WorldWideScience

Sample records for tolerance behavioral electrophysiological

  1. Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

    International Nuclear Information System (INIS)

    Chou, D.T.; Khan, S.; Forde, J.; Hirsh, K.R.

    1985-01-01

    The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of [ 3 H]-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify the neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, the data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for [ 3 H]-CHA was observed in reticular formation membranes without any change in receptor affinity. 28 references, 4 figures

  2. Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes.

    Science.gov (United States)

    Paulmann, Maria K; Kunert, Grit; Zimmermann, Matthias R; Theis, Nina; Ludwig, Anatoli; Meichsner, Doreen; Oelmüller, Ralf; Gershenzon, Jonathan; Habekuss, Antje; Ordon, Frank; Furch, Alexandra C U; Will, Torsten

    2018-01-01

    Barley yellow dwarf virus (BYDV) is a phloem limited virus that is persistently transmitted by aphids. Due to huge yield losses in agriculture, the virus is of high economic relevance. Since the control of the virus itself is not possible, tolerant barley genotypes are considered as the most effective approach to avoid yield losses. Although several genes and quantitative trait loci are known and used in barley breeding for virus tolerance, little is known about molecular and physiological backgrounds of this trait. Therefore, we compared the anatomy and early defense responses of a virus susceptible to those of a virus-tolerant cultivar. One of the very early defense responses is the transmission of electrophysiological reactions. Electrophysiological reactions to BYDV infection might differ between susceptible and tolerant cultivars, since BYDV causes disintegration of sieve elements in susceptible cultivars. The structure of vascular bundles, xylem vessels and sieve elements was examined using microscopy. All three were significantly decreased in size in infected susceptible plants where the virus causes disintegration of sieve elements. This could be associated with an uncontrolled ion exchange between the sieve-element lumen and apoplast. Further, a reduced electrophysiological isolation would negatively affect the propagation of electrophysiological reactions. To test the influence of BYDV infection on electrophysiological reactions, electropotential waves (EPWs) induced by leaf-tip burning were recorded using aphids as bioelectrodes. EPWs in infected susceptible plants disappeared already after 10 cm in contrast to those in healthy susceptible or infected tolerant or healthy tolerant plants. Another early plant defense reaction is an increase in reactive oxygen species (ROS). Using a fluorescent dye, we found a significant increase in ROS content in infected susceptible plants but not in infected tolerant plants. Similar results were found for the

  3. Electrophysiological gap detection thresholds: effects of age and comparison with a behavioral measure.

    Science.gov (United States)

    Palmer, Shannon B; Musiek, Frank E

    2014-01-01

    Temporal processing ability has been linked to speech understanding ability and older adults often complain of difficulty understanding speech in difficult listening situations. Temporal processing can be evaluated using gap detection procedures. There is some research showing that gap detection can be evaluated using an electrophysiological procedure. However, there is currently no research establishing gap detection threshold using the N1-P2 response. The purposes of the current study were to 1) determine gap detection thresholds in younger and older normal-hearing adults using an electrophysiological measure, 2) compare the electrophysiological gap detection threshold and behavioral gap detection threshold within each group, and 3) investigate the effect of age on each gap detection measure. This study utilized an older adult group and younger adult group to compare performance on an electrophysiological and behavioral gap detection procedure. The subjects in this study were 11 younger, normal-hearing adults (mean = 22 yrs) and 11 older, normal-hearing adults (mean = 64.36 yrs). All subjects completed an adaptive behavioral gap detection procedure in order to determine their behavioral gap detection threshold (BGDT). Subjects also completed an electrophysiologic gap detection procedure to determine their electrophysiologic gap detection threshold (EGDT). Older adults demonstrated significantly larger gap detection thresholds than the younger adults. However, EGDT and BGDT were not significantly different in either group. The mean difference between EGDT and BGDT for all subjects was 0.43 msec. Older adults show poorer gap detection ability when compared to younger adults. However, this study shows that gap detection thresholds can be measured using evoked potential recordings and yield results similar to a behavioral measure. American Academy of Audiology.

  4. Behavioral and electrophysiological signatures of word translation processes.

    Science.gov (United States)

    Jost, Lea B; Radman, Narges; Buetler, Karin A; Annoni, Jean-Marie

    2018-01-31

    Translation is a demanding process during which a message is analyzed, translated and communicated from one language to another. Despite numerous studies on translation mechanisms, the electrophysiological processes underlying translation with overt production remain largely unexplored. Here, we investigated how behavioral response patterns and spatial-temporal brain dynamics differ in a translation compared to a control within-language word-generation task. We also investigated how forward and backward translation differs on the behavioral and electrophysiological level. To address these questions, healthy late bilingual subjects performed a translation and a within-language control task while a 128-channel EEG was recorded. Behavioral data showed faster responses for translation compared to within-language word generation and faster responses for backward than forward translation. The ERP-analysis revealed stronger early ( processes for between than within word generation. Later (424-630ms) differences were characterized by distinct engagement of domain-general control networks, namely self-monitoring and lexical access interference. Language asymmetry effects occurred at a later stage (600ms), reflecting differences in conceptual processing characterized by a larger involvement of areas implicated in attention, arousal and awareness for forward versus backward translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Behavioral Tolerance to Anticholinergic Agents

    Science.gov (United States)

    1986-11-20

    Medicine , 47, 137-141. 7. Kurtz, P.J. (1977) Behavioral and biochemical effects of the carbamate insecticide, mobam. Pharmacology Biochemistry & Behavior...tolerance to marihuana in rats. Pharmacology Biochemistry and Behavior, 1, 73-76. 43 40. Olson, J. and Carder, B. (1974) Behavioral tolerance to... marihuana as a function of amount of prior training. Pharmacology Biochemistry and Behavior, 2, 243-247. 41. Sidman, M. (1960) Tactics of Scientific

  6. Positive Behavioral and Electrophysiological Changes following Neurofeedback Training in Children with Autism

    Science.gov (United States)

    Pineda, J. A.; Brang, D.; Hecht, E.; Edwards, L.; Carey, S.; Bacon, M.; Futagaki, C.; Suk, D.; Tom, J.; Birnbaum, C.; Rork, A.

    2008-01-01

    Two electrophysiological studies tested the hypothesis that operant conditioning of mu rhythms via neurofeedback training can renormalize mu suppression, an index of mirror neuron activity, and improve behavior in children diagnosed with autism spectrum disorders (ASD). In Study 1, eight high-functioning ASD participants were assigned to placebo…

  7. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    Science.gov (United States)

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  8. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    Science.gov (United States)

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  9. Behavioral and electrophysiological studies of radiation detection in a freshwater crustacean

    International Nuclear Information System (INIS)

    Rodriguez, A.; Kimeldorf, D.J.

    1976-01-01

    Behavioral and electrophysiological studies were done on the crayfish (Pacifastacus trowbridgii Stimpson) to determine its ability to detect exposure to 300 kVp x rays. Behavioral arousal responses were observed at exposure rates of 10 to 30 R/sec. Wholebody and partial-body exposures of eye-stalkless (blinded) animals also induced similar responses and indicated a radiation-sensitive receptor in the abdomen. Prolonged exposure under free choice of residence conditions induced an avoidance of the x-ray field. X-ray exposure of the dark-adapted compound eye evoked an electroretinogram (ERG) that was similar to the light-evoked ERG. The ERG amplitude was directly proportional to the total exposure with exposures less than 300 msec duration and related to the logarithm of the exposure rate with exposures greater than 300 msec. X-ray exposure of receptor sites on the medial branch of the antennule and the cheliped of the first walking-leg did not yield any significant chemoreceptor responses as judged by electrophysiological tests. X-irradiation of the sixth abdominal ganglion in both isolated and in vivo preparations elicited significant increases in neural impulse activity. The latency varied inversely with exposure rate. Spike potentials evoked by x rays were similar to those evoked by light; however, a supplemental increase in spikes of lower amplitude occurred that did not occur during light stimulation. It appears likely that the behavioral response in the crayfish, subjected to abdomen-only exposure, may be instigated by x-ray excitation of the sixth ganglion

  10. Current concepts in nuclear pore electrophysiology.

    Science.gov (United States)

    Bustamante, José Omar

    2006-01-01

    Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.

  11. Behavioral Assessment of the Negative Emotion Aspect of Distress Tolerance.

    Science.gov (United States)

    Veilleux, Jennifer C; Pollert, Garrett A; Zielinski, Melissa J; Shaver, Jennifer A; Hill, Morgan A

    2017-01-01

    The current behavioral tasks assessing distress tolerance measure tolerance to frustration and tolerance to physical discomfort, but do not explicitly assess tolerance to negative emotion. We closely evaluated the conceptual distinctions between current behavioral tasks and self-report tasks assessing distress tolerance, and then developed a new behavioral distress tolerance task called the Emotional Image Tolerance (EIT) task. The EIT task retains elements of existing behavioral tasks (e.g., indices of persistence) while augmenting the reliability and content sufficiency of existing measures by including multiple trials, including a variety of negative affect stimuli, and separating overall task persistence from task persistence after onset of distress. In a series of three studies, we found that the EIT correlated with extant behavioral measures of distress tolerance, the computerized mirror-tracing task and a physical cold pressor task. Across all of the studies, we also evaluated whether the EIT correlated with self-report measures of distress tolerance and measures of psychopathology (e.g., depression, anxiety, and binge eating). Implications for the refinement of the distress tolerance construct are discussed.

  12. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Interrelating Behavioral Measures of Distress Tolerance with Self-Reported Experiential Avoidance.

    Science.gov (United States)

    Schloss, Heather M; Haaga, David A F

    2011-03-01

    Experiential avoidance and distress intolerance play a central role in novel behavior therapies, yet they appear to overlap considerably the REBT concept of low frustration tolerance. Using baseline data from 100 adult cigarette smokers enrolled in a clinical trial of smoking cessation therapies, the present study evaluated the convergent validity of common questionnaire measures of experiential avoidance (Acceptance and Action Questionnaire; AAQ; Hayes et al. 2004, and Avoidance and Inflexibility Scale: AIS; Gifford et al. 2004) and behavioral measures of distress tolerance (computerized Mirror Tracing Persistence Task: MTPT-C: Strong et al. 2003; computerized Paced Auditory Serial Addition Task; PASAT-C; Lejuez et al. 2003). The distress tolerance measures correlated significantly (r = .29) with one another. However, the questionnaire measures of experiential avoidance did not correlate with each other, nor with the behavioral measures. Further research is needed on the validity of measuring experiential avoidance by self-report and of the overlap versus distinctiveness of seemingly similar constructs such as experiential avoidance, distress tolerance, and frustration tolerance.

  14. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  15. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.

    Science.gov (United States)

    Muñoz, Martha M; Langham, Gary M; Brandley, Matthew C; Rosauer, Dan F; Williams, Stephen E; Moritz, Craig

    2016-11-01

    There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially.

    Science.gov (United States)

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-04-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Directionality between Tolerance of Deviance and Deviant Behavior Is Age-Moderated in Chronically Stressed Youth

    Science.gov (United States)

    Ridenour, Ty A.; Caldwell, Linda L.; Coatsworth, J. Douglas; Gold, Melanie A.

    2011-01-01

    Problem behavior theory posits that tolerance of deviance is an antecedent to antisocial behavior and substance use. In contrast, cognitive dissonance theory implies that acceptability of a behavior may increase after experiencing the behavior. Using structural equation modeling, this investigation tested whether changes in tolerance of deviance…

  18. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations

    Directory of Open Access Journals (Sweden)

    Nicola Solari

    2018-05-01

    Full Text Available Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  19. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations.

    Science.gov (United States)

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  20. Directionality Between Tolerance of Deviance and Deviant Behavior is Age-Moderated in Chronically Stressed Youth

    OpenAIRE

    Ridenour, TY A.; Caldwell, Linda L.; Coatsworth, J. Douglas; Gold, Melanie A.

    2011-01-01

    Problem behavior theory posits that tolerance of deviance is an antecedent to antisocial behavior and substance use. In contrast, cognitive dissonance theory implies that acceptability of a behavior may increase after experiencing the behavior. Using structural equation modeling, this investigation tested whether changes in tolerance of deviance precede changes in conduct disorder criteria or substance use or vice versa, or if they change concomitantly. Two-year longitudinal data from 246 8- ...

  1. Lexical Decision with Left, Right and Center Visual Field Presentation: A Comparison between Dyslexic and Regular Readers by Means of Electrophysiological and Behavioral Measures

    Science.gov (United States)

    Shaul, Shelley

    2012-01-01

    This study examined the differences in processing between regular and dyslexic readers in a lexical decision task in different visual field presentations (left, right, and center). The research utilized behavioral measures that provide information on accuracy and reaction time and electro-physiological measures that permit the examination of brain…

  2. Salt tolerance at single cell level in giant-celled Characeae

    Directory of Open Access Journals (Sweden)

    Mary Jane eBeilby

    2015-04-01

    Full Text Available Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i very large cell size, (ii position on phylogenetic tree near the origin of land plants and (iii continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt-sensitive Chara australis succumbs to 50 - 100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells

  3. Visual electrophysiology in children

    Directory of Open Access Journals (Sweden)

    Jelka Brecelj

    2005-10-01

    Full Text Available Background: Electrophysiological assessment of vision in children helps to recognise abnormal development of the visual system when it is still susceptible to medication and eventual correction. Visual electrophysiology provides information about the function of the retina (retinal pigment epithelium, cone and rod receptors, bipolar, amacrine, and ganglion cells, optic nerve, chiasmal and postchiasmal visual pathway, and visual cortex.Methods: Electroretinograms (ERG and visual evoked potentials (VEP are recorded non-invasively; in infants are recorded simultaneously ERG with skin electrodes, while in older children separately ERG with HK loop electrode in accordance with ISCEV (International Society for Clinical Electrophysiology of Vision recommendations.Results: Clinical and electrophysiological changes in children with nystagmus, Leber’s congenital amaurosis, achromatopsia, congenital stationary night blindness, progressive retinal dystrophies, optic nerve hypoplasia, albinism, achiasmia, optic neuritis and visual pathway tumours are presented.Conclusions: Electrophysiological tests can help to indicate the nature and the location of dysfunction in unclear ophthalmological and/or neurological cases.

  4. Behavioral, neurochemical, and electrophysiological changes in an early spontaneous mouse model of nigrostriatal degeneration.

    Science.gov (United States)

    Sgadò, Paola; Viaggi, Cristina; Pinna, Annalisa; Marrone, Cristina; Vaglini, Francesca; Pontis, Silvia; Mercuri, Nicola Biagio; Morelli, Micaela; Corsini, Giovanni Umberto

    2011-08-01

    In idiopathic Parkinson's disease, clinical symptoms do not emerge until consistent neurodegeneration has occurred. The late appearance of symptoms implies the existence of a relatively long preclinical period during which several disease-induced neurochemical changes take place to mask the existence of the disease and delay its clinical manifestations. The aim of this study was to examine the neurochemical, neurophysiological, and behavioral changes induced by the loss of nigrostriatal innervation in the En1+/-;En2-/- mouse, in the 10 months following degeneration, compared to En2 null mutant mice. Behavioral analysis (Pole-test, Beam-walking test, and Inverted grid test) and field potential recordings in the striatum indicated that loss of ~70% of nigrostriatal neurons produced no significant functional effects until 8 months of age, when En1+/-;En2-/- animals started to show frank motor deficits and electrophysiological alterations in corticostriatal plasticity. Similarly, alterations in dopamine homeostasis, dopamine turnover, and dopamine innervation were observed in aged animals compared to young En1+/-;En2-/- mice. These data suggests that in En1+/-;En2-/- mice nigrostriatal degeneration in the substantia nigra is functionally compensated.

  5. NeuroElectro: A Window to the World's Neuron Electrophysiology Data

    Directory of Open Access Journals (Sweden)

    Shreejoy J Tripathy

    2014-04-01

    Full Text Available The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex and by electrophysiological property (using a newly developed ontology. We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists looking to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties.

  6. Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite.

    Science.gov (United States)

    El Filali, Z; de Boer, P A C M; Pieneman, A W; de Lange, R P J; Jansen, R F; Ter Maat, A; van der Schors, R C; Li, K W; van Straalen, N M; Koene, J M

    2015-12-01

    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite.

  7. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.

    Science.gov (United States)

    Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R

    2015-08-01

    Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.

  8. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  9. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.).

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-05-03

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  10. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.

    Directory of Open Access Journals (Sweden)

    Rui Tang

    2016-05-01

    Full Text Available Hyphantria cunea (Drury is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV, to a mechanically-damaged M. alba volatile blend (MDV, to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  11. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.)

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-01-01

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps. PMID:27153095

  12. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study

    Directory of Open Access Journals (Sweden)

    Tai-Fen Song

    2016-07-01

    Full Text Available The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18 to 25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH group, an obese-weight and high-fitness (OH group, a normal-weight and low-fitness (NL group, and an obese-weight and low-fitness (OL group. Behavioral measures of response time and number of errors, as well as event-related potential (ERP measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the OH, NL, and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of inhibition. However, these benefits in inhibition function would be lost in an individual who is obese or has low cardiovascular fitness, reflecting the importance keeping both normal weight and having high cardiovascular fitness.

  13. Electrophysiological Evidence of Developmental Changes in the Duration of Auditory Sensory Memory.

    Science.gov (United States)

    Gomes, Hilary; And Others

    1999-01-01

    Investigated developmental change in duration of auditory sensory memory for tonal frequency by measuring mismatch negativity, an electrophysiological component of the auditory event-related potential that is relatively insensitive to attention and does not require a behavioral response. Findings among children and adults suggest that there are…

  14. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    Science.gov (United States)

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  15. NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis.

    Science.gov (United States)

    Zhang, Bo; Dai, Ji; Zhang, Tao

    2017-11-13

    In a typical electrophysiological experiment, especially one that includes studying animal behavior, the data collected normally contain spikes, local field potentials, behavioral responses and other associated data. In order to obtain informative results, the data must be analyzed simultaneously with the experimental settings. However, most open-source toolboxes currently available for data analysis were developed to handle only a portion of the data and did not take into account the sorting of experimental conditions. Additionally, these toolboxes require that the input data be in a specific format, which can be inconvenient to users. Therefore, the development of a highly integrated toolbox that can process multiple types of data regardless of input data format and perform basic analysis for general electrophysiological experiments is incredibly useful. Here, we report the development of a Python based open-source toolbox, referred to as NeoAnalysis, to be used for quick electrophysiological data processing and analysis. The toolbox can import data from different data acquisition systems regardless of their formats and automatically combine different types of data into a single file with a standardized format. In cases where additional spike sorting is needed, NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, and local field potentials analysis, behavioral response (e.g. saccade) detection and extraction, with several options available for data plotting and statistics. Particularly, it can automatically generate sorted results without requiring users to manually sort data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis supports analysis at the population level. With the multitude of general-purpose functions provided

  16. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    Science.gov (United States)

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  17. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  18. Electrophysiological Evidence of Heterogeneity in Visual Statistical Learning in Young Children with ASD

    Science.gov (United States)

    Jeste, Shafali S.; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J.; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F. N.; Johnson, Scott P.

