in high-altitude common frog populations: local adaptation to prevent and/or repair DNA damage induced by UV-B could also protect these highland populations against DNA damage induced by BaP. The results of this study highlight the role of local adaptation along pollutant gradients leading to tolerance variation, which implies that is it necessary to take into account the history of exposure of each population and the existence of co-tolerance that can hide toxic effects of a

  7. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  8. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  9. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  10. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  11. Increased stress tolerance of matured pig oocytes after high hydrostatic presure

    DEFF Research Database (Denmark)

    Pribenszky, Cs; Du, Y; Molnár, M

    2008-01-01

    The present paper describes a method which uses high hydrostatic pressure as a pre-treatment to in vitro matured porcine oocytes to improve their survival rates in the subsequent processes including cryopreservation, parthenogenetic activation and embryo culture. In Experiment I oocytes were...... treated with different pressure impulses in the range of 20-80 MPa (200-800 times greater than atmospheric pressure) for 30-120 min at 24 °C. For parthenogenetic activation a single dc of 12.5 kV/cm was used, to test shock tolerance of the treated vs. control oocytes and also compare their developmental...... competence evaluated with continued in vitro development. The upper limit of pressure tolerance was found in the 40 MPa range. In Experiment II oocytes pre-treated with pressures in the 20-40 MPa range were vitrified with the Cryotop method, and parthenogenetically activated subsequently with combined...

  12. Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein

    International Nuclear Information System (INIS)

    Lau, Andy T.Y.; Zhang Jian; Chiu, J.-F.

    2006-01-01

    Cadmium-resistant cells were developed in our laboratory with rat lung epithelial cells (LECs) by stepwise exposure of LECs to cadmium chloride from 1 μM to 20 μM after 20 passages. To investigate the Cd-resistant phenotype in a long-term perspective, cadmium-resistant cells adapted to 20 μM cadmium (Cd R ) were then cultured in the absence of cadmium for various passages [Cd R (-n)]. All these adapted cells were significantly protected from cadmium toxicity as compared to parental cadmium-sensitive LECs (Cd S ). The cadmium-resistant phenotype of adapted cells was relatively stable in the absence of cadmium for as long as 40 passages. Basal mRNA level of metallothionein-1 (MT-1) was dramatically higher in Cd R than in Cd R (-), which may account for the higher Cd-resistance of Cd R than Cd R (-). MT-1 mRNA level decreased drastically in Cd R after cadmium removal, suggesting that the high basal level of MT-1 in Cd R may be only partially responsible for cadmium-resistance. Treatment of cells with high levels of cadmium resulted in decreased phosphorylation of c-Jun N-terminal kinase (JNK1/2) in adapted cells than in sensitive cells and this cadmium-induced JNK activity was blocked by JNK inhibitor II, SP600125. Ro318220, a strong activator of JNK, reverted cadmium-sensitive phenotype in adapted cells. Taken together, our results suggest that during cadmium adaptation, cells develop tolerance to cell death, generally due to perturbation of the JNK signaling pathway and the nonresponsiveness of JNK phosphorylation is critical for the Cd-tolerance in these cells

  13. Highly Solvent Tolerance in Serratia marcescens IBBPo15

    Directory of Open Access Journals (Sweden)

    Mihaela Marilena Stancu

    Full Text Available ABSTRACT The aim of this study was to investigate the solvent tolerance mechanisms in Serratia marcescens strain IBBPo15 (KT315653. Serratia marcescens IBBPo15 exhibited remarkable solvent-tolerance, being able to survive in the presence of high concentrations (above 40% of toxic organic solvents, such as cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. S. marcescens IBBPo15 produced extracellular protease and the enzyme production decreased in cells exposed to 5% cyclohexane, n-hexane, toluene, styrene, and ethylbenzene, as compared with the control and n-decane exposed cells. S. marcescens IBBPo15 cells produced carotenoid pigments and alteration of pigments profile (i.e., phytoene, lycopene were observed in cells exposed to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. The exposure of S. marcescens IBBPo15 cells to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, ethylbenzene induced also changes in the intracellular (e.g., 50 kDa protein and extracellular (e.g., 39, 41, 43, 53, 110 kDa proteins proteins profile. Significant RAPD, ARDRA, rep-PCR and PCR pattern modifications were not observed in DNA extracted from S. marcescens IBBPo15 cells exposed to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. Though only HAE1 and acrAB genes were detected in the genome of S. marcescens IBBPo15 cells, the unspecific amplification of other fragments being observed also when the primers for ompF and recA genes were used.

  14. A study of SEU-tolerant latches for the RD53A chip

    CERN Document Server

    Fougeron, Denis

    2018-01-01

    The RD53 collaboration was established to develop the next generation of pixel readout chips needed by ATLAS and CMS at the HL-LHC and requiring extreme rate and radiation tolerance. The 65 nm CMOS process has been adopted in order to satisfy the high level of integration requirement. However, the SEU immunity should be carefully considered for a deep submicron process like the 65 nm. Indeed, the device dimensions are small and the capacitance of the storage nodes becomes very low. A chip prototype including different SEU tolerant structures was designed in a 65 nm technology. Several proton irradiation tests were carried out in order to estimate the SEU tolerance of the proposed structures and the level of improvement comparing with a standard architecture.

  15. Tinnitus is associated with reduced sound level tolerance in adolescents with normal audiograms and otoacoustic emissions

    Science.gov (United States)

    Sanchez, Tanit Ganz; Moraes, Fernanda; Casseb, Juliana; Cota, Jaci; Freire, Katya; Roberts, Larry E.

    2016-01-01

    Recent neuroscience research suggests that tinnitus may reflect synaptic loss in the cochlea that does not express in the audiogram but leads to neural changes in auditory pathways that reduce sound level tolerance (SLT). Adolescents (N = 170) completed a questionnaire addressing their prior experience with tinnitus, potentially risky listening habits, and sensitivity to ordinary sounds, followed by psychoacoustic measurements in a sound booth. Among all adolescents 54.7% reported by questionnaire that they had previously experienced tinnitus, while 28.8% heard tinnitus in the booth. Psychoacoustic properties of tinnitus measured in the sound booth corresponded with those of chronic adult tinnitus sufferers. Neither hearing thresholds (≤15 dB HL to 16 kHz) nor otoacoustic emissions discriminated between adolescents reporting or not reporting tinnitus in the sound booth, but loudness discomfort levels (a psychoacoustic measure of SLT) did so, averaging 11.3 dB lower in adolescents experiencing tinnitus in the acoustic chamber. Although risky listening habits were near universal, the teenagers experiencing tinnitus and reduced SLT tended to be more protective of their hearing. Tinnitus and reduced SLT could be early indications of a vulnerability to hidden synaptic injury that is prevalent among adolescents and expressed following exposure to high level environmental sounds. PMID:27265722

  16. Tolerance of Frogs among High School Students: Influences of Disgust and Culture

    Science.gov (United States)

    Prokop, Pavol; Medina-Jerez, William; Coleman, Joy; Fancovicová, Jana; Özel, Murat; Fedor, Peter

    2016-01-01

    Amphibians play an important role in the functioning of ecosystems and some of them inhabit human gardens where they can successfully reproduce. The decline of amphibian diversity worldwide suggests that people may play a crucial role in their survival. We conducted a cross-cultural study on high school students' tolerance of frogs in Chile,…

  17. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  18. Electrical Steering of Vehicles - Fault-tolerant Analysis and Design

    DEFF Research Database (Denmark)

    Blanke, Mogens; Thomsen, Jesper Sandberg

    2006-01-01

    solutions and still meet strict requirements to functional safety. The paper applies graph-based analysis of functional system structure to find a novel fault-tolerant architecture for an electrical steering where a dedicated AC-motor design and cheap voltage measurements ensure ability to detect all......The topic of this paper is systems that need be designed such that no single fault can cause failure at the overall level. A methodology is presented for analysis and design of fault-tolerant architectures, where diagnosis and autonomous reconfiguration can replace high cost triple redundancy...

  19. Aluminum-Tolerant Pisolithus Ectomycorrhizas Confer Increased Growth, Mineral Nutrition, and Metal Tolerance to Eucalyptus in Acidic Mine Spoil

    Directory of Open Access Journals (Sweden)

    Louise Egerton-Warburton

    2015-01-01

    Full Text Available Ectomycorrhizal fungi (ECM may increase the tolerance of their host plants to Al toxicity by immobilizing Al in fungal tissues and/or improving plant mineral nutrition. Although these benefits have been demonstrated in in vitro (pure culture or short-term nutrient solution (hydroponic experiments, fewer studies have examined these benefits in the field. This study examined the growth, mineral nutrition, and Al levels in two Eucalyptus species inoculated with three Pisolithus ecotypes that varied in Al tolerance (in vitro and grown in mine spoil in the greenhouse and field. All three ecotypes of Pisolithus improved Eucalyptus growth and increased host plant tolerance to Al in comparison to noninoculated plants. However, large variations in plant growth and mineral nutrition were detected among the Pisolithus-inoculated plants; these differences were largely explained by the functional properties of the Pisolithus inoculum. Seedlings inoculated with the most Al-tolerant Pisolithus inoculum showed significantly higher levels of N, P, Ca, Mg, and K and lower levels of Al than seedlings inoculated with Al-sensitive ecotypes of Pisolithus. These findings indicate an agreement between the fungal tolerance to Al in vitro and performance in symbiosis, indicating that both ECM-mediated mineral nutrient acquisition and Al accumulation are important in increasing the host plant Al tolerance.

  20. The changes in levels of C-P and insulin in glucose tolerance test in rats with experimental non-insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Liu Xinqiu; Lei Ming

    2001-01-01

    The changes in levels of C-P and insulin were investigated in the GT test in rats with non-insulin dependent diabetes mellitus. In order to establish a model of non-insulin dependent diabetes mellitus (NIDDM), the authors injected rats with small dose streptozocoi (i.v.). Two weeks after the injection, the rats developed impaired glucose tolerance (IGT). Then, they were fed with high energy diet for eight weeks to form NIDDM. The results showed that the highest peak time of C-P and insulin in NIDDM was remarkably later than that in normal subjects, the highest peak time was in two hours (P < 0.05). The data suggest that level of C-P could accurately respond to level of insulin, and this experimental non-insulin dependent diabetes mellitus model is ideal

  1. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    Full Text Available BACKGROUND: The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L. growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY under drought stress and non-stress conditions, and tolerance of rice blast. METHODOLOGY: A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant and high-yielding indica variety Swarna (blast- and drought-susceptible through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. RESULTS: Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. CONCLUSIONS: This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these

  2. SHAM: High-level seismic tests of piping at the HDR

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs

  3. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...... a week. Muscle fiber size, composition and capillary density were analyzed in biopsies obtained in the vastus lateralis muscle. Glucose tolerance and the insulin response were measured by a 2-hour oral glucose tolerance test. Results: All outcome measures remained unchanged during the control period....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...

  4. RATIO FEATURES OF STRESS TOLERANCE AND ANXIETY IN MEN AND WOMEN

    Directory of Open Access Journals (Sweden)

    A V Mikheeva

    2016-12-01

    Full Text Available The article discusses the ratio of stress tolerance to the level of personal anxiety. It provides a definition of the term “stress tolerance”, analyzes the concept of the “disquietude” and the “anxiety”: how different authors define these phenomena, what is different and what is in common. The concepts of “personal anxiety” and “situational anxiety” are given consideration. The views of foreign and domestic authors on anxiety as a factor that contributes to stress, as well as its components are discussed. An overview of the methods of measuring stress and anxiety is provided: a stress questionnaire of S.V. Subbotin, anxiety scale of Spielberger - Hanin. The results of domestic and foreign research on the identification of correlations between the variables of stress tolerance and anxiety are analyzed. We also consider the results of our own research, conducted on a sample of 149 men and 142 women in 2015-2016 years in Moscow. The results of four subgroups of the respondents are reviewed: men with high stress tolerance, men with low stress tolerance, women with high stress tolerance, and women with low stress tolerance. In each of the subgroups the variables of reactive and personal anxiety and connections between indicators of anxiety and indicators of stress tolerance are analyzed; the conclusions about the relationship of stress and anxiety in each subgroup are drawn.

  5. Exercise effects on fitness, lipids, glucose tolerance and insulin levels in young adults.

    Science.gov (United States)

    Israel, R G; Davidson, P C; Albrink, M J; Krall, J M

    1981-07-01

    The effect of 3 different physical training programs on cardiorespiratory (cr) fitness, fasting plasma lipids, glucose and insulin levels, and scapular skinfold thickness was assessed in 64 healthy college men. Training sessions were held 4 times a week for 5 weeks. The cr fitness improved significantly and skinfold thickness decreased following the aerobic, the pulse workout (interval training), and the anaerobic training compared to the control group. Skinfold thickness, plasma insulin, and triglyceride concentrations were significantly intercorrelated before and after training. The exercise programs had no significant effect on plasma cholesterol, triglycerides, phospholipids, glucose tolerance, or insulin levels. Change in adipose mass was thus dissociated from change in plasma insulin and triglyceride concentrations. It was concluded that in young men plasma triglycerides, the lipid component mostly readily reduced by exercise, were too low to be reduced further by a physical training program.

  6. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Yue, Jing; Li, Cong; Liu, Yuwei; Yu, Jingjuan

    2014-01-01

    Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.

  7. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica promotes high salt tolerance in transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jing Yue

    Full Text Available Remorin proteins (REMs form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE and one ABA responsive element (ABRE. An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.

  8. Acute radiation reactions in oral and pharyngeal mucosa: tolerable levels in altered fractionation schedules

    International Nuclear Information System (INIS)

    Fowler, Jack F.; Harari, Paul M.; Leborgne, Felix; Leborgne, Jose H.

    2003-01-01

    Purpose:To investigate whether a predictive estimate can be obtained for a 'tolerance level' of acute oral and pharyngeal mucosal reactions in patients receiving head and neck radiotherapy, using an objective set of dose and time data. Materials and methods:Several dozen radiotherapy schedules for treating head and neck cancer have been reviewed, together with published estimates of whether they were tolerated or (in a number of schedules) not. Those closest to the borderline were given detailed analysis. Total doses and biologically effective doses (BED or ERD) were calculated for a range of starting times of cellular repopulation and rates of daily proliferation. Starting times of proliferation from 5 to 10 days and daily cellular doubling rates of 1-3 days were considered. The standard published form of BED with its linear overall time factor was used: BED=nd1+((d)/(α/β))-((Ln2T-T k )/(αT p )) (see text for parameters). Results: A clear progression from acceptable to intolerable mucosal reactions was found, which correlated with total biologically effective dose (BED in our published modeling), for all the head and neck cancer radiotherapy schedules available for study, when ranked into categories of 'intolerable' or 'tolerable'. A review of published mechanisms for mucosal reactions suggested that practical schedules used for treatment caused stimulated compensatory proliferation to start at about 7 days. The starting time of compensatory proliferation had little predictive value in our listing, so we chose the starting time of 7 days. Very short and very long daily doubling rates also had little reliability, so we suggest choosing a doubling time of 2.5 days as a datum. With these parameters a 'tolerance zone of uncertainty' could be identified which predicted acute-reaction acceptability or not of a schedule within a range of about 2-10 Gy in total BED. If concurrent chemoradiotherapy is used, our provisional suggestion is that this zone should be reduced

  9. Reliable on-line storage in the ALICE High-Level Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Kalcher, Sebastian; Lindenstruth, Volker [Kirchhoff Institute of Physics, University of Heidelberg (Germany)

    2009-07-01

    The on-line disk capacity within large computing clusters such as used in the ALICE High-Level Trigger (HLT) is often not used due to the inherent unreliability of the involved disks. With currently available hard drive capacities the total on-line capacity can be significant when compared to the storage requirements of present high energy physics experiments. In this talk we report on ClusterRAID, a reliable, distributed mass storage system, which allows to harness the (often unused) disk capacities of large cluster installations. The key paradigm of this system is to transform the local hard drive into a reliable device. It provides adjustable fault-tolerance by utilizing sophisticated error-correcting codes. To reduce the costs of coding and decoding operations the use of modern graphics processing units as co-processor has been investigated. Also, the utilization of low overhead, high performance communication networks has been examined. A prototype set up of the system exists within the HLT with 90 TB gross capacity.

  10. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  11. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  12. Mondo/ChREBP-Mlx-Regulated Transcriptional Network Is Essential for Dietary Sugar Tolerance in Drosophila

    Science.gov (United States)

    Havula, Essi; Teesalu, Mari; Hyötyläinen, Tuulia; Seppälä, Heini; Hasygar, Kiran; Auvinen, Petri; Orešič, Matej; Sandmann, Thomas; Hietakangas, Ville

    2013-01-01

    Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Krüppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources. PMID:23593032

  13. Polarization-independent high-index contrast grating and its fabrication tolerances

    DEFF Research Database (Denmark)

    Ikeda, Kazuhiro; Takeuchi, Kazuma; Takayose, Kentaro

    2013-01-01

    also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.......A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented...

  14. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    Science.gov (United States)

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  15. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  16. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  17. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  18. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Science.gov (United States)

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  19. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  20. THE ADAPTATION TEST ON YARDLONG BEAN LINES TOLERANT TO APHIDS AND HIGH YIELD

    Directory of Open Access Journals (Sweden)

    Kuswanto

    2011-06-01

    Full Text Available The adaptation trial was applied to determine the benefits of genotype-environmental inter-action, adaptability and stability of lines. The previous research successfully obtained 8 UB lines which had high yield and tolerant to aphids. These lines belong to plant breeding laboratory of Brawijaya University, which had stability and a high potential can be immediately released to the public. Research was conducted in 2010, dry and rainy season, on 3 locations of yardlong bean, namely Malang, Kediri and Jombang. Randomized Block Design was applied in these locations.Genotype-environment interaction was analyzed with combined analysis of nested design.The adaptability and stability were known from regression analysis based on the stability of Eberhart and Russel. There were 6 stabile lines, namely UB7070P1, UB24089X1, UB606572, UB61318, UB7023J44, and UB715, respectively. They were recommended to be released as new varieties which had pest tolerance and high yield. The UBPU was suitable to be developed in marginal land. The 6 new varieties had registered to Agriculture Department Republic of Indonesia, namely, Brawijaya 1, Brawijaya 3, Brawijaya 4, Bagong 2, Bagong 3 dan Bagong Ungu, respectively.

  1. High Latitude Corals Tolerate Severe Cold Spell

    Directory of Open Access Journals (Sweden)

    Chenae A. Tuckett

    2018-01-01

    Full Text Available Climatically extreme weather events often drive long-term ecological responses of ecosystems. By disrupting the important symbiosis with zooxanthellae, Marine Cold Spells (MCS can cause bleaching and mortality in tropical and subtropical scleractinian corals. Here we report on the effects of a severe MCS on high latitude corals, where we expected to find bleaching and mortality. The MCS took place off the coast of Perth (32°S, Western Australia in 2016. Bleaching was assessed before (2014 and after (2017 the MCS from surveys of permanent plots, and with timed bleaching searches. Temperature data was recorded with in situ loggers. During the MCS temperatures dipped to the coldest recorded in ten years (15.3°C and periods of <17°C lasted for up to 19 days. Only 4.3% of the surveyed coral colonies showed signs of bleaching. Bleaching was observed in 8 species where those most affected were Plesiastrea versipora and Montipora mollis. These findings suggest that high latitude corals in this area are tolerant of cold stress and are not persisting near a lethal temperature minimum. It has not been established whether other environmental conditions are limiting these species, and if so, what the implications are for coral performance on these reefs in a warmer future.

  2. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  3. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  4. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  5. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  6. Boron-toxicity tolerance in barley arising from efflux transporter amplification.

    Science.gov (United States)

    Sutton, Tim; Baumann, Ute; Hayes, Julie; Collins, Nicholas C; Shi, Bu-Jun; Schnurbusch, Thorsten; Hay, Alison; Mayo, Gwenda; Pallotta, Margaret; Tester, Mark; Langridge, Peter

    2007-11-30

    Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.

  7. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    Science.gov (United States)

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants.

    Science.gov (United States)

    Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-01-01

    Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Is Multilingualism Linked to a Higher Tolerance of Ambiguity?

    Science.gov (United States)

    DeWaele, Jean-Marc; Wei, Li

    2013-01-01

    The present study investigates the link between multilingualism and the personality trait Tolerance of Ambiguity (TA) among 2158 mono-, bi- and multilinguals. Monolinguals and bilinguals scored significantly lower on TA compared to multilinguals. A high level of global proficiency of various languages was linked to higher TA scores. A stay abroad…

  10. +Gz tolerance after 14 days bed rest and the effects of rehydration.

    Science.gov (United States)

    Greenleaf, J. E.; Van Beaumont, W.; Bernauer, E. M.; Haines, R. F.; Sandler, H.; Young, H. L.; Yusken, J. W.

    1972-01-01

    Measurement of the reduction in centrifugation tolerance after two weeks of bedrest with moderate daily exercise, with an attempt to determine if rehydration improves +Gz tolerance. There were significant reductions in +Gz tolerance during bedrest periods at three acceleration levels. Rehydration resulted in a significant increase in tolerance at 2.1G but it did not restore tolerance to control levels. Rehydration did not affect tolerance at 3.2G and 3.8G.

  11. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    Science.gov (United States)

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  12. Cognitive component of Tolerance in Pedagogic Education

    Directory of Open Access Journals (Sweden)

    O. V. Akimova

    2013-01-01

    Full Text Available The paper looks at one of the urgent educational problems of tolerance development by teachers and students; tolerance being viewed as the openness to the new knowledge acquisition, willingness to understand other people and cooperate with them, and therefore the opportunity for self- development.The paper outlines the ways of tolerant attitudes formation by all the human subjects of educational process; the concept of person oriented teaching is considered to be the basic one for tolerance development. To optimize the specialists’ training for communication at any level of professional environment, the cognitive activity educational model is suggested, providing the ways out of any complicated pedagogical situation. The cognitive psychology concepts give the background for the above model. The education in question promotes the intellectual level of the prospective teachers, intensifies their creative potential, methodological thinking and practical experience, as well as tolerance development in professional communication process. 

  13. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction.

    Science.gov (United States)

    Bashmakov, Dmitry I; Lukatkin, Alexander S; Anjum, Naser A; Ahmad, Iqbal; Pereira, Eduarda

    2015-10-01

    This work investigated the accumulation, allocation, and impact of zinc (Zn; 1.0 μM-10 mM) in maize (Zea mays L.) seedlings under simulated laboratory conditions. Z. mays exhibited no significant change in its habitus (the physical characteristics of plants) up to 10-1000 μM of Zn (vs 5-10 mM Zn). Zn tolerance evaluation, based on the root test, indicated a high tolerance of Z. mays to both low and intermediate (or relatively high) concentrations of Zn, whereas this plant failed to tolerate 10 mM Zn and exhibited a 5-fold decrease in its Zn tolerance. Contingent to Zn treatment levels, Zn hampered the growth of axial organs and brought decreases in the leaf area, water regime, and biomass accumulation. Nevertheless, at elevated levels of Zn (10 mM), Zn(2+) was stored in the root cytoplasm and inhibited both axial organ growth and water regime. However, accumulation and allocation of Zn in Z. mays roots, studied herein employing X-ray fluorimeter and histochemical methods, were close to Zn accumulator plants. Overall, the study outcomes revealed Zn tolerance of Z. mays, and also implicate its potential role in Zn phytoextraction.

  14. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  15. Can we define a tolerable level of risk in food allergy? Report from a EuroPrevall/UK Food Standards Agency workshop

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard; Hattersley, S.; Allen, K. J.

    2012-01-01

    and that it is essential to address the current lack of agreed action levels for cross‐contamination with allergens if food allergen management practice is to be improved. The discussions also indicated that it was difficult to define and quantify a tolerable level of risk, although both the clinical and the industry......There is an emerging consensus that, as with other risks in society, zero risk for food‐allergic people is not a realistic or attainable option. Food allergy challenge data and new risk assessment methods offer the opportunity to develop quantitative limits for unintended allergenic ingredients...... which can be used in risk‐based approaches. However, a prerequisite to their application is defining a tolerable level of risk. This requires a value judgement and is ultimately a ‘societal’ decision that has to involve all relevant stakeholders. The aim of the workshop was to bring together key...

  16. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Science.gov (United States)

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  17. Mechanism of immune tolerance induced by donor derived immature dendritic cells in rat high-risk corneal transplantation

    Directory of Open Access Journals (Sweden)

    Xu-Dong Zhao

    2013-06-01

    Full Text Available AIM: To study the role of immature dendritic cells (imDCs on immune tolerance in rat penetrating keratoplasty (PKP in high-risk eyes and to investigate the mechanism of immune hyporesponsiveness induced by donor-derived imDCs. METHODS: Seventy-five SD rats (recipient and 39 Wistar rats (donor were randomly divided into 3 groups: control, imDC and mature dendritic cell (mDC group respectively. Using a model of orthotopic corneal transplantation in which allografts were placed in neovascularized high-risk eyes of recipient rat. Corneal neovascularization was induced by alkaline burn in the central cornea of recipient rat. Recipients in imDC group or mDC group were injected donor bone marrow-derived imDCs or mDCs of 1×106 respectively 1 week before corneal transplantation via tail vein. Control rat received the same volume of PBS. In each group, 16 recipients were kept for determination of survival time and other 9 recipients were executed on day 3, 7 and 14 after transplantation. Cornea was harvested for hematoxylin-eosin staining and acute rejection evaluation, Western blot was used to detect the expression level of Foxp3. RESULTS: The mean survival time of imDC group was significantly longer than that of control and mDC groups (all P<0.05. The expression level of Foxp3 on CD4+CD25+T cells of imDC group (2.24±0.18 was significantly higher than that in the control (1.68±0.09 and mDC groups (1.46±0.13 (all P<0.05. CONCLUSION: Donor-derived imDC is an effective treatment in inducing immune hyporesponsiveness in rat PKP. The mechanism of immune tolerance induced by imDC might be inhibit T lymphocytes responsiveness by regulatory T cells.

  18. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Science.gov (United States)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  19. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    Directory of Open Access Journals (Sweden)

    Angela Pizzolla

    Full Text Available The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND. Respiratory tolerance was induced by repeated intranasal (i.n. administration of ovalbumin (OVA, prior to induction of allergic airway inflammation (AAI by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation.

  20. Frustration Tolerance in Youth With ADHD.

    Science.gov (United States)

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  1. Unique roles of antisocial personality disorder and psychopathic traits in distress tolerance.

    Science.gov (United States)

    Sargeant, Marsha N; Daughters, Stacey B; Curtin, John J; Schuster, Randi; Lejuez, C W

    2011-11-01

    Previous research indicates that individuals with antisocial personality disorder (ASPD) evidence low distress tolerance, which signifies impaired ability to persist in goal-directed behavior during an aversive situation, and is associated with a variety of poor interpersonal and drug use outcomes. Based on theory and research indicating that psychopathic traits are associated with hypo-reactivity in emotional responding, a unique hypothesis emerges where psychopathic traits should have the opposite effect of ASPD and be related to high levels of distress tolerance. In a sample of 107 substance-dependent patients in an inner-city substance use residential treatment facility, this hypothesis was supported. ASPD was related to lower distress tolerance, while psychopathic traits were related to higher distress tolerance, with each contributing unique variance. Findings are discussed in relation to different presentations of distress tolerance as a function of psychopathic traits among those with an ASPD diagnosis.

  2. Antigen-specific tolerance of human alpha1-antitrypsin induced by helper-dependent adenovirus.

    Science.gov (United States)

    Cerullo, V; McCormack, W; Seiler, M; Mane, V; Cela, R; Clarke, C; Rodgers, J R; Lee, B

    2007-12-01

    As efficient and less toxic virus-derived gene therapy vectors are developed, a pressing problem is to avoid immune response to the therapeutic gene product. Secreted therapeutic proteins potentially represent a special problem, as they are readily available to professional antigen-presenting cells throughout the body. Some studies suggest that immunity to serum proteins can be avoided in some mouse strains by using tissue-specific promoters. Here we show that expression of human alpha1-antitrypsin (AAT) was nonimmunogenic in the immune-responsive strain C3H/HeJ, when expressed from helper-dependent (HD) vectors using ubiquitous as well as tissue-specific promoters. Coadministration of less immunogenic HD vectors with an immunogenic first-generation vector failed to immunize, suggesting immune suppression rather than immune stealth. Indeed, mice primed with HD vectors were tolerant to immune challenge with hAAT emulsified in complete Freund's adjuvant. Such animals developed high-titer antibodies to coemulsified human serum albumin, showing that tolerance was antigen specific. AAT-specific T cell responses were depressed in tolerized animals, suggesting that tolerance affects both T and B cells. These results are consistent with models of high-dose tolerance of B cells and certain other suppressive mechanisms, and suggest that a high level of expression from HD vectors can be sufficient to induce specific immune tolerance to serum proteins.

  3. Variation tolerant SoC design

    Science.gov (United States)

    Kozhikkottu, Vivek J.

    allocation of shared system resources as a means to combat the adverse impact of within-die variations on multi-core platforms. For multi-threaded programs executing on variation-impacted multi-cores platforms, we make the key observation that thread performance is not only a function of the frequency of the core on which it is executing on, but also depends upon the amount of shared system resources allocated to it. We utilize this insight to design a variation-aware runtime scheme which allocates the ways of a last-level shared L2 cache amongst the different cores/threads of a multi-core platform taking into account both application characteristics as well as chip specific variation profiles. Our experiments on 100 quad-core chips, each with a distinct variation profile, shows on an average 15% performance improvements for a suite of multi-threaded benchmarks. Our final contribution investigates the variation-tolerant design of domain-specific accelerators and demonstrates how the unique architectural properties of these accelerators can be leveraged to create highly effective variation tolerance mechanisms. We explore this concept through the variation-tolerant design of a vector processor that efficiently executes applications from the domains of recognition, mining and synthesis (RMS). We develop a novel design approach for variation tolerance, which leverages the unique nature of the vector reduction operations performed by this processor to effectively predict and preempt the occurrence of timing errors under variations and subsequently restore the correct output at the end of each vector reduction operation. We implement the above predict, preempt and restore operations by suitably enhancing the processor hardware and the application software and demonstrate considerable energy benefits (on an average 32%) across six applications from the domains of RMS. In conclusion, our work provides system designers with powerful tools and mechanisms in their efforts to combat

  4. Improving abiotic stress tolerance of quinoa

    DEFF Research Database (Denmark)

    Yang, Aizheng

    Global food security faces the challenges of rapid population growth and shortage of water resources. Drought, heat waves and soil salinity are becoming more frequent and extreme due to climatic changes in many regions of the world, and resulting in yield reduction of many crops. It is hypothesized...... that quinoa has the potential to grow under a range of abiotic stresses, tolerating levels regarded as stresses in other crop species. Therefore cultivation of quinoa (Chenopodium quinoa Willd.) could be an alternative option in such regions. Even though quinoa is more tolerant to abiotic stress than most...... other crops, its productivity declines under severe drought, high salt conditions and harsh climate conditions. Different management approaches including water-saving irrigation methods (such as deficit irrigation, DI and alternate root-zone drying irrigation, ARD), inoculating crop seeds with plant...

  5. Physiological and genetic basis of plant tolerance to excess boron

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2008-01-01

    Full Text Available Boron (B deficit as well as excess may significantly limit the organic production in plants. In extreme cases they may kill the affected plants. Boron excess occurs primarily in arid and semiarid regions, in saline soils or in consequence to human action. Excessive boron concentrations retard plant growth and cause physiological and morphological changes (chlorosis and necrosis first of all in leaf tips and then in marginal or intercostal parts of the lamina. Physiological mechanisms of plant tolerance to boron excess have not been studied in sufficient detail. The predominant opinion holds that they are based on restricted uptake and accumulation of boron in the root and aboveground plant parts. Significant differences in boron excess tolerance have been observed not only between different crops but even between different genotypes of the same crop. This has enabled the breeding of crop genotypes and crops adapted to growing on soils rich in available boron and intensified the research on the inheritance of plant tolerance to high B concentration. Sources of tolerance to high B concentration have been found in many crops (wheat, mustard, pea, lentil, eucalypt. Using different molecular techniques based on PCR (RAPD, SRAP, plant parents and progenies have been analyzed in an attempt to map as precisely as possible the position of B-tolerant genes. Small grains have been studied in greatest detail for inheritance of B tolerance. B tolerance in wheat is controlled by at least four additive genes, Bo1, Bo2, Bo3 and Bo4. Consequently, there exists a broad range of tolerance levels. Studies of Arabidopsis have broadened our understanding of regulation mechanisms of B transport from roots to above ground parts, allowing more direct genetic manipulations.

  6. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Science.gov (United States)

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  7. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Directory of Open Access Journals (Sweden)

    Maria João Gaspar

    Full Text Available Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  8. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  9. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  10. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.

    Science.gov (United States)

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-03-19

    Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.

  11. A Highly Active and Alcohol-Tolerant Cathode Electrocatalyst Containing Ag Nanoparticles Supported on Graphene

    International Nuclear Information System (INIS)

    Jiang, Rongzhong; Moton, Elizabeth; McClure, Joshua P.; Bowers, Zachary

    2014-01-01

    A highly active oxygen reduction reaction (ORR) catalyst was synthesized by supporting Ag nano-particles on graphene nano platelets (Ag/GNP) via ultrasound treatment. The Ag/GNP catalyzes the O 2 molecule through a 4-electron reduction to water in 0.1 M KOH electrolyte. The half-wave potential for the ORR on Ag/GNP is similar to a Pt black coated electrode (i.e -0.27 V at Ag/GNP, and -0.18 V at 40% Pt/C vs.SCE). The kinetic rate for the ORR on Ag/GNP is 3.16 × 10 −2 cm · s −1 at -0.4 V vs. SCE. The effect of alcohols and other impurities on the ORR catalytic activity for Ag/GNP was examined and found to be highly tolerant to methanol, ethanol and ethylene glycol. The Ag/GNP catalyst is also tolerant to tetraalkyl ammonium hydroxides; i.e. functional groups related to the chemical structure of common alkaline electrolyte membranes

  12. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  13. High-level verification

    CERN Document Server

    Lerner, Sorin; Kundu, Sudipta

    2011-01-01

    Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based

  14. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  15. Environmental dependency in the expression of costs of tolerance to deer herbivory.

    Science.gov (United States)

    Stinchcombe, John R

    2002-05-01

    Plant tolerance to natural enemy damage is a defense strategy that minimizes the effects of damage on fitness. Despite the apparent benefits of tolerance, many populations exhibit intermediate levels of tolerance, indicating that constraints on the evolution of tolerance are likely. In a field experiment with the ivyleaf morning glory, costs of tolerance to deer herbivory in the form of negative genetic correlations between deer tolerance and fitness in the absence of damage were detected. However, these costs were detected only in the presence of insect herbivores. Such environmental dependency in the expression of costs of tolerance may facilitate the maintenance of tolerance at intermediate levels.

  16. Improvement of CMOS VLSI rad tolerance by processing technics

    International Nuclear Information System (INIS)

    Guyomard, D.; Desoutter, I.

    1986-01-01

    The following study concerns the development of integrated circuits for fields requiring only relatively low radiation tolerance levels, and especially for the civil spatial district area. Process modifications constitute our basic study. They have been carried into effects. Our work and main results are reported in this paper. Well known 2.5 and 3 μm CMOS technologies are under our concern. A first set of modifications enables us to double the cumulative dose tolerance of a 4 Kbit SRAM, keeping at the same time the same kind of damage. We obtain memories which tolerate radiation doses as high as 16 KRad(Si). Repetitivity of the results, linked to the quality assurance of this specific circuit, is reported here. A second set of modifications concerns the processing of gate array. In particular, the choice of the silicon substrate type, (epitaxy substrate), is under investigation. On the other hand, a complete study of a test vehicule allows us to accurately measure the rad tolerance of various components of the Cell library [fr

  17. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

    Science.gov (United States)

    Bååth, E; Díaz-Raviña, M; Bakken, L R

    2005-11-01

    The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.

  18. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  19. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance.

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A D

    2002-02-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels.

  20. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.).

    Science.gov (United States)

    Wang, Ying; Guo, Shirong; Wang, Lei; Wang, Liwei; He, Xueying; Shu, Sheng; Sun, Jin; Lu, Na

    2018-04-24

    High-temperature stress inhibited the growth of cucumber seedlings. Foliar spraying of 1.0 mmol·L - 1 exogenous spermidine (Spd) to the sensitive cucumber cultivar 'Jinchun No. 2' grown at high-temperature (42 °C/32 °C) in an artificial climate box improved the high-temperature tolerance. Although there have been many reports on the response of microRNAs (miRNAs) to high-temperature stress, the mechanism by which exogenous Spd may mitigate the damage of high-temperature stress through miRNA-mediated regulation has not been studied. To elucidate the regulation of miRNAs in response to exogenous Spd-mediated improvement of high-temperature tolerance, four small RNA libraries were constructed from cucumber leaves and sequenced: untreated-control (CW), Spd-treated (CS), high-temperature stress (HW), and Spd-treated and high-temperature stress (HS). As a result, 107 known miRNAs and 79 novel miRNAs were identified. Eight common differentially expressed miRNAs (miR156d-3p, miR170-5p, miR2275-5p, miR394a, miR479b, miR5077, miR5222 and miR6475) were observed in CS/CW, HW/CW, HS/CW and HS/HW comparison pairs, which were the first set of miRNAs that responded to not only high-temperature stress but also exogenous Spd in cucumber seedlings. Five of the eight miRNAs were predicted to target 107 potential genes. Gene function and pathway analyses highlighted the integral role that these miRNAs and target genes probably play in the improvement of the high-temperature tolerance of cucumber seedlings through exogenous Spd application. Our study identified the first set of miRNAs associated with the exogenous Spd-mediated improvement of high-temperature tolerance in cucumber seedlings. The results could help to promote further studies on the complex molecular mechanisms underlying high-temperature tolerance in cucumber and provide a theoretical basis for the high-quality and efficient cultivation of cucumber with high-temperature resistance.

  1. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on the Tolerable Upper Intake Level of calcium

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to re-evaluate the safety in use of calcium. The Panel was requested to consider if the Tolerable Upper Intake Level (UL) for calcium established by the SCF in 2003 (2,500 mg...

  2. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A new class of organic nitrates: investigations on bioactivation, tolerance and cross-tolerance phenomena.

    Science.gov (United States)

    Schuhmacher, S; Schulz, E; Oelze, M; König, A; Roegler, C; Lange, K; Sydow, L; Kawamoto, T; Wenzel, P; Münzel, T; Lehmann, J; Daiber, A

    2009-09-01

    The chronic use of organic nitrates is limited by serious side effects including oxidative stress, nitrate tolerance and/or endothelial dysfunction. The side effects and potency of nitroglycerine depend on mitochondrial aldehyde dehydrogenase (ALDH-2). We sought to determine whether this concept can be extended to a new class of organic nitrates with amino moieties (aminoalkyl nitrates). Vasodilator potency of the organic nitrates, in vitro tolerance and in vivo tolerance (after continuous infusion for 3 days) were assessed in wild-type and ALDH-2 knockout mice by isometric tension studies. Mitochondrial oxidative stress was analysed by L-012-dependent chemiluminescence and protein tyrosine nitration. Aminoethyl nitrate (AEN) showed an almost similar potency to glyceryl trinitrate (GTN), even though it is only a mononitrate. AEN-dependent vasodilatation was mediated by cGMP and nitric oxide. In contrast to triethanolamine trinitrate (TEAN) and GTN, AEN bioactivation did not depend on ALDH-2 and caused no in vitro tolerance. In vivo treatment with TEAN and GTN, but not with AEN, induced cross-tolerance to acetylcholine (ACh)-dependent and GTN-dependent relaxation. Although all nitrates tested induced tolerance to themselves, only TEAN and GTN significantly increased mitochondrial oxidative stress in vitro and in vivo. The present results demonstrate that not all high potency nitrates are bioactivated by ALDH-2 and that high potency of a given nitrate is not necessarily associated with induction of oxidative stress or nitrate tolerance. Obviously, there are distinct pathways for bioactivation of organic nitrates, which for AEN may involve xanthine oxidoreductase rather than P450 enzymes.

  4. Effectiveness analysis of resistance and tolerance to infection

    Directory of Open Access Journals (Sweden)

    Detilleux Johann C

    2011-03-01

    Full Text Available Abstract Background Tolerance and resistance provide animals with two distinct strategies to fight infectious pathogens and may exhibit different evolutionary dynamics. However, few studies have investigated these mechanisms in the case of animal diseases under commercial constraints. Methods The paper proposes a method to simultaneously describe (1 the dynamics of transmission of a contagious pathogen between animals, (2 the growth and death of the pathogen within infected hosts and (3 the effects on their performances. The effectiveness of increasing individual levels of tolerance and resistance is evaluated by the number of infected animals and the performance at the population level. Results The model is applied to a particular set of parameters and different combinations of values. Given these imputed values, it is shown that higher levels of individual tolerance should be more effective than increased levels of resistance in commercial populations. As a practical example, a method is proposed to measure levels of animal tolerance to bovine mastitis. Conclusions The model provides a general framework and some tools to maximize health and performances of a population under infection. Limits and assumptions of the model are clearly identified so it can be improved for different epidemiological settings.

  5. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

  6. Heterogeneity of high-density lipoprotein particles and insulin output during oral glucose tolerance test in men with coronary artery disease.