    2015-01-01

    Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism…

  19. Electrophysiologic Findings and Pain in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Hava Dönmez Keklikoğlu

    2009-12-01

    Full Text Available OBJECTIVE: Carpal tunnel syndrome (CTS is defined as median nerve entrapment within the carpal tunnel at the wrist. Pain and paresthesia are the most common presenting symptoms of the patients. In this study, our aim was to identify the association between intensity of presenting symptoms and electrophysiologic findings in patients referred to the electrophysiology laboratory with prediagnosis of CTS. METHODS: Sixty-two consecutive patients who were referred to the electrophysiology laboratory with the diagnosis of CTS were enrolled in the study. The intensity of pain was determined by visual analog scale, the findings of Tinel-Phalen tests were assessed, and clinico-demographic findings were recorded. Nerve conduction studies were performed bilaterally in median and ulnar nerves. The severity of CTS was determined with electrophysiologic evaluation, and the association between electrophysiologic findings and symptoms were analyzed statistically. RESULTS: Sixty-two (57 female, 5 male patients were examined in the study. CTS was bilateral in 53 patients and unilateral in 9 patients (total 115 hands. Mean pain score was 5.78 ± 3.50. In 28 hands with a clinical diagnosis of CTS, no electrophysiologic CTS findings were found, whereas in 32 hands mild, in 41 hands moderate and in 14 hands severe findings were obtained. CONCLUSION: According to our study, there was no statistically significant association between severity of symptoms and severity of electrophysiologic findings in CTS

  20. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    Science.gov (United States)

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  1. Individual Differences in Behavioral and Electrophysiological Measures of Binaural Processing Across the Adult Life Span.

    Science.gov (United States)

    Roup, Christina M; Leigh, Elizabeth D

    2015-06-01

    The purpose of the present study was to examine individual differences in binaural processing across the adult life span. Sixty listeners (aged 23-80 years) with symmetrical hearing were tested. Binaural behavioral processing was measured by the Words-in-Noise Test, the 500-Hz masking level difference, and the Dichotic Digit Test. Electrophysiologic responses were assessed by the auditory middle latency response binaural interaction component. No correlations among binaural measures were found. Age accounted for the greatest amount of variability in speech-in-noise performance. Age was significantly correlated with the Words-in-Noise Test binaural advantage and dichotic ear advantage. Partial correlations, however, revealed that this was an effect of hearing status rather than age per se. Inspection of individual results revealed that 20% of listeners demonstrated reduced binaural performance for at least 2 of the binaural measures. The lack of significant correlations among variables suggests that each is an important measurement of binaural abilities. For some listeners, binaural processing was abnormal, reflecting a binaural processing deficit not identified by monaural audiologic tests. The inclusion of a binaural test battery in the audiologic evaluation is supported given that these listeners may benefit from alternative forms of audiologic rehabilitation.

  2. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  3. Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

    Directory of Open Access Journals (Sweden)

    Mariam Sabbar

    2018-03-01

    Full Text Available Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead.Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p. or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN, globus pallidus (GP, and substantia nigra pars reticulata (SNr. At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin and their metabolites has been determined using HPLC.Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and

  4. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  5. Prism Adaptation Alters Electrophysiological Markers of Attentional Processes in the Healthy Brain.

    Science.gov (United States)

    Martín-Arévalo, Elisa; Laube, Inga; Koun, Eric; Farnè, Alessandro; Reilly, Karen T; Pisella, Laure

    2016-01-20

    Neglect patients typically show a rightward attentional orienting bias and a strong disengagement deficit, such that they are especially slow in responding to left-sided targets after right-sided cues (Posner et al., 1984). Prism adaptation (PA) can reduce diverse debilitating neglect symptoms and it has been hypothesized that PA's effects are so generalized that they might be mediated by attentional mechanisms (Pisella et al., 2006; Redding and Wallace, 2006). In neglect patients, performance on spatial attention tasks improves after rightward-deviating PA (Jacquin-Courtois et al., 2013). In contrast, in healthy subjects, although there is evidence that leftward-deviating PA induces neglect-like performance on some visuospatial tasks, behavioral studies of spatial attention tasks have mostly yielded negative results (Morris et al., 2004; Bultitude et al., 2013). We hypothesized that these negative behavioral findings might reflect the limitations of behavioral measures in healthy subjects. Here we exploited the sensitivity of event-related potentials to test the hypothesis that electrophysiological markers of attentional processes in the healthy human brain are affected by PA. Leftward-deviating PA generated asymmetries in attentional orienting (reflected in the cue-locked N1) and in attentional disengagement for invalidly cued left targets (reflected in the target-locked P1). This is the first electrophysiological demonstration that leftward-deviating PA in healthy subjects mimics attentional patterns typically seen in neglect patients. Significance statement: Prism adaptation (PA) is a promising tool for ameliorating many deficits in neglect patients and inducing neglect-like behavior in healthy subjects. The mechanisms underlying PA's effects are poorly understood but one hypothesis suggests that it acts by modulating attention. To date, however, there has been no successful demonstration of attentional modulation in healthy subjects. We provide the first

  6. The Effects of Money on Fake Rating Behavior in E-Commerce: Electrophysiological Time Course Evidence From Consumers

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2018-03-01

    Full Text Available Online ratings impose significant effects on the behaviors of potential customers. Thus, online merchants try to adopt strategies that affect this rating behavior, and most of these strategies are connected to money, such as the strategies of returning cash coupons if a consumer gives a five-star rating (RI strategy, an acronym for “returning” and “if” or returning cash coupons directly with no additional requirements (RN strategy, an acronym for “returning” and “no”. The current study explored whether a certain strategy (RN or RI was more likely to give rise to false rating behaviors, as assessed by event-related potentials. A two-stimulus paradigm was used in this experiment. The first stimulus (S1 was the picture of a product with four Chinese characters that reflected the product quality (slightly defective vs. seriously defective vs. not defective, and the second stimulus (S2 displayed the coupon strategy (RN or RI. The participants were asked to decide whether or not to give a five-star rating. The behavioral results showed that the RI strategy led to a higher rate of five-star ratings than the RN strategy. For the electrophysiological time courses, the N1, N2, and LPP components were evaluated. The slightly defective products elicited a larger amplitude of the N1 component than the seriously defective and not-defective products, reflecting that perceptual difficulty was associated with the processing of the slightly defective products. The RI strategy evoked a less negative N2 and a more positive LPP than the RN strategy, indicating that the subjects perceived less conflict and experienced stronger incentives when processing the RI strategy. These findings will benefit future studies of fake online comments and provide evidence supporting the policy of forbidding the use of the RI strategy in e-commerce.

  7. The Effects of Money on Fake Rating Behavior in E-Commerce: Electrophysiological Time Course Evidence From Consumers.

    Science.gov (United States)

    Wang, Cuicui; Li, Yun; Luo, Xuan; Ma, Qingguo; Fu, Weizhong; Fu, Huijian

    2018-01-01

    Online ratings impose significant effects on the behaviors of potential customers. Thus, online merchants try to adopt strategies that affect this rating behavior, and most of these strategies are connected to money, such as the strategies of returning cash coupons if a consumer gives a five-star rating (RI strategy, an acronym for "returning" and "if") or returning cash coupons directly with no additional requirements (RN strategy, an acronym for "returning" and "no"). The current study explored whether a certain strategy (RN or RI) was more likely to give rise to false rating behaviors, as assessed by event-related potentials. A two-stimulus paradigm was used in this experiment. The first stimulus (S1) was the picture of a product with four Chinese characters that reflected the product quality (slightly defective vs. seriously defective vs. not defective), and the second stimulus (S2) displayed the coupon strategy (RN or RI). The participants were asked to decide whether or not to give a five-star rating. The behavioral results showed that the RI strategy led to a higher rate of five-star ratings than the RN strategy. For the electrophysiological time courses, the N1, N2, and LPP components were evaluated. The slightly defective products elicited a larger amplitude of the N1 component than the seriously defective and not-defective products, reflecting that perceptual difficulty was associated with the processing of the slightly defective products. The RI strategy evoked a less negative N2 and a more positive LPP than the RN strategy, indicating that the subjects perceived less conflict and experienced stronger incentives when processing the RI strategy. These findings will benefit future studies of fake online comments and provide evidence supporting the policy of forbidding the use of the RI strategy in e-commerce.

  8. The Effects of Money on Fake Rating Behavior in E-Commerce: Electrophysiological Time Course Evidence From Consumers

    Science.gov (United States)

    Wang, Cuicui; Li, Yun; Luo, Xuan; Ma, Qingguo; Fu, Weizhong; Fu, Huijian

    2018-01-01

    Online ratings impose significant effects on the behaviors of potential customers. Thus, online merchants try to adopt strategies that affect this rating behavior, and most of these strategies are connected to money, such as the strategies of returning cash coupons if a consumer gives a five-star rating (RI strategy, an acronym for “returning” and “if”) or returning cash coupons directly with no additional requirements (RN strategy, an acronym for “returning” and “no”). The current study explored whether a certain strategy (RN or RI) was more likely to give rise to false rating behaviors, as assessed by event-related potentials. A two-stimulus paradigm was used in this experiment. The first stimulus (S1) was the picture of a product with four Chinese characters that reflected the product quality (slightly defective vs. seriously defective vs. not defective), and the second stimulus (S2) displayed the coupon strategy (RN or RI). The participants were asked to decide whether or not to give a five-star rating. The behavioral results showed that the RI strategy led to a higher rate of five-star ratings than the RN strategy. For the electrophysiological time courses, the N1, N2, and LPP components were evaluated. The slightly defective products elicited a larger amplitude of the N1 component than the seriously defective and not-defective products, reflecting that perceptual difficulty was associated with the processing of the slightly defective products. The RI strategy evoked a less negative N2 and a more positive LPP than the RN strategy, indicating that the subjects perceived less conflict and experienced stronger incentives when processing the RI strategy. These findings will benefit future studies of fake online comments and provide evidence supporting the policy of forbidding the use of the RI strategy in e-commerce. PMID:29615851

  9. An electrophysiological study of the impact of a Forward Collision Warning System in a simulator driving task.

    Science.gov (United States)

    Bueno, Mercedes; Fabrigoule, Colette; Deleurence, Philippe; Ndiaye, Daniel; Fort, Alexandra

    2012-08-27

    Driver distraction has been identified as the most important contributing factor in rear-end collisions. In this context, Forward Collision Warning Systems (FCWS) have been developed specifically to warn drivers of potential rear-end collisions. The main objective of this work is to evaluate the impact of a surrogate FCWS and of its reliability according to the driver's attentional state by recording both behavioral and electrophysiological data. Participants drove following a lead motorcycle in a simplified simulator with or without a warning system which gave forewarning of the preceding vehicle braking. Participants had to perform this driving task either alone (simple task) or simultaneously with a secondary cognitive task (dual task). Behavioral and electrophysiological data contributed to revealing a positive effect of the warning system. Participants were faster in detecting the brake light when the system was perfect or imperfect, and the time and attentional resources allocation required for processing the target at higher cognitive level were reduced when the system was completely reliable. When both tasks were performed simultaneously, warning effectiveness was considerably affected at both performance and neural levels; however, the analysis of the brain activity revealed fewer differences between distracted and undistracted drivers when using the warning system. These results show that electrophysiological data could be a valuable tool to complement behavioral data and to have a better understanding of how these systems impact the driver. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Electrophysiological Phenomenon of Alzheimer's Disease: A Psychopathology Theory.

    Science.gov (United States)

    Holston, Ezra C

    2015-08-01

    The current understanding of Alzheimer's disease (AD) is based on the Aβ and tau pathology and the resulting neuropathological changes, which are associated with manifested clinical symptoms. However, electrophysiological brain changes may provide a more expansive understanding of AD. Hence, the objective of this systematic review is to propose a theory about the electrophysiological phenomenon of Alzheimer's disease (EPAD). The review of literature resulted from an extensive search of PubMed and MEDLINE databases. One-hundred articles were purposively selected. They provided an understanding of the concepts establishing the theory of EPAD (neuropathological changes, neurochemical changes, metabolic changes, and electrophysiological brain changes). Changes in the electrophysiology of the brain are foundational to the association or interaction of the concepts. Building on Berger's Psychophysical Model, it is evident that electrophysiological brain changes occur and affect cortical areas to generate or manifest symptoms from onset and across the stages of AD, which may be prior to pathological changes. Therefore, the interaction of the concepts demonstrates how the psychopathology results from affected electrophysiology of the brain. The theory of the EPAD provides a theoretical foundation for appropriate measurements of AD without dependence on neuropathological changes. Future research is warranted to further test this theory. Ultimately, this theory contributes to existing knowledge because it shows how electrophysiological changes are useful in understanding the risk and progression of AD across the stages.

  11. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Directory of Open Access Journals (Sweden)

    Liliane Aparecida Fagundes Silva

    2015-01-01

    Full Text Available The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP; speech perception tests of the Glendonald Auditory Screening Procedure (GASP; Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS; and Meaningful Use of Speech Scales (MUSS. The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms. In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms. The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI.

  12. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  13. The development of future-oriented control: an electrophysiological investigation.

    Science.gov (United States)

    Waxer, Matthew; Morton, J Bruce

    2011-06-01

    Cognitive control, or the ability to focus attention and select task-appropriate responses, is not static but can be dynamically adjusted in the face of changing environmental circumstances. Several models suggest a role for conflict-monitoring in triggering these adjustments, whereby instances of response uncertainty are detected by the anterior cingulate cortex and strengthen attention-guiding rules actively maintained by lateral prefrontal cortex. Given the continued development of active maintenance mechanisms into adolescence, these models predict that the capacity to dynamically modulate control should be protracted in its development. The present study tested this prediction by examining age-related differences in behavioral and electrophysiological adaptations to prior conflict. Children, adolescents, and adults were administered the Dimensional Change Card Sort (DCCS; Zelazo, 2006) - a developmentally-appropriate task modified so that response conflict varied from trial to trial - as cortical activity was measured by means of event-related potentials (ERPs). Although all groups showed a robust conflict effect, there were pronounced age-related differences in behavioral and electrophysiological adaptations to prior conflict. First, responses to incongruent trials were faster following incongruent trials than following congruent trials, but only for adults and adolescents. Second, ERP components that indexed response conflict, and the cortical source of these components, were modulated by preceding conflict for adults and adolescents, but not children. Taken together, the findings suggest that adults and adolescents take advantage of prior conflict to prepare for the future, whereas children respond to cognitive challenges as they occur. Theoretical implications are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Tolerance for psychological pain and capability for suicide: Contributions to suicidal ideation and behavior.

    Science.gov (United States)

    Meerwijk, Esther L; Weiss, Sandra J

    2018-04-01

    Among people with suicide ideation most do not attempt suicide or die by suicide. In this online study of adult US Facebook users (n = 219), we examined capability for suicide, operationalized as fearlessness about death, and tolerance for psychological pain as potential variables that may explain why some people move from suicide ideation to suicidal behavior. Tolerance for psychological pain was significantly higher for participants who had never attempted suicide. Fearlessness about death was higher in participants who had attempted suicide, but not significantly. At high levels of psychological pain, one's belief in the ability to cope with psychological pain, a dimension of tolerance for psychological pain, was lower in participants with a history of suicide attempt than in participants who had never attempted suicide. The odds of suicidal desire were almost cut in half with each unit increase in participants' belief in their coping ability, whereas for each unit increase in fearlessness about death, the odds of suicidal desire increased by 65%. The Pearson correlation between tolerance for psychological pain and fearlessness about death was negligible. Our findings support a role for both tolerance for psychological pain and capability for suicide/fearlessness about death in the ideation-to-action framework of suicide. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    Science.gov (United States)

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  16. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    Science.gov (United States)

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Radiation dose electrophysiology procedures

    International Nuclear Information System (INIS)

    Hernandez-Armas, J.; Rodriguez, A.; Catalan, A.; Hernandez Armas, O.; Luque Japon, L.; Moral, S.; Barroso, L.; Rfuez-Hdez, R.

    2006-01-01

    The aim of this paper has been to measure and analyse some of the parameters which are directly related with the doses given to patients in two electrophysiology procedures: diagnosis and ablation with radiofrequency. 16 patients were considered in this study. 13 them had an ablation with radiofrequency at the Unit of Electrophysiology at the University Hospital of the Canaries, La Laguna., Tenerife. The results of skin doses, in the ablation cases, were higher than 2 Gy (threshold of some deterministic effects). The average value was 1.1 Gy. The personal doses, measured under the lead apron, for physician and nurses were 4 and 3 micro Sievert. These results emphasised the necessity of radiation protection measures in order to reduce, ad much as possible, the doses to patients. (Author)

  18. Assessing tolerance for wildlife: Clarifying relations between concepts and measures

    Science.gov (United States)

    Bruskotter, Jeremy T.; Singh, Ajay; Fulton, David C.; Slagle, Kristina

    2015-01-01

    Two parallel lines of inquiry, tolerance for and acceptance of wildlife populations, have arisen in the applied literature on wildlife conservation to assess probability of successfully establishing or increasing populations of controversial species. Neither of these lines is well grounded in social science theory, and diverse measures have been employed to assess tolerance, which inhibits comparability across studies. We empirically tested behavioral measures of tolerance against self-reports of previous policy-relevant behavior and behavioral intentions. Both composite behavioral measures were strongly correlated (r > .70) with two attitudinal measures of tolerance commonly employed in the literature. The strong correlation between attitudinal and behavioral measures suggests existing attitudinal measures represent valid, parsimonious measures of tolerance that may be useful when behavioral measures are too cumbersome or misreporting of behavior is anticipated. Our results demonstrate how behavioral measures of tolerance provide additional, useful information beyond general attitudinal measures.

  19. Electrophysiology of blunted emotional bias in psychopathic personality.

    Science.gov (United States)

    Carolan, Patrick L; Jaspers-Fayer, Fern; Asmaro, Deyar T; Douglas, Kevin S; Liotti, Mario

    2014-01-01

    Diminished emotional capacity is a core characteristic of psychopathic personality. We examined behavioral and electrophysiological differences in attentional bias to emotional material in 34 healthy individuals rated high or low in psychopathic traits using the short form of the Psychopathic Personality Inventory-Revised (18 high-trait, 16 low-trait). While performing an emotional Stroop task, high-trait participants displayed reduced emotional modulation of the late positive potential (LPP, 400-600 ms), and early anterior positivity (EAP, 200-300 ms) amplitudes. Results suggest blunted bias to affective content in psychopathic personality, characterized by diminished early capture to emotional salience (EAP) and dampened cognitive emotional processing (LPP). Copyright © 2013 Society for Psychophysiological Research.

  20. Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices.

    Science.gov (United States)

    Uguz, Ilke; Ganji, Mehran; Hama, Adel; Tanaka, Atsunori; Inal, Sahika; Youssef, Ahmed; Owens, Roisin M; Quilichini, Pascale P; Ghestem, Antoine; Bernard, Christophe; Dayeh, Shadi A; Malliaras, George G

    2016-12-01

    Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assertiveness and tolerance in cross-cultural interaction

    Directory of Open Access Journals (Sweden)

    Pochebut L.G.

    2017-10-01

    Full Text Available The article is devoted to the theoretical analysis of the concepts of tolerance and assertiveness. Problem of contemporary cross-cultural interaction is the need to shift strategy of tolerance on strategy of assertiveness. Considered the practice of multiculturalism based on the idea of tolerance. Six barriers to cross-cultural communication. Comparison of understanding tolerance in European, Arab, Eastern cultures and in Russia. Boundaries are considered manifestations of tolerance. Developed rules of tolerant behavior. Proposed in scientific analysis and in actual practice, intercultural strategy move to assertiveness. Tolerance is respect for the views of another person, provided that he respects your opinion. Assertiveness is the respect for the rights of another person, provided that it also respects your rights. Describes the ways in assertive behavior: the willingness to cooperate, the openness of conduct, allocation of responsibilities, defend their rights and interests, defining the way forward. Tactics developed in assertive behavior: “interests”, “anti-discrimination”, “achievement”, “standards”, “activity”, “goodwill”.

  2. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  3. Early electrophysiological findings in Fisher-Bickerstaff syndrome.

    Science.gov (United States)

    Alberti, M A; Povedano, M; Montero, J; Casasnovas, C

    2017-09-06

    The term Fisher-Bickerstaff syndrome (FBS) has been proposed to describe the clinical spectrum encompassing Miller-Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis. The pathophysiology of FBS and the nature of the underlying neuropathy (demyelinating or axonal) are still subject to debate. This study describes the main findings of an early neurophysiological study on 12 patients diagnosed with FBS. Retrospective evaluation of clinical characteristics and electrophysiological findings of 12 patients with FBS seen in our neurology department within 10 days of disease onset. Follow-up electrophysiological studies were also evaluated, where available. The most frequent electrophysiological finding, present in 5 (42%) patients, was reduced sensory nerve action potential (SNAP) amplitude in one or more nerves. Abnormalities were rarely found in motor neurography, with no signs of demyelination. The cranial nerve exam revealed abnormalities in 3 patients (facial neurography and/or blink reflex test). Three patients showed resolution of SNAP amplitude reduction in serial neurophysiological studies, suggesting the presence of reversible sensory nerve conduction block. Results from cranial MRI scans were normal in all patients. An electrophysiological pattern of sensory axonal neuropathy, with no associated signs of demyelination, is an early finding of FBS. Early neurophysiological evaluation and follow-up are essential for diagnosing patients with FBS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Electrophysiologic studies of neronal activities under ischemia condition.

    Science.gov (United States)

    Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason

    2008-01-01

    Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.

  5. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  6. Software and hardware infrastructure for research in electrophysiology.

    Science.gov (United States)

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Rondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Stěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  7. Frustration Tolerance in Youth With ADHD.

    Science.gov (United States)

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  8. Effects of working memory load on visual selective attention: Behavioral and electrophysiological evidence

    Directory of Open Access Journals (Sweden)

    Nikki ePratt

    2011-06-01

    Full Text Available Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1 and late (P300 attention-sensitive event-related potential (ERP components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition or concurrently with a Sternberg memory task (dual task condition. In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either 4 or 7 consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.

  9. Scopolamine Reduces Electrophysiological Indices of Distractor Suppression: Evidence from a Contingent Capture Task

    Directory of Open Access Journals (Sweden)

    Inga Laube

    2017-12-01

    Full Text Available Limited resources for the in-depth processing of external stimuli make it necessary to select only relevant information from our surroundings and to ignore irrelevant stimuli. Attentional mechanisms facilitate this selection via top-down modulation of stimulus representations in the brain. Previous research has indicated that acetylcholine (ACh modulates this influence of attention on stimulus processing. However, the role of muscarinic receptors as well as the specific mechanism of cholinergic modulation remains unclear. Here we investigated the influence of ACh on feature-based, top-down control of stimulus processing via muscarinic receptors by using a contingent capture paradigm which specifically tests attentional shifts toward uninformative cue stimuli which display one of the target defining features In a double-blind, placebo controlled study we measured the impact of the muscarinic receptor antagonist scopolamine on behavioral and electrophysiological measures of contingent attentional capture. The results demonstrated all the signs of functional contingent capture, i.e., attentional shifts toward cued locations reflected in increased amplitudes of N1 and N2Pc components, under placebo conditions. However, scopolamine did not affect behavioral or electrophysiological measures of contingent capture. Instead, scopolamine reduced the amplitude of the distractor-evoked Pd component which has recently been associated with active suppression of irrelevant distractor information. The findings suggest a general cholinergic modulation of top-down control during distractor processing.

  10. Emotional Availability Modulates Electrophysiological Correlates of Executive Functions in Preschool Children.

    Science.gov (United States)

    Schneider-Hassloff, Henriette; Zwönitzer, Annabel; Künster, Anne K; Mayer, Carmen; Ziegenhain, Ute; Kiefer, Markus

    2016-01-01

    Executive functions (EFs) - a set of cognitive control abilities - mediate resilience to stress and are associated with academic achievement and health throughout life. They are crucially linked to prefrontal cortex function as well as to other cortical and subcortical brain functions, which are maturing throughout childhood at different rates. Recent behavioral research suggested that children's EFs were related to parenting quality and child attachment security, but the neural correlates of these associations are unknown. With this study we tested in 4- to 6-year-old healthy children (N = 27) how emotional availability (EA) of the mother-child-interaction was associated with behavioral and electrophysiological correlates of response inhibition (a core EF) in a Go/Nogo task, using event-related potential recordings (ERPs), and with behavioral performance in a Delay of Gratification (DoG) and a Head-Toes-Knees-Shoulders task (HTKS). Our data showed that the Go/Nogo task modulated children's ERP components resembling adult electrophysiological indices of response inhibition - the N2 and P3/LPC ERPs-, but the children's N2 and P3/LPC ERPs showed longer latencies. Higher maternal autonomy-fostering behavior and greater child responsiveness were significantly associated with smaller children's N2 Go/Nogo effects at fronto-central and parietal sites and with greater Go/Nogo effects in the N2 time window at occipital sites, over and above children's age and intelligence. Additionally, greater maternal sensitivity and a higher dyadic EA quality of the mother-child-interaction went along with greater occipital Go/Nogo effects in the N2 time window, but this effect clearly diminished when we controlled for children's age and intelligence. Higher maternal autonomy-support was also positively associated with better HTKS performance, and higher dyadic EA quality went along with higher HTKS and DoG scores. However, no significant associations were found between EA variables and

  11. Software and Hardware Infrastructure for Research in Electrophysiology

    Directory of Open Access Journals (Sweden)

    Roman eMouček

    2014-03-01

    Full Text Available As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly.This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research.After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  12. Electrophysiological Evidence in Schizophrenia in Relation to Treatment Response

    Directory of Open Access Journals (Sweden)

    Kazuki Sueyoshi

    2018-06-01

    Full Text Available Several domains of cognitive function, e.g., verbal memory, information processing, fluency, attention, and executive function are impaired in patients with schizophrenia. Cognitive impairments in schizophrenia have attracted interests as a treatment target, because they are considered to greatly affect functional outcome. Electrophysiological markers, including electroencephalogram (EEG, particularly, event-related potentials, have contributed to psychiatric research and clinical practice. In this review, we provide a summary of studies relating electrophysiological findings to cognitive performance in schizophrenia. Electrophysiological indices may provide an objective marker of cognitive processes, contributing to the development of effective interventions to improve cognitive and social outcomes. Further efforts to understand biological mechanisms of cognitive disturbances, and develop effective therapeutics are warranted.

  13. Electrophysiology in visually impaired children

    NARCIS (Netherlands)

    Genderen, Maria Michielde van

    2006-01-01

    Inherited retinal disorders and posterior visual pathway abnormalities are important causes of visual impairment in children. Visual electrophysiology often is indispensable in diagnosing these conditions. This thesis shows the wide range of use of pediatric electro-ophthalmology, and demonstrates

  14. The reliability of commonly used electrophysiology measures.

    Science.gov (United States)

    Brown, K E; Lohse, K R; Mayer, I M S; Strigaro, G; Desikan, M; Casula, E P; Meunier, S; Popa, T; Lamy, J-C; Odish, O; Leavitt, B R; Durr, A; Roos, R A C; Tabrizi, S J; Rothwell, J C; Boyd, L A; Orth, M

    Electrophysiological measures can help understand brain function both in healthy individuals and in the context of a disease. Given the amount of information that can be extracted from these measures and their frequent use, it is essential to know more about their inherent reliability. To understand the reliability of electrophysiology measures in healthy individuals. We hypothesized that measures of threshold and latency would be the most reliable and least susceptible to methodological differences between study sites. Somatosensory evoked potentials from 112 control participants; long-latency reflexes, transcranial magnetic stimulation with resting and active motor thresholds, motor evoked potential latencies, input/output curves, and short-latency sensory afferent inhibition and facilitation from 84 controls were collected at 3 visits over 24 months at 4 Track-On HD study sites. Reliability was assessed using intra-class correlation coefficients for absolute agreement, and the effects of reliability on statistical power are demonstrated for different sample sizes and study designs. Measures quantifying latencies, thresholds, and evoked responses at high stimulator intensities had the highest reliability, and required the smallest sample sizes to adequately power a study. Very few between-site differences were detected. Reliability and susceptibility to between-site differences should be evaluated for electrophysiological measures before including them in study designs. Levels of reliability vary substantially across electrophysiological measures, though there are few between-site differences. To address this, reliability should be used in conjunction with theoretical calculations to inform sample size and ensure studies are adequately powered to detect true change in measures of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Clinical and electrophysiological evaluation of pediatric Wolff-Parkinson-White patients

    Science.gov (United States)

    Yıldırım, Işıl; Özer, Sema; Karagöz, Tevfik; Şahin, Murat; Özkutlu, Süheyla; Alehan, Dursun; Çeliker, Alpay

    2015-01-01

    Objective: Wolff-Parkinson-White (WPW) syndrome presents with paroxysmal supraventricular tachycardia and is characterized by electrocardiographic (ECG) findings of a short PR interval and a delta wave. The objective of this study was to evaluate the electrophysiological properties of children with WPW syndrome and to develop an algorithm for the management of these patients with limited access to electrophysiological study. Methods: A retrospective review of all pediatric patients who underwent electrophysiological evaluation for WPW syndrome was performed. Results: One hundred nine patients underwent electrophysiological evaluation at a single tertiary center between 1997 and 2011. The median age of the patients was 11 years (0.1-18). Of the 109 patients, 82 presented with tachycardia (median age 11 (0.1-18) years), and 14 presented with syncope (median age 12 (6-16) years); 13 were asymptomatic (median age 10 (2-13) years). Induced AF degenerated to ventricular fibrillation (VF) in 2 patients. Of the 2 patients with VF, 1 was asymptomatic and the other had syncope; the accessory pathway effective refractory period was ≤180 ms in both. An intracardiac electrophysiological study was performed in 92 patients, and ablation was not attempted for risk of atrioventricular block in 8 (8.6%). The success and recurrence rate of ablation were 90.5% and 23.8% respectively. Conclusion: The induction of VF in 2 of 109 patients in our study suggests that the prognosis of WPW in children is not as benign as once thought. All patients with a WPW pattern on the ECG should be assessed electrophysiologically and risk-stratified. Ablation of patients with risk factors can prevent sudden death in this population. PMID:26006136

  16. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Shabeeb, Dheyauldeen; Najafi, Masoud; Hasanzadeh, Gholamreza; Hadian, Mohammed Reza; Musa, Ahmed Eleojio; Shirazi, Alireza

    2018-03-28

    Peripheral neuropathy is one of the main complications of diabetes mellitus. One of the features of diabetic nerve damage is abnormality of sensory and motor nerve conduction study. An electrophysiological examination can be reproduced and is also a non-invasive approach in the assessment of peripheral nerve function. Population-based and clinical studies have been conducted to validate the sensitivity of these methods. When the diagnosis was based on clinical electrophysiological examination, abnormalities were observed in all patients. In this research, using a review design, we reviewed the issue of clinical electrophysiological examination of diabetic peripheral neuropathy in articles from 2008 to 2017. For this purpose, PubMed, Scopus and Embase databases of journals were used for searching articles. The researchers indicated that diabetes (both types) is a very disturbing health issue in the modern world and should be given serious attention. Based on conducted studies, it was demonstrated that there are different procedures for prevention and treatment of diabetes-related health problems such as diabetic polyneuropathy (DPN). The first objective quantitative indication of the peripheral neuropathy is abnormality of sensory and motor nerve conduction tests. Electrophysiology is accurate, reliable and sensitive. It can be reproduced and also is a noninvasive approach in the assessment of peripheral nerve function. The methodological review has found that the best method for quantitative indication of the peripheral neuropathy compared with all other methods is clinical electrophysiological examination. For best results, standard protocols such as temperature control and equipment calibration are recommended. Copyright © 2018. Published by Elsevier Ltd.

  17. [Electrophysiological bases of semantic processing of objects].

    Science.gov (United States)

    Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële

    2007-02-01

    How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.

  18. The assessment of visually impaired persons working capacities using electrophysiological and ophthalmic ergonomics methods

    Directory of Open Access Journals (Sweden)

    M. I. Razumovsky

    2014-07-01

    Full Text Available Aim was to analyze working capacities of visually impaired persons by means of complex electrophysiological and ophthalmic ergonomics eye examination.Materials and methods. Standard clinical ophthalmologic examination (visual acuity measurement, refractometry, biomicroscopy, ophthalmoscopy as well as electrophysiological (electrooculography, electrical sensitivity of the eye, critical flicker fusion frequency and ophthalmic ergonomics tests (accommodation measurement, professional testing using automated system «Proftest-1» were performed.Results. Complex electrophysiological and ophthalmic ergonomics tests were performed in 20 visually impaired persons. Their results revealed direct correlation between electrophysiological and ophthalmic ergonomics indices.Conclusion. Working capacities of visually impaired persons can be assessed reliably using complex electrophysiological and ophthalmic ergonomics eye examination only.

  19. The assessment of visually impaired persons working capacities using electrophysiological and ophthalmic ergonomics methods

    Directory of Open Access Journals (Sweden)

    M. I. Razumovsky

    2014-01-01

    Full Text Available Aim was to analyze working capacities of visually impaired persons by means of complex electrophysiological and ophthalmic ergonomics eye examination.Materials and methods. Standard clinical ophthalmologic examination (visual acuity measurement, refractometry, biomicroscopy, ophthalmoscopy as well as electrophysiological (electrooculography, electrical sensitivity of the eye, critical flicker fusion frequency and ophthalmic ergonomics tests (accommodation measurement, professional testing using automated system «Proftest-1» were performed.Results. Complex electrophysiological and ophthalmic ergonomics tests were performed in 20 visually impaired persons. Their results revealed direct correlation between electrophysiological and ophthalmic ergonomics indices.Conclusion. Working capacities of visually impaired persons can be assessed reliably using complex electrophysiological and ophthalmic ergonomics eye examination only.

  20. Picrotoxin-induced behavioral tolerance and altered susceptibility to seizures: effects of naloxone.

    Science.gov (United States)

    Thomas, J; Nores, W L; Pariser, R

    1993-07-01

    The role of opiate mechanisms in the development of tolerance and altered susceptibility to seizures after repeated injections of picrotoxin was investigated. Independent groups of rats were pretreated with naloxone (0.3, 1.0, 3.0, and 10.0 mg/kg) or the saline vehicle and then tested for seizures induced by picrotoxin. The procedure was performed on 3 days at 1-week intervals, for a total of 3 testing days. Latencies to different types of seizures, the duration of postseizure immobility, and the number of focal seizure episodes were scored. In the vehicle-treated group, repeated picrotoxin injections led to an increased susceptibility to myoclonic and focal seizures and to decreased duration of postseizure immobility. Naloxone pretreatment significantly decreased the duration of the postseizure akinetic periods in the 1.0- and 10.0-mg/kg groups across all days, suggesting that endogenous opiates are involved in postseizure immobility and that there are interactions between opiate and picrotoxin mechanisms in some seizure-related behaviors. Naloxone did not alter the development of tolerance or sensitivity, indicating that naloxone-insensitive opiate mechanisms or nonopiate mechanisms may be involved in these processes.

  1. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  2. Information spreading in Delay Tolerant Networks based on nodes' behaviors

    Science.gov (United States)

    Wu, Yahui; Deng, Su; Huang, Hongbin

    2014-07-01

    Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.

  3. Tolerance and sensitization to inhaled 1,1,1-trichloroethane in mice: results from open-field behavior and a functional observational battery.

    Science.gov (United States)

    Bowen, Scott E; Balster, Robert L

    2006-05-01

    1,1,1-Trichloroethane (TCE), a representative abused solvent, has well described acute behavioral effects in animals. Much less is known about repeated high-concentration exposures as would be encountered in inhalant abusers. Tolerance has been demonstrated in some, but not all, studies with TCE while sensitization has also been seen with other abused solvents. The present study was designed to further characterize changes in the effects of repeated exposure to TCE on a variety of mouse behaviors. Mice were tested using locomotor activity as well as a functional observational battery (FOB) both before and after a regimen of daily exposures to various concentrations of TCE. The initial locomotor effects of acute 30-min exposures to TCE were biphasic with concentration-dependent increases in activity at lower concentrations and decreases observed at higher concentrations. The profile of acute effects as measured by the FOB included changes in posture, decreased arousal, disturbances in gait, delayed righting reflexes, and decreased sensorimotor reactivity. Animals were then divided into five groups and exposed 30 min/day to either air or one of four concentrations of TCE (2,000, 6,000, 10,000, or 13,300 ppm) for 15 consecutive days. The TCE concentration used primarily affected the magnitude of change, not whether tolerance or sensitization occurred. Tolerance developed on the measures of forelimb grip strength, inverted screen, and number of rears. Conversely, sensitization developed to measures of locomotor activity. Depending on the behavioral measure, both tolerance and sensitization can occur in mice with repeated exposure to TCE. Both of these phenomena are characteristic of drugs of abuse.

  4. [Automated processing of electrophysiologic signals].

    Science.gov (United States)

    Korenevskiĭ, N A; Gubanov, V V

    1995-01-01

    The paper outlines a diagram of a multichannel analyzer of electrophysiological signals while are significantly non-stationary (such as those of electroencephalograms, myograms, etc.), by using a method based on the ranging procedure by the change-over points which may be the points of infection, impaired locality, minima, maxima, discontinuity, etc.

  5. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    Science.gov (United States)

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  6. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    Science.gov (United States)

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  7. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study.