    Science.gov (United States)

    Iwanejko, J; Kwaśniak, M; Wybrańska, I; Hartwich, J; Guevara, I; Zdzienicka, A; Kruszelnicka-Kwiatkowska, O; Piwowarska, W; Miszczuk-Jamska, B; Dembińska-Kieć, A

    1996-03-01

    We compared the high-density lipoprotein (HDL) composition and particle heterogeneity in 60 nonobese (normal body mass index, BMI) men suffering from coronary artery disease (CAD) with normolipemia and normoinsulinemia with lower and higher insulin output during the oral glucose tolerance test (silent hyperinsulinemia). The apolipoprotein apoAI, apoAII, and apoE levels were higher in the high insulin response (HI) group than in low insulin response (LI) group. The ratio of apoAI versus total protein and the ratio of apoAI versus total cholesterol were increased in HI compared with LI. The lipid components in HDL were higher in LI than in HI, while for HDL2 they were higher in HI. The fractioning of HDL by gradient gel electrophoresis revealed a different pattern of HDL particles in both groups. The larger particles, HDL2b and HDL2a (mean particle diameters 10.6 and 9.2 nm, respectively), occur more frequently in HI patients (up to 60%) than in LI patients, whereas the smaller particles, HDL3a and HDL3b (mean particle diameters 8.6 and 7.8 nm, respectively), predominate in LI patients. Our results demonstrate that even in the normoglycemic, normocholesterolemic CAD patients, a high insulin output observed during the oral glucose tolerance test may be connected with a different HDL particle pattern, which suggests changes in the reverse cholesterol transport.

  7. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  8. Influence of soil fertility on waterlogging tolerance of two Brachiaria grasses

    Directory of Open Access Journals (Sweden)

    Juan de la Cruz Jiménez

    2015-04-01

    Full Text Available As a consequence of global warming, rainfall is expected to increase in several regions around the world. This, together with poor soil drainage, will result in waterlogged soil conditions. Brachiaria grasses are widely sown in the tropics and, these grasses confront seasonal waterlogged conditions. Several studies have indicated that an increase in nutrient availability could reduce the negative impact of waterlogging. Therefore, an outdoor study was conducted to evaluate the responses of two Brachiaria sp. grasses with contrasting tolerances to waterlogging, B. ruziziensis (sensitive and B. humidicola (tolerant, with two soil fertility levels. The genotypes were grown with two different soil fertilization levels (high and low and under well-drained or waterlogged soil conditions for 15 days. The biomass production, chlorophyll content, photosynthetic efficiency, and macro- (N, P, K, Ca, Mg and S and micronutrient (Fe, Mn, Cu, Zn and B contents in the shoot tissue were determined. Significant differences in the nutrient content of the genotypes and treatments were found. An increase of redoximorphic elements (Fe and Mn in the soil solution occurred with the waterlogging. The greater tolerance of B. humidicola to waterlogged conditions might be due to an efficient root system that is able to acquire nutrients (N, P, K and potentially exclude phytotoxic elements (Fe and Mn under waterlogged conditions. A high nutrient availability in the waterlogged soils did not result in an improved tolerance for B. ruziziensis. The greater growth impairment seen in the B. ruziziensis with high soil fertility and waterlogging (as opposed to low soil fertility and waterlogging was possibly due to an increased concentration of redoximorphic elements under these conditions.

  9. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  10. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    is linked to a different set of circumstances than the ones suggested by existing models in contemporary democratic theory. Reorienting the discussion of tolerance, the book raises the question of how to disclose new possibilities within our given context of affect and perception. Once we move away from......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  11. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress.

    Science.gov (United States)

    Wang, Chao; Wang, Chang Yi; Zhao, Xue Qiang; Chen, Rong Fu; Lan, Ping; Shen, Ren Fang

    2013-10-01

    Rhodotorula taiwanensis RS1 is a high-aluminum (Al)-tolerant yeast that can survive in Al concentrations up to 200mM. The mechanisms for the high Al tolerance of R. taiwanensis RS1 are not well understood. To investigate the molecular mechanisms underlying Al tolerance and toxicity in R. taiwanensis RS1, Al toxicity-induced changes in the total soluble protein profile were analyzed using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. A total of 33 differentially expressed proteins responding to Al stress were identified from approximately 850 reproducibly detected proteins. Among them, the abundance of 29 proteins decreased and 4 increased. In the presence of 100mM Al, the abundance of proteins involved in DNA transcription, protein translation, DNA defense, Golgi functions and glucose metabolism was decreased. By contrast, Al treatment led to increased abundance of malate dehydrogenase, which correlated with increased malate dehydrogenase activity and the accumulation of intracellular citrate, suggesting that Al-induced intracellular citrate could play an important role in detoxification of Al in R. taiwanensis RS1. © 2013.

  12. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault Injection for Validation

    Directory of Open Access Journals (Sweden)

    Dugan Um

    2010-01-01

    Full Text Available As today's machines become increasingly complex in order to handle intricate tasks, the number of sensors must increase for intelligent operations. Given the large number of sensors, detecting, isolating, and then tolerating faulty sensors is especially important. In this paper, we propose fault tolerance architecture suitable for a massive sensor array often found in highly advanced systems such as autonomous robots. One example is the sensitive skin, a type of massive sensor array. The objective of the sensitive skin is autonomous guidance of machines in unknown environments, requiring elongated operations in a remote site. The entirety of such a system needs to be able to work remotely without human attendance for an extended period of time. To that end, we propose a fault-tolerant architecture whereby component and analytical redundancies are integrated cohesively for effective failure tolerance of a massive array type sensor or sensor system. In addition, we discuss the evaluation results of the proposed tolerance scheme by means of fault injection and validation analysis as a measure of system reliability and performance.

  13. Antimicrobial Tolerance of Pseudomonas aeruginosa Biofilms Is Activated during an Early Developmental Stage and Requires the Two-Component Hybrid SagS

    Science.gov (United States)

    Gupta, Kajal; Marques, Cláudia N. H.; Petrova, Olga E.

    2013-01-01

    A hallmark characteristic of biofilms is their extraordinary tolerance to antimicrobial agents. While multiple factors are thought to contribute to the high level of antimicrobial tolerance of biofilms, little is known about the timing of induction of biofilm tolerance. Here, we asked when over the course of their development do biofilms gain their tolerance to antimicrobial agents? We demonstrate that in Pseudomonas aeruginosa, biofilm tolerance is linked to biofilm development, with transition to the irreversible attachment stage regulated by the two-component hybrid SagS, marking the timing when biofilms switch to the high-level tolerance phenotype. Inactivation of sagS rendered biofilms but not planktonic cells more susceptible to tobramycin, norfloxacin, and hydrogen peroxide. Moreover, inactivation of sagS also eliminated the recalcitrance of biofilms to killing by bactericidal antimicrobial agents, a phenotype comparable to that observed upon inactivation of brlR, which encodes a MerR-like transcriptional regulator required for biofilm tolerance. Multicopy expression of brlR in a ΔsagS mutant restored biofilm resistance and recalcitrance to killing by bactericidal antibiotics to wild-type levels. In contrast, expression of sagS did not restore the susceptibility phenotype of ΔbrlR mutant biofilms to wild-type levels, indicating that BrlR functions downstream of SagS. Inactivation of sagS correlated with reduced BrlR levels in biofilms, with the produced BrlR being impaired in binding to the previously described BrlR-activated promoters of the two multidrug efflux pump operons mexAB-oprM and mexEF-oprN. Our findings demonstrate that biofilm tolerance is linked to early biofilm development and SagS, with SagS contributing indirectly to BrlR activation. PMID:23995639

  14. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  15. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    Science.gov (United States)

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  16. SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels

    Energy Technology Data Exchange (ETDEWEB)

    Faught, J Tonigan; Balter, P; Johnson, J; Kry, S; Court, L; Stingo, F; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and used for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.

  17. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Assessing variation in tolerance in 23 Muslim-majority and Western countries.

    Science.gov (United States)

    Milligan, Scott; Andersen, Robert; Brym, Robert

    2014-08-01

    Scholars disagree over whether Islam hinders the development of liberal democracy in Muslim-majority countries. We contribute to this debate by assessing the influence of Islam at the individual and national levels on ethnic, racial, and religious tolerance in 23 countries. Our analyses are based on a set of multilevel models fitted to World Values Survey data and national-level contextual information from various sources. Our findings suggest that people living in Muslim-majority countries tend to be less tolerant than are those living in Western countries. Although a significant part of this difference is attributable to variation in level of economic development and income inequality, Muslim countries remain less tolerant even after controlling for these factors. On the other hand, controlling for other individual-level factors, nonpracticing Muslims in Western countries are more tolerant than are all others in both Muslim-majority and Western countries. This finding challenges common claims about the effects of Islam as a religion on tolerance, suggesting that it is Islamic political regimes--not Islam itself--that pose problems for social tolerance.

  19. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  20. Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Tiwari, R.; Reddy, U.G.; Adholeya, A. [India Habitat Center, New Delhi (India). Energy & Resources Institute

    2005-04-01

    Eight isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Laccaria laccata (EM-1191), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1293), Scleroderma cepa (EM-1233), Scleroderma flavidum (EM-1235), Scleroderma verucosum, (EM-1283) and Hysterangium incarceratum (EM-1185) were grown on specially designed cocktail media prepared by adding various concentrations of different heavy metals namely Al, As, Cd, Cr, Ni and Pb. The heavy metals were selected keeping in view their relative abundance in coal ash and potential toxicity. The fungal isolates were grown on such designed cocktail media. The colony diameter was used for the measurement of the fungal growth. Total heavy metal accumulated in the mycelia was assayed by atomic absorption spectrophotometry. In relation to metal tolerance ability in general, Hysterangium incarceratum (EM-1185) showed maximum tolerance with respect to growth, Laccaria fraterna (EM-1083) and Pisolithus tinctorius (EM-1293) also showed considerable tolerance to the heavy metals tested. In relation to metal uptake in particular, Pisolithus tinctorius (EM-1293), has reported maximum uptake of Al (34642.58 ppm), Cd (302.12 ppm) and Pb (3501.96 ppm). In Laccaria fraterna (EM-1083), As (130.57 ppm) and Cr (402.38 ppm) uptake was recorded maximum; and Hysterangium incarceratum (EM-1185) has recorded maximum Ni (2648.59 ppm) uptake among the three suitable isolates documented here.

  1. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  2. Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators

    Directory of Open Access Journals (Sweden)

    Urs Giger

    2017-01-01

    Full Text Available In this paper, the control scheme of a distributed high-speed generator system with a total amount of 12 generators and nominal generator speed of 7000 min − 1 is studied. Specifically, a fault tolerant control (FTC scheme is proposed to keep the turbine in operation in the presence of up to four simultaneous generator faults. The proposed controller structure consists of two layers: The upper layer is the baseline controller, which is separated into a partial load region with the generator torque as an actuating signal and the full-load operation region with the collective pitch angle as the other actuating signal. In addition, the lower layer is responsible for the fault diagnosis and FTC characteristics of the distributed generator drive train. The fault reconstruction and fault tolerant control strategy are tested in simulations with several actuator faults of different types.

  3. State of art in radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Choi; Young Soo; Kim, Seong Ho; Cho, Jae Wan; Kim, Chang Hoi; Seo, Young Chil

    2002-02-01

    Working in radiation environment such as nuclear power plant, RI facility, nuclear fuel fabrication facility, medical center has to be considered radiation exposure, and we can implement these job by remote observation and operation. However the camera used for general industry is weakened at radiation, so radiation-tolerant camera is needed for radiation environment. The application of radiation-tolerant camera system is nuclear industry, radio-active medical, aerospace, and so on. Specially nuclear industry, the demand is continuous in the inspection of nuclear boiler, exchange of pellet, inspection of nuclear waste. In the nuclear developed countries have been an effort to develop radiation-tolerant cameras. Now they have many kinds of radiation-tolerant cameras which can tolerate to 10{sup 6}-10{sup 8} rad total dose. In this report, we examine into the state-of-art about radiation-tolerant cameras, and analyze these technology. We want to grow up the concern of developing radiation-tolerant camera by this paper, and upgrade the level of domestic technology.

  4. Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi

    DEFF Research Database (Denmark)

    Jönsson, K. Ingemar; Hygum, Thomas Lunde; Andersen, Kasper Nørgaard

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason...... for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated...... that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater...

  5. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: Jieliu@aps.anl.gov; Jaski, M., E-mail: jaski@aps.anl.gov; Borland, M., E-mail: borland@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL60439 (United States); Jain, A., E-mail: jain@bnl.gov [Superconducting Magnet Division, Brookhaven National Laboratory, P.O. Box 5000. Upton, NY 11973-5000 (United States)

    2016-07-27

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based on the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.

  6. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    International Nuclear Information System (INIS)

    Liu, J.; Jaski, M.; Borland, M.; Jain, A.

    2016-01-01

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based on the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.

  7. Accident tolerant high-pressure helium injection system concept for light water reactors

    International Nuclear Information System (INIS)

    Massey, Caleb; Miller, James; Vasudevamurthy, Gokul

    2016-01-01

    Highlights: • Potential helium injection strategy is proposed for LWR accident scenarios. • Multiple injection sites are proposed for current LWR designs. • Proof-of-concept experimentation illustrates potential helium injection benefits. • Computational studies show an increase in pressure vessel blowdown time. • Current LOCA codes have the capability to include helium for feasibility calculations. - Abstract: While the design of advanced accident-tolerant fuels and structural materials continues to remain the primary focus of much research and development pertaining to the integrity of nuclear systems, there is a need for a more immediate, simple, and practical improvement in the severe accident response of current emergency core cooling systems. Current blowdown and reflood methodologies under accident conditions still allow peak cladding temperatures to approach design limits and detrimentally affect the integrity of core components. A high-pressure helium injection concept is presented to enhance accident tolerance by increasing operator response time while maintaining lower peak cladding temperatures under design basis and beyond design basis scenarios. Multiple injection sites are proposed that can be adapted to current light water reactor designs to minimize the need for new infrastructure, and concept feasibility has been investigated through a combination of proof-of-concept experimentation and computational modeling. Proof-of-concept experiments show promising cooling potential using a high-pressure helium injection concept, while the developed choked-flow model shows core depressurization changes with added helium injection. Though the high-pressure helium injection concept shows promise, future research into the evaluation of system feasibility and economics are needed.Classification: L. Safety and risk analysis

  8. The emerging role of microRNA in regulation of endotoxin tolerance.

    LENUS (Irish Health Repository)

    Quinn, Edel M

    2012-05-01

    Endotoxin tolerance is a phenomenon where cells show reduced responsiveness toward repeated endotoxin stimulation. Regulation of tolerance occurs at multiple levels of the cell signaling cascade, and many of these levels are potentially regulated by miRNA, which are a class of small RNA that bind to mRNA to down-regulate gene expression at the post-transcriptional level. Roles have been identified for miR-146a, miR-221, miR-579, miR-125b, miR-155, let-7e, and miR-98 in regulating the TLR4 signaling pathway during the development of endotoxin tolerance at receptor, signaling pathway, and gene transcription and translational levels. miRNA represent exciting, new potential targets in attempts to exogenously modulate development of endotoxin tolerance.

  9. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the Tolerable Upper Intake Level of vitamin D

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to re-evaluate the safety in use of vitamin D and to provide, if necessary, revised Tolerable Upper Intake Levels (ULs) of vitamin D for all relevant population groups. The ULs...

  10. Role of interfaces i nthe design of ultra-high strength, radiation damage tolerant nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Baldwin, Jon K [Los Alamos National Laboratory; Wei, Qiangmin [Los Alamos National Laboratory; Li, Nan [Los Alamos National Laboratory; Mara, Nathan [Los Alamos National Laboratory; Zhang, Xinghang [Los Alamos National Laboratory; Fu, Engang [Los Alamos National Laboratory; Anderoglu, Osman [Los Alamos National Laboratory; Li, Hongqi [Los Alamos National Laboratory; Bhattacharyya, Dhriti [NON LANL

    2010-12-09

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and contain special interfaces that act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities and strength and ductility of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Magnetron sputtered metallic multilayers such as Cu-Nb and V-Ag with a range of individual layer thickness from approximately 2 nm to 50 nm and the corresponding 1000 nm thick single layer films were implanted with helium ions at room temperature. Cross-sectional Transmission Electron Microscopy (TEM) was used to measure the distribution of helium bubbles and correlated with the helium concentration profile measured vis ion beam analysis techniques to obtain the helium concentration at which bubbles are detected in TEM. It was found that in multilayers the minimum helium concentration to form bubbles (approximately I nm in size) that are easily resolved in through-focus TEM imaging was several atomic %, orders of magnitude higher than that in single layer metal films. This observation is consistent with an increased solubility of helium at interfaces that is predicted by atomistic modeling of the atomic structures of fcc-bcc interfaces. At helium concentrations as high as 7 at.%, a uniform distribution of I nm diameter bubbles results in negligible irradiation hardening and loss of deformability in multi layers with layer thicknesses of a few nanometers. The control of atomic structures of interfaces to produce high helium solubility at interfaces is crucial in the design of nano-composite materials that are radiation damage tolerant. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 run

  11. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  12. Overexpression of a 9-cis-Epoxycarotenoid Dioxygenase Gene in Nicotiana plumbaginifolia Increases Abscisic Acid and Phaseic Acid Levels and Enhances Drought Tolerance1

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A.D.

    2002-01-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels. PMID:11842158

  13. Are Multilingualism, Tolerance of Ambiguity, and Attitudes toward Linguistic Variation Related?

    Science.gov (United States)

    van Compernolle, Rémi A.

    2016-01-01

    This article explores the links between multilingualism, the personality trait Tolerance of Ambiguity (TA), and attitudes toward linguistic variation among 379 mono-, bi-, and multilingual adults who completed an online questionnaire. A self-reported high level of proficiency in multiple languages, short- and long-term residence abroad, and high…

  14. Occupational stress and suicidality among firefighters: Examining the buffering role of distress tolerance.

    Science.gov (United States)

    Stanley, Ian H; Boffa, Joseph W; Smith, Lia J; Tran, Jana K; Schmidt, N Brad; Joiner, Thomas E; Vujanovic, Anka A

    2018-05-24

    Past research indicates that firefighters are at increased risk for suicide. Firefighter-specific occupational stress may contribute to elevated suicidality. Among a large sample of firefighters, this study examined if occupational stress is associated with multiple indicators of suicide risk, and whether distress tolerance, the perceived and/or actual ability to endure negative emotional or physical states, attenuates these associations. A total of 831 firefighters participated (mean [SD] age = 38.37y[8.53y]; 94.5% male; 75.2% White). The Sources of Occupational Stress-14 (SOOS-14), Distress Tolerance Scale (DTS), and Suicidal Behaviors Questionnaire-Revised (SBQ-R) were utilized to examine firefighter-specific occupational stress, distress tolerance, and suicidality, respectively. Consistent with predictions, occupational stress interacted with distress tolerance, such that the effects of occupational stress on suicide risk, broadly, as well as lifetime suicide threats and current suicidal intent, specifically, were attenuated at high levels of distress tolerance. Distress tolerance may buffer the effects of occupational stress on suicidality among firefighters. Pending replication, findings suggest that distress tolerance may be a viable target for suicide prevention initiatives within the fire service. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High salinity tolerance in eggs and fry of a brackish Esox lucius population

    DEFF Research Database (Denmark)

    Jørgensen, A.T.; Hansen, B.W.; Vismann, B.

    2010-01-01

    Knowledge on the biology and physiology of pike, Esox lucius L., populations inhabiting saline environments is scarce. An experimental setup was used to examine egg development and fry behaviour and growth under varying salinity levels in a brackish-water pike population from the western Baltic Sea....... Eggs and fry developed at 8.5 psu, which is higher than hitherto reported for other populations. Fry exhibited stress behaviour and reduced growth when subjected to salinities above 13 psu. This indicates that early life stages of E. lucius tolerate ambient salinity conditions equivalent to the natural...

  16. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  17. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels.

    Science.gov (United States)

    Liu, Jitao; Fan, Youwei; Zou, Jing; Fang, Yiqun; Wang, Linghao; Wang, Meng; Jiang, Xinqiang; Liu, Yiqing; Gao, Junping; Zhang, Changqing

    2017-12-01

    Plants often develop the capacity to tolerate moderate and reversible environmental stresses, such as drought, and to re-establish normal development once the stress has been removed. An example of this phenomenon is provided by cut rose (Rosa hybrida) flowers, which experience typical reversible dehydration stresses during post-harvest handling after harvesting at the bud stages. The molecular mechanisms involved in rose flower dehydration tolerance are not known, however. Here, we characterized a dehydration- and abscisic acid (ABA)-induced ferritin gene (RhFer1). Dehydration-induced free ferrous iron (Fe 2+ ) is preferentially sequestered by RhFer1 and not transported outside of the petal cells, to restrict oxidative stresses during dehydration. Free Fe 2+ accumulation resulted in more serious oxidative stresses and the induction of genes encoding antioxidant enzyme in RhFer1-silenced petals, and poorer dehydration tolerance was observed compared with tobacco rattle virus (TRV) controls. We also determined that RhABF2, an AREB/ABF transcription factor involved in the ABA signaling pathway, can activate RhFer1 expression by directly binding to its promoter. The silencing of RhABF2 decreased dehydration tolerance and disrupted Fe homeostasis in rose petals during dehydration, as did the silencing of RhFer1. Although both RhFer1 and Fe transporter genes are induced during flower natural senescence in plants, the silencing of RhABF2 or RhFer1 accelerates the petal senescence processes. These results suggest that the regulatory module RhABF2/RhFer1 contributes to the maintenance of Fe levels and enhances dehydration tolerance through the action of RhFer1 locally sequestering free Fe 2+ under dehydration conditions, and plays synergistic roles with transporter genes during flower senescence. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster.