    Directory of Open Access Journals (Sweden)

    Juan F Gomez

    Full Text Available Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.The electrical activity of human transmural ventricular tissue (5 cm × 5 cm was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW for reentry was evaluated following cross-field stimulation.No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.

  8. Promoting tolerance and moral engagement through peer modeling.

    Science.gov (United States)

    McAlister, A L; Ama, E; Barroso, C; Peters, R J; Kelder, S

    2000-11-01

    Behavioral journalism influences audiences by presenting peer modeling for cognitive processes that lead to behavior change. This technique was used in student newsletters promoting intergroup tolerance and moral engagement in a Houston high school with a diverse ethnic composition. Pretest (N = 393) and posttest (N = 363) cross-sectional comparisons of the student population in that school provided evidence of short-term (6 month) communication effects on attitudes and behavior. Tolerance and moral engagement increased among students in the school where behavioral journalism newsletters were distributed, and there was a corresponding reduction in hostile behavioral intentions and in reports of verbal aggression.

  9. Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons

    Science.gov (United States)

    2017-01-01

    Abstract Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation. PMID:29085901

  10. Denervation syndromes of the shoulder girdle: MR imaging with electrophysiologic correlation

    International Nuclear Information System (INIS)

    Bredella, M.A.; Wischer, T.K.; Stork, A.; Genant, H.K.; Tirman, P.F.J.; Fritz, R.C.

    1999-01-01

    Objective. To investigate the use of MR imaging in the characterization of denervated muscle of the shoulder correlated with electrophysiologic studies.Design and patients. We studied with MR imaging five patients who presented with shoulder weakness and pain and who underwent electrophysiologic studies. On MR imaging the distribution of muscle edema and fatty infiltration was recorded, as was the presence of masses impinging on a regional nerve.Results. Acute/subacute denervation was best seen on T2-weighted fast spin-echo images with fat saturation, showing increased SI related to neurogenic edema. Chronic denervation was best seen on T1-weighted spin-echo images, demonstrating loss of muscle bulk and diffuse areas of increased signal intensity within the muscle. Three patients showed MR imaging and electrophysiologic findings of Parsonage Turner syndrome. One patient demonstrated an arteriovenous malformation within the spinoglenoid notch, impinging on the suprascapular nerve with associated atrophy of the infraspinatus muscle. The fifth patient demonstrated fatty atrophy of the teres minor muscle caused by compression by a cyst of the axillary nerve and electrophysiologic findings of an incomplete axillary nerve block.Conclusion. MR imaging is useful in detecting and characterizing denervation atrophy and neurogenic edema in shoulder muscles. MR imaging can provide additional information to electrophysiologic studies by estimating the age (acute/chronic) and identifying morphologic causes for shoulder pain and atrophy. (orig.)

  11. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    Science.gov (United States)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  12. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    Science.gov (United States)

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  13. Re-visiting the electrophysiology of language.

    Science.gov (United States)

    Obleser, Jonas

    2015-09-01

    This editorial accompanies a special issue of Brain and Language re-visiting old themes and new leads in the electrophysiology of language. The event-related potential (ERP) as a series of characteristic deflections ("components") over time and their distribution on the scalp has been exploited by speech and language researchers over decades to find support for diverse psycholinguistic models. Fortunately, methodological and statistical advances have allowed human neuroscience to move beyond some of the limitations imposed when looking at the ERP only. Most importantly, we currently witness a refined and refreshed look at "event-related" (in the literal sense) brain activity that relates itself more closely to the actual neurobiology of speech and language processes. It is this imminent change in handling and interpreting electrophysiological data of speech and language experiments that this special issue intends to capture. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    Science.gov (United States)

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  15. Conductive Hearing Loss during Infancy: Effects on Later Auditory Brain Stem Electrophysiology.

    Science.gov (United States)

    Gunnarson, Adele D.; Finitzo, Terese

    1991-01-01

    Long-term effects on auditory electrophysiology from early fluctuating hearing loss were studied in 27 children, aged 5 to 7 years, who had been evaluated originally in infancy. Findings suggested that early fluctuating hearing loss disrupts later auditory brain stem electrophysiology. (Author/DB)

  16. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. © The Author(s) 2014.

  17. Hostility and hearing protection behavior: the mediating role of personal beliefs and low frustration tolerance.

    Science.gov (United States)

    Rabinowitz, S; Melamed, S; Feiner, M; Weisberg, E; Ribak, J

    1996-10-01

    The authors examined whether hostility would negatively be associated with occupational health behavior, namely, the use of hearing protection devices (HPDs). Also examined as possible mediators were the protection motivation theory (PMT) components and low frustration tolerance (LFT). Participants were 226 male industrial workers, all exposed to potentially hearing-damaging noise. Hostility was negatively related to HPD use. It moderately correlated with the PMT components: negatively with perceived susceptibility, severity, effectiveness, and self-efficacy and positively with perceived barriers. Hostility correlated highly with LFT. Regression analyses confirmed the mediating role of perceived barriers, low self-efficacy, and LFT in the negative relationship between hostility and the use of HPDs. Thus, intrapsychic characteristics of hostile people may be significant for hearing protection behavior.

  18. Retinal dysfunction and refractive errors: an electrophysiological study of children

    Science.gov (United States)

    Flitcroft, D I; Adams, G G W; Robson, A G; Holder, G E

    2005-01-01

    Aims: To evaluate the relation between refractive error and electrophysiological retinal abnormalities in children referred for investigation of reduced vision. Methods: The study group comprised 123 consecutive patients referred over a 14 month period from the paediatric service of Moorfields Eye Hospital for electrophysiological investigation of reduced vision. Subjects were divided into five refractive categories according to their spectacle correction: high myopia (⩽−6D), low myopia (>−6D and ⩽−0.75D), emmetropia (>−0.75 and 1.5D) and ERG abnormalities (18/35 with high astigmatism v 20/88 without, χ2 test, p = 0.002). There was no significant variation in frequency of abnormalities between low myopes, emmetropes, and low hyperopes. The rate of abnormalities was very similar in both high myopes (8/15) and high hyperopes (5/10). Conclusions: High ametropia and astigmatism in children being investigated for poor vision are associated with a higher rate of retinal electrophysiological abnormalities. An increased rate of refractive errors in the presence of retinal pathology is consistent with the hypothesis that the retina is involved in the process of emmetropisation. Electrophysiological testing should be considered in cases of high ametropia in childhood to rule out associated retinal pathology. PMID:15774929

  19. Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Ruoxian Deng

    2015-10-01

    Full Text Available Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA patients are necessary, especially since therapeutic hypothermia (TH as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods—electroencephalography (EEG pattern, evoked potential (EP and cellular electrophysiological measurement—were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity provides real-time and accurate information for early-stage (particularly in the first 24 h hypoxic-ischemic (HI brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA and local field potentials (LFP, has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.

  20. A highly versatile and easily configurable system for plant electrophysiology.

    Science.gov (United States)

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  1. Multiplexed, high density electrophysiology with nanofabricated neural probes.

    Directory of Open Access Journals (Sweden)

    Jiangang Du

    Full Text Available Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  2. Morphine tolerance offers protection from radiogenic performance deficits

    International Nuclear Information System (INIS)

    Mickley, G.A.; Stevens, K.E.; Burrows, J.M.; White, G.A.; Gibbs, G.L.

    1983-01-01

    When rats are exposed to a sufficiently large dose of ionizing radiation they exhibit lethargy, hypokinesia, and deficits in performance. These and other behavioral changes parallel those often observed in this species after a large dose of morphine. Since the release of endogenous opiates has been implicated in some stress reactions, we sought to determine if they might play a part in radiogenic behavioral deficits. Rats were trained to criterion on a signaled avoidance task. Some subjects were then implanted with a pellet containing 75 mg of morphine. Other animals received placebo implants. Over a number of days, morphine tolerance was evaluated by measurement of body temperature changes. Prior to 2500 rad 60 Co exposure or sham irradiation, morphine (or placebo) pellets were removed. Twenty-four hours later rats were retested to assess their performance on the avoidance task. Morphine-tolerant subjects performed significantly better than the irradiated placebo-implanted group and no differently than morphine-tolerant/sham-irradiated animals. Morphine tolerance seems to provide a degree of behavioral radiation resistance. These data are consistent with the hypothesis that endogenous opiate hyperexcretion may play some part in the behavioral deficits often observed after irradiation

  3. Pelvic floor electrophysiology patterns associated with faecal ...

    African Journals Online (AJOL)

    Hussein Al-Moghazy Sultan

    2012-12-28

    Dec 28, 2012 ... pelvic floor electrophysiological abnormalities associated with. FI were illustrated in ... detection of a localized anal sphincter defect clinically and ..... Woods R, Voyvodic F, Schloithe A, Sage M, Wattchow D. Anal sphincter ...

  4. PERIPHERAL NEUROPATHY ELECTROPHYSIOLOGICAL SCREENING IN CHILDREN WITH CELIAC DISEASE

    Directory of Open Access Journals (Sweden)

    Şedat IŞIKAY

    2015-06-01

    Full Text Available Background The involvement of the peripheral nervous system in children with celiac disease is particularly rare. Objective The aim of this study was to assess the need for neurophysiological testing in celiac disease patients without neurological symptoms in order to detect early subclinical neuropathy and its possible correlations with clinical and demographic characteristics. Methods Two hundred and twenty consecutive children with celiac disease were screened for neurological symptoms and signs, and those without symptoms or signs were included. Also, patients with comorbidities associated with peripheral neuropathy or a history of neurological disease were excluded. The remaining 167 asymptomatic patients as well as 100 control cases were tested electro-physiologically for peripheral nervous system diseases. Motor nerve conduction studies, including F-waves, were performed for the median, ulnar, peroneal, and tibial nerves, and sensory nerve conduction studies were performed for the median, ulnar, and sural nerves with H reflex of the soleus muscle unilaterally. All studies were carried out using surface recording electrodes. Normative values established in our laboratory were used. Results Evidence for subclinical neuropathy was not determined with electrophysiological studies in any of the participants. Conclusion In this highly selective celiac disease group without any signs, symptoms as well as the predisposing factors for polyneuropathy, we did not determine any cases with neuropathy. With these results we can conclude that in asymptomatic cases with celiac disease electrophysiological studies are not necessary. However, larger studies with the electrophysiological studies performed at different stages of disease at follow-ups are warranted.

  5. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  6. Tolerance-based punishment in continuous public goods game

    Science.gov (United States)

    Gao, Jia; Li, Zhi; Cong, Rui; Wang, Long

    2012-08-01

    Altruistic punishment for defectors is considered as a key motive for the explanation of cooperation. However, there is no clear border between the cooperative and defective behaviors in a continuous strategy game. We propose a model to study the effect of punishment on the evolution of cooperation in continuous public goods game, wherein individuals have the traits to punish the co-players based on social tolerance. We show that a reasonable punishment with a uniform tolerance can spur individuals to make more investments. Additionally, for a fixed punishment cost and a fixed fine, a moderate value of tolerance can result in the best promotion of cooperation. Furthermore, we investigate the coevolutionary dynamics of investment and tolerance. We find that the population splits into two branches: high-tolerance individuals who make high investments and low-tolerance individuals who make low investments. A dynamic equilibrium is achieved between these two types of individuals. Our work extends punishment to continuous cooperative behaviors and the results may enhance the understanding of altruistic punishment in the evolution of human cooperation.

  7. Attachment affects social information processing: Specific electrophysiological effects of maternal stimuli.

    Science.gov (United States)

    Wu, Lili; Gu, Ruolei; Zhang, Jianxin

    2016-01-01

    Attachment is critical to each individual. It affects the cognitive-affective processing of social information. The present study examines how attachment affects the processing of social information, specifically maternal information. We assessed the behavioral and electrophysiological responses to maternal information (compared to non-specific others) in a Go/No-go Association Task (GNAT) with 22 participants. The results illustrated that attachment affected maternal information processing during three sequential stages of information processing. First, attachment affected visual perception, reflected by enhanced P100 and N170 elicited by maternal information as compared to others information. Second, compared to others, mother obtained more attentional resources, reflected by faster behavioral response to maternal information and larger P200 and P300. Finally, mother was evaluated positively, reflected by shorter P300 latency in a mother + good condition as compared to a mother + bad condition. These findings indicated that the processing of attachment-relevant information is neurologically differentiated from other types of social information from an early stage of perceptual processing to late high-level processing.

  8. Visual search elicits the electrophysiological marker of visual working memory.

    Directory of Open Access Journals (Sweden)

    Stephen M Emrich

    Full Text Available BACKGROUND: Although limited in capacity, visual working memory (VWM plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA, which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. METHODOLOGY/PRINCIPAL FINDINGS: The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. CONCLUSIONS/SIGNIFICANCE: We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.

  9. How to achieve ultrasound-guided femoral venous access: the new standard of care in the electrophysiology laboratory.

    Science.gov (United States)

    Wiles, Benedict M; Child, Nicholas; Roberts, Paul R

    2017-06-01

    Bedside vascular ultrasound machines are increasingly available. They are used to facilitate safer vascular access across a number of different specialties. In the electrophysiology laboratory however, where patients are frequently anticoagulated and require the insertion of multiple venous sheaths, anatomical landmark techniques predominate. Despite the high number of vascular complications associated with electrophysiological procedures and the increasing evidence to support its use in electrophysiology, ultrasound remains underutilised. A new standard of care is required. A comprehensive technical report, providing a detailed explanation of this important technique, will provide other electrophysiology centres with the knowledge and justification for adopting ultrasound guidance as their standard practice. We review the increasing body of evidence which demonstrates that routine ultrasound usage can substantially improve the safety of femoral venous access in the electrophysiology laboratory. We offer a comprehensive technical report to guide operators through the process of ultrasound-guided venous access, with a specific focus on the electrophysiology laboratory. Additionally, we detail a novel technique which utilises real-time colour Doppler ultrasound to accurately identify needle tip location during venous puncture. The use of vascular ultrasound to guide femoral venous cannulation is rapid, inexpensive and easily learnt. Ultrasound is readily available and offers the potential to significantly reduce vascular complications in the unique setting of the electrophysiology laboratory. Ultrasound guidance to achieve femoral venous access should be the new standard of care in electrophysiology.

  10. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  11. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Moderate traumatic brain injury (TBI in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1

  12. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Science.gov (United States)

    Ouyang, Wei; Yan, Qichao; Zhang, Yu; Fan, Zhiheng

    2017-01-01

    Moderate traumatic brain injury (TBI) in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.

  13. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susann Björk

    2017-11-01

    Full Text Available Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs, cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and

  14. The Electrophysiological Signature of Remember-Know Is Confounded with Memory Strength and Cannot Be Interpreted as Evidence for Dual-process Theory of Recognition.

    Science.gov (United States)

    Brezis, Noam; Bronfman, Zohar Z; Yovel, Galit; Goshen-Gottstein, Yonatan

    2017-02-01

    The quantity and nature of the processes underlying recognition memory remains an open question. A majority of behavioral, neuropsychological, and brain studies have suggested that recognition memory is supported by two dissociable processes: recollection and familiarity. It has been conversely argued, however, that recollection and familiarity map onto a single continuum of mnemonic strength and hence that recognition memory is mediated by a single process. Previous electrophysiological studies found marked dissociations between recollection and familiarity, which have been widely held as corroborating the dual-process account. However, it remains unknown whether a strength interpretation can likewise apply for these findings. Here we describe an ERP study, using a modified remember-know (RK) procedure, which allowed us to control for mnemonic strength. We find that ERPs of high and low mnemonic strength mimicked the electrophysiological distinction between R and K responses, in a lateral positive component (LPC), 500-1000 msec poststimulus onset. Critically, when contrasting strength with RK experience, by comparing weak R to strong K responses, the electrophysiological signal mapped onto strength, not onto subjective RK experience. Invoking the LPC as support for dual-process accounts may, therefore, be amiss.

  15. Sedation for paediatric auditory electrophysiology in South Africa

    African Journals Online (AJOL)

    emergency departments and nuclear medicine.1 Added to this is the periodic need ... electrophysiology in the paediatric population in South Africa were not found. ..... to inadequate information technology infrastructure as well as limited data ...

  16. An electrophysiological approach to the diagnosis of neurogenic dysphagia: implications for botulinum toxin treatment.

    Science.gov (United States)

    Alfonsi, E; Merlo, I M; Ponzio, M; Montomoli, C; Tassorelli, C; Biancardi, C; Lozza, A; Martignoni, E

    2010-01-01

    Botulinum toxin (BTX) injection into the cricopharyngeal (CP) muscle has been proposed for the treatment of neurogenic dysphagia due to CP hyperactivity. The aim was to determine whether an electrophysiological method exploring oropharyngeal swallowing could guide treatment and discriminate responders from non-responders, based on the association of CP dysfunction with other electrophysiological abnormalities of swallowing. Patients with different neurological disorders were examined: Parkinson disease, progressive supranuclear palsy, multiple system atrophy-Parkinson variant, multiple system atrophy cerebellar variant, stroke, multiple sclerosis and ataxia telangiectasia. All patients presented with clinical dysphagia, and with complete absence of CP muscle inhibition during the hypopharyngeal phase of swallowing. Each patient underwent clinical and electrophysiological investigations before and after treatment with BTX into the CP muscle of one side (15 units of Botox). Clinical and electrophysiological procedures were performed in a blind manner by two different investigators. The following electrophysiological measures were analysed: (1) duration of EMG activity of suprahyoid/submental muscles (SHEMG-D); (2) duration of laryngopharyngeal mechanogram (LPM-D); (3) duration of the inhibition of the CP muscle EMG activity (CPEMG-ID); and (4) interval between onset of EMG activity of suprahyoid/submental muscles and onset of laryngopharyngeal mechanogram (I-SHEMG-LPM). Two months after treatment, 50% of patients showed a significant improvement. Patients with prolonged or reduced SHEMG-D values and prolonged I-SHEMG-LPM values did not respond to BTX. Therefore, values for which BTX had no effect (warning values) were identified. This electrophysiological method can recognise swallowing abnormalities which may affect the outcome of the therapeutic approach to dysphagia with BTX treatment.

  17. Electrophysiological Evaluation of Oropharyngeal Dysphagia in Parkinson’s Disease

    Science.gov (United States)

    Ertekin, Cumhur

    2014-01-01

    Parkinson’s disease (PD) is a chronic, neurodegenerative movement disorder that typically affects elderly patients. Swallowing disorders are highly prevalent in PD and can have grave consequences, including pneumonia, malnutrition, dehydration and mortality. Neurogenic dysphagia in PD can manifest with both overt clinical symptoms or silent dysphagia. Regardless, early diagnosis and objective follow-up of dysphagia in PD is crucial for timely and appropriate care for these patients. In this review, we provide a comprehensive summary of the electrophysiological methods that can be used to objectively evaluate dysphagia in PD. We discuss the electrophysiological abnormalities that can be observed in PD, their clinical correlates and the pathophysiology underlying these findings. PMID:25360228

  18. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling

    Science.gov (United States)

    Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib

    2018-03-01

    In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.

  19. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays

    Science.gov (United States)

    Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Benjamin W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T.

    2017-07-01

    Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.

  20. Ultraconformable Temporary Tattoo Electrodes for Electrophysiology

    Science.gov (United States)

    Ferrari, Laura M.; Sudha, Sudha; Tarantino, Sergio; Esposti, Roberto; Bolzoni, Francesco; Cavallari, Paolo; Cipriani, Christian

    2018-01-01

    Abstract Electrically interfacing the skin for monitoring personal health condition is the basis of skin‐contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (Tattoo electrode–skin contact impedance is characterized on short‐ (1 h) and long‐term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin‐contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long‐term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large‐scale production of low‐cost sensing devices. PMID:29593975

  1. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    Science.gov (United States)

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    . Adolescents drank significantly more ethanol than adults on a gram per kilogram basis, with intake uninfluenced by prior ethanol exposure at both ages. Adolescents and adults may differ in their ability and/or propensity to adapt to chronic ethanol exposure, with adults, but not adolescents, developing chronic metabolic tolerance. However, this chronic exposure regimen was sufficient to disrupt baseline levels of social behavior at both ages. Taken together, these results suggest that, despite the age-related differences in tolerance development, adolescents are as susceptible as adults to consequences of chronic ethanol exposure, particularly in terms of disruptions in social behavior. Whether these effects would last into adulthood remains to be determined. Copyright © 2011 by the Research Society on Alcoholism.

  2. Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum.

    Science.gov (United States)

    Sutton, Laurie P; Ostrovskaya, Olga; Dao, Maria; Xie, Keqiang; Orlandi, Cesare; Smith, Roy; Wee, Sunmee; Martemyanov, Kirill A

    2016-08-01

    Morphine mediates its euphoric and analgesic effects by acting on the μ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. The Consistency Between Clinical and Electrophysiological Diagnoses

    Directory of Open Access Journals (Sweden)

    Esra E. Okuyucu

    2009-09-01

    Full Text Available OBJECTIVE: The aim of this study was to provide information concerning the impact of electrophysiological tests in the clinical management and diagnosis of patients, and to evaluate the consistency between referring clinical diagnoses and electrophysiological diagnoses. METHODS: The study included 957 patients referred to the electroneuromyography (ENMG laboratory from different clinics with different clinical diagnoses in 2008. Demographic data, referring clinical diagnoses, the clinics where the requests wanted, and diagnoses after ENMG testing were recorded and statistically evaluated. RESULTS: In all, 957 patients [644 (67.3% female and 313 (32.7% male] were included in the study. Mean age of the patients was 45.40 ± 14.54 years. ENMG requests were made by different specialists; 578 (60.4% patients were referred by neurologists, 122 (12.8% by orthopedics, 140 (14.6% by neurosurgeons, and 117 (12.2% by physical treatment and rehabilitation departments. According to the results of ENMG testing, 513 (53.6% patients’ referrals were related to their referral diagnosis, whereas 397 (41.5% patients had normal ENMG test results, and 47 (4.9% patients had a diagnosis that differed from the referring diagnosis. Among the relation between the referral diagnosis and electrophysiological diagnosis according to the clinics where the requests were made, there was no statistical difference (p= 0.794, but there were statistically significant differences between the support of different clinical diagnoses, such as carpal tunnel syndrome, polyneuropathy, radiculopathy-plexopathy, entrapment neuropathy, and myopathy based on ENMG test results (p< 0.001. CONCLUSION: ENMG is a frequently used neurological examination. As such, referrals for ENMG can be made to either support the referring diagnosis or to exclude other diagnoses. This may explain the inconsistency between clinical referring diagnoses and diagnoses following ENMG

  4. Retinal Electrophysiology Is a Viable Preclinical Biomarker for Drug Penetrance into the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Jason Charng

    2016-01-01

    Full Text Available Objective. To examine whether retinal electrophysiology is a useful surrogate marker of drug penetrance into the central nervous system (CNS. Materials and Methods. Brain and retinal electrophysiology were assessed with full-field visually evoked potentials and electroretinograms in conscious and anaesthetised rats following systemic or local administrations of centrally penetrant (muscimol or nonpenetrant (isoguvacine compounds. Results. Local injections into the eye/brain bypassed the blood neural barriers and produced changes in retinal/brain responses for both drugs. In conscious animals, systemic administration of muscimol resulted in retinal and brain biopotential changes, whereas systemic delivery of isoguvacine did not. General anaesthesia confounded these outcomes. Conclusions. Retinal electrophysiology, when recorded in conscious animals, shows promise as a viable biomarker of drug penetration into the CNS. In contrast, when conducted under anaesthetised conditions confounds can be induced in both cortical and retinal electrophysiological recordings.

  5. Viewing the Cycle of Violence Through a Gendered Pathways Lens: Perceived Parental Tolerance of Violence, Peer Influence, and Child Aggressive Behavior.

    Science.gov (United States)

    Walters, Glenn D

    2017-04-01

    The purpose of the present study was to determine whether a child's perception of adult tolerance of violence interfaced with peer associations and violent offending. It was hypothesized that a child's perception of his or her parents' tolerance for violence would predict the peer influence effect for aggressive behavior in boys but not girls. Control variables included the parent's stated tolerance of violence, the child's personal attitude toward violence, recent parental divorce or separation, and child maltreatment within the past 12 months. Using the first three waves of the National Youth Survey (NYS), the relationships between perceived parental tolerance of violence and the peer influence and selection effects were examined. A negative binomial path analysis of the male subsample ( n = 736) revealed that perceived parental tolerance of violence predicted the peer influence effect (peer violence leading to participant violent offending) but not the peer selection effect (participant violent offending leading to peer violence) in boys. In girls ( n = 679), neither pathway was significant. The current findings indicate that in boys, perceived parental attitudes toward violence help account for the cycle of violence, perhaps by encouraging the child's association with violent peers. Programs designed to change these perceptions and the parental/community attitudes these perceptions may reflect could be an effective means of intervention for violent youth.

  6. Tolerance of sexual harassment: a laboratory paradigm.

    Science.gov (United States)

    Angelone, David J; Mitchell, Damon; Carola, Kara

    2009-12-01

    The present study attempted to develop a laboratory analogue for the study of tolerance for sexual harassment by using an online speed-dating paradigm. In that context, the relation between participants' sexual harassment attitudes, perpetrator attractiveness, perpetrator status, and perceived dating potential of the perpetrator were examined as factors influencing participants' tolerance of sexually harassing behavior. Participants were 128 female college students from a small northeastern public university. Results indicated that attractiveness, high social status, and attitudinal beliefs about sexual harassment were all predictive of tolerance for sexual harassment, providing preliminary support for the validity of this paradigm. In addition, participants' self reported likelihood to date a bogus male dating candidate was also predictive of tolerance for sexual harassment, over and above the aforementioned variables, suggesting that dating potential can play a role in perceptions of sexual harassment. Further, this experiment demonstrated that perceptions of sexual harassment can be assessed using the in vivo measurement of behavior. In addition, using an online environment not only provides a contemporary spin and adds a greater degree of external validity compared to other sexual harassment analogues, it also reduces any risk of potential physical sexual contact for participants.

  7. Microstructure, flaw tolerance, and reliability of Ce-TZP and Y-TZP ceramics

    International Nuclear Information System (INIS)

    Readey, M.J.; McCallen, C.L.

    1995-01-01

    Ce-TZP and Y-TZP ceramics were heat-treated for various times and temperatures in order to vary the microstructure. Flaw tolerance was investigated using the indentation-strength test. Reliability was quantified using conventional two-parameter Weibull statistics. Some Ce-TZP specimens were indented at slightly elevated temperatures where no transformation was observed. Results indicated that the Ce-TZP specimens were extremely flaw tolerant, and showed a relatively high Weibull modulus that scaled with both R-curve behavior and flaw tolerance. Y-TZP, on the other hand, with very little if any R-curve behavior or flaw tolerance, had a low Weibull modulus. The results also show that flaw history, i.e., whether or not a transformation zone exists along the wake of the crack, has a significant influence on strength. Strength was much less dependent on initial crack size when the crack had an associated transformation zone, whereas strength was highly dependent on cracks typical of natural processing defects. It is argued that the improvement in reliability, flaw tolerance, and dependence on flaw history are all ramifications of pronounced R-curve behavior

  8. Neuroengineering control and regulation of behavior

    Science.gov (United States)

    Wróbel, A.; Radzewicz, C.; Mankiewicz, L.; Hottowy, P.; Knapska, E.; Konopka, W.; Kublik, E.; Radwańska, K.; Waleszczyk, W. J.; Wójcik, D. K.

    2014-11-01

    To monitor neuronal circuits involved in emotional modulation of sensory processing we proposed a plan to establish novel research techniques combining recent biological, technical and analytical discoveries. The project was granted by National Science Center and we started to build a new experimental model for studying the selected circuits of genetically marked and behaviorally activated neurons. To achieve this goal we will combine the pioneering, interdisciplinary expertise of four Polish institutions: (i) the Nencki Institute of Experimental Biology (Polish Academy of Sciences) will deliver the expertise on genetically modified mice and rats, mapping of the neuronal circuits activated by behavior, monitoring complex behaviors measured in the IntelliCage system, electrophysiological brain activity recordings by multielectrodes in behaving animals, analysis and modeling of behavioral and electrophysiological data; (ii) the AGH University of Science and Technology (Faculty of Physics and Applied Computer Sciences) will use its experience in high-throughput electronics to build multichannel systems for recording the brain activity of behaving animals; (iii) the University of Warsaw (Faculty of Physics) and (iv) the Center for Theoretical Physics (Polish Academy of Sciences) will construct optoelectronic device for remote control of opto-animals produced in the Nencki Institute based on the unique experience in laser sources, studies of light propagation and its interaction with condensed media, wireless medical robotic systems, fast readout opto-electronics with control software and micromechanics.

  9. Revisiting the earliest electrophysiological correlate of familiar face recognition.

    Science.gov (United States)

    Huang, Wanyi; Wu, Xia; Hu, Liping; Wang, Lei; Ding, Yulong; Qu, Zhe

    2017-10-01

    The present study used event-related potentials (ERPs) to reinvestigate the earliest face familiarity effect (FFE: ERP differences between familiar and unfamiliar faces) that genuinely reflects cognitive processes underlying recognition of familiar faces in long-term memory. To trigger relatively early FFEs, participants were required to categorize upright and inverted famous faces and unknown faces in a task that placed high demand on face recognition. More importantly, to determine whether an observed FFE was linked to on-line face recognition, systematical investigation about the relationship between the FFE and behavioral performance of face recognition was conducted. The results showed significant FFEs on P1, N170, N250, and P300 waves. The FFEs on occipital P1 and N170 (faces, and were not correlated with any behavioral measure (accuracy, response time) or modulated by learning, indicating that they might merely reflect low-level visual differences between face sets. In contrast, the later FFEs on occipito-temporal N250 (~230ms) and centro-parietal P300 (~350ms) showed consistent polarities for upright and inverted faces. The N250 FFE was individually correlated with recognition speed for upright faces, and could be obtained for inverted faces through learning. The P300 FFE was also related to behavior in many aspects. These findings provide novel evidence supporting that cognitive discrimination of familiar and unfamiliar faces starts no less than 200ms after stimulus onset, and the familiarity effect on N250 may be the first electrophysiological correlate underlying recognition of familiar faces in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  11. How does "not left" become "right"? Electrophysiological evidence for a dynamic conflict-bound negation processing account.

    Science.gov (United States)

    Dudschig, Carolin; Kaup, Barbara

    2018-05-01

    Human thought and language is traditionally considered as abstract, amodal, and symbolic. However, recent theories propose that high-level human cognition is directly linked to basic, modal biological systems such as sensorimotor areas. Despite this influential representational debate very little is known regarding whether the mechanisms involved in sensorimotor control are also shared with higher-level cognitive processes, such as language comprehension. We investigated negation as a universal of human language, addressing two key questions: (a) Does negation result in a conflict-like representation? (b) Does negation trigger executive control adjustments in a similar manner as standard information processing conflicts do (e.g., Simon, Flanker)? Electrophysiological data indicated that phrases such as "not left/not right" result in initial activation of the to-be-negated information and subsequently the outcome of the negation process. More importantly, our findings also suggest that negation triggers conflict-related adjustments in information processing in line with traditional conflict tasks. Trial-by-trial conflict adaptation patterns in both behavioral and electrophysiological data indicated that negation processing dynamically changes depending on the current cognitive state. In summary, negation processing results in cognitive conflict, and dynamic influences of the cognitive state determine conflict resolution, that is, negation implementation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Combined Electrophysiological and Behavioral Evidence for the Suppression of Salient Distractors.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-05-15

    Researchers have long debated how salient-but-irrelevant features guide visual attention. Pure stimulus-driven theories claim that salient stimuli automatically capture attention irrespective of goals, whereas pure goal-driven theories propose that an individual's attentional control settings determine whether salient stimuli capture attention. However, recent studies have suggested a hybrid model in which salient stimuli attract visual attention but can be actively suppressed by top-down attentional mechanisms. Support for this hybrid model has primarily come from ERP studies demonstrating that salient stimuli, which fail to capture attention, also elicit a distractor positivity (P D ) component, a putative neural index of suppression. Other support comes from a handful of behavioral studies showing that processing at the salient locations is inhibited compared with other locations. The current study was designed to link the behavioral and neural evidence by combining ERP recordings with an experimental paradigm that provides a behavioral measure of suppression. We found that, when a salient distractor item elicited the P D component, processing at the location of this distractor was suppressed below baseline levels. Furthermore, the magnitude of behavioral suppression and the magnitude of the P D component covaried across participants. These findings provide a crucial connection between the behavioral and neural measures of suppression, which opens the door to using the P D component to assess the timing and neural substrates of the behaviorally observed suppression.

  13. Electrophysiologic Assessments of Involuntary Movements: Tremor and Myoclonus

    Directory of Open Access Journals (Sweden)

    Hyun-Dong Park

    2009-05-01

    Full Text Available Tremor is defined as a rhythmical, involuntary oscillatory movement of a body part. Although neurological examination reveals information regarding its frequency, regularity, amplitude, and activation conditions, the electrophysiological investigations help in confirming the tremor, in differentiating it from other hyperkinetic disorders like myoclonus, and may provide etiological clues. Accelerometer with surface electromyogram (EMG can be used to document the dominant frequency of a tremor, which may be useful as certain frequencies are more characteristic of specific etiologies than others hyperkinetic disorders. It may show rhythmic bursts, duration and activation pattern (alternating or synchronous. Myoclonus is a quick, involuntary movement. Electrophysiological studies may helpful in the evaluation of myoclonus, not only for confirming the clinical diagnosis but also for understanding the underlying physiological mechanisms. Electroencephalogram (EEG-EMG correlates can give us important information about myoclonus. Jerk-locked back-averaging and evoked potentials with recording of the long-latency, long-loop reflexes are currently available to study the pathophysiology of myoclonus.

  14. Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.

    Science.gov (United States)

    Crisp, Kevin M; Lin, Hunter; Prosper, Issa

    2016-01-01

    Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles.

  15. Distinct electrophysiological potentials for intention in action and prior intention for action

    DEFF Research Database (Denmark)

    Vinding, Mikkel C; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP) – an electrophysiological signal that appears before...... electrophysiological “intention potential” above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue....

  16. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    Science.gov (United States)

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312

  17. TOLERANCE OF REGIONAL HIGH SCHOOL STUDENTS: ASSESSMENT AND DEVELOPMENT METHODS

    Directory of Open Access Journals (Sweden)

    Elena V. Kalachinskaya

    2015-01-01

    Full Text Available The purpose of the investigation is to define the quality and tolerance level among students; and generalize pedagogical experience of intercultural tolerance formation (as exemplified in Vladivostok State University of Economics and Service.Methods. Theoretical methods of research involve analysis of approaches and results of tolerance among young people; Practical methods – content analysis of the essay content on a given topic, questioning. An empirical case study, described in this article, was carried out by questionnaire survey of 200 VSUES (Vladivostok State University of Economics and Service students from 2–3 courses of various undergraduate training areas.Scientific novelty. The level of students’ tolerant attitude to a series of countries and their residents is specified; combined with the respondents’ knowledge on these countries. Most distinctive students’ views on the «tolerance» concept and reasons for their intolerant behavior are analyzed and presented in this article. Pedagogical and educational technologies used by University for the youth tolerance formation are summarized.Results. Based on the survey, the issues such as limits of applicability of “tolerance” concept in students’ perception, declarative and real tolerance level, and tolerance level to certain countries, as well as in business are investigated. According to the survey, the author makes the conclusion of correlation existence between level of tolerance towards country (nation and level of awareness of it. The author has analysed the students’ essays on tolerance problems; and it was found out that international relations are the most relevant aspect to respondents of tolerant or intolerant behavior. Results of students’ sociological research are compared with results of surveys on similar topics made by All-Russia Public Opinion Research Center and other researchers. Implemented VSUES projects aimed at creating and promoting tolerance

  18. Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Marc-Emmanuel Dumas

    2017-07-01

    Full Text Available The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine 1H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50 and show that microbial-host co-metabolites are prodromal (i.e., early markers predicting future divergence in metabolic (obesity and glucose homeostasis and behavioral (anxiety and activity outcomes with 94%–100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO, a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT, and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.

  19. Resuscitation great. Luigi Galvani and the foundations of electrophysiology.

    Science.gov (United States)

    Cajavilca, Christian; Varon, Joseph; Sternbach, George L

    2009-02-01

    Luigi Galvani became one of the greatest scientists of the 18th century with his research and the development of his theory on animal electricity. His work was appreciated by many scientists. Nevertheless, it gave rise to one of the most passionate scientific debates in history when Alessandro Volta postulated that Galvani had confused intrinsic animal electricity with small currents produced by metals. This debate would result in the creation of electrophysiology, electromagnetism, electrochemistry and the electrical battery. Galvani responded to each of the postulated theories of Volta giving irrefutable proof of the involvement of electricity in the contraction of muscles. However, his work was subsequently abandoned and silenced for many years but his ideas and theories were finally confirmed by the creation of new instruments and the interest of new scientists who helped position Galvani as the father of electrophysiology.

  20. Electrophysiological studies in thyrotoxicosis with and without associated sick sinus syndrome

    International Nuclear Information System (INIS)

    Talwar, K.K.; Gupta, V.; Kaul, U.; Ahuja, M.M.; Bhatia, M.L.