    Science.gov (United States)

    Howick, Virginia M; Lazzaro, Brian P

    2017-03-01

    Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co-evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance. © 2017 John Wiley & Sons Ltd.

  19. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Science.gov (United States)

    Inskip, Chloe; Carter, Neil; Riley, Shawn; Roberts, Thomas; MacMillan, Douglas

    2016-01-01

    Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  20. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels.

    Science.gov (United States)

    Zandalinas, Sara I; Rivero, Rosa M; Martínez, Vicente; Gómez-Cadenas, Aurelio; Arbona, Vicent

    2016-04-27

    In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in

  1. Correlation Coefficient, Path Analysis and Drought Tolerance Indices for Wheat under Deficit Irrigation Conditions and Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    A. R Tavakoli

    2012-07-01

    Full Text Available In order to investigate the indices of drought tolerance, correlation coefficient and path analysis at deficit irrigation and nitrogen experiment, this experiment was conducted as split plot arranged in a randomized complete block design (RCBD with three replications during 2000-2003 for wheat at Maragheh agricultural research station of DARI. The treatments were included four levels of deficit irrigation (Rainfed, 100, 160 and 220mm of water use as main plots and five nitrogen rates (0, 30, 60, 90 and 120 kg.N.ha-1 as sub plots. Grain, straw and biological yield, harvest index, productivity degree, plant height, kernel number per spike, Spike number per square meter and TKW determined from the middle of each plot. There were positive significant correlations due to grain yield with all variables: harvest index (r = 0.969 , Productivity degree (r = 0.952 , straw yield (r = 0.904 , plant height (r = 0.904 , biological yield (r = 0.824 , Spike number per square meter (r = 0.817 , kernel number per spike (r = 0.773 and TKW (r = 0.612 respectively. Results of path analysis showed that increase in grain yield was due to increase spike number per square meter and kernel number per spike respectively. On based of indices of drought tolerance (Tolerance Index, Mean Productivity, Geometric Mean Productivity and Harmonic Mean, treatment of %66full irrigation combined with 90KgN.ha-1 was substantially increased water productivity.

  2. A proposed GaAs-based superlattice solar cell structure with high efficiency and high radiation tolerance

    Science.gov (United States)

    Goradia, Chandra; Clark, Ralph; Brinker, David

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their being across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  3. Evaluation of Sugarcane (Saccharum officinarum L. Somaclonals Tolerance to Salinity Via In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    HAMID RAJABI MEMARI

    2011-06-01

    Full Text Available Tissue culture technique was used to obtain salt tolerant variants from embryogenic calluses of sugarcane (Saccharum sp. var. CP48-103 that cultured on a selective medium containing different levels of NaCl (0, 0.2, 0.4, 0.6, and 0.8% NaCl. A total of four plants regenerated from the tolerant calluses were selected but the best of them in vigor grown in in vitro and hydroponic systems under salinity stress to comparison with source variety. With increasing supply of NaCl in both systems, root growth was more adversely affected than was shoot growth. Chlorophyll contents showed a decreasing trend and dry matter yield of plants reduced but in a slow rate in tolerant somaclonal than source variety. The biochemical analysis showed that at high salt concentration, Cl- and Na+ content in shoot and root increased. With rising salt concentration from 0 to 0.8%, content of Cl- in shoot and root of tolerant variant changed lower than parent showed that this variant had genetic lowest ratio of shoot/root chloride and had minimum transport of Cl- to shoots. Also this variant had high content of Ca2+ in shoot and high K+/Na+ ratio at all salinity levels. Thus it probably has genetic potential to avoid harmful ions uptake.

  4. Inheritance of photochemical air pollution tolerance in petunias

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.P.; Addis, D.H.; Thorne, L.

    1976-12-01

    Seven commercial inbred lines of pink flowered multiflora petunia (Petunia hybrida Vilm.) which differed widely in degrees of tolerance to photochemical oxidants were crossed in all possible combinations to yield a complete diallel cross. Sibling representatives of all 49 possible hybrids were then separately subjected to ozone (O/sub 3/), peroxyacetyl nitrate (PAN), and ambient oxidants at Arcadia, California. The seedlings were scored for tolerance to each pollutant and the inheritance of tolerance to each pollutant was studied. At the ambient levels of photochemical oxidants encountered, PAN more severely injured the petunias than did the O/sub 3/ component. Hybrids tolerant to one oxidant were not necessarily tolerant to the other. The genes which contributed photochemical oxidant tolerance in petunia acted primarily in an additive manner with some indication of partial dominance for tolerance. Gene interaction was evident in the expression of petunia sensitivity to PAN.

  5. Sustainable tourism as a method of forming a tolerant society

    Directory of Open Access Journals (Sweden)

    Dryga Svetlana

    2016-01-01

    Full Text Available The article concentrates on potential capabilities for the development of sustainable tourism, as well as its role in the formation of tolerant social relations. The authors revealed the profound impact of sustainable and hike tourism on emergence of the phenomenon ‘new tourist’. They also offered the description of levels of tolerance and their influence on the sustainable tendencies in modern tourism. There is a growing trend for tourism in modern international community to act as a high-powered regulator of socio-cultural relations and, simultaneously, as the crucial factor of counteraction to that xenophobia. A head-on clash of local and foreign cultures, which is an integral part of the very notion of tourism, is not supposed to assume itself in highly extreme forms, with the air of predominance of any of them, moreover, to be based on national, racial, religious, linguistic or educational differences. To put the idea across more efficiently, the authors resorted to exploiting such useful tools as the analysis and synthesis methodology, as well as that of comparison and prognostics. What is produced in the outcome of this study is revealing and emphasizing the levels of tolerance, characterizing the uneasy interrelationships between the so-called ‘new’ tourists and local community. The research findings could find practical applications for designing of new tourist products and elaborating of new networks of footpaths for walking tours.

  6. Clinical Observations of Abnormal Glucose Tolerance in Hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Lee, Hong Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1969-09-15

    Plasma glucose levels before and after oral glucose administration have been compared in g group of 76 thyrotoxic subjects and a group of 8 normal control subjects in order to study the effect of glucose loading in thyrotoxicosis. Following were the results: 1) The mean fasting plasma glucose level was elevated in thyrotoxic group (95.5 mg%) compared to normal control group (88 mg%). 2) The peak of glucose tolerance curve is at 30 minutes after glucose administration in both groups, but its mean value was 44 mg% higher in thyrotoxic group than in control group. 3) The plasma glucose levels returned towards the fasting level in the later stage of the test more rapidly in thyrotoxic group than in control group. 4) 69.6% of oral glucose tolerance tests were impaired in the thyrotoxic group, and the occurrence of abnormal glucose tolerance could be related to the degree of thyrotoxicity, sex and age. 5) The mechanisms of the impaired glucose tolerance in thyrotoxicosis are thought to be related to an increased rate of glucose absorption from gastrointestinal tract, abnormal liver function with decreased hepatic glycogenesis, increased glucose oxidation, decreased pancreatic release of insulin, and genetic relationship between diabetes and thyrotoxicosis.

  7. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity

    Directory of Open Access Journals (Sweden)

    Cristiane J. da-Silva

    2017-10-01

    Full Text Available ABSTRACT High salinity affects plants due to stimulation of osmotic stress. Cell signaling triggered by nitric oxide (NO and hydrogen sulfide (H2S activates a cascade of biochemical events that culminate in plant tolerance to abiotic and biotic stresses. For instance, the NO/H2S-stimulated biochemical events that occur in plants during response to high salinity include the control of reactive oxygen species, activation of antioxidant system, accumulation of osmoprotectants in cytosol, induction of K+ uptake and Na+ cell extrusion or its vacuolar compartmentation among others. This review is a compilation of what we have learned in the last 10 years about NO participation during cell signaling in response to high salinity as well as the role of H2S, a new player in the mechanism of plant tolerance to salt stress. The main sources of NO and H2S in plant cells is also discussed together with the evidence of interplay between both signaling molecules during response to stress.

  8. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance

    Science.gov (United States)

    2013-01-01

    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  9. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  10. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Chloe Inskip

    Full Text Available Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris, is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  11. A novel match-line selective charging scheme for high-speed, low-power and noise-tolerant content-addressable memory

    KAUST Repository

    Hasan, Muhammad Mubashwar; Rashid, Abdul B M Harun Ur; Hussain, Muhammad Mustafa

    2010-01-01

    Content-addressable memory (CAM) is an essential component for high-speed lookup intensive applications. This paper presents a match-line selective charging technique to increase speed and reduce the energy per bit per search while increasing the noise-tolerance. Simulation in TSMC 0.18 μm technology with 64×72 Ternary CAM shows the match-line energy reduction of 45% compared to the conventional currentsaving scheme with the reduction of minimum cycle time by 68% and the improvement of noise-tolerance by 96%.

  12. A novel match-line selective charging scheme for high-speed, low-power and noise-tolerant content-addressable memory

    KAUST Repository

    Hasan, Muhammad Mubashwar

    2010-06-01

    Content-addressable memory (CAM) is an essential component for high-speed lookup intensive applications. This paper presents a match-line selective charging technique to increase speed and reduce the energy per bit per search while increasing the noise-tolerance. Simulation in TSMC 0.18 μm technology with 64×72 Ternary CAM shows the match-line energy reduction of 45% compared to the conventional currentsaving scheme with the reduction of minimum cycle time by 68% and the improvement of noise-tolerance by 96%.

  13. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.

    Science.gov (United States)

    Balfagón, Damián; Zandalinas, Sara I; Baliño, Pablo; Muriach, María; Gómez-Cadenas, Aurelio

    2018-06-01

    Usually several environmental stresses occur in nature simultaneously causing a unique plant response. However, most of the studies until now have focused in individually-applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus rootstocks with contrasting tolerance to drought and heat stress and have been used in this work as a model for the study of plant tolerance to the combination of drought and high temperatures. According to our results, leaf integrity and photosynthetic machinery are less affected in Carrizo than in Cleopatra under combined conditions of drought and heat stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) involved in abiotic stress tolerance shows that they do not accumulate under water stress conditions individually applied. However, contents of APX and HSP101 are higher in Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar behavior in both types of plants. This, together with a better stomatal control and a higher APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the combination of stresses and point to it as a better rootstock than Cleopatra (traditionally used in areas with scare water supplies) under the predictable future climatic conditions with frequent periods of drought combined with high temperatures. This work also provides the basis for testing the tolerance of different citrus varieties grafted on these rootstocks and growing under different field conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  15. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Science.gov (United States)

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  16. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  17. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.

    Science.gov (United States)

    Yan, Yu; He, Jianzhong

    2017-08-01

    Conversion of lignocellulosic hydrolysate to biofuels is impeded by the toxic effects of inhibitors that are generated during pretreatment and hydrolysis processes. Here we describe a wild-type Clostridium sp. strain BOH3 with high tolerance to the lignocellulose-derived inhibitors and its capability to transform these inhibitors. Strain BOH3 is capable of tolerating over 60 mM furfural, 60 mM hydroxymethylfurfural, and 6.6 mM vanillin, respectively, and is able to convert 53.74 ± 0.37 mM furfural into furfuryl alcohol within 90 h. The high furfural tolerance and its biotransformation by strain BOH3, which is correlated to the high transcription levels of two short-chain dehydrogenase/reductases, enable strain BOH3 to produce 5.15 ± 0.52 g/L butanol from dilute sulfuric acid pretreated horticultural waste hydrolysate (HWH) that bypassed the detoxification step. The capability of strain BOH3 to produce butanol from un-detoxified HWH lays the foundation of cost-effective biofuel production from lignocellulosic materials.

  18. Tolerance of the Brachial Plexus to High-Dose Reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Allen M., E-mail: achen5@kumc.edu; Yoshizaki, Taeko; Velez, Maria A.; Mikaeilian, Argin G.; Hsu, Sophia; Cao, Minsong

    2017-05-01

    Purpose: To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Methods and Materials: Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculated by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). Results: The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus–related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). Conclusion: The development of brachial plexus–related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.

  19. Oral tolerance is determined at the level of draining lymph nodes

    NARCIS (Netherlands)

    Wilsem, van E.G.; BrevÃ, J.; Savelkoul, H.; Claessen, A.; Scheper, R.J.; Kraal, G.

    1995-01-01

    In the skin and in the epithelium of the oral mucosa a comparable network of Langerhans cells can be found. Antigen application on either epithelium leads to rapid emigration of Langerhans cells to the draining lymph nodes. Application on the oral mucosa leads to tolerance induction while

  20. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  1. Fault tolerant embedded computers and power electronics for nuclear robotics

    International Nuclear Information System (INIS)

    Giraud, A.; Robiolle, M.

    1995-01-01

    For requirements of nuclear industries, it is necessary to use embedded rad-tolerant electronics and high-level safety. In this paper, we first describe a computer architecture called MICADO designed for French nuclear industry. We then present outgoing projects on our industry. A special point is made on power electronics for remote-operated and legged robots. (authors). 7 refs., 2 figs

  2. Fault tolerant embedded computers and power electronics for nuclear robotics

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, A.; Robiolle, M.

    1995-12-31

    For requirements of nuclear industries, it is necessary to use embedded rad-tolerant electronics and high-level safety. In this paper, we first describe a computer architecture called MICADO designed for French nuclear industry. We then present outgoing projects on our industry. A special point is made on power electronics for remote-operated and legged robots. (authors). 7 refs., 2 figs.

  3. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    International Nuclear Information System (INIS)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H.

    2002-01-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l -1 Pb, 2.5, 5, 10, 20 and 30 mg l -1 Zn, or 0.25, 0.50, 1 and 2 mg l -1 Cu for 14 days, respectively, then tolerance index (TI) and EC 50 (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu

  4. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    Energy Technology Data Exchange (ETDEWEB)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H

    2002-12-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l{sup -1} Pb, 2.5, 5, 10, 20 and 30 mg l{sup -1} Zn, or 0.25, 0.50, 1 and 2 mg l{sup -1} Cu for 14 days, respectively, then tolerance index (TI) and EC{sub 50} (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu.

  5. Design of two digital radiation tolerant integrated circuits for high energy physics experiments data readout

    CERN Document Server

    Bonacini, Sandro

    2003-01-01

    High Energy Physics research (HEP) involves the design of readout electron- ics for its experiments, which generate a high radiation ¯eld in the detectors. The several integrated circuits placed in the future Large Hadron Collider (LHC) experiments' environment have to resist the radiation and carry out their normal operation. In this thesis I will describe in detail what, during my 10-months partic- ipation in the digital section of the Microelectronics group at CERN, I had the possibility to work on: - The design of a radiation-tolerant data readout digital integrated cir- cuit in a 0.25 ¹m CMOS technology, called \\the Kchip", for the CMS preshower front-end system. This will be described in Chapter 3. - The design of a radiation-tolerant SRAM integrated circuit in a 0.13 ¹m CMOS technology, for technology radiation testing purposes and fu- ture applications in the HEP ¯eld. The SRAM will be described in Chapter 4. All the work has carried out under the supervision and with the help of Dr. Kostas Klouki...

  6. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Science.gov (United States)

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  7. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  8. Role of ectomycorrhizae in the tolerance of Betula papyrifera to copper and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.D.

    1987-01-01

    A study was initiated to investigate the effect of infection by ectomycorrhizal fungi collected from a Cu- and Ni-contaminated site near Sudbury, Ontario on the tolerance of birch seedlings to Cu or Ni. Betula papyrifera seedlings were infected with one of four fungi: Laccaria proxima, Lactarius hibbardae, Lactarius rufus, or Scleroderma flavidum, or were left uninoculated. After mycorrhizal formation, seedlings were treated with 32 or 63 ..mu..M Cu or 34 or 85 ..mu..M Ni for 18 weeks. The fungi as a group depressed growth of Cu-treated seedlings relative to uninoculated plants, but at the low level of Ni, infection generally stimulated the relative growth of the birch. At the high Ni treatment however, only S. flavidum increased birch Ni tolerance. While there was no relationship between the axenic growth of the fungi in Ni and their effect on host Ni tolerance, there was a better relationship with Cu tolerance. Still, the recommendation was made that axenic growth tests not be used for rapid screening of metal-tolerance-enhancing fungi.

  9. Tolerance to uncertainty in the context of social support:gender specificity in the youth environment

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lifintsev

    2017-06-01

    Full Text Available The paper presents the results of a study of social support for young males and females, and also its relationship with tolerance of uncertainty. A series of psychodiagnostic tools were used to study gender determinants of social support, tolerance of uncertainty and interpersonal intolerance in young people with different levels of emotional and instrumental support. Young males and females aged 18–22 years with a high level of tolerance of uncertainty are susceptible to various forms of social support. The ability to accept uncertainty, to function in the system of unclear interpersonal communication and to act in the face of changing circumstances determine the level of satisfaction with social support in the participants. The research (N=165 confirmed the assumption that first and foremost social support as a communicative phenomenon has differences in the perception of emotional forms in young males and females. Secondly, the specific features of person functioning in the social supporting act system are interrelated, including the level of tolerance of uncertainty. Thirdly, social support can reduce human state of uncertainty and eventually neutralize the negative impact of stressful events. The human ability to «see and discover» the social support, be sensitive and attentive to the supporting acts of social environment has a close relationship with the ability to accept uncertainty and maintain stability in a state of discomfort if any.

  10. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.

    Science.gov (United States)

    Turanlı-Yıldız, Burcu; Benbadis, Laurent; Alkım, Ceren; Sezgin, Tuğba; Akşit, Arman; Gökçe, Abdülmecit; Öztürk, Yavuz; Baykal, Ahmet Tarık; Çakar, Zeynep Petek; François, Jean M

    2017-09-01

    Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v -1 ) and gradually increasing (5-11.4%, v v -1 ) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v -1 ) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v -1 ) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. An abnormal carbohydrate tolerance in acromegaly

    International Nuclear Information System (INIS)

    Qi Jinwu

    1988-01-01

    An abnormal secretion of plasma human growth hormore (hGH) and insulin in 67 acromegalic patients had been previously treated by external pituitary radiation were studied. All subjects, following an overnight fast, a standard 100 g oral glucose tolerance test, were performed and venous blood samples were taken at 0, 30, 60, 120 and 180 min. They were measured for blood glucose, plasma insulin and hGH. The results of this study have shown that, of the 67 subjects, 23 cases had an abnormal glucose tolerance(34.32%). Diabetes was detected in 17 cases (23.37%) and 6 patients had decreased glucose tolerance(8.69%). In all, hGH levels were consistantly above 5 ng/ml and were not suppressed after an oral glucose load. In these patients, however, about one-third had abnormal glucose tolerance. Low plasma insulin response to glucose and that of the releasing were evident in them than the normal glucose tolerance and a healthy control group. In addition, the mechanism of the abnormal secretion of hGH and insulin were disscussed

  12. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  13. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  14. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress.

    Science.gov (United States)

    Liu, Duo; Liu, Miao; Liu, Xiao-Long; Cheng, Xian-Guo; Liang, Zheng-Wei

    2018-01-01

    Alkaline stress as a result of higher pH usually triggers more severe physiological damage to plants than that of saline stress with a neutral pH. In the present study, we demonstrated that silicon (Si) priming of alfalfa ( Medicago sativa L.) seedlings increased their tolerance to high alkaline stress situations. Gongnong No. 1 seedlings were subjected to alkaline stress simulated by 25 mM Na 2 CO 3 (pH 11.2). Alkaline stress greatly decreased the biomass and caused severe lodging or wilting of alfalfa seedlings. In contrast, the application of Si to alfalfa seedlings 36 h prior to the alkaline treatment significantly alleviated the damage symptoms and greatly increased the biomass and chlorophyll content. Because of being concomitant with increasing photosynthesis and water use efficiency, decreasing membrane injury and malondialdehyde content, and increasing peroxidase and catalase ascorbate activities in alfalfa leaves, thereby alleviating the triggered oxidative damage by alkaline stress to the plant. Furthermore, Si priming significantly decreased the accumulation of protein and proline content in alfalfa, thus reducing photosynthetic feedback repression. Si priming significantly accumulated more Na in the roots, but led to a decrease of Na accumulation and an increase of K accumulation in the leaves under alkaline stress. Meanwhile, Si priming decreased the accumulation of metal ions such as Mg, Fe, Mn, and Zn in the roots of alfalfa seedlings under alkaline stress. Collectively, these results suggested that Si is involved in the metabolic or physiological changes and has a potent priming effect on the alkaline tolerance of alfalfa seedlings. The present study indicated that Si priming is a new approach to improve the alkaline tolerance in alfalfa and provides increasing information for further exploration of the alkaline stress response at the molecular level in alfalfa.