    1987-01-01

    Electrophysiological studies in 13 patients with thyrotoxicosis (5 men and 8 women, aged 17 to 76 years) are reported. Five patients presented with features of sick sinus syndrome (SSS) (Group A) while the remaining 8 patients (Group B) had no detectable cardiovascular abnormality. Sinus node function (corrected sinus node recovery and sinoatrial conduction time) was abnormal in all Group A but normal in Group B patients. Intra-atrial, artioventricular (AV) nodal, and infranodal conduction time and effective refractory period of atrium were normal in all patients in both groups. Effective refractory period of AV node was decreased in 6 patients (3 in each group). All Group A patients received radioiodine with complete clinical remission of sick sinus state in 4 subjects. Repeat electrophysiological studies in two of these patients, 6 and 12 months after treatment, showed complete normalization of sinus node function. This is the first reported electrophysiological study documenting the occurrence of SSS in thyrotoxicosis reversed by effective antithyroid treatment. We suggest that attempts should be made to identify underlying thyrotoxicosis in all patients with SSS, especially in the older age group. Appropriate medical treatment may prevent unnecessary implantation of permanent pacemakers in such patients

  1. Electrophysiological evidence for enhanced representation of food stimuli in working memory.

    Science.gov (United States)

    Rutters, Femke; Kumar, Sanjay; Higgs, Suzanne; Humphreys, Glyn W

    2015-02-01

    Studies from our laboratory have shown that, relative to neutral objects, food-related objects kept in working memory (WM) are particularly effective in guiding attention to food stimuli (Higgs et al. in Appetite, 2012). Here, we used electrophysiological measurements to investigate the neural representation of food versus non-food items in WM. Subjects were presented with a cue (food or non-food item) to either attend to or hold in WM. Subsequently, they had to search for a target, while the target and distractor were each flanked by a picture of a food or non-food item. Behavioural data showed that a food cue held in WM modulated the deployment of visual attention to a search target more than a non-food cue, even though the cue was irrelevant for target selection. Electrophysiological measures of attention, memory and retention of memory (the P3, LPP and SPCN components) were larger when food was kept in WM, compared to non-food items. No such effect was observed in a priming task, when the initial cue was merely identified. Overall, our electrophysiological data are consistent with the suggestion that food stimuli are particularly strongly represented in the WM system.

  2. Existence of a sex pheromone in Triatoma infestans (Hemiptera: Reduvidae: II. Electrophysiological correlates

    Directory of Open Access Journals (Sweden)

    Maria G. de Brito Sanchez

    1995-10-01

    Full Text Available The stimulus provided by a copulating pair of Triatoma infestans significantly affects the electrical activity of the nervous system of Triatoma infestans. Electrophysiological recordings were perfomed on stationary adult males presented with stimuli of an air current carrying odors from males, females, non-copulating pairs and mating pairs. The electrophysiological response was characterized by the low frequency occurrence of biphasic compound impulses. A significant increase in the frequency of the impulses occurred in stationary males when exposed to air currents of mating pairs, when compared to that evoked by a clean air stream. Analysis of the time course of the assays, showed that the electrophisiological activity during the copula was higher than prior to or after copula. The electrophysiological evidence presented here strongly supports the existence of pheromone(s released by one or both sexes during mating and which is perceived by male chemoreceptors located on the antennae.

  3. Electrophysiological studies in healthy subjects involving caffeine

    OpenAIRE

    Carvalho, Mamede de; Marcelino, Erica; Mendonça, Alexandre de

    2010-01-01

    Copyright ©2012 IOS Press All rights reserved. We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arou...

  4. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations

    OpenAIRE

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-01-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or ...

  5. Electrophysiological evidence for phenomenal consciousness.

    Science.gov (United States)

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  6. History of Bioelectrical Study and the Electrophysiology of the Primo Vascular System

    Directory of Open Access Journals (Sweden)

    Sang Hyun Park

    2013-01-01

    Full Text Available Background. Primo vascular system is a new anatomical structure whose research results have reported the possibility of a new circulatory system similar to the blood vascular system and cells. Electrophysiology, which measures and analyzes bioelectrical signals tissues and cells, is an important research area for investigating the function of tissues and cells. The bioelectrical study of the primo vascular system has been reported by using modern techniques since the early 1960s by Bonghan Kim. This paper reviews the research result of the electrophysiological study of the primo vascular system for the discussion of the circulatory function. We hope it would help to study the electrophysiology of the primo vascular system for researchers. This paper will use the following exchangeable expressions: Kyungrak system = Bonghan system = Bonghan circulatory system = primo vascular system = primo system; Bonghan corpuscle = primo node; Bonghan duct = primo vessel. We think that objective descriptions of reviewed papers are more important than unified expressions when citing the papers. That said, this paper will unify the expressions of the primo vascular system.

  7. Electrophysiological assessment in patients with Mobius syndrome and clumsiness.

    NARCIS (Netherlands)

    Verzijl, H.T.F.M.; Padberg, G.W.A.M.; Zwarts, M.J.

    2005-01-01

    The authors studied the nature of clumsiness in Mobius syndrome in terms of motor or sensory deficits, and sought to clarify the pathophysiological mechanism of the syndrome. Standardized electrophysiologic studies were conducted, with special emphasis on the long motor and sensory tracts and

  8. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  9. Subthalamic stimulation: toward a simplification of the electrophysiological procedure.

    Science.gov (United States)

    Fetter, Damien; Derrey, Stephane; Lefaucheur, Romain; Borden, Alaina; Wallon, David; Chastan, Nathalie; Maltete, David

    2016-06-01

    The aim of the present study was to assess the consequences of a simplification of the electrophysiological procedure on the post-operative clinical outcome after subthalamic nucleus implantation in Parkinson disease. Microelectrode recordings were performed on 5 parallel trajectories in group 1 and less than 5 trajectories in group 2. Clinical evaluations were performed 1 month before and 6 months after surgery. After surgery, the UPDRS III score in the off-drug/on-stimulation and on-drug/on-stimulation conditions significantly improved by 66,9% and 82%, respectively in group 1, and by 65.8% and 82.3% in group 2 (P<0.05). Meanwhile, the total number of words (P<0.05) significantly decreased for fluency tasks in both groups. Motor disability improvement and medication reduction were similar in both groups. Our results suggest that the electrophysiological procedure should be simplified as the team's experience increases.

  10. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): standardised reporting for model reproducibility, interoperability, and data sharing

    NARCIS (Netherlands)

    Quinn, T. A.; Granite, S.; Allessie, M. A.; Antzelevitch, C.; Bollensdorff, C.; Bub, G.; Burton, R. A. B.; Cerbai, E.; Chen, P. S.; Delmar, M.; DiFrancesco, D.; Earm, Y. E.; Efimov, I. R.; Egger, M.; Entcheva, E.; Fink, M.; Fischmeister, R.; Franz, M. R.; Garny, A.; Giles, W. R.; Hannes, T.; Harding, S. E.; Hunter, P. J.; Iribe, G.; Jalife, J.; Johnson, C. R.; Kass, R. S.; Kodama, I.; Koren, G.; Lord, P.; Markhasin, V. S.; Matsuoka, S.; McCulloch, A. D.; Mirams, G. R.; Morley, G. E.; Nattel, S.; Noble, D.; Olesen, S. P.; Panfilov, A. V.; Trayanova, N. A.; Ravens, U.; Richard, S.; Rosenbaum, D. S.; Rudy, Y.; Sachs, F.; Sachse, F. B.; Saint, D. A.; Schotten, U.; Solovyova, O.; Taggart, P.; Tung, L.; Varró, A.; Volders, P. G.; Wang, K.; Weiss, J. N.; Wettwer, E.; White, E.; Wilders, R.; Winslow, R. L.; Kohl, P.

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment

  11. Electrophysiological Evaluation of People With Volatile Substance Addiction

    Directory of Open Access Journals (Sweden)

    Nurten Uzun

    2008-02-01

    Full Text Available OBJECTIVE: Scientific BACKGROUND: There is an increase in addiction of volatile substances in recent years. Miscellaneous electrophysiological pathological findings are determined in volatile substance abusers. OBJECTIVE: In this study, we aim to examine the neurologic effects of these substances by electrophysiologic methods. METHODS: Cases and METHOD: Twenty-three patients from Bakirkoy Psychiatry Hospital, Alcohol and Substance Addiction Research and Treatment Center were included in this study. Motor and sensory nerve conduction studies, somatosensorial, visual and auditory evoked potentials (SEP, VEP, BAEP as well as electroencephalography (EEG were studied in all 23 patients. The results were compared with the published data and the values of age matched 19 normal controls. RESULTS: RESULTS: In nerve conduction studies, there were pathological findings in 14 (60.9% cases, in three (13% mild sensorimotor polyneuropathy was determined. Tibial nerve motor distal latencies as well as median nerve sensorial and sural nerve distal latencies were longer in patients compared to controls (p<0.05. SEP findings were pathological in six (26.1% cases, VEP in two (8.7% cases and BAEP in eight (34.8% cases. Scalp SEP distal latency by tibial nerve stimulation as well as distal latencies of right and left V. wave, left III-V interpeak latency, right and left interpeak latencies and I-V interaural latency difference in BAEP were longer in abusers (p<0.05. Although it was not statistically significant, the ratio of pathological findings was higher if the exposure time was over 2 years. EEG was found to be normal in all patients. CONCLUSION: YORUM: Our results showed that toluene results in slowly progressive multifocal central nervous system damage and subclinical damage could be determined in early stages by electrophysiologic methods

  12. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    Science.gov (United States)

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2017. Published by Elsevier Inc.

  13. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  14. Serial electrophysiological findings in Guillain-Barré syndrome not fulfilling AIDP or AMAN criteria.

    Science.gov (United States)

    Hosokawa, Takafumi; Nakajima, Hideto; Unoda, Kiichi; Yamane, Kazushi; Doi, Yoshimitsu; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2016-09-01

    Guillain-Barré syndrome (GBS) is categorized into two major subtypes: acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). However, a proportion of patients are electrophysiologically unclassified because of electrophysiological findings that do not fulfil AIDP or AMAN criteria, and underlying pathophysiological mechanisms and lesion distributions of unclassified patients are not well defined. The aims of this study are to elucidate disease pathophysiology and lesion distribution in unclassified patients. We retrospectively studied 48 consecutive GBS patients. Patients were classified on the basis of initial electrophysiological findings according to Ho's criteria. Clinical and serial electrophysiological examinations of unclassified patients were conducted. Twelve (25 %) GBS patients were unclassified. All unclassified patients were able to walk independently at 21 days after onset. No unclassified patients, except one patient with diabetes mellitus, had sensory nerve involvement. Eight patients underwent a follow-up study within 15 days of the initial study. Distal motor latencies (DMLs) of the left median motor nerve were found to be significantly and uniformly decreased compared with initial studies (p = 0.008). DMLs (p < 0.0001) and distal compound action potential (CMAP) durations (p = 0.002) of all nerves were significantly decreased, and distal CMAP amplitudes (p = 0.026) significantly increased compared with initial studies. In unclassified GBS patients, DML values during initial electrophysiological studies would be prolonged compared with expected values in the same patient unaffected by GBS and later improve rapidly with increased distal CMAP amplitudes without the development of excessive temporal dispersions. Lesions are also present in distal nerve segments caused by reversible conduction failure.

  15. Subjective symptoms of carpal tunnel syndrome correlate more with psychological factors than electrophysiological severity

    Directory of Open Access Journals (Sweden)

    Firosh Khan

    2017-01-01

    Full Text Available Aim: Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and is one of the most common requests for electrodiagnosis. We aimed to note the relationship of subjective symptom severity of CTS, with objective electrophysiological severity and psychological status of patients. Patients and Methods: One hundred and forty-four consecutive patients of CTS referred to neurophysiology laboratory of a tertiary care hospital over 1 year were prospectively studied. Boston CTS Assessment Questionnaire (BCTSAQ and visual analog scale (VAS were used to assess subjective symptom severity. Psychological status was assessed by Hospital Anxiety and Depression Scale (HADS. Electrophysiological severity of CTS was estimated by median motor distal latency and median to ulnar peak sensory latency difference across the wrist. Each parameter in both hands was scored from 0 to 3 depending on the severity grade, and a composite electrophysiological severity score (CEPSS was calculated for each patient by summing up the scores in both hands. Statistical analysis was done by Spearman's rank correlation test. Results: There was significant correlation of BCTSAQ with VAS (P = 0.001, HADS anxiety score (P < 0.001, and HADS depression score (P = 0.01. CEPSS had no significant correlation with VAS (P = 0.103, HADS anxiety score (P = 0.211, or HADS depression score (P = 0.55. CEPSS had a borderline correlation with BCTSAQ (P = 0.048. Conclusions: While the subjective symptoms of CTS are well correlated with psychological factors, their correlation with objective electrophysiological severity is weak. Hence, prompt treatment of psychological comorbidity is important in symptomatic management of CTS; decision about surgical intervention should be based on electrophysiological severity rather than symptom severity.

  16. Logo Effects on Brand Extension Evaluations from the Electrophysiological Perspective.

    Science.gov (United States)

    Shang, Qian; Pei, Guanxiong; Dai, Shenyi; Wang, Xiaoyi

    2017-01-01

    Brand extension typically has two strategies: brand name extension (BN) and brand logo extension (BL). The current study explored which strategy (BN or BL) better enhanced the success of dissimilar brand extension and product promotion in enterprises. Event-related potentials (ERPs) were used to investigate electrophysiological processes when subjects evaluated their acceptance of the brand extension using a combined picture of S1 and S2. S1 was a famous brand presented by two identity signs (brand name and brand logo). S2 was a picture of an extension product that belonged to a dissimilar product category than S1. The behavior data showed that BL was more acceptable than BN in the dissimilar brand extension. The neurophysiology process was reflected by a less negative N2 component and a larger P300 component in the BL than in the BN. We suggested that N2 reflected a whole conflict between the brand-product combination and the long-term memory and that P300 could be regarded as the reflection of the categorization process in the working memory.

  17. Electrophysiological correlates of word recognition memory process in patients with ischemic left ventricular dysfunction.

    Science.gov (United States)

    Giovannelli, Fabio; Simoni, David; Gavazzi, Gioele; Giganti, Fiorenza; Olivotto, Iacopo; Cincotta, Massimo; Pratesi, Alessandra; Baldasseroni, Samuele; Viggiano, Maria Pia

    2016-09-01

    The relationship between left ventricular ejection fraction (LVEF) and cognitive performance in patients with coronary artery disease without overt heart failure is still under debate. In this study we combine behavioral measures and event-related potentials (ERPs) to verify whether electrophysiological correlates of recognition memory (old/new effect) are modulated differently as a function of LVEF. Twenty-three male patients (12 without [LVEF>55%] and 11 with [LVEF25 were enrolled. ERPs were recorded while participants performed an old/new visual word recognition task. A late positive ERP component between 350 and 550ms was differentially modulated in the two groups: a clear old/new effect (enhanced mean amplitude for old respect to new items) was observed in patients without LVEF dysfunction; whereas patients with overt LVEF dysfunction did not show such effect. In contrast, no significant differences emerged for behavioral performance and neuropsychological evaluations. These data suggest that ERPs may reveal functional brain abnormalities that are not observed at behavioral level. Detecting sub-clinical measures of cognitive decline may contribute to set appropriate treatments and to monitor asymptomatic or mildly symptomatic patients with LVEF dysfunction. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The sound of feelings: electrophysiological responses to emotional speech in alexithymia.

    Directory of Open Access Journals (Sweden)

    Katharina Sophia Goerlich

    Full Text Available Alexithymia is a personality trait characterized by difficulties in the cognitive processing of emotions (cognitive dimension and in the experience of emotions (affective dimension. Previous research focused mainly on visual emotional processing in the cognitive alexithymia dimension. We investigated the impact of both alexithymia dimensions on electrophysiological responses to emotional speech in 60 female subjects.During unattended processing, subjects watched a movie while an emotional prosody oddball paradigm was presented in the background. During attended processing, subjects detected deviants in emotional prosody. The cognitive alexithymia dimension was associated with a left-hemisphere bias during early stages of unattended emotional speech processing, and with generally reduced amplitudes of the late P3 component during attended processing. In contrast, the affective dimension did not modulate unattended emotional prosody perception, but was associated with reduced P3 amplitudes during attended processing particularly to emotional prosody spoken in high intensity.Our results provide evidence for a dissociable impact of the two alexithymia dimensions on electrophysiological responses during the attended and unattended processing of emotional prosody. The observed electrophysiological modulations are indicative of a reduced sensitivity to the emotional qualities of speech, which may be a contributing factor to problems in interpersonal communication associated with alexithymia.

  19. Electrophysiological studies in healthy subjects involving caffeine.

    Science.gov (United States)

    de Carvalho, Mamede; Marcelino, Erica; de Mendonça, Alexandre

    2010-01-01

    We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arousal is supported by a number of electrophysiological studies. The evidence in favor of an increased muscle fiber resistance is not definitive, but higher or lower motor neuron excitability can occur as a consequence of a greater excitation of the descending input from the brainstem and upper motor neurons. TMS can address the influence of caffeine on the upper motor neuron. Previous studies showed that cortico-motor threshold and intracortical excitatory and inhibitory pathways are not influenced by caffeine. Nonetheless, our results indicate that cortical silent period (CSP) is reduced in resting muscles after caffeine consumption, when stimulating the motor cortex with intensities slightly above threshold. We present new data demonstrating that this effect is also observed in fatigued muscle. We conclude that CSP can be considered a surrogate marker of the effect of caffeine in the brain, in particular of its central ergogenic effect.

  20. Electrophysiological mechanisms of the SI SII SIII electrocardiographic morphology

    International Nuclear Information System (INIS)

    Bayes de Luna, A.; Carrio, I.; Subirana, M.T.; Torner, P.; Cosin, J.; Sagues, F.; Guindo, J.

    1987-01-01

    We studied three groups of individuals by means of spatial-velocity electrocardiograms and thallium-201 myocardial imaging to figure out the electrophysiological explanation of the SI SII SIII electrocardiographic morphology. We studied twelve healthy individuals without SI SII SIII, seven healthy individuals with SI SII SIII and fifteen patients with chronic obstructive pulmonary disease with SI SII SIII. The average values of the QRS-E and QRS-F intervals were higher in the second and third groups than in the first. One patient of the second group and thirteen of the third showed right ventricular enlargement. The slowing down of the right ventricular conduction explained the SI SII SIII morphology in normal individuals in more than half the cases. In patients with chronic obstructive pulmonary disease with SI SII SIII the conduction delay plays an important part in the electrogenesis of the right ventricular enlargement electrocardiographic morphology. We think that these observations can give further data about the electrophysiologic mechanism of the SI SII SIII morphology

  1. The relationship between dehydroepiandrosterone (DHEA, working memory and distraction--a behavioral and electrophysiological approach.

    Directory of Open Access Journals (Sweden)

    Sónia do Vale

    Full Text Available Dehydroepiandrosterone (DHEA and dehydroepiandrosterone-sulphate (DHEAS have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load or 1-back (working memory load task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level.