  15. Overexpression of a modiifed AM79 aroA gene in transgenic maize confers high tolerance to glyphosate

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-jing; CAO Gao-yi; ZHANG Yu-wen; LIU Yan; LIU Yun-jun

    2015-01-01

    It has previously been shown that a bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene AM79 aroA can be a candidate gene to develop glyphosate-tolerant transgenic crops (Cao et al. 2012). In this study, AM79 aroA was redesigned using the plant biased codons and eliminating the motifs which would lead to the instability of mRNA, to create a synthetic gene that would be expressed highly in plant cel s. The redesigned and artiifcial y synthesized gene, named as mAM79, was cloned into plant expression vector pM3301UbiSpAM79, where mAM79 is fused with signal peptide sequence of pea rib-1,5-bisphospate carboxylase (rbcS) smal subunit and control ed by ubiquitin promoter. The plasmid was transformed into maize (Zea mays) immature embryos using Agrobacterium-mediated transformation method. Total 74 regenerated plants were obtained and PCR analysis showed that these transgenic plants had the integration of mAM79. Southern blot analysis was performed on the genomic DNA from four transgenic lines, and the result showed that one or two copies of mAM79 were integrated into maize genome. RT-PCR analysis result indicated that mAM79 was highly transcribed in transgenic maize plants. When sprayed with glyphosate, transgenic maize line AM85 and AM72 could tolerate 4-fold of commercial usage of glyphosate;however, al the non-transgenic maize plants were kil ed by glyphosate. The results in this study conifrmed that mAM79 could be used to develop glyphosate-tolerant maize, and the obtained transgenic maize lines could be used for the breeding of glyphosate-tolerant maize.

  16. 76 FR 38026 - Diethylene Glycol Mono Butyl Ether; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-06-29

    ... in creatinine levels at >51 mg/kg/day. Confidence in this study is low because of the high... at the high dose (117 mg/m3). In addition, the selected study was more recent and one would expect... estimates are based on the highest tolerance for a given commodity from a list of high-use insecticides...

  17. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  18. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.

    Science.gov (United States)

    Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang

    2018-02-15

    Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through

  19. In vitro response of promising tomato genotypes for tolerance to ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... cellular-level functions (osmoregulation) (Mohamed et al.,. 2000). ... impact on whole plant tolerance (Mohamed et al., 2000; .... biotechnological application to improving salinity tolerance. ... Proline metabolic pathways in calli.

  20. Tolerance-based punishment in continuous public goods game

    Science.gov (United States)

    Gao, Jia; Li, Zhi; Cong, Rui; Wang, Long

    2012-08-01

    Altruistic punishment for defectors is considered as a key motive for the explanation of cooperation. However, there is no clear border between the cooperative and defective behaviors in a continuous strategy game. We propose a model to study the effect of punishment on the evolution of cooperation in continuous public goods game, wherein individuals have the traits to punish the co-players based on social tolerance. We show that a reasonable punishment with a uniform tolerance can spur individuals to make more investments. Additionally, for a fixed punishment cost and a fixed fine, a moderate value of tolerance can result in the best promotion of cooperation. Furthermore, we investigate the coevolutionary dynamics of investment and tolerance. We find that the population splits into two branches: high-tolerance individuals who make high investments and low-tolerance individuals who make low investments. A dynamic equilibrium is achieved between these two types of individuals. Our work extends punishment to continuous cooperative behaviors and the results may enhance the understanding of altruistic punishment in the evolution of human cooperation.

  1. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  2. Tolerant Paternalism: Pro-ethical Design as a Resolution of the Dilemma of Toleration.

    Science.gov (United States)

    Floridi, Luciano

    2016-12-01

    Toleration is one of the fundamental principles that inform the design of a democratic and liberal society. Unfortunately, its adoption seems inconsistent with the adoption of paternalistically benevolent policies, which represent a valuable mechanism to improve individuals' well-being. In this paper, I refer to this tension as the dilemma of toleration. The dilemma is not new. It arises when an agent A would like to be tolerant and respectful towards another agent B's choices but, at the same time, A is altruistically concerned that a particular course of action would harm, or at least not improve, B's well-being, so A would also like to be helpful and seeks to ensure that B does not pursue such course of action, for B's sake and even against B's consent. In the article, I clarify the specific nature of the dilemma and show that several forms of paternalism, including those based on ethics by design and structural nudging, may not be suitable to resolve it. I then argue that one form of paternalism, based on pro-ethical design, can be compatible with toleration and hence with the respect for B's choices, by operating only at the informational and not at the structural level of a choice architecture. This provides a successful resolution of the dilemma, showing that tolerant paternalism is not an oxymoron but a viable approach to the design of a democratic and liberal society.

  3. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  4. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  5. Two-dose-level confirmatory study of the pharmacokinetics and tolerability of everolimus in Chinese patients with advanced solid tumors

    Directory of Open Access Journals (Sweden)

    Jappe Annette

    2011-01-01

    Full Text Available Abstract Background This phase I, randomized, multicenter, open-label study investigated the pharmacokinetics, safety, and efficacy of the oral mammalian target of rapamycin inhibitor everolimus in Chinese patients with advanced solid tumors. Methods A total of 24 patients with advanced breast cancer (n = 6, gastric cancer (n = 6, non-small cell lung cancer (n = 6, or renal cell carcinoma (n = 6 who were refractory to/unsuitable for standard therapy were randomized 1:1 to oral everolimus 5 or 10 mg/day. Primary end points were pharmacokinetic parameters and safety and tolerability. Pharmacokinetic 24-h profiles were measured on day 15; trough level was measured on days 2, 8, 15, 16, and 22. Tolerability was assessed continuously. This final analysis was performed after all patients had received 6 months of study drug or had discontinued. Results Everolimus was absorbed rapidly; median Tmax was 3 h (range, 1-4 and 2 h (range, 0.9-6 in the 5 and 10 mg/day groups, respectively. Pharmacokinetic parameters increased dose proportionally from the 5 and 10 mg/day doses. Steady-state levels were achieved by day 8 or earlier. The most common adverse events suspected to be related to everolimus therapy were increased blood glucose (16.7% and 41.7% and fatigue (16.7% and 33.3% in the everolimus 5 and 10 mg/day dose cohorts, respectively. Best tumor response was stable disease in 10 (83% and 6 (50% patients in the 5 and 10 mg/day groups, respectively. Conclusions Everolimus 5 or 10 mg/day was well tolerated in Chinese patients with advanced solid tumors. The observed safety and pharmacokinetic profile of everolimus from this study were consistent with previous studies. Trial registration Chinese Health Authorities 2008L09346

  6. Insulin dynamics and biochemical markers for predicting impaired glucose tolerance in obese Thai youth.

    Science.gov (United States)

    Tirabanchasak, Sirapassorn; Siripunthana, Sukumarn; Supornsilchai, Vichit; Wacharasindhu, Suttipong; Sahakitrungruang, Taninee

    2015-09-01

    Subjects with impaired glucose tolerance (IGT) are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease. The predictors of IGT in obese youth are not well described. We studied 115 obese Thai children who underwent an oral glucose tolerance test (OGTT). Plasma glucose and insulin levels were calculated for assessment of β-cell function. Hemoglobin A1c (HbA1c), lipid profile, and clinical parameters were also used to determine predictors of IGT. We found that three patients had T2DM and 30 subjects had IGT. IGT patients had significantly higher fasting glucose (FG), 1-h postload glucose, 2-h postload insulin, and lower whole-body insulin sensitivity indices than in normal glucose tolerance subjects whereas other indices were comparable. By ROC curve analyses, 1-h postload glucose was the best predictor of IGT, but FG or HbA1c represented a poor diagnostic tool for prediabetes screening. Subjects with 1-h OGTT glucose > 155 mg/dL had significantly lower high-density lipoprotein levels, lower insulin sensitivity, and more insulin resistance than those with 1-h postload glucose of ≤ 155 mg/dL. Abnormal glucose tolerance is highly prevalent in obese Thai youth. Several fasting indices and HbA1c fail to predict IGT. An 1-h OGTT glucose of > 155 mg/dL appears to be more associated with adverse insulin dynamics and metabolic profile than 2-h postload glucose.

  7. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan; Rö thig, Till; Voolstra, Christian R.; Ochsenkuhn, Michael A.; Lattemann, Sabine; Amy, Gary L.

    2014-01-01

    - specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess

  8. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  9. High-level language computer architecture

    CERN Document Server

    Chu, Yaohan

    1975-01-01

    High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr

  10. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  11. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  12. Relative safety profiles of high dose statin regimens

    Directory of Open Access Journals (Sweden)

    Carlos Escobar

    2008-06-01

    Full Text Available Carlos Escobar, Rocio Echarri, Vivencio BarriosDepartment of Cardiology, Hospital Ramón y Cajal, Madrid, SpainAbstract: Recent clinical trials recommend achieving a low-density lipoprotein cholesterol level of <100 mg/dl in high-risk and <70 mg/dl in very high risk patients. To attain these goals, however, many patients will need statins at high doses. The most frequent side effects related to the use of statins, myopathy, rhabdomyolysis, and increased levels of transaminases, are unusual. Although low and moderate doses show a favourable profile, there is concern about the tolerability of higher doses. During recent years, numerous trials to analyze the efficacy and tolerability of high doses of statins have been published. This paper updates the published data on the safety of statins at high doses.Keywords: statins, high doses, tolerability, liver, muscle

  13. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  14. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  15. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  16. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  17. Metabolic adaption of ethanol-tolerant Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Xinshu Zhu

    Full Text Available Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT strain and an ethanol-tolerant strain cultivated without (ET0 or with (ET3 3% (v/v exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.

  18. Low- and High-Temperature Tolerance and Acclimation for Chlorenchyma versus Meristem of the Cultivated Cacti Nopalea cochenillifera, Opuntia robusta, and Selenicereus megalanthus

    Directory of Open Access Journals (Sweden)

    Brian R. Zutta

    2011-01-01

    Full Text Available Dividing meristematic cells are thought to be more sensitive to extreme temperatures compared to other tissues, such as chlorenchyma. This was examined for low and high temperatures for three widely cultivated cacti: Nopalea cochenillifera, Opuntia robusta, and Selenicereus megalanthus. Temperature tolerances of chlorenchyma and meristem were based on the cellular uptake of the vital stain neutral red for plants at mean day/night air temperatures of 25/20°C and plants maintained at 10/5°C or 45/40°C to examine temperature acclimation. Meristematic cells tolerated 1.8°C lower low temperatures and 4.0°C higher high temperatures than chlorenchyma cells for the three species at 25/20°C. Both tissue types showed acclimation, with a decrease or increase in temperature tolerated at 10/5°C or 45/40°C, respectively. Meristematic cells were more tolerant of extreme temperatures compared to chlorenchyma, contrary to the prevailing belief, and may reflect an additional strategy for cacti to survive extreme temperatures.

  19. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  20. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  1. Decisions on the tolerability of risk: The use of quantitative risk assessment and the relevance of other factors

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A V [Health and Safety Executive, Baynards House, London (United Kingdom)

    1989-07-01

    A recent Discussion Document of the UK Health and Safety Executive proposes guidelines on the tolerable levels of individual and societal risks from nuclear power stations. At the various proposed levels a risk would be just tolerable and must be reduced further 'as low as reasonably practicable' (i.e. taking account of costs and benefits). These levels are induced from contemporary experience. No uniform upper level is proposed for tolerability for all societal risks. A stricter level is explicitly suggested for nuclear plant. A further study currently under way shows that FN curves suggest that (predictions for the very low probability of very high consequences apart) nuclear reactors rank favourably compared to many important non nuclear installations; in contrast to views held by some. Other factors are evidently involved in these views; there are some aspects of risk which cannot readily be presented on an FN curve, and there are 'dread' associations for some of the nuclear risks. The study is therefore also examining some decisions that have been taken in the UK about nuclear and non nuclear risks, based in part on estimates of societal risk. Comparison suggests that different levels of tolerability seem to be applied, according to the specific circumstances. Factors other than those shown in an FN curve evidently apply to these actual decisions as well. A preliminary identification of some of these factors is made. (author)

  2. Effect of aging and oral tolerance on dendritic cell function.

    Science.gov (United States)

    Simioni, P U; Fernandes, L G R; Gabriel, D L; Tamashiro, W M S C

    2010-01-01

    Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20%, respectively) than DC from immunized mice (P stimulating IFN-g, IL-4 and IL-10 production. However, TGF-beta levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P production (P oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.

  3. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  4. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pradat, Pierre-Francois; Bruneteau, Gaelle; Gordon, Paul H; Dupuis, Luc; Bonnefont-Rousselot, Dominique; Simon, Dominique; Salachas, Francois; Corcia, Philippe; Frochot, Vincent; Lacorte, Jean-Marc; Jardel, Claude; Coussieu, Christiane; Le Forestier, Nadine; Lacomblez, Lucette; Loeffler, Jean-Philippe; Meininger, Vincent

    2010-01-01

    Our objectives were to analyse carbohydrate metabolism in a series of ALS patients and to examine potential association with parameters of lipid metabolism and clinical features. Glucose tolerance was assessed by the oral glucose tolerance test in 21 non-diabetic ALS patients and compared with 21 age- and sex-matched normal subjects. Lipids and lactate/pyruvate ratio, levels of pro-inflammatory cytokines (tumour necrosis factor-alpha and interleukin-6) and adipocytokines (leptin and adiponectin) were also measured in ALS patients. Mann-Whitney U-tests analysed continuous data and Fisher's exact tests assessed categorical data. Blood glucose determined 120 min after the glucose bolus was significantly higher in patients with ALS (7.41 mmol/l+/-1.68) compared to controls (6.05+/-1.44, p=0.006). ALS patients with impaired glucose tolerance (IGT) according to WHO criteria (n=7, 33%) were more likely to have elevated free fatty acids (FFA) levels compared to patients with normal glucose tolerance (0.77 nmol/l+/-0.30 vs. 0.57+/-0.19, p=0.04). IGT was not associated with disease duration or severity. In conclusion, patients with ALS show abnormal glucose tolerance that could be associated with increased FFA levels, a key determinant of insulin resistance. The origin of glucose homeostasis abnormalities in ALS may be multifactorial and deserves further investigation.

  5. 76 FR 22045 - Fluopicolide; Pesticide Tolerances

    Science.gov (United States)

    2011-04-20

    ... regulation establishes tolerances for residues of fluopicolide and its metabolites in or on multiple... occurred at dose levels where significant maternal toxicity (severe body weight gain decrements and...

  6. Tolerability in the elderly population of high-dose alpha lipoic acid: a potential antioxidant therapy for the eye

    Directory of Open Access Journals (Sweden)

    Sarezky D

    2016-09-01

    Full Text Available Daniel Sarezky, Aaishah R Raquib, Joshua L Dunaief, Benjamin J Kim Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Purpose: Alpha lipoic acid (ALA is an antioxidant and iron-chelating supplement that has potential benefits for geographic atrophy in dry age-related macular degeneration as well as other eye diseases. The purpose of this study was to determine the tolerability of ALA in the elderly population. Patients and methods: Fifteen subjects, age ≥65 years, took sequential ALA doses of 600, 800, and 1,200 mg. Each dose was taken once daily with a meal for 5 days. After each dose was taken by the subjects for 5 days, the subjects were contacted by phone, a review of systems was performed, and they were asked if they thought they could tolerate taking that dose of ALA for an extended period of time. Results: The 600 mg dose was well tolerated. At the 800 mg dose, one subject had an intolerable flushing sensation. At the 1,200 mg dose, two subjects had intolerable upper gastrointestinal side effects and one subject had an intolerable flushing sensation. Subjects taking gastrointestinal prophylaxis medications had no upper gastrointestinal side effects. Conclusion: High-dose ALA is not completely tolerated by the elderly. These preliminary data suggest that gastrointestinal prophylaxis may improve tolerability. (ClinicalTrials.gov, NCT02613572. Keywords: age-related macular degeneration, geographic atrophy, antioxidant, gastrointestinal, dietary supplements, lipoic acid

  7. The high tolerance to aluminium in crucian carp (Carassius carassius) is associated with its ability to avoid hypoxia.

    Science.gov (United States)

    Poléo, Antonio B S; Schjolden, Joachim; Sørensen, Jørgen; Nilsson, Göran E

    2017-01-01

    It is well known that aluminium is the principle toxicant killing fish in acidified freshwater systems, and it has been shown that crucian carp (Carassius carassius) can survive exposures to aqueous aluminium levels toxic to most other freshwater fish species. The crucian carp has a remarkable ability to survive anoxic conditions, and the aim of the present study was to reveal if the tolerance to aluminium can be associated with the ability to survive prolonged anoxia. Crucian carps were exposed to either acidic Al-rich water (pH 5.8; 960 μg Al/l), acidic Al-poor water (pH 5.8; 50 μg Al/l) or untreated control water (pH 6.5; 50 μg Al/l). Blood, muscle and gill samples were collected from exposed fish, and closed respirometry was performed to measure critical O2-tension an normoxic O2-consumption. The results show an increased gill surface area in Al-exposed fish, while the critical O2-tension did not change. The normoxic O2-consumption was lower in Al-exposed fish and might be due to a reduced metabolic rate. The results suggest that crucian carp exposed to aluminium do not become hypoxic, since haematocrit, plasma lactate and blood ethanol did not differ from that of control fish after 14 days of exposure. We also observed an initial loss of plasma chloride and sodium, followed by a stabilisation of these ions at a lower level than in control fish. The decrease in plasma ions caused a transient increase in haematocrit and water content in muscle tissue, returning to control levels when the ion concentrations stabilised, suggesting that the water balance was restored. We conclude that the high tolerance to aluminium in crucian carp is associated with its ability to avoid hypoxia as well as an ability to counteract a continuous loss of plasma ions.

  8. Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Irene Fernández-Ruiz

    Full Text Available Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs, including mitochondrial DNA (mtDNA, induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET, is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.

  9. Strain tolerance of Bi2Sr2Ca1Cu2O8-δ/Ag composites at high field

    International Nuclear Information System (INIS)

    Li, Q.; Ostenson, J.E.; Finnemore, D.K.

    1991-01-01

    Strain tolerance of Bi 2 Sr 2 Ca 1 Cu 2 O 8-δ /Ag composites have been studied at fields up to 20 T and bending strains up to 2.6% in order to determine the factors that control the critical current density. The goal is to find the best way to distribute Ag such as to give both high strain tolerance and high critical current density. Partial melt processed samples prepared from micromilled mixtures containing 30% Ag by volume show a gradually decreasing critical current all the way out to 2.6% strain. Samples typically show about 1000 A/cm 2 at 4.2 K, 20 T, and 0.75% strain. At 20 K, these values occur at 4 T and 0.75% strain

  10. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  11. 77 FR 3617 - Etoxazole; Pesticide Tolerances

    Science.gov (United States)

    2012-01-25

    ... similar doses, indicating that systemic effects (mainly liver effects) occur at similar dose levels... chromatography/mass selective detection (GC/MSD) methods) are available to enforce the tolerance expression. The...

  12. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  13. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  14. Registration of an oilseed sunflower germplasm line HA-BSR1 highly tolerant to Sclerotinia basal stalk rot

    Science.gov (United States)

    Basal stalk rot (BSR) caused by Sclerotinia sclerotiorum (Lib.) de Bary is a devastating disease that causes a significant damage to worldwide sunflower (Helianthus annuus L.) production by reducing seed yield and quality. The objective of this research was to develop highly BSR tolerant sunflower g...

  15. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  16. Rapid evolution of tolerance to road salt in zooplankton.

    Science.gov (United States)

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl -  L -1 ). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl -  L -1 ). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl -  L -1 ) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl -  L -1 ). At the intermediate concentration (1300 mg Cl -  L -1 ), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl -  L -1 ) had higher survival than populations previously exposed to natural background levels (15 mg Cl -  L -1 ). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl -  L -1 ). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  17. Evaluation of Drought Tolerance of Bread Wheat Recombinant Inbred Lines

    Directory of Open Access Journals (Sweden)

    N Zafar Naderi

    2014-10-01

    Full Text Available To evaluateresponse of bread wheat recombinant inbred lines to water deficit, a split plot experiment arranged in randomized complete block design (CRBD was conducted using eight recombinant inbred lines and their parental cultivars (Roshan and Super Head with three replications under three irrigation levels (80, 120 and 160 mm evaporation from class A pan at the Agriculture Research Station of Islamic Azad University, Tabriz Branch during 2009. The results of analysis of variance data collected revealed significant difference among lines and irrigation levels for grain yield. While line × irrigation level interaction was non significant for grain yield. Based on SSI and TOL, drought tolerance indices lines number 1, 7, 41 and Roshan cultivar under 120 mm evaporation, and lines number 7 and 19 under 160 mm evaporation were the tolerant lines. Under both stress conditions according to STI, MP and GMP indices, lines number 37, 38 and Roshan cultivar were recognized as the tolerant lines to water deficiet. Cluster analyses based on grain yield and drought tolerance indices recognized the lines number 1, 30, 32, 37, 38, 41 and Roshan cultivar under 120 mm and lines number 30, 37 and 38 and Roshan under 160 mm evaporation as the most drought tolerants and higher producers.