  2. A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis.

    Science.gov (United States)

    Chen, Si Hui; Ng, Si Ling; Cheow, Yuen Lin; Ting, Adeline Su Yien

    2017-07-15

    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg -1 , respectively) and T. asperellum (10.44 and 7.50mgg -1 ). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Frieß, Johannes L., E-mail: johannes.friess@h-ab.de [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany); Heselich, Anja [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Ritter, Sylvia [Helmholtz Institute for Heavy Ion Research (GSI), Biophysics Department, Planckstraße 1, 64291 Darmstadt (Germany); Haber, Angelina; Kaiser, Nicole; Layer, Paul G. [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Thielemann, Christiane [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany)

    2015-07-15

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation.

  4. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    International Nuclear Information System (INIS)

    Frieß, Johannes L.; Heselich, Anja; Ritter, Sylvia; Haber, Angelina; Kaiser, Nicole; Layer, Paul G.; Thielemann, Christiane

    2015-01-01

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation

  5. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  6. Reversible electrophysiological abnormalities in acute secondary hyperkalemic paralysis

    OpenAIRE

    Karkal R Naik; Aralikatte O Saroja; Mallikarjun S Khanpet

    2012-01-01

    Hyperkalemia manifests clinically with acute neuromuscular paralysis, which can simulate Guillain Barr? syndrome (GBS) and other causes of acute flaccid paralysis. Primary hyperkalemic paralysis occurs from genetic defects in the sodium channel, and secondary hyperkalemic paralysis (SHP) from diverse causes including renal dysfunction, potassium retaining drugs, Addison's disease, etc. Clinical characteristics of SHP have been addressed in a number of publications. However, electrophysiologic...

  7. Language effects in second-language learners: A longitudinal electrophysiological study of spanish classroom learning.

    Science.gov (United States)

    Soskey, Laura; Holcomb, Phillip J; Midgley, Katherine J

    2016-09-01

    How do the neural mechanisms involved in word recognition evolve over the course of word learning in adult learners of a new second language? The current study sought to closely track language effects, which are differences in electrophysiological indices of word processing between one's native and second languages, in beginning university learners over the course of a single semester of learning. Monolingual L1 English-speakers enrolled in introductory Spanish were first trained on a list of 228 Spanish words chosen from the vocabulary to be learned in class. Behavioral data from the training session and the following experimental sessions spaced over the course of the semester showed expected learning effects. In the three laboratory sessions participants read words in three lists (English, Spanish and mixed) while performing a go/no-go lexical decision task in which event-related potentials (ERPs) were recorded. As observed in previous studies there were ERP language effects with larger N400s to native than second language words. Importantly, this difference declined over the course of L2 learning with N400 amplitude increasing for new second language words. These results suggest that even over a single semester of learning that new second language words are rapidly incorporated into the word recognition system and begin to take on lexical and semantic properties similar to native language words. Moreover, the results suggest that electrophysiological measures can be used as sensitive measures for tracking the acquisition of new linguistic knowledge. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    Science.gov (United States)

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  9. 4 cases of 'ataxic hemiparesis'. A comparative study of computed tomography and electrophysiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Kiyoshi; Kamei, Hidekazu; Kitamura, Eiko; Komatsuzaki, Satoshi; Yamane, Kiyomi; Takemiya, Toshiko; Kobayashi, Itsuro; Maruyama, Shoichi

    1984-10-01

    Ataxic hemiparesis is described as a syndrome in which pyramidal and cerebellar signs occur ipsilaterally. Fisher who suggested the designation ''ataxic hemiparesis'' for this syndrome confirmed by pathological study that causative lesion was in the basis pontis at the level of the junction of the upper one third and lower two thirds on the opposite side of the neurological deficit and he also reported that CT might fail to show the lesion. We observed 4 patients with ataxic hemiparesis and examined them in auditory brainstem response (ABR), somatosensory evoked potential (SEP), and blink reflex as electrophysiological study. Their CT and electrophysiological findings were compared with each others to define the responsible lesion more clearly. Essentially, these abnormal electrophysiological findings were recognized only in the case of pontine hemorrhage, and these findings recovered to normal as clinical and CT findings were improved. In the other cases, the electrophysiological findings were not prominent and CT revealed the lesions in deep frontal region, internal capsule and cerebellar hemispheres respectively. These results might show that many cases of extra-pontine lesions could develop the syndrome of ataxic hemiparesis. However, the relation between responsible lesions for ataxic hemiparesis and electrophysiological findings are still uncertain. Further evidences including clinicopathological studies will be required to clarify this relation and to get the more accurate anatomical interpretation of ataxic hemiparesis from lesions besides the pontine region. (author).

  10. Paying attention to attention in recognition memory: insights from models and electrophysiology.

    Science.gov (United States)

    Dubé, Chad; Payne, Lisa; Sekuler, Robert; Rotello, Caren M

    2013-12-01

    Reliance on remembered facts or events requires memory for their sources, that is, the contexts in which those facts or events were embedded. Understanding of source retrieval has been stymied by the fact that uncontrolled fluctuations of attention during encoding can cloud results of key importance to theoretical development. To address this issue, we combined electrophysiology (high-density electroencephalogram, EEG, recordings) with computational modeling of behavioral results. We manipulated subjects' attention to an auditory attribute, whether the source of individual study words was a male or female speaker. Posterior alpha-band (8-14 Hz) power in subjects' EEG increased after a cue to ignore the voice of the person who was about to speak. Receiver-operating-characteristic analysis validated our interpretation of oscillatory dynamics as a marker of attention to source information. With attention under experimental control, computational modeling showed unequivocally that memory for source (male or female speaker) reflected a continuous signal detection process rather than a threshold recollection process.

  11. A comparison of electrophysiologically determined spectral responses in six subspecies of Lymantria.

    Science.gov (United States)

    Crook, Damon J; Hull-Sanders, Helen M; Hibbard, Emily L; Mastro, Victor C

    2014-04-01

    The spectral sensitivity of the compound eye in three gypsy moth species from six different geographical regions (Lymantria dispar asiatica Vnukovskij [Asian gypsy moth], Lymantria dispar japonica Motschulsky [Japanese gypsy moth], and Lymantria dispar dispar L. [North American gypsy moth]) was tested electrophysiologically in the wavelength region 300-700 nm. For all moths examined, a maximum response occurred in the 480-520-nm range (blue-green region) with a shoulder peak occurring at 460 nm. A smaller, secondary peak was observed for both sexes at the 340-380-nm range, which is in the region considered behaviorally maximal in night-flying insects. No peaks in sensitivity were observed between 520 and 700 nm (red region) for any of the moths tested. Based on our retinal recording data, a short wavelength blocking filter with a transition wavelength near 500 nm should reduce gypsy moth attraction to artificial lighting sources. This would help reduce the number of Lymantria-infested ships traveling to and from foreign ports.

  12. Distress tolerance and physiological reactivity to stress predict women's problematic alcohol use.

    Science.gov (United States)

    Holzhauer, Cathryn Glanton; Wemm, Stephanie; Wulfert, Edelgard

    2017-06-01

    Research has shown that measures of reactivity to distress-including distress tolerance and physiological reactivity to stress-are dysregulated in women who misuse alcohol. These variables may interact and create a risk profile for young adult women, reflecting patterns of stress reactivity that confer a risk for alcohol misuse. The current study tested this hypothesis by examining the independent and interactive associations of subjective distress tolerance, behavioral distress tolerance, and physiological stress reactivity with women's alcohol misuse. The study was conducted with a sample of 91 college women recruited on a large northeastern university campus. Results showed that subjective levels of distress tolerance and physiological reactivity to stress (skin conductance reactivity, SCR), but not behavioral distress tolerance, were independently associated with alcohol misuse. In addition, subjective distress tolerance moderated the relationship between SCR and negative alcohol-related consequences. Specifically, women with low physiological reactivity (SCR) to a stressful task and greater urge to quickly rid themselves of distress (low subjective distress tolerance) endorsed a significantly greater number of adverse consequences from their alcohol use. These results extend prior findings by showing that, even among a nonclinical sample of women, lower stress reactivity in combination with low subjective distress tolerance is associated with increased risk for various drinking-related negative consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Tolerance of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Sensitivity of carotid blood flow to increased gravitational force acting in the head-to-tail direction(+Gz) was studied in diverse species of snakes hypothesized to show adaptive variation of response. Tolerance to increased gravity was measured red as the maximum graded acceleration force at which carotid blood flow ceased and was shown to vary according to gravitational adaptation of species defined by their ecology and behavior. Multiple regression analysis showed that gravitational habitat, but not body length, had a significant effect on Gz tolerance. At the extremes, carotid blood flow decreased in response to increasing G force and approached zero near +1 Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2 Gz. Tolerant (arboreal) species were able to withstand hypergravic forces of +2 to +3 Gz for periods up to 1 h without cessation of carotid blood flow or loss of body movement and tongue flicking. Data suggest that the relatively tight skin characteristic of tolerant species provides a natural antigravity suit and is of prime importance in counteracting Gz stress on blood circulation.

  14. Electrophysiological and pathological study of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Hodozuka, Akira; Hashizume, Kiyotaka; Hayashi, Yoshimitsu; Tanaka, Tatsuya

    2008-01-01

    Clinical and experimental studies on focal cortical dysplasia (FCD) were carried out. For the experimental study, an experimental FCD model of rats was developed. Twenty Wistar rats at 0-2 days after birth were used for the study. Kainic acid (KA) solution was injected stereotaxically into medial and lateral sites of the sensori-motor cortex. Bipolar electrodes were inserted. The behavior of the rats and electroencephalography (EEG) were recorded using a digital video-EEG monitoring system. After observation periods of 1, 2 and 6 months, the rats were perfused for pathological study. FCD was observed adjacent to the site of KA injection in all rats more than one month after the injection. EEG recording demonstrated focal spike discharges in and around the site of injection. However, clinical seizure was not observed. Pathological studies showed decrease in gamma aminobutyric acid (GABA)-A receptors and increase in GABA-B receptors not only in the lesion but also in perilesional areas. Fifteen surgical cases of FCD with intractable epilepsy were included in the clinical study. Neuro-imaging studies including high-resolution MRI and single photon emission computed tomography (SPECT) were performed. Conventional EEG studies demonstrated focal EEG abnormalities with epileptic phenomena. At surgery, intraoperative electrocorticography (ECoG) was performed in order to localize epileptic foci under neuroleptanalgesia. Fourteen patients showed epileptiform discharges on preresection ECoG. All foci in non-eloquent areas were resected. Pathological studies including immunohistochemical staining were performed, and characteristics of the FCD in relation to EEG findings were analyzed. Electrophysiological examination revealed epileptogenecity not only in the lesions but also in perilesional areas. In the lesions, immunohistochemical studies showed decrease in GABA-A receptors and increase in GABA-B receptors in both the lesions and perilesional areas, but N

  15. Effects of Video Game Training on Behavioral and Electrophysiological Measures of Attention and Memory: Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Ballesteros, Soledad; Mayas, Julia; Ruiz-Marquez, Eloisa; Prieto, Antonio; Toril, Pilar; Ponce de Leon, Laura; de Ceballos, Maria L; Reales Avilés, José Manuel

    2017-01-24

    Neuroplasticity-based approaches seem to offer promising ways of maintaining cognitive health in older adults and postponing the onset of cognitive decline symptoms. Although previous research suggests that training can produce transfer effects, this study was designed to overcome some limitations of previous studies by incorporating an active control group and the assessment of training expectations. The main objectives of this study are (1) to evaluate the effects of a randomized computer-based intervention consisting of training older adults with nonaction video games on brain and cognitive functions that decline with age, including attention and spatial working memory, using behavioral measures and electrophysiological recordings (event-related potentials [ERPs]) just after training and after a 6-month no-contact period; (2) to explore whether motivation, engagement, or expectations might account for possible training-related improvements; and (3) to examine whether inflammatory mechanisms assessed with noninvasive measurement of C-reactive protein in saliva impair cognitive training-induced effects. A better understanding of these mechanisms could elucidate pathways that could be targeted in the future by either behavioral or neuropsychological interventions. A single-blinded randomized controlled trial with an experimental group and an active control group, pretest, posttest, and 6-month follow-up repeated measures design is used in this study. A total of 75 cognitively healthy older adults were randomly distributed into experimental and active control groups. Participants in the experimental group received 16 1-hour training sessions with cognitive nonaction video games selected from Lumosity, a commercial brain training package. The active control group received the same number of training sessions with The Sims and SimCity, a simulation strategy game. We have recruited participants, have conducted the training protocol and pretest assessments, and are

  16. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data.

    Science.gov (United States)

    Brinkmann, Benjamin H; Bower, Mark R; Stengel, Keith A; Worrell, Gregory A; Stead, Matt

    2009-05-30

    The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single-neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range-encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information.

  17. An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology.

    Science.gov (United States)

    Mumcuoglu, Tarkan; Ozge, Gokhan; Soykut, Bugra; Erdem, Onur; Gunal, Armagan; Acikel, Cengizhan

    2015-03-01

    Ocular siderosis is a rare sight-threatening complication that occurs after a penetrating ocular injury by an iron-containing foreign body. The purposes of this study were to (i) investigate the histopathology, electrophysiology and iron levels/accumulation in ocular siderosis using an animal (Guinea pig) model and (ii) determine the appropriate timing for follow-up foreign body-removal surgery. Thirty guinea pigs were divided into five groups (n = 6 animals/group). On day-1, an iron body was inserted into the vitreous of the right eye of all animals; the left eyes were left undisturbed and were used as controls. At the end of each week during the 5-week study period, electroretinography (ERG) was performed on all animals in one of the five groups. Each animal in that group was sacrificed, after which both eyes were enucleated for histopathological and pharmacological evaluation of intraocular iron. Accumulated iron levels of study eyes were significantly higher than those of control eyes (135.13 and 13.55 μg/g, respectively, p < 0.01). In addition, there was a significant decrease in electrophysiological responses of study eyes. During the first week, iron levels were higher in study eyes than control eyes, but neither histological iron accumulation nor decreased electrophysiological responses could be detected. By the end of the second week, increased iron accumulation was observed histologically in intraocular tissues, along with signs of retinal toxicity, as verified by decreased electrophysiological responses. The present study indicates that the 14th day after a penetrating eye injury by an iron-containing intraocular foreign body represents a clinically critical threshold, after which structural damage to and functional alterations in ocular tissues occur.

  18. Pelvic floor electrophysiology in spinal cord injury.

    Science.gov (United States)

    Tankisi, H; Pugdahl, K; Rasmussen, M M; Clemmensen, D; Rawashdeh, Y F; Christensen, P; Krogh, K; Fuglsang-Frederiksen, A

    2016-05-01

    The study aimed to investigate sacral peripheral nerve function and continuity of pudendal nerve in patients with chronic spinal cord injury (SCI) using pelvic floor electrophysiological tests. Twelve patients with low cervical or thoracic SCI were prospectively included. Quantitative external anal sphincter (EAS) muscle electromyography (EMG), pudendal nerve terminal motor latency (PNTML) testing, bulbocavernosus reflex (BCR) testing and pudendal short-latency somatosensory-evoked potential (SEP) measurement were performed. In EAS muscle EMG, two patients had abnormal increased spontaneous activity and seven prolonged motor unit potential duration. PNTML was normal in 10 patients. BCR was present with normal latency in 11 patients and with prolonged latency in one. The second component of BCR could be recorded in four patients. SEPs showed absent cortical responses in 11 patients and normal latency in one. Pudendal nerve and sacral lower motor neuron involvement are significantly associated with chronic SCI, most prominently in EAS muscle EMG. The frequent finding of normal PNTML latencies supports earlier concerns on the utility of this test; however, BCR and pudendal SEPs may have clinical relevance. As intact peripheral nerves including pudendal nerve are essential for efficient supportive therapies, pelvic floor electrophysiological testing prior to these interventions is highly recommended. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    International Nuclear Information System (INIS)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin; Maier, Elke; Zweckstetter, Markus; Griesinger, Christian; Benz, Roland; Becker, Stefan; Lange, Adam

    2015-01-01

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles

  20. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    Energy Technology Data Exchange (ETDEWEB)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin [Max Planck Institute for Biophysical Chemistry (Germany); Maier, Elke [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Zweckstetter, Markus; Griesinger, Christian [Max Planck Institute for Biophysical Chemistry (Germany); Benz, Roland [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Becker, Stefan; Lange, Adam, E-mail: alange@fmp-berlin.de [Max Planck Institute for Biophysical Chemistry (Germany)

    2015-04-15

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.

  1. A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs.

    Directory of Open Access Journals (Sweden)

    Deborah Prè

    Full Text Available Many protocols have been designed to differentiate human embryonic stem cells (ESCs and human induced pluripotent stem cells (iPSCs into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48-55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of

  2. Time course of electrophysiologic effects induced by di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) in the adult hen.

    Science.gov (United States)

    Robertson, D G; Mattson, A M; Bestervelt, L L; Richardson, R J; Anderson, R J

    1988-01-01

    Previous work in our laboratory indicated that di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) produced electrophysiologic changes in hen peripheral nerve that coincided with the development of histopathologic changes and neurologic signs of peripheral neuropathy. The purpose of the present study was to follow the time course for the development of the electrophysiologic changes and to determine whether pretreatment with the phosphinate analog of DBCV (DBCV-P), a nonageable organophosphorus compound, prevented these effects. Although significant electrophysiologic deficits occurred in the tibial and sciatic nerve 24 h after DBCV treatment, the most marked changes coincided with the onset of clinical signs of organophosphorus-induced delayed neuropathy (14-21 d). The sciatic and tibial nerves were equally susceptible to DBCV in producing deficits characterized by changes in the relative refractory period and an increased strength-duration threshold. Pretreatment with DBCV-P prevented the clinical signs and also attenuated the electrophysiologic deficits induced by DBCV treatment. These data suggest that electrophysiologic deficits occur before clinical signs of organophosphorus-induced delayed neuropathy (OPIDN) and may be indicative of a link between neurotoxic esterase (NTE) inhibition and onset of overt clinical toxicity.