  18. WE-AB-207B-01: Dose Tolerance for SBRT/SABR

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, J [Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) / stereotactic ablative body radiotherapy (SABR) is gaining popularity, but quantitative dose tolerance has still been lacking. To improve this, the April 2016 issue of Seminars in Radiation Oncology will have normal tissue complication probability (NTCP) models for 10 critical structures: optic pathway, cochlea, oral mucosa, esophagus, chestwall, aorta, bronchi, duodenum, small bowel, and spinal cord. Methods: The project included more than 1500 treatments in 1–5 fractions using CyberKnife, Gamma Knife, or LINAC, with 60 authors from 15 institutions. NTCP models were constructed from the 97 grade 2–3 complications, predominantly scored using the common terminology criteria for adverse events (CTCAEv4). Dose volume histogram (DVH) data from each institutional dataset was loaded into the DVH Evaluator software (DiversiLabs, LLC, Huntingdon Valley, Pa) for modeling. The current state of the literature for the critical structures was depicted using DVH Risk Maps: comparative graphs of dose tolerance limits that can include estimated risk levels, reported complications, DVH data for study patients, as well as high- and low-risk dose tolerance limits. Results: For relatively acceptable toxicity like grade 1–3 rib fractures and chestwall pain, the high-risk limits have 50% risk and the low-risk limits have 5% risk. Emami et al (IJROBP 1991 May 15;21(1):109–22) used 50% and 5% risk levels for all structures, whereas this effort used clinically acceptable ranges for each: in structures like aorta or spinal cord where complications must be avoided, the high- and low-risk limits have about 3% and 1% risk, respectively, in this issue of Seminars. These statistically based guidelines can help ensure plan quality for each patient. Conclusion: NTCP for SBRT is now becoming available. Hypofractionated dose tolerance can be dramatically different than extrapolations of conventional fractionation so NTCP analysis of the

  19. WE-AB-207B-01: Dose Tolerance for SBRT/SABR

    International Nuclear Information System (INIS)

    Grimm, J

    2016-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) / stereotactic ablative body radiotherapy (SABR) is gaining popularity, but quantitative dose tolerance has still been lacking. To improve this, the April 2016 issue of Seminars in Radiation Oncology will have normal tissue complication probability (NTCP) models for 10 critical structures: optic pathway, cochlea, oral mucosa, esophagus, chestwall, aorta, bronchi, duodenum, small bowel, and spinal cord. Methods: The project included more than 1500 treatments in 1–5 fractions using CyberKnife, Gamma Knife, or LINAC, with 60 authors from 15 institutions. NTCP models were constructed from the 97 grade 2–3 complications, predominantly scored using the common terminology criteria for adverse events (CTCAEv4). Dose volume histogram (DVH) data from each institutional dataset was loaded into the DVH Evaluator software (DiversiLabs, LLC, Huntingdon Valley, Pa) for modeling. The current state of the literature for the critical structures was depicted using DVH Risk Maps: comparative graphs of dose tolerance limits that can include estimated risk levels, reported complications, DVH data for study patients, as well as high- and low-risk dose tolerance limits. Results: For relatively acceptable toxicity like grade 1–3 rib fractures and chestwall pain, the high-risk limits have 50% risk and the low-risk limits have 5% risk. Emami et al (IJROBP 1991 May 15;21(1):109–22) used 50% and 5% risk levels for all structures, whereas this effort used clinically acceptable ranges for each: in structures like aorta or spinal cord where complications must be avoided, the high- and low-risk limits have about 3% and 1% risk, respectively, in this issue of Seminars. These statistically based guidelines can help ensure plan quality for each patient. Conclusion: NTCP for SBRT is now becoming available. Hypofractionated dose tolerance can be dramatically different than extrapolations of conventional fractionation so NTCP analysis of the

  20. Public tolerance to defoliation and flower distortion in a public horticulture garden.

    Science.gov (United States)

    Sadof, Clifford S; Sclar, D Casey

    2002-04-01

    Surveys of visitor and grower perception of live potted plant quality were conducted in various locations in a large public display garden. Canna lily, Canna x generalis L.H.Bailey, was used to examine effects of defoliation by Japanese beetle, Popillia japonica Newman, on public perception. Chrysanthemums, Chrysanthemum x morifolium Ramat., were used to identify visitor and grower tolerance to flower distortion caused by western flower thrips, Frankliniella occidentalis (Pergande), on single and multiple flowered plants. On average, the maximum amount of defoliation or flower distortion tolerated by any respondent was low (< or = 10% for canna and < or = 25% for chrysanthemum). The level of acceptable injury was influenced by factors intrinsic to both the respondents and the plants themselves. Tolerance to injury was negatively associated with the risk aversion of the respondents. Visitors were less tolerant of injury on plants they considered for purchase than those that they would view at the garden. Similarly, grower tolerance was lower than that of visitors because producing substandard plants could put their professional reputation at risk. Factors that distracted visitor attention (e.g., presence of flowers and higher levels of background injury) increased their tolerance to plant injury. Visitors tolerated greater levels of flower distortion on multiple flowering chrysanthemum than on those with single flowers. We suggest that tolerance to insect pests can be increased by designing plantings that distract viewers from injured plant parts.

  1. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  2. Characterization of Biocontrol Traits in Heterorhabditis floridensis: A Species with Broad Temperature Tolerance.

    Science.gov (United States)

    Shapiro-Ilan, David I; Blackburn, Dana; Duncan, Larry; El-Borai, Fahiem E; Koppenhöfer, Heather; Tailliez, Patrick; Adams, Byron J

    2014-12-01

    Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode's symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent

  3. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    Science.gov (United States)

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  4. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value

    Science.gov (United States)

    Zou, Changsong; Chen, Aojun; Xiao, Lihong; Muller, Heike M; Ache, Peter; Haberer, Georg; Zhang, Meiling; Jia, Wei; Deng, Ping; Huang, Ru; Lang, Daniel; Li, Feng; Zhan, Dongliang; Wu, Xiangyun; Zhang, Hui; Bohm, Jennifer; Liu, Renyi; Shabala, Sergey; Hedrich, Rainer; Zhu, Jian-Kang; Zhang, Heng

    2017-01-01

    Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa. PMID:28994416

  5. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Soo [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Science; Kim, Na-Rae [Ewha Womans Univ., Seoul (Korea, Republic of). Div. of Life and Pharmaceutical Sciences; Kim, Wankee [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Science; Ajou Univ., Suwon (Korea, Republic of). Inst. for Medical Sciences; Choi, Wonja [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Science; Ewha Womans Univ., Seoul (Korea, Republic of). Microbial Resources Research Center

    2012-07-15

    Furfural is one of the major inhibitors generated during sugar production from cellulosic materials and, as an aldehyde, inhibits various cellular activities of microorganisms used, leading to prolonged lag time during ethanologenic fermentation. Since Saccharomyces cerevisiae strains tolerant to furfural are of great economic benefit in producing bioethanol, much effort to obtain more efficient strains continues to be made. In this study, we examined the furfural tolerance of transposon mutant strains (Tn 1-5) with enhanced ethanol tolerance and found that one of them (Tn 2), in which SSK2 is downregulated at the transcriptional level, displayed improved furfural tolerance. Such phenotype was abolished by complementation of the entire open reading frame of SSK2, which encodes a mitogen-activated protein (MAP) kinase kinase kinase of the high osmolarity glycerol (HOG) signaling pathway, suggesting an inhibitory effect of SSK2 in coping with furfural stress. Tn 2 showed a significant decrease in the intracellular level of reactive oxygen species (ROS) and early and high activation of Hog1p, a MAP kinase integral to the HOG pathway in response to furfural. The transcriptional levels of CTT1 and GLR1, two of known Hog1p downstream target genes whose protein products are involved in reducing ROS, were increased by 43 % and 56 % respectively compared with a control strain, probably resulting in the ROS decrease. Tn 2 also showed a shortened lag time during fermentation in the presence of furfural, resulting from efficient conversion of furfural to non-toxic (or less toxic) furfuryl alcohol. Taken together, the enhanced furfural tolerance of Tn 2 is suggested to be conferred by the combined effect of an early event of less ROS accumulation and a late event of efficient detoxification of furfural. (orig.)

  6. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Kim, Wankee; Choi, Wonja

    2012-07-01

    Furfural is one of the major inhibitors generated during sugar production from cellulosic materials and, as an aldehyde, inhibits various cellular activities of microorganisms used, leading to prolonged lag time during ethanologenic fermentation. Since Saccharomyces cerevisiae strains tolerant to furfural are of great economic benefit in producing bioethanol, much effort to obtain more efficient strains continues to be made. In this study, we examined the furfural tolerance of transposon mutant strains (Tn 1-5) with enhanced ethanol tolerance and found that one of them (Tn 2), in which SSK2 is downregulated at the transcriptional level, displayed improved furfural tolerance. Such phenotype was abolished by complementation of the entire open reading frame of SSK2, which encodes a mitogen-activated protein (MAP) kinase kinase kinase of the high osmolarity glycerol (HOG) signaling pathway, suggesting an inhibitory effect of SSK2 in coping with furfural stress. Tn 2 showed a significant decrease in the intracellular level of reactive oxygen species (ROS) and early and high activation of Hog1p, a MAP kinase integral to the HOG pathway in response to furfural. The transcriptional levels of CTT1 and GLR1, two of known Hog1p downstream target genes whose protein products are involved in reducing ROS, were increased by 43 % and 56 % respectively compared with a control strain, probably resulting in the ROS decrease. Tn 2 also showed a shortened lag time during fermentation in the presence of furfural, resulting from efficient conversion of furfural to non-toxic (or less toxic) furfuryl alcohol. Taken together, the enhanced furfural tolerance of Tn 2 is suggested to be conferred by the combined effect of an early event of less ROS accumulation and a late event of efficient detoxification of furfural.

  7. The irradiation tolerance dose of the proximal vagina

    International Nuclear Information System (INIS)

    Au, Samuel P.; Grigsby, Perry W.

    2003-01-01

    Purpose: The purpose of this investigation was to determine the irradiation tolerance level and complication rates of the proximal vagina to combined external irradiation and low dose rate (LDR) brachytherapy. Also, the mucosal tolerance for fractionated high dose rate (HDR) brachytherapy is further projected based on the biological equivalent dose (BED) of LDR for an acceptable complication rate. Materials and methods: Two hundred seventy-four patients with stages I-IV cervical carcinoma treated with irradiation therapy alone from 1987 to 1997 were retrospectively reviewed for radiation-associated late sequelae of the proximal vagina. All patients received LDR brachytherapy and 95% also received external pelvic irradiation. Follow-up ranged from 15 to 126 months (median, 43 months). The proximal vagina mucosa dose from a single ovoid (single source) or from both ovoids plus the tandem (all sources), together with the external irradiation dose, were used to derive the probability of a complication using the maximum likelihood logistic regression technique. The BED based on the linear-quadratic model was used to compute the corresponding tolerance levels for LDR or HDR brachytherapy. Results: Grades 1 and 2 complications occurred in 10.6% of patients and Grade 3 complications occurred in 3.6%. There were no Grade 4 complications. Complications occurred from 3 to 71 months (median, 7 months) after completion of irradiation, with over 60% occurring in the first year. By logistic regression analysis, both the mucosal dose from a single ovoid or that from all sources, combined with the external irradiation dose, demonstrate a statistically significant fit to the dose response complication curves (both with P=0.016). The single source dose was highly correlated with the all source dose with a cross-correlation coefficient 0.93. The all source dose was approximately 1.4 times the single source dose. Over the LDR brachytherapy dose rate range, the complication rate was

  8. Natural selection on individual variation in tolerance of gastrointestinal nematode infection.

    Directory of Open Access Journals (Sweden)

    Adam D Hayward

    2014-07-01

    Full Text Available Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host-parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance, other individuals lost weight significantly more rapidly (exhibiting low tolerance. We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.

  9. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef; Adil, Karim; Cairns, Amy J.; Bhatt, Prashant

    2015-01-01

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  10. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed

    2015-07-06

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  11. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  12. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  13. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  14. Fault-tolerant three-level inverter

    Science.gov (United States)

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  15. The failure-tolerant leader.

    Science.gov (United States)

    Farson, Richard; Keyes, Ralph

    2002-08-01

    "The fastest way to succeed," IBM's Thomas Watson, Sr., once said, "is to double your failure rate." In recent years, more and more executives have embraced Watson's point of view, coming to understand what innovators have always known: Failure is a prerequisite to invention. But while companies may grasp the value of making mistakes at the level of corporate practices, they have a harder time accepting the idea at the personal level. People are afraid to fail, and corporate culture reinforces that fear. In this article, psychologist and former Harvard Business School professor Richard Farson and coauthor Ralph Keyes discuss how companies can reduce the fear of miscues. What's crucial is the presence of failure-tolerant leaders--executives who, through their words and actions, help employees overcome their anxieties about making mistakes and, in the process, create a culture of intelligent risk-taking that leads to sustained innovation. Such leaders don't just accept productive failure, they promote it. Drawing from their research in business, politics, sports, and science, the authors identify common practices among failure-tolerant leaders. These leaders break down the social and bureaucratic barriers that separate them from their followers. They engage at a personal level with the people they lead. They avoid giving either praise or criticism, preferring to take a nonjudgmental, analytical posture as they interact with staff. They openly admit their own mistakes rather than trying to cover them up or shifting the blame. And they try to root out the destructive competitiveness built into most organizations. Above all else, failure-tolerant leaders push people to see beyond traditional definitions of success and failure. They know that as long as a person views failure as the opposite of success, rather than its complement, he or she will never be able to take the risks necessary for innovation.

  16. Crafting tolerance

    DEFF Research Database (Denmark)

    Kirchner, Antje; Freitag, Markus; Rapp, Carolin

    2011-01-01

    Ongoing changes in social structures, orientation, and value systems confront us with the growing necessity to address and understand transforming patterns of tolerance as well as specific aspects, such as social tolerance. Based on hierarchical analyses of the latest World Values Survey (2005......–08) and national statistics for 28 countries, we assess both individual and contextual aspects that influence an individual's perception of different social groupings. Using a social tolerance index that captures personal attitudes toward these groupings, we present an institutional theory of social tolerance. Our...

  17. VCSEL-based radiation tolerant optical data links

    CERN Document Server

    Gregor, I M; Dowell, J; Jovanovic, P; Kootz, A; Mahout, G; Mandic, I; Weidberg, T

    2000-01-01

    The Large Hadron Collider (LHC) will become operational in 2005 at The European Laboratory for Particle Physics (CERN). The LHC will be the highest energy proton-proton collider in the world. One of the electronic particle detectors which will operate at the LHC is called ATLAS. The environment for electronics placed within ATLAS is extremely hostile due to the high levels of radiation and the general lack of access to components during the expected 10 year lifetime of the experiment. It is planned to use custom radiation tolerant VCSEL- based optical links to transfer data from the ATLAS inner detector to remote data acquisition electronics. A low mass, non-magnetic and radiation tolerant VCSEL packaging has been developed for the most hostile region in the center of ATLAS where the inner detector is located. The performance of the package is reported on. Qualification tests of commercial VCSELs are also described. The VCSELs were irradiated with neutrons (up to 8.10/sup 14/ n(1 MeV)/cm/sup 2/) and annealing...

  18. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  19. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    International Nuclear Information System (INIS)

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi

    2013-01-01

    Highlights: ► NO is produced from L-arginine in response to elevated temperature in yeast. ► Tah18 was first identified as the yeast protein involved in NO synthesis. ► Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe–S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  20. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  1. Temperature tolerance of young-of-the-year cisco, Coregonus artedii

    Science.gov (United States)

    Edsall, Thomas A.; Colby, Peter J.

    1970-01-01

    Young-of-the-year ciscoes (Coregonus artedii) acclimated to 2, 5, 10, 20 and 25 C and tested for tolerance to high and low temperatures provide the first detailed description of the thermal tolerance of coregonids in North America. The upper ultimate lethal temperature of the young ciscoes was 26 C (6 C higher than the maximum sustained temperature tolerated by adult ciscoes in nature) and the ultimate lower lethal temperature approached 0 C (near that commonly tolerated in nature by adult ciscoes). The temperature of 26 C is slightly higher than the lowest ultimate upper lethal temperature recorded for North American freshwater fishes; however, published information on the depth distributions of fishes in the Great Lakes suggests that some of the other coregonids may be less tolerant of high temperatures than the cisco.

  2. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    Science.gov (United States)

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Role Of Ascorbic Acid In Imparting Tolerance To Plants Against Oxidizing Pollutants

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2015-08-01

    Full Text Available Ascorbic acid is an antioxidant in plants which play important role in activation of many physiological and defense mechanisms. The level of ascorbic acid in plants is determinant of its tolerance against the adverse effect of oxidizing pollutants. The present study tries to relate the variation in ascorbic acid content with the tolerance and sensitivity of two selected plant species viz. Azadirachtaindica and Pongamiapinnata by calculating their Air Pollution Tolerance Index APTI during winter season from November to March in the urban city Delhi of North India. Moreover ascorbic acid is also an important part of chloroplast it protects different components of photosynthetic system from oxidative stress. Thus to understand the role of ascorbic acid in imparting tolerance to plants against oxidizing pollutants the changes in chlorophyll content of the selected plant species with variation in ambient ozone concentration was analysed. It was found that as per APTI values Azadirachta sp. came under tolerant range with highest ascorbic acid content whereas Pongamia sp. was under intermediate range with less ascorbic acid content. It was statistically established that ozone has no significant relation with chlorophyll content of Azadirachta sp. which has the highest ascorbic acid content. Whereas ambient ozone concentrations showed significant negative relation with the chlorophyll content of Pongamia sp. p 0.05. Thus it was observed that the plants with high ascorbic acid content are tolerant and have greater ability to remediate pollutants.

  4. Psychrotrophic metal tolerant bacteria for mobilisation of metals in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.

    Cold tolerant psychrotrophic bacteria abound in the Antarctic waters. While Antarctic krills are known to concentrate heavy metals at ppm levels, psychrotrophic bacteria from Antarctic fresh and marine waters have been reported to tolerate them...

  5. RPython high-level synthesis

    Science.gov (United States)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  6. 76 FR 25281 - Atrazine, Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions

    Science.gov (United States)

    2011-05-04

    ... or proposed product label. Generally, the level selected for a tolerance is a value slightly above..., Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to revoke certain tolerances in...

  7. Proteomic Techniques and Management of Flooding Tolerance in Soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Tougou, Makoto; Nanjo, Yohei

    2015-09-04

    Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.

  8. Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos.

    Science.gov (United States)

    Soler, J J; Martín-Gálvez, D; Martínez, J G; Soler, M; Canestrari, D; Abad-Gómez, J M; Møller, A P

    2011-07-07

    Hosts may use two different strategies to ameliorate negative effects of a given parasite burden: resistance or tolerance. Although both resistance and tolerance of parasitism should evolve as a consequence of selection pressures owing to parasitism, the study of evolutionary patterns of tolerance has traditionally been neglected by animal biologists. Here, we explore geographical covariation between tolerance of magpies (Pica pica) and brood parasitism by the great spotted cuckoo (Clamator glandarius) in nine different sympatric populations. We estimated tolerance as the slope of the regression of number of magpie fledglings (i.e. host fitness) on number of cuckoo eggs laid in non-depredated nests (which broadly equals parasite burden). We also estimated prevalence of parasitism and level of host resistance (i.e. rejection rates of mimetic model eggs) in these nine populations. In accordance with the hypothetical role of tolerance in the coevolutionary process between magpies and cuckoos we found geographical variation in tolerance estimates that positively covaried with prevalence of parasitism. Levels of resistance and tolerance were not associated, possibly suggesting the lack of a trade-off between the two kinds of defences against great spotted cuckoo parasitism for magpies. We discuss the results in the framework of a mosaic of coevolutionary interactions along the geographical distribution of magpies and great spotted cuckoos for which we found evidence that tolerance plays a major role.

  9. Polyamines Function in Stress Tolerance: From Synthesis to Regulation

    Directory of Open Access Journals (Sweden)

    Ji-Hong eLiu

    2015-10-01

    Full Text Available Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine,spermidine and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested.

  10. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Science.gov (United States)

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  11. Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance.

    Directory of Open Access Journals (Sweden)

    Venkategowda Ramegowda

    Full Text Available NAC (NAM, ATAF1-2, and CUC2 proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV induced oxidative stress. Reduced levels of reactive oxygen species (ROS and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.

  12. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    International Nuclear Information System (INIS)

    Johnson-Flanagan, A.M.; Singh, J.

    1987-01-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 0 C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [ 35 S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants

  13. Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

    International Nuclear Information System (INIS)

    Yap, C.K.; Yazdani, M.; Abdullah, F.; Tan, S.G.

    2011-01-01

    The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/ L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC 50 value of the isolate was 287.73 mg/ L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/ g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4 %, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem. (author)

  14. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  15. Noise tolerant dendritic lattice associative memories

    Science.gov (United States)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  16. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  17. Using Ice Cream for Diagnosis of Diabetes Mellitus and Impaired Glucose Tolerance: An Alternative to the Oral Glucose Tolerance Test.

    Science.gov (United States)

    Chanprasertpinyo, Wandee; Bhirommuang, Nattapimon; Surawattanawiset, Titiporn; Tangsermwong, Thanwarin; Phanachet, Pariya; Sriphrapradang, Chutintorn

    2017-12-01

    Oral glucose tolerance test (OGTT) is a sensitive and reliable test for diabetes mellitus and impaired glucose tolerance (IGT). However, poor patient tolerance of glucose solutions is common. We aim to compare the diagnostic value of an ice cream test with a standard OGTT. A total of 104 healthy adults were randomly assigned to either 75-g OGTT or ice cream, followed by a crossover to the other test. Most patients were females (71%). Mean age was 37 ± 12 years, and body mass index was 24.2 ± 3.9kg/m 2 . Diabetes mellitus and IGT, as diagnosed by 75-g OGTT, were 4.8% and 6.7%, respectively. The 2-hour plasma glucose levels were 110 ± 55.5mg/dL with 75-g glucose and 97.52 ± 40.7mg/dL with ice cream. The correlation coefficient of 2-hour plasma glucose for the 2 tests was 0.82 (95% CI: 0.75-0.87; P ice cream test would have missed 5.76% of those at high risk for diabetes mellitus (impaired fasting glucose and IGT) or diabetes. An ice cream test may serve as an alternative to a 75-g OGTT. Before applying this test in clinical practice, it needs to be validated in a larger population. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  18. Exploring new alleles for frost tolerance in winter rye.

    Science.gov (United States)

    Erath, Wiltrud; Bauer, Eva; Fowler, D Brian; Gordillo, Andres; Korzun, Viktor; Ponomareva, Mira; Schmidt, Malthe; Schmiedchen, Brigitta; Wilde, Peer; Schön, Chris-Carolin

    2017-10-01

    Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.

  19. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae, in subtropical China.

    Directory of Open Access Journals (Sweden)

    Rui-Ting Ju

    Full Text Available Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control, 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1 progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  20. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China.

    Science.gov (United States)

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control), 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1) progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees) are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  1. Compromise and Toleration

    DEFF Research Database (Denmark)

    Rostbøll, Christian F.

    Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature, justifi...... in compromise are more stringent than those for being tolerated. Still, the limits of compromise cannot be drawn to narrowly if it is to remain its value as a form of agreement that respects and embodies the differences of opinion in society.......Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature......, justification, and limits of compromise if we see it merely as a matter of toleration. While toleration is mainly a matter of accepting citizens' equal right to co-existence as subjects to law, political compromise includes the parties in making law – it makes them co-authors of law. Toleration entails...

  2. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process

    DEFF Research Database (Denmark)

    Mahdy, Ahmed; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    ) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431 mL CH4 g VS-1), while the BMP of microalgae alone (100/0) was 415 mL CH4 g VS-1. Subsequently, anaerobic digestion of those two substrates was tested...... in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2 g NH4+-N L-1), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively) These results demonstrated that ammonia tolerant inocula...

  3. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation.

    Science.gov (United States)

    Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru

    2008-01-01

    Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.

  4. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  5. Tolerance of the High Energy X-ray Imaging Technology ASIC to potentially destructive radiation processes in Earth-orbit-equivalent environments

    Science.gov (United States)

    Ryan, D. F.; Baumgartner, W. H.; Wilson, M.; Benmoussa, A.; Campola, M.; Christe, S. D.; Gissot, S.; Jones, L.; Newport, J.; Prydderch, M.; Richards, S.; Seller, P.; Shih, A. Y.; Thomas, S.

    2018-02-01

    The High Energy X-ray Imaging Technology (HEXITEC) ASIC is designed on a 0.35 μm CMOS process to read out CdTe or CZT detectors and hence provide fine-pixellated spectroscopic imaging in the range 2-200 keV. In this paper, we examine the tolerance of HEXITEC to both potentially destructive cumulative and single event radiation effects. Bare ASICs are irradiated with X-rays up to a total ionising dose (TID) of 1 Mrad (SiO2) and bombarded with heavy ions with linear energy transfer (LET) up to 88.3 MeV mg-1 cm-2. HEXITEC is shown to operate reliably below a TID of 150 krad, have immunity to fatal single event latchup (SEL) and have high tolerance to non-fatal SEL up to LETs of at least 88.3 MeV mg-1 cm-2. The results are compared to predictions of TID and SELs for various Earth-orbits and aluminium shielding thicknesses. It is found that HEXITEC's radiation tolerance to both potentially destructive cumulative and single event effects is sufficient to reliably operate in these environments with moderate shielding.

  6. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, Claus; Blanke, Mogens

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken...

  7. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  8. Effect of aging and oral tolerance on dendritic cell function

    Directory of Open Access Journals (Sweden)

    P.U. Simioni

    2010-01-01

    Full Text Available Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC, and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10 mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group of all ages (8, 20, 40, 60, and 80 weeks old, although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old. DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old tolerized mice were less efficient (65, 17 and 20%, respectively than DC from immunized mice (P < 0.05 in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-β levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05. DC from both immunized and tolerized old and very old (60 and 80 weeks old mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05. A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50%, respectively. The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.

  9. Teaching Tolerance? Associational Diversity and Tolerance Formation

    DEFF Research Database (Denmark)

    Rapp, Carolin; Freitag, Markus

    2015-01-01

    , a closer look is taken at how associational diversity relates to the formation of tolerance and the importance of associations as schools of tolerance are evaluated. The main theoretical argument follows contact theory, wherein regular and enduring contact in diverse settings reduces prejudice and thereby...

  10. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  11. Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na+ Exclusion

    Science.gov (United States)

    Rahman, Md. M.; Rahman, Md. A.; Miah, Md. G.; Saha, Satya R.; Karim, M. A.; Mostofa, Mohammad G.

    2017-01-01

    Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that

  12. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high......-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association...

  13. Simulation of a G-tolerance curve using the pulsatile cardiovascular model

    Science.gov (United States)

    Solomon, M.; Srinivasan, R.

    1985-01-01

    A computer simulation study, performed to assess the ability of the cardiovascular model to reproduce the G tolerance curve (G level versus tolerance time) is reported. A composite strength duration curve derived from experimental data obtained in human centrifugation studies was used for comparison. The effects of abolishing automomic control and of blood volume loss on G tolerance were also simulated. The results provide additional validation of the model. The need for the presence of autonomic reflexes even at low levels of G is pointed out. The low margin of safety with a loss of blood volume indicated by the simulation results underscores the necessity for protective measures during Shuttle reentry.

  14. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  15. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2004-01-01

    BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S

  16. Thrombocytopenia associated with the induction of neonatal tolerance to alloantigens: immunopathogenic mechanisms.

    Science.gov (United States)

    Merino, J; Qin, H Y; Schurmans, S; Gretener, D; Grau, G E; Lambert, P H

    1989-09-01

    BALB/c mice rendered tolerant to alloantigens by neonatal injection of semi-allogeneic (C57BL/6 x BALB/c)F1 spleen cells develop a thrombocytopenia in association with an autoimmune lupus-like syndrome. The possible mechanisms involved in the thrombocytopenia were investigated. The development of thrombocytopenia was first detected at 3 weeks of age coinciding with the start of the other autoimmune manifestations and was always related to a state of tolerance and B cell chimerism. There was a significant increase of megakaryocytes in bone marrow and spleens from thrombocytopenic tolerant mice and radiolabeled platelets from these mice were more rapidly eliminated from the bloodstream than normal platelets when injected into normal recipients. A significant correlation between the spleen weight and the decrease of the circulating platelets was observed, although some mice with severe thrombocytopenia had only a moderate spleen enlargement. Thrombocytopenia significantly correlates with the levels of platelet-associated IgG (PAIgG) but not with anti-single-stranded DNA antibodies or circulating immune complexes. Platelets from mice with high levels of PAIgG had a shorter life-span when injected into normal mice than those from mice with low or normal PAIgG. The possibility that PAIgG are partially due to antibodies reacting specifically with platelet membrane components was analyzed. First, F(ab')2 Ig fragments from tolerant mice were shown to bind to normal platelets, in contrast to F(ab')2 Ig fragments from normal mice. Second, some monoclonal antibodies produced by hybridomas derived from tolerant mice reacted in vitro with platelets and induced a transient thrombocytopenia after i.v. injection into normal mice. These data suggest that the thrombocytopenia observed in tolerant mice is the result of a peripheral hyperdestruction of platelets associated with (a) hypersplenism, (b) nonspecific fixation of immunoglobulins, probably as immune complexes and (c) with

  17. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  18. 'A high degree of understanding and tolerance': veranderende denke oor die moderne gereformeerde kerklied

    Directory of Open Access Journals (Sweden)

    D. Kruger

    2007-07-01

    Full Text Available 'A high degree of understanding and tolerance': changing thoughts on the modern reformed church song Currently, churches worldwide are experiencing an unparalleled increase in new hymns. Consequently, the requirements of the modern congregational song are much more challenging and demanding. Although the principles of music theory remain a primary criterion for the evaluation of the congregational song, aspects concerning the spiritual requirements, musical taste and culture of the modern church member are becoming increasingly relevant when thinking about the congregational song. In this article the author gives a general overview as to the nature of the modern church song against the background of liturgical renewal within the reformed tradition. The profile of the postmodern church member as regards spiritual needs, musical taste and culture is outlined and connected with the current sensitivity of spirituality and emotional experience through worship and song. Lastly a connection is made between the current trends of hymnological thought and the reformed principles. It is argued that greater tolerance and understanding can lead towards a reforming, rather than a reformed attitude towards the modern congregational song. The discussion is illustrated with examples from the “Liedboek van die kerk” (2001.

  19. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  20. A Fault Tolerant Direct Control Allocation Scheme with Integral Sliding Modes

    Directory of Open Access Journals (Sweden)

    Hamayun Mirza Tariq

    2015-03-01

    Full Text Available In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.

  1. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  2. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines

    KAUST Repository

    Honsdorf, Nora

    2014-05-13

    Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old) wild barley introgression lines (S42ILs) for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r = 0.98) between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL) were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars. © 2014 Honsdorf et al.

  3. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines.

    Directory of Open Access Journals (Sweden)

    Nora Honsdorf

    Full Text Available Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old wild barley introgression lines (S42ILs for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r=0.98 between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars.

  4. Drought tolerant wheat varieties developed through mutation ...

    African Journals Online (AJOL)

    In search for higher yielding drought tolerant wheat varieties, one of the Kenyan high yielding variety 'Pasa' was irradiated with gamma rays (at 150, 200, and 250gy) in 1997 so as to induce variability and select for drought tolerance. Six mutants ((KM10, KM14, KM15, KM18, KM20 and KM21) were selected at M4 for their ...

  5. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  6. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats.

    Science.gov (United States)

    Márquez-Ibarra, Adriana; Huerta, Miguel; Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I; Cruzblanca, Humberto; Mancilla, Evelyn; Trujillo, Xóchitl

    2016-01-01

    Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin

  7. Enhancing drought tolerance in C(4) crops.

    Science.gov (United States)

    Lopes, Marta S; Araus, Jose Luis; van Heerden, Philippus D R; Foyer, Christine H

    2011-05-01

    Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.

  8. Increased glucose tolerance despite low adiponectin levels in obesity-resistent aP2-Ucp1 transgenic mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jeleník, Tomáš; Ogston, N. C.; Slámová, Kristýna; Mohamed-Ali, V.; Kopecký, Jan

    2006-01-01

    Roč. 49, Suppl. 1 (2006), s. 755-755 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /42./. 14.09.2006-17.09.2006, Copenhagen-Malmoe] R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA303/05/2580 Institutional research plan: CEZ:AV0Z50110509 Keywords : adiponectin * transgenic mice * obesity * mitochondria * glucose tolerance * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  9. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China

    International Nuclear Information System (INIS)

    Wu, F.Y.; Leung, H.M.; Wu, S.C.; Ye, Z.H.; Wong, M.H.

    2009-01-01

    Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg -1 , about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations. - Nonmetallicolous population of Pteris vittata L. possesses more effective arsenic hyperaccumulation than the metallicolous populations.

  10. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.Y.; Leung, H.M.; Wu, S.C. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control and School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2009-08-15

    Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg{sup -1}, about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations. - Nonmetallicolous population of Pteris vittata L. possesses more effective arsenic hyperaccumulation than the metallicolous populations.

  11. Modelling and design of high efficiency radiation tolerant indium phosphide space solar cells

    International Nuclear Information System (INIS)

    Goradia, C.; Geier, J.V.; Weinberg, I.

    1987-01-01

    Using a fairly comprehensive model, the authors did a parametric variation study of the InP shallow homojunction solar cell with a view to determining the maximum realistically achievable efficiency and an optimum design that would yield this efficiency. Their calculations show that with good quality epitaxial material, a BOL efficiency of about 20.3% at 1AMO, 25 0 C may be possible. The design parameters of the near-optimum cell are given. Also presented are the expected radiation damage of the performance parameters by 1MeV electrons and a possible explanation of the high radiation tolerance of InP solar cells

  12. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  13. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  14. An efficient method of reducing glass dispersion tolerance sensitivity

    Science.gov (United States)

    Sparrold, Scott W.; Shepard, R. Hamilton

    2014-12-01

    Constraining the Seidel aberrations of optical surfaces is a common technique for relaxing tolerance sensitivities in the optimization process. We offer an observation that a lens's Abbe number tolerance is directly related to the magnitude by which its longitudinal and transverse color are permitted to vary in production. Based on this observation, we propose a computationally efficient and easy-to-use merit function constraint for relaxing dispersion tolerance sensitivity. Using the relationship between an element's chromatic aberration and dispersion sensitivity, we derive a fundamental limit for lens scale and power that is capable of achieving high production yield for a given performance specification, which provides insight on the point at which lens splitting or melt fitting becomes necessary. The theory is validated by comparing its predictions to a formal tolerance analysis of a Cooke Triplet, and then applied to the design of a 1.5x visible linescan lens to illustrate optimization for reduced dispersion sensitivity. A selection of lenses in high volume production is then used to corroborate the proposed method of dispersion tolerance allocation.

  15. RESTING SYMPATHETIC BAROREFLEX SENSITIVITY IN SUBJECTS WITH LOW AND HIGH TOLERANCE TO CENTRAL HYPOVOLEMIA INDUCED BY LOWER BODY NEGATIVE PRESSURE

    Directory of Open Access Journals (Sweden)

    Carmen eHinojosa-Laborde

    2014-06-01

    Full Text Available Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock. The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA and sympathetic baroreflex sensitivity (BRS are attenuated in male and female subjects who have low tolerance (LT to central hypovolemia induced by lower body negative pressure (LBNP. MSNA and diastolic arterial pressure (DAP were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms. LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT experienced presyncopal symptoms after completing LBNP after -60 mmHg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n= 9; HT: n=28, and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts•(100 beats-1•mmHg-1, p=0.29. We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS.

  16. Evaluation of drought tolerance in different growth stages of maize ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... index; STI: stress tolerance index. condition. MO17 was a tolerant inbred line based on TOL and its low quantity indicates tolerant inbred lines (Table 4). MO17 was low yielding under all conditions. It seems that. TOL had succeeded in selecting genotypes with high yield under stress, but had failed to select ...

  17. TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China.

    Science.gov (United States)

    Han, C; Dai, S F; Liu, D C; Pu, Z J; Wei, Y M; Zheng, Y L; Wen, D J; Zhao, L; Yan, Z H

    2013-11-18

    Previous genetic studies on wheat from various sources have indicated that aluminum (Al) tolerance may have originated independently in USA, Brazil, and China. Here, TaALMT1 promoter sequences of 92 landraces and cultivars from Sichuan, China, were sequenced. Five promoter types (I', II, III, IV, and V) were observed in 39 cultivars, and only three promoter types (I, II, and III) were observed in 53 landraces. Among the wheat collections worldwide, only the Chinese Spring (CS) landrace native to Sichuan, China, carried the TaALMT1 promoter type III. Besides CS, two other Sichuan-bred landraces and six cultivars with TaALMT1 promoter type III were identified in this study. In the phylogenetic tree constructed based on the TaALMT1 promoter sequences, type III formed a separate branch, which was supported by a high bootstrap value. It is likely that TaALMT1 promoter type III originated from Sichuan-bred wheat landraces of China. In addition, the landraces with promoter type I showed the lowest Al tolerance among all landraces and cultivars. Furthermore, the cultivars with promoter type IV showed better Al tolerance than landraces with promoter type II. A comparison of acid tolerance and Al tolerance between cultivars and landraces showed that the landraces had better acid tolerance than the cultivars, whereas the cultivars showed better Al tolerance than the landraces. Moreover, significant difference in Al tolerance was also observed between the cultivars raised by the National Ministry of Agriculture and by Sichuan Province. Among the landraces from different regions, those from the East showed better acid tolerance and Al tolerance than those from the South and West of Sichuan. Additional Al-tolerant and acid-tolerant wheat lines were also identified.

  18. EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation.

    Science.gov (United States)

    Chen, Hsing-Yu; Wei, Chia-Chien; Lu, I-Cheng; Chen, Yu-Chao; Chu, Hsuan-Hao; Chen, Jyehong

    2014-06-16

    In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity. Therefore, the nonlinear distortion limits the operational tolerance of the bias voltage and the driving power to a small region. After applying the proposed SSII cancellation, the OMI of an OFDM signal was increased yielding only a small increment of nonlinear distortion, and the tolerance region of the operational conditions was also increased. By employing the proposed scheme, this study successfully demonstrates 50-Gbps OFDM transmission over 100-km dispersion-uncompensated single-mode fiber based on a single 10-GHz EAM.

  19. Is there an optimal level of positive expiratory pressure (PEP) to improve walking tolerance in patients with severe COPD?

    Science.gov (United States)

    Russo, Davide; Simonelli, Carla; Paneroni, Mara; Saleri, Manuela; Piroddi, Ines Maria Grazia; Cardinale, Francesco; Vitacca, Michele; Nicolini, Antonello

    2016-07-01

    The application of positive expiratory pressure (PEP) devices during exercise had been proposed in order to counteract the pulmonary hyperinflation, reduce the dyspnea and thus increase the exercise tolerance in patients with severe chronic obstructive pulmonary disease (COPD). This randomized controlled crossover trial investigated the effect of two different levels of PEP (1 cmH2O and 10 cmH2O) on distance covered at 6minute walk test (6MWT) in patients with severe COPD. Secondary outcomes were the evaluation of PEP effects on physiological and pulmonary function variables. Seventy-two severe COPD patients, referred to our hospitals as in and out patients, were recruited. A basal 6MWT without devices was performed on the first day, and then repeated with PEP 1 cmH2O (PEP1) and 10 cmH2O (PEP10), with a randomized crossover design. Slow and forced spirometries, including the inspiratory capacity measure, were repeated before and after each 6MWT. 50 patients (average age 69,92 year, mean FEV1 41,42% of predicted) concluded the trial. The 6MWT improved significantly among both PEP levels and baseline (323,8 mt at baseline vs. 337,8 PEP1 and 341,8 PEP10; p<.002 and p<.018, respectively). The difference between PEP10 and PEP1 did not reach the significance. No improvements were found in pulmonary function, symptoms and physiological variables after the 6MWT. In patients with severe COPD, the application of 1 cmH2O of PEP seems to improve the exercise tolerance as 10 cmH2O, with similar dyspnea. Further studies should investigate the effects of low levels of PEP on aerobic training programs. Copyright © 2016 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Small Intestinal Bypass Induces a Persistent Weight-Loss Effect and Improves Glucose Tolerance in Obese Rats.

    Science.gov (United States)

    Cao, Jiaqing; Ren, Quan; Tan, Cai; Duan, Jinyuan

    2017-07-01

    This study investigated the role of proximal small intestinal bypass (PSIB) and distal small intestinal bypass (DSIB) as well as their long-term effects on weight loss and glucose metabolism in high-sugar and high-fat diet-induced obese rats. Sprague-Dawley rats were divided into four groups: PSIB, bypassing 60% of the proximal small intestine length; DSIB, bypassing 60% of the distal small intestine length; sham-operated (Sham) animals; and control animals. All rats were fed a high-sugar and high-fat diet after surgery. The primary outcome measures were body weight, food intake, fasting blood glucose (FBG) levels, oral glucose tolerance test (OGTT), and the insulin tolerance test (ITT). Global body weight (BW) and food intake in the PSIB and DSIB groups were lower than those in the Sham group at postoperative week 2. BW and food intake in the PSIB group were lower than those in the DSIB group at postoperative week 24. The PSIB and DSIB groups exhibited improvement in glucose tolerance at postoperative weeks 4, 8, and 24. The PSIB and DSIB groups exhibited improvement in FBG at postoperative week 24, and only the DSIB group exhibited improvement in insulin sensitivity. This study provides experimental evidence that PSIB surgery induced a better and more persistent weight loss effect than DSIB surgery and that the two types of intestinal bypass surgeries yielded equivalent and stable long-term improvement in glucose tolerance in an obese rat model.