  3. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  4. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    Science.gov (United States)

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  5. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    Science.gov (United States)

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain

  6. Cohort of Patients Referred for Brugada Syndrome Investigation in an Electrophysiology Service - 19-Year Registry

    Directory of Open Access Journals (Sweden)

    Stefan Warpechowski Neto

    2018-06-01

    Full Text Available Abstract Background: Brugada syndrome (SBr is an arrhythmic condition characterized by ST-T segment abnormalities in the right precordial leads associated with a high risk of ventricular arrhythmias and sudden death. Local data regarding the clinical characteristics of patients with a typical electrocardiographic (ECG pattern undergoing electrophysiological study are scarce. Objective: To evaluate patients with an ECG pattern suggestive of SBr referred for electrophysiological evaluation in a specialized center. Methods: Cohort study of patients referred for electrophysiological study because of an ECG pattern compatible with SBr between January 1998 and March 2017. Results: Of the 5506 procedures, 35 (0.64% were for SBr investigation, 25 of which (71.42% were performed in men. The mean age was 43.89 ± 13.1 years. The ECG patterns were as follows: type I, 22 (62.85%; type II, 12 (34.30%; and type III, 1 (2.85%. Twenty-three patients (65.7% were asymptomatic, 6 (17.14% had palpitations, 5 (14.3% had syncope, and 3 (8.6% had a family history of sudden death. Electrophysiological study induced ventricular tachyarrhythmias in 16 cases (45.7%, the mean ventricular refractory period being 228 ± 36 ms. Ajmaline / procainamide was used in 11 cases (31.4%, changing the ECG pattern to type I in 7 (63.6%. Sixteen cases (45.7% received an implantable cardioverter defibrillator (ICD. In a mean 5-year follow-up, 1 of the 16 patients (6.25% with ICD had appropriate therapy for ventricular fibrillation. There was no death. Other arrhythmias occurred in 4 (11.4% cases. Conclusions: Most patients are men, and a type I ECG pattern is the main indication for electrophysiological study. Class IA drugs have a high ECG conversion rate. The ICD event rate was 6%. (Arq Bras Cardiol. 2018; [online].ahead print, PP.0-0

  7. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    Science.gov (United States)

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  9. Serum cytokine contents in schizophrenia patient with metabolic syndrome and their correlation with nerve electrophysiology

    Directory of Open Access Journals (Sweden)

    Li-Yong Chen

    2016-07-01

    Full Text Available Objective: To analyze serum cytokine contents in schizophrenia patient with metabolic syndrome (MS and their correlation with nerve electrophysiology. Methods: A total of 90 chizophrenia patient with MS, including 41 cases with simple schizophrenia and 39 cases with simple metabolic syndrome were included for study. The values of nerve electrophysiology indexes and serum illness-related indexes were compared among included patients, and the correlation between the two was further analyzed. Results: Compared with simple schizophrenia group and simple MS group, P300 latency of schizophrenia with MS group was longer, and the amplitude was shorter; N2-P3 latency and amplitude were shorter (P<0.05; serum SOD, S100b, BDNF, ABAb, PAI-1, 毩-HBDH, AST, cystatin c, TG, FBG and 2hPG values of schizophrenia with MS group were higher, IGF1, HMW-APN and HDL-C levels were lower, and compared with simple schizophrenia group and simple MS group, differences were significant (P<0.05; P300 latency, P300 amplitude, N2-P3 latency and N2- P3 amplitude of schizophrenia with MS group were directly correlated with serum cytokine contents (P<0.05. Conclusions: There are significantly abnormal serum cytokines and nerve electrophysiology indexes in schizophrenia patient with MS, and nerve electrophysiology detection can be used as the means to judge disease and guide treatment.

  10. Haloperidol Disrupts Opioid-Antinociceptive Tolerance and Physical Dependence

    Science.gov (United States)

    Yang, Cheng; Chen, Yan; Tang, Lei

    2011-01-01

    Previous studies from our laboratory and others have implicated a critical role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2–1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06–0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence. PMID:21436292

  11. LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images.

    Science.gov (United States)

    Rapaka, S; Mansi, T; Georgescu, B; Pop, M; Wright, G A; Kamen, A; Comaniciu, Dorin

    2012-01-01

    Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient's heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC'10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 - 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.

  12. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    Science.gov (United States)

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Computational Intelligence Techniques for Electro-Physiological Data Analysis

    OpenAIRE

    Riera Sardà, Alexandre

    2012-01-01

    This work contains the efforts I have made in the last years in the field of Electrophysiological data analysis. Most of the work has been done at Starlab Barcelona S.L. and part of it at the Neurodynamics Laboratory of the Department of Psychiatry and Clinical Psychobiology of the University of Barcelona. The main work deals with the analysis of electroencephalography (EEG) signals, although other signals, such as electrocardiography (ECG), electroculography (EOG) and electromiography (EMG) ...

  14. Electrophysiological safety of sertindole in dogs with normal and remodeled hearts

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Volders, Paul G A; Stengl, Milan

    2003-01-01

    Inhibition of the potassium current IKr and QT prolongation are associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of sertindole, an antipsychotic drug reported to prolong the QT interval...

  15. Augmentation by escitalopram, but not citalopram or R-citalopram, of the effects of low-dose risperidone: behavioral, biochemical, and electrophysiological evidence.

    Science.gov (United States)

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Gertow, Jens; Konradsson-Geuken, Asa; Svensson, Torgny H

    2012-04-01

    Antidepressant drugs are frequently used to treat affective symptoms in schizophrenia. We have recently shown that escitalopram, but not citalopram or R-citalopram, increases firing rate and burst firing of midbrain dopamine neurons, potentiates cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission and enhances cognition, effects that might influence the outcome of concomitant antipsychotic medication. Here, we studied, in rats, the behavioral and neurobiological effects of adding escitalopram, citalopram, or R-citalopram to the second-generation antipsychotic drug risperidone. We examined antipsychotic efficacy using the conditioned avoidance response (CAR) test, extrapyramidal side effect (EPS) liability using a catalepsy test, dopamine outflow in the medial prefrontal cortex (mPFC) and nucleus accumbens using in vivo microdialysis in freely moving animals, and NMDA receptor-mediated transmission in the mPFC using intracellular electrophysiological recording in vitro. Only escitalopram (5 mg/kg), but not citalopram (10 mg/kg), or R-citalopram (10 mg/kg), dramatically enhanced the antipsychotic-like effect of a low dose of risperidone (0.25 mg/kg), without increasing catalepsy. Given alone, escitalopram, but not citalopram or R-citalopram, markedly enhanced both cortical dopamine output and NMDA receptor-mediated transmission. Addition of escitalopram and to some extent R-citalopram, but not citalopram, significantly enhanced both cortical dopamine output and cortical NMDA receptor-mediated transmission induced by a suboptimal dose/concentration of risperidone. These results suggest that adjunct treatment with escitalopram, but not citalopram, may enhance the effect of a subtherapeutic dose of risperidone on positive, negative, cognitive, and depressive symptoms in schizophrenia, yet without increased EPS liability. Copyright © 2011 Wiley Periodicals, Inc.

  16. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    Science.gov (United States)

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    Science.gov (United States)

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  18. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    Science.gov (United States)

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. A comparison of the development of tolerance to ethanol and cross-tolerance to nicotine after chronic ethanol treatment in long- and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1993-09-01

    Previous studies have shown that inbred mouse strains differ in the development of tolerance to both nicotine and ethanol, indicating that genetic factors regulate tolerance development. Those mouse strains that are most sensitive to an acute challenge dose of either drug develop the most tolerance to that drug. The ethanol-sensitive long-sleep (LS) mice are more sensitive to several behavioral and physiological effects of nicotine than are the ethanol-resistant short-sleep (SS) mice. The experiments reported here assessed whether the LS and SS mice develop tolerance to ethanol after chronic treatment with ethanol-containing liquid diets and whether cross-tolerance to nicotine also developed. Tolerance and cross-tolerance were measured by assessing the effects of acute challenge doses of drug on Y-maze crossing and rearing activities, heart rate and body temperature. The LS mice developed tolerance to ethanol's effects on three of the four measures and were cross-tolerant to nicotine on all of the measures. In contrast, the SS mice developed tolerance to ethanol for only two of the measures, but failed to develop cross-tolerance to any action of nicotine. These findings support the hypothesis that ethanol and nicotine share sites of action and that common genes regulate responses to these two drugs. Evidence suggests that tolerance to nicotine may be related to an up-regulation of brain nicotinic receptors, at least in some inbred mouse strains, but chronic ethanol treatment did not reproducibly change either [3H]nicotine or alpha-[125I]bungarotoxin binding. Therefore, other mechanisms must underlie the tolerance and cross-tolerance that was seen.

  20. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    is linked to a different set of circumstances than the ones suggested by existing models in contemporary democratic theory. Reorienting the discussion of tolerance, the book raises the question of how to disclose new possibilities within our given context of affect and perception. Once we move away from......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  1. Behavioral state classification in epileptic brain using intracranial electrophysiology

    Science.gov (United States)

    Kremen, Vaclav; Duque, Juliano J.; Brinkmann, Benjamin H.; Berry, Brent M.; Kucewicz, Michal T.; Khadjevand, Fatemeh; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Worrell, Gregory A.

    2017-04-01

    Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age 34+/- 12 , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.

  2. Electrophysiological evidence for enhanced representation of food stimuli in working memory

    NARCIS (Netherlands)

    Rutters, F.; Kumar, S.; Higgs, S.; Humphreys, G.W.

    2015-01-01

    Studies from our laboratory have shown that, relative to neutral objects, food-related objects kept in working memory (WM) are particularly effective in guiding attention to food stimuli (Higgs et al. in Appetite, 2012). Here, we used electrophysiological measurements to investigate the neural

  3. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives.

    Science.gov (United States)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa; Thielscher, Axel; Siebner, Hartwig Roman

    2016-10-15

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation and "offline" NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework, emphasizing principal strategies and highlighting promising future directions to exploit the benefits of combining NTBS with neuroimaging or electrophysiology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    International Nuclear Information System (INIS)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-01-01

    U 3 Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy's Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3 Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  5. Regret Aversion Bias dan Risk Tolerance Investor Muda Jakarta dan Surabaya

    Directory of Open Access Journals (Sweden)

    Yohnson Yohnson

    2008-01-01

    Full Text Available Investment decision behavior is an interesting topic in finance research. Bailey and Kinerson’s (2005 research found that individual risk tolerance and experienced regret significantly influenced investment decisions. Anticipation of potential future regret did not predict subsequent investment decision behavior. Specifically, this research also wants to know the effects of a person’s experienced regret and anticipated regret or the effects of individual risk tolerance on investment decision behavior in Jakarta and Surabaya. Respondent of this research is 323 students from UK Petra who represent young investors from Surabaya and students from UPH who represent young investors from Jakarta. The method of research is experimental study and the design of research is 2x2x2 (between subject with experienced regret (time deposit and stock as first variable, anticipated regret (time deposit and stock as second variable and risk tolerance (high and low as third variable This study finds that an individual risk tolerance significantly influences decisions. Regret aversion bias does not influence young investors in Indonesia. (We assume that it is because the character of Indonesian investors is different from foreign investors. The couse of this is supposedly the unique characteristics of Indonesian investors and the different view points between Indonesian investors and investors from other countries. Abstract in Bahasa Indonesia: Perilaku keputusan investasi sangat menarik untuk diteliti. Dalam penelitian Bailey dan Kinerson (2005 ditemukan risk tolerance dan experienced regret mempengaruhi keputusan investasi. Anticipated regret tidak dapat dipakai sebagai predictor perilaku keputusan investasi. Penelitian ini juga ingin mengetahui experienced regret, anticipated regret atau risk tolerance yang lebih mempengaruhi perilaku keputusan investasi di Jakarta dan Surabaya. Responden yang diteliti sebesar 323 mahasiswa berasal dari UK Petra yang mewakili

  6. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  7. Tolerability of ambulatory blood pressure monitoring (ABPM) in cognitively impaired elderly.

    Science.gov (United States)

    Nesti, Nicola; Pieraccioli, Mariachiara; Mossello, Enrico; Sgrilli, Federica; Bulgaresi, Matteo; Crescioli, Elena; Biagini, Francesco; Caleri, Veronica; Tonon, Elisabetta; Cantini, Claudia; Biagini, Carlo A; Marchionni, Niccolò; Ungar, Andrea

    2014-12-01

    Recent guidelines have widened clinical indications for out-of-office blood pressure measurement, including home blood pressure monitoring and ambulatory blood pressure monitoring (ABPM), suggesting the latter as recommended method in cognitively impaired patients. There is, however, a widespread belief that ABPM could be poorly tolerated in dementia, often leading to withdraw from its use in these patients. To assess the actual tolerability of ABPM in a group of cognitively impaired elderly, affected by dementia or mild cognitive impairment (MCI). We evaluated 176 patients aged 65 + years, recruited in two different memory clinics, with a Mini Mental State Examination (MMSE) between 10 and 27. Behavioral and psychological symptoms were assessed with Neuropsychiatric Inventory (NPI). A patient was considered tolerant if able to keep the device on continuously for 24 h. The minimum number of correct measurements required was 70% of the predicted total number. 16% of patients wore the device for less than 24 h. Dividing the study population in tertiles of MMSE performance, 29% failed to tolerate the device in the lowest, 12% in the middle and 7% in the highest tertile (p ABPM proved a generally well-tolerated technique even in cognitively impaired elderly. Only a minority of subjects with poorer cognitive performances and greater behavioral symptoms did not tolerate the monitoring. Among most patients who failed to achieve the minimum number of measurements needed, the number of valid measurements was very close to the minimum required.

  8. The gut-brain interaction in opioid tolerance.

    Science.gov (United States)

    Akbarali, Hamid I; Dewey, William L

    2017-12-01

    The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrophysiological Evaluation of Dysphagia in the Mild or Moderate Patients with Multiple Sclerosis: A Concept of Subclinical Dysphagia.

    Science.gov (United States)

    Beckmann, Yesim; Gürgör, Nevin; Çakır, Ahmet; Arıcı, Şehnaz; İncesu, Tülay Kurt; Seçil, Yaprak; Ertekin, Cumhur

    2015-06-01

    Swallowing mechanism and neurogenic dysphagia in MS have been rarely studied by electromyographical (EMG) methods. This study aims to evaluate the presence of subclinical dysphagia in patients with mild multiple sclerosis (MS) using electrophysiological methods. A prospective study of 51 patients with relapsing remitting multiple sclerosis and 18 age-matched healthy adults was investigated. We used electromyography to measure the activity of the submental muscles during swallowing. Electrophysiological recordings of patients were obtained during relapse, after relapse, and at any time in remission period. Clinical dysphagia was found in 12% of MS patients, while electrophysiological swallowing abnormalities were encountered in 33% of patients. Subclinical dysphagia was determined in 35% of patients during an MS relapse, in 20% of patients after a relapse, and in 25% of all 51 patients in the remission period based on EMG findings. Duration of swallowing signal of submental muscles in all MS patients was found to be longer than in normal subjects (p = 0.001). During swallowing of 50 ml of sequential water, the compensatory respiratory cycles occurred more often in MS patients than normal subjects, especially during a relapse (p = 0.005). This is the first study investigating swallowing abnormalities and subclinical dysphagia from the electrophysiological aspect in MS patients with mild disability. The electrophysiological tests described in this study are useful to uncover subclinical dysphagia since they have the advantage of being rapid, easy to apply, non-invasive, and without risk for the patients.

  10. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  11. IMPROVING QUALITY OF WORK LIFE THROUGH ELECTROPHYSIOLOGY: AN IDEA ACCEPTED BY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Evanthia Giagloglou

    2015-12-01

    Full Text Available Quality of Work Life (QWL and Occupational Health and Safety (OHS are two interconnected and important human needs. Modern industry shows a clear will for improving QWL and OHS, nevertheless, existent automatization and technological advances may negatively influence employees' wellbeing and result as triggers to their health deterioration. Subjective measures of employees workload can help, however, the lack of objectivity may be an issue. Improvement of working life needs objective measures. There is technology for measuring objectively employees' psychophysiology, but is considered to interfere with the flexibility needed for performing working tasks. Today electrophysiological methods require minimal dimensions, are wireless connected, allow movement and are proved to be useful in capturing psychophysical wellbeing. This study shows that the industry is ready to accept electrophysiological measures for monitoring and improving the employees' wellbeing.

  12. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  13. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    Science.gov (United States)

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  14. Electrophysiological brain indices of risk behavior modification induced by contingent feedback.

    Science.gov (United States)

    Megías, Alberto; Torres, Miguel Angel; Catena, Andrés; Cándido, Antonio; Maldonado, Antonio

    2018-02-01

    The main aim of this research was to study the effects of response feedback on risk behavior and the neural and cognitive mechanisms involved, as a function of the feedback contingency. Sixty drivers were randomly assigned to one of three feedback groups: contingent, non-contingent and no feedback. The participants' task consisted of braking or not when confronted with a set of risky driving situations, while their electroencephalographic activity was continuously recorded. We observed that contingent feedback, as opposed to non-contingent feedback, promoted changes in the response bias towards safer decisions. This behavioral modification implied a higher demand on cognitive control, reflected in a larger amplitude of the N400 component. Moreover, the contingent feedback, being predictable and entailing more informative value, gave rise to smaller SPN and larger FRN scores when compared with non-contingent feedback. Taken together, these findings provide a new and complex insight into the neurophysiological basis of the influence of feedback contingency on the processing of decision-making under risk. We suggest that response feedback, when contingent upon the risky behavior, appears to improve the functionality of the brain mechanisms involved in decision-making and can be a powerful tool for reducing the tendency to choose risky options in risk-prone individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Children's and Parents' Ability to Tolerate Child Distress: Impact on Cognitive Behavioral Therapy for Pediatric Obsessive Compulsive Disorder.

    Science.gov (United States)

    Selles, Robert R; Franklin, Martin; Sapyta, Jeffrey; Compton, Scott N; Tommet, Doug; Jones, Richard N; Garcia, Abbe; Freeman, Jennifer

    2018-04-01

    The present study explored the concept of tolerance for child distress in 46 children (ages 5-8), along with their mothers and fathers, who received family-based CBT for OCD. The study sought to describe baseline tolerance, changes in tolerance with treatment, and the predictive impact of tolerance on symptom improvement. Tolerance was rated by clinicians on a single item and the CY-BOCS was used to measure OCD severity. Descriptive results suggested that all participants had some difficulty tolerating the child's distress at baseline while paired t tests indicated large improvements were made over treatment (d = 1.2-2.0). Fathers' initial tolerance was significantly related to symptom improvement in a multivariate regression as were fathers' and children's changes in distress tolerance over the course of treatment. Overall, results provide support for examining tolerance of child distress including its predictive impact and potential as a supplemental intervention target.

  16. Electrophysiological responses to alcohol cues are not associated with Pavlovian-to-instrumental transfer in social drinkers.

    Directory of Open Access Journals (Sweden)

    Jasna Martinovic

    Full Text Available Pavlovian to Instrumental Transfer (PIT refers to the behavioral phenomenon of increased instrumental responding for a reinforcer when in the presence of Pavlovian conditioned stimuli that were separately paired with that reinforcer. PIT effects may play an important role in substance use disorders, but little is known about the brain mechanisms that underlie these effects in alcohol consumers. We report behavioral and electroencephalographic (EEG data from a group of social drinkers (n = 31 who performed a PIT task in which they chose between two instrumental responses in pursuit of beer and chocolate reinforcers while their EEG reactivity to beer, chocolate and neutral pictorial cues was recorded. We examined two markers of the motivational salience of the pictures: the P300 and slow wave event-related potentials (ERPs. Results demonstrated a behavioral PIT effect: responding for beer was increased when a beer picture was presented. Analyses of ERP amplitudes demonstrated significantly larger slow potentials evoked by beer cues at various electrode clusters. Contrary to hypotheses, there were no significant correlations between behavioral PIT effects, electrophysiological reactivity to the cues, and individual differences in drinking behaviour. Our findings are the first to demonstrate a PIT effect for beer, accompanied by increased slow potentials in response to beer cues, in social drinkers