  1. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment

    Science.gov (United States)

    Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µM Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albu...

  2. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  3. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Begley, Máire; Hill, Colin

    2012-06-01

    Significant phenotypic diversity was observed when we examined the abilities of a number of Cronobacter sakazakii natural isolates to cope with various sublethal stress conditions (acid, alkaline, osmotic, oxidative, or heat stress). Levels of catalase activity and use of acetate as a carbon source, phenotypes commonly used as indirect assays to predict RpoS function, revealed a high correlation between predicted RpoS activity and tolerance to acid, alkaline, osmotic, and oxidative treatments. The rpoS genes were sequenced and analyzed for polymorphisms. Loss-of-function mutations were found in two strains; C. sakazakii DPC 6523 and the genome-sequenced strain C. sakazakii ATCC BAA-894. The complementation of these strains with a functional rpoS gene resulted in an increase in bacterial tolerance to acid, osmotic, and oxidative stresses. The pigmentation status of strains was also assessed, and a high variability in carotenoid content was observed, with a functional rpoS gene being essential for the production of the characteristic yellow pigment. In conclusion, the evidence presented in this study demonstrates that rpoS is a highly polymorphic gene in C. sakazakii, and it supports the importance of RpoS for the tolerance under stress conditions that C. sakazakii may encounter in the food chain and in the host during infection.

  4. Benefits of tolerance in public goods games.

    Science.gov (United States)

    Szolnoki, Attila; Chen, Xiaojie

    2015-10-01

    Leaving the joint enterprise when defection is unveiled is always a viable option to avoid being exploited. Although loner strategy helps the population not to be trapped into the tragedy of the commons state, it could offer only a modest income for nonparticipants. In this paper we demonstrate that showing some tolerance toward defectors could not only save cooperation in harsh environments but in fact results in a surprisingly high average payoff for group members in public goods games. Phase diagrams and the underlying spatial patterns reveal the high complexity of evolving states where cyclic dominant strategies or two-strategy alliances can characterize the final state of evolution. We identify microscopic mechanisms which are responsible for the superiority of global solutions containing tolerant players. This phenomenon is robust and can be observed both in well-mixed and in structured populations highlighting the importance of tolerance in our everyday life.

  5. 78 FR 8410 - Thiacloprid; Pesticide Tolerances

    Science.gov (United States)

    2013-02-06

    ... the data supporting the petition, EPA has modified the levels at which the tolerances are being... the available scientific data and other relevant information in support of this action. EPA has... potential developmental effects. Thiacloprid affects nerve function through inhibition of nicotinic...

  6. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Haap, Timo, E-mail: timo.haap@gmx.de; Schwarz, Simon; Köhler, Heinz-R.

    2016-01-15

    Highlights: • Cadmium acclimation of two Daphnia magna clones which differed in Cd sensitivity and Hsp70 levels. • Two distinct metal-handling strategies regarding Hsp70 and MT expression were observed. • High Hsp70 levels did not confer an increase in Cd and heat stress tolerance. • Our results indicate a trade-off between Hsp70 and MT. - Abstract: The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by

  7. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  8. Tolerance for psychological pain and capability for suicide: Contributions to suicidal ideation and behavior.

    Science.gov (United States)

    Meerwijk, Esther L; Weiss, Sandra J

    2018-04-01

    Among people with suicide ideation most do not attempt suicide or die by suicide. In this online study of adult US Facebook users (n = 219), we examined capability for suicide, operationalized as fearlessness about death, and tolerance for psychological pain as potential variables that may explain why some people move from suicide ideation to suicidal behavior. Tolerance for psychological pain was significantly higher for participants who had never attempted suicide. Fearlessness about death was higher in participants who had attempted suicide, but not significantly. At high levels of psychological pain, one's belief in the ability to cope with psychological pain, a dimension of tolerance for psychological pain, was lower in participants with a history of suicide attempt than in participants who had never attempted suicide. The odds of suicidal desire were almost cut in half with each unit increase in participants' belief in their coping ability, whereas for each unit increase in fearlessness about death, the odds of suicidal desire increased by 65%. The Pearson correlation between tolerance for psychological pain and fearlessness about death was negligible. Our findings support a role for both tolerance for psychological pain and capability for suicide/fearlessness about death in the ideation-to-action framework of suicide. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes.

    Science.gov (United States)

    Pandey, Veena; Ansari, Mohammad W; Tula, Suresh; Yadav, Sandep; Sahoo, Ranjan K; Shukla, Nandini; Bains, Gurdeep; Badal, Shail; Chandra, Subhash; Gaur, A K; Kumar, Atul; Shukla, Alok; Kumar, J; Tuteja, Narendra

    2016-05-01

    This study demonstrates a dose-dependent response of Trichoderma harzianum Th-56 in improving drought tolerance in rice by modulating proline, SOD, lipid peroxidation product and DHN / AQU transcript level, and the growth attributes. In the present study, the effect of colonization of different doses of T. harzianum Th-56 strain in rice genotypes were evaluated under drought stress. The rice genotypes treated with increasing dose of T. harzianum strain Th-56 showed better drought tolerance as compared with untreated control plant. There was significant change in malondialdehyde, proline, higher superoxide dismutase level, plant height, total dry matter, relative chlorophyll content, leaf rolling, leaf tip burn, and the number of scorched/senesced leaves in T. harzianum Th-56 treated rice genotypes under drought stress. This was corroborated with altered expression of aquaporin and dehydrin genes in T. harzianum Th-56 treated rice genotypes. The present findings suggest that a dose of 30 g/L was the most effective in improving drought tolerance in rice, and its potential exploitation will contribute to the advancement of rice genotypes to sustain crop productivity under drought stress. Interaction studies of T. harzianum with three aromatic rice genotypes suggested that PSD-17 was highly benefitted from T. harzianum colonization under drought stress.

  10. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    Science.gov (United States)

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  11. Assessment of circulating betatrophin concentrations in lean glucose-tolerant women with polycystic ovary syndrome.

    Science.gov (United States)

    Erol, Onur; Özel, Mustafa Kemal; Ellidağ, Hamit Yaşar; Toptaş, Tayfun; Derbent, Aysel Uysal; Yılmaz, Necat

    2017-07-01

    The aims of the current study were to investigate the betatrophin levels in lean glucose-tolerant women with polycystic ovary syndrome (PCOS), and to explore the relationships between these levels and antropometric, hormonal and metabolic parameters. The study population consisted of 50 lean (body mass index [BMI] production and improved glucose tolerance. Few studies have investigated the association between PCOS and betatrophin. However, in contrast to our study, the authors included overweight/obese patients and glucose tolerance was not evaluated before recruitment. What the results of this study add: Our results showed that serum betatrophin levels were significantly higher in lean glucose-tolerant PCOS women than in age- and BMI-matched healthy controls. What are the implications of these findings for clinical practice and/or further research: Elevated betatrophin levels in PCOS women, in the absence of obesity and glucose intolerance, may reflect a compensatory mechanism in order to counteract metabolic syndrome-related risk factors.

  12. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    Science.gov (United States)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  13. Remember Tolerance Differently

    DEFF Research Database (Denmark)

    Tønder, Lars

    2012-01-01

    This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history, not by inv......This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history......, not by invoking a critique external to contemporary democratic theory, but by witnessing the history of tolerance paraliptically, with an eye to what it obscures and yet presupposes....

  14. Heritability and Genetic Advance among Chili Pepper Genotypes for Heat Tolerance and Morphophysiological Characteristics

    Directory of Open Access Journals (Sweden)

    Magaji G. Usman

    2014-01-01

    Full Text Available High temperature tolerance is an important component of adaptation to arid and semiarid cropping environment in chili pepper. Two experiments were carried out to study the genetic variability among chili pepper for heat tolerance and morphophysiological traits and to estimate heritability and genetic advance expected from selection. There was a highly significant variation among the genotypes in response to high temperature (CMT, photosynthesis rate, plant height, disease incidence, fruit length, fruit weight, number of fruits, and yield per plant. At 5% selection intensity, high genetic advance as percent of the mean (>20% was observed for CMT, photosynthesis rate, fruit length, fruit weight, number of fruits, and yield per plant. Similarly, high heritability (>60% was also observed indicating the substantial effect of additive gene more than the environmental effect. Yield per plant showed strong to moderately positive correlations (r=0.23–0.56 at phenotypic level while at genotypic level correlation coefficient ranged from 0.16 to 0.72 for CMT, plant height, fruit length, and number of fruits. Cluster analysis revealed eight groups and Group VIII recorded the highest CMT and yield. Group IV recorded 13 genotypes while Groups II, VII, and VIII recorded one each. The results showed that the availability of genetic variance could be useful for exploitation through selection for further breeding purposes.

  15. Effects of external potassium (k supply on drought tolerances of two contrasting winter wheat cultivars.

    Directory of Open Access Journals (Sweden)

    Jiguang Wei

    Full Text Available BACKGROUND: Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. METHODOLOGY/PRINCIPAL FINDINGS: A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM and two levels of PEG6000 (0, 20% for 7 days. External K2CO3 significantly increased shoot K(+ content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. CONCLUSIONS/SIGNIFICANCE: Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  16. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars.

    Science.gov (United States)

    Wei, Jiguang; Li, Caihong; Li, Yong; Jiang, Gaoming; Cheng, Guanglei; Zheng, Yanhai

    2013-01-01

    Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  17. Development of a Lower-SWaP, RAD-Tolerant, Thermally Stable High Speed Fiber Optics Network for Harsh Environment Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I objectives and work plan, carried through to completion, will result in the development of a RAD-tolerant, high-speed, multi-channel fiber...

  18. A measure of vulnerability and damage tolerance

    International Nuclear Information System (INIS)

    Lind, Niels C.

    1995-01-01

    The purpose of the paper is to present probabilistic definitions of 'vulnerability' and 'damage tolerance'. A new measure of damage is also proposed. Disastrous failures, such as of the Titanic or the Chernobyl reactor, have revealed that some systems can be highly vulnerable. A seemingly insignificant damage can reduce such a system's resistance severely. Attempts to write design code requirements for damage tolerance or structural integrity have not been successful so far. One reason is that these ideas have not been defined with the necessary precision. The suggested definitions aim to be general, applicable to all engineered systems, and readily specializable to particular system types. Vulnerability is defined as the ratio of the failure probability of the damaged system to the failure probability of the undamaged system. It is argued that 'vulnerability' and 'damage tolerance' are complementary concepts. Damage tolerance is defined as the reciprocal of vulnerability. Vulnerability and damage tolerance both concern hypothetical future damage. A damage factor, applicable for the analysis of an existing structure in an assessed state of damage, is defined analogous to vulnerability. Application is illustrated by examples

  19. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  20. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  1. The Link between Foreign Language Classroom Anxiety, Second Language Tolerance of Ambiguity and Self-Rated English Proficiency among Chinese Learners

    Science.gov (United States)

    Dewaele, Jean-Marc; Ip, Tsui Shan

    2013-01-01

    Previous research has suggested that high levels of Foreign Language Classroom Anxiety (FLCA) have a negative effect on foreign language learning (Horwitz, 2001; Lu & Liu, 2011) while moderate levels of Second Language Tolerance of Ambiguity (SLTA) are believed to boost foreign language learning (Ely, 1995). There is prima facie evidence that…

  2. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    Science.gov (United States)

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lili, E-mail: lili03.ding@gmail.com [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); State Key Laboratory of Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an (China); Gerardin, Simone [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Bagatin, Marta [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); Bisello, Dario [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Mattiazzo, Serena [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); Paccagnella, Alessandro [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-09-21

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  4. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-06-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction.

  5. Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii.

    Science.gov (United States)

    Larras, Floriane; Regier, Nicole; Planchon, Sébastien; Poté, John; Renaut, Jenny; Cosio, Claudia

    2013-12-15

    Macrophytes bioaccumulate metals, the suggestion being made that they be considered for phytoremediation. However, a thorough understanding of the mechanisms of metal tolerance in these plants is necessary to allow full optimization of this approach. The present study was undertaken to gain insight into Hg and Cd accumulation and their effects in a representative macrophyte, Elodea nuttallii. Exposure to methyl-Hg (23 ng dm(-3)) had no significant effect while inorganic Hg (70 ng dm(-3)) and Cd (281 μg dm(-3)) affected root growth but did not affect shoots growth, photosynthesis, or antioxidant enzymes. Phytochelatins were confirmed as having a role in Cd tolerance in this plant while Hg tolerance seems to rely on different mechanisms. Histology and subcellular distribution revealed a localized increase in lignification, and an increased proportion of metal accumulation in cell wall over time. Proteomics further suggested that E. nuttallii was able to efficiently adapt its energy sources and the structure of its cells during Hg and Cd exposure. Storage in cell walls to protect cellular machinery is certainly predominant at environmental concentrations of metals in this plant resulting in a high tolerance highlighted by the absence of toxicity symptoms in shoots despite the significant accumulation of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Salt tolerant green crop species for sodium management in space agriculture

    Science.gov (United States)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  7. Modular Multilevel Converter Control Strategy with Fault Tolerance

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Eni, Emanuel-Petre; Mathe, Laszlo

    2013-01-01

    The Modular Multilevel Converter (MMC) technology has recently emerged in VSC-HVDC applications where it demonstrated higher efficiency and fault tolerance compared to the classical 2-level topology. Due to the ability of MMC to connect to HV levels, MMC can be also used in transformerless STATCOM...

  8. Reversal of oxycodone and hydrocodone tolerance by diazepam.

    Science.gov (United States)

    Gonek, Maciej; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L

    2017-11-01

    The Centers for Disease Control has declared opioid abuse to be an epidemic. Overdose deaths are largely assumed to be the result of excessive opioid consumption. In many of these cases, however, opioid abusers are often polydrug abusers. Benzodiazepines are one of the most commonly co-abused substances and pose a significant risk to opioid users. In 2016, the FDA required boxed warnings - the FDA's strongest warning - for prescription opioid analgesics and benzodiazepines about the serious risks associated with using these medications at the same time. The point of our studies was to evaluate the interactions between these two classes of drugs. We investigated whether diazepam adds to the depressant effects of opioids or do they alter the levels of tolerance to opioids. In the present study, we have found that the antinociceptive tolerance that developed to repeated administration of oxycodone was reversed by an acute dose of diazepam. Antinociceptive tolerance to hydrocodone was also reversed by acute injection of diazepam; however, a fourfold higher dose of diazepam was required when compared to reversal of oxycodone-induced tolerance. These doses of diazepam did not potentiate the acute antinociceptive effect of either opioid. The same dose of diazepam that reversed oxycodone antinociceptive tolerance also reversed oxycodone locomotor tolerance while having no potentiating effects. These studies show that diazepam does not potentiate the acute effect of prescription opioids but reverses the tolerance developed after chronic administration of the drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jill C Bettinger

    Full Text Available The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.

  10. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance.

    Science.gov (United States)

    Nygaard, Unni Cecilie; Vinje, Nina Eriksen; Samuelsen, Mari; Andreassen, Monica; Groeng, Else-Carin; Bølling, Anette Kocbach; Becher, Rune; Lovik, Martinus; Bodin, Johanna

    2015-09-01

    The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tolerance of human spinal cord to high-energy p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    Cohen, L.; Haken, R.K.T.; Mansell, J.A.; Yalavarthi, D.; Hendrickson, F.R.; Awschalom, M.

    1985-01-01

    A total of 76 patients with cancer of the head and neck have been irradiated at the Fermilab Neutron Therapy Facility using high-energy neutrons. Dose, time and cord-length factors were determined for each patient from their individual treatment plans. Cord doses ranged from 5 to 16 Gy in 8 to 24 fractions over 6 to 70 days. The treated lengths were between 5 and 15 cm. No myelopathy was seen during follow-up periods ranging from 2 to 6 years. By comparing these observations with published data, the upper and lower limits for spinal cord tolerance to neutrons can be determined. There is no apparent risk of injury with cord doses under 13 Gy

  12. Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13.

    Science.gov (United States)

    Wangrangsimagul, Nuttawat; Klinsakul, Kunticha; Vangnai, Alisa S; Wongkongkatep, Jirarut; Inprakhon, Pranee; Honda, Kohsuke; Ohtake, Hisao; Kato, Junichi; Pongtharangkul, Thunyarat

    2012-01-01

    Nowadays, majority of vanillin supplied to the world market is chemically synthesized from a petroleum-based raw material, raising a concern among the consumers regarding the product safety. In this study, an organic solvent-tolerant Brevibacillus agri 13 previously reported for a strong predilectic property was utilized as a whole-cell biocatalyst for bioproduction of vanillin from isoeugenol (IG). B. agri 13 is the first biocatalyst reported for bioproduction of vanillin at a temperature as high as 45°C. Both pH and temperature were found to affect vanillin production significantly. An extreme level of organic solvent tolerance of B. agri 13 allowed us to utilize it in a biphasic system using organic solvents generally considered as highly toxic to most bacteria. With an addition of butyl acetate at 30% (v/v) as an organic second phase, toxicity of IG exerted onto the biocatalyst was reduced dramatically while faster and more efficient vanillin production was obtained (1.7 g/L after 48 h with 27.8% molar conversion).

  13. Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-11-01

    This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Some thoughts on tolerance, dose, and fractionation in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.; Blue, T.

    1988-01-01

    Unique to boron neutron capture therapy, the tolerance very strongly depends on the boron concentration in normal brain, skin and blood. If one first considers the ideal situation of a 2 KeV beam and a compound clearing from normal tissues and blood, the tolerance dose to epithermal beams relates to the maximum tolerated capture gamma dose and capture high LET dose, H (n,gamma)D and N(n,p) 14 C. The authors can relate this gamma and high LET dose to known clinical experience. Assuming gamma and high LET dose ratios as given by Fairchild and Bond, one may first choose a clearly safe high LET whole brain dose and calculate the unavoidably resulting gamma dose. To a first approximation 500 cGy of high LET dose results in 3,000 cGy gamma dose. One can speculate that this approximates the tolerance of whole brain to the 2 KeV beam with no contributing boron dose if the radiation is fractionated. It would clearly be beyond tolerance in a single fraction where most therapists would be uncomfortable to deliver even one third of the above doses

  15. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  16. Boron nutrition and chilling tolerance of warm climate crop species.

    Science.gov (United States)

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B

  17. Mechanisms of cardiac transplantation tolerance in syngeneic rat radiation chimeras

    International Nuclear Information System (INIS)

    Moran, T.M.

    1981-01-01

    Seventy-five percent of adult LEW rats, lethally irradiated (860 R), transplanted with an RT-1 incompatible Wistar Furth (WF) heart or kidney and repopulated on day 2 with a 4:1 mixture of syngeneic thymus and bone marrow cells accept these grafts. In order to look at the ability of animals tolerating WF organ grafts to respond against WF spleen cells in vitro we developed a rat mixed lymphocyte culture. Tolerant animals were tested for the ability to respond to donor antigens and approximately half of the 50 animals tested, were responsive. We attempted to demonstrate suppressor cells which might be responsible for maintaining tolerance in the nonresponders. Neither mixtures at the sensitization or the effector level suggested that tolerance was being maintained by a suppressor cell. An in vivo assay which tested the ability of various cell populations to affect the survival of allogeneic hearts transplanted into sublethally irradiated recipients was then employed. Tolerance is induced using this protocol in a manner similar or identical to tolerance produced by neonatal injection of antigen. This tolerance might be maintained in part by suppressor cells which prevents the generation of clones of cells reactive against the heart donor. The mechanism of tolerance in rats with demonstrable clones of reactive cells remains to be determined

  18. semi-dwarf tef lines for high seed yield and lodging tolerance

    African Journals Online (AJOL)

    ACSS

    Three genotypes, namely RIL- 91, RIL-244 and RIL-11, gave the highest seed yield, ranging between 4.4 to 4.7 t ha-1, compared to .... lodging tolerant tef varieties, adapting to the changing ..... moisture stress areas (Tsedey) was grouped.

  19. Competition of tolerant strategies in the spatial public goods game

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2016-08-01

    Tolerance implies enduring trying circumstances with a fair and objective attitude. To determine whether evolutionary advantages might be stemming from diverse levels of tolerance in a population, we study a spatial public goods game, where in addition to cooperators, defectors, and loners, tolerant players are also present. Depending on the number of defectors within a group, a tolerant player can either cooperate in or abstain from a particular instance of the game. We show that the diversity of tolerance can give rise to synergistic effects, wherein players with a different threshold in terms of the tolerated number of defectors in a group compete most effectively against defection and default abstinence. Such synergistic associations can stabilise states of full cooperation where otherwise defection would dominate. We observe complex pattern formation that gives rise to an intricate phase diagram, where invisible yet stable strategy alliances require outmost care lest they are overlooked. Our results highlight the delicate importance of diversity and tolerance for the provisioning of public goods, and they reveal fascinating subtleties of the spatiotemporal dynamics that is due to the competition of subsystem solutions in structured populations.

  20. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    Science.gov (United States)

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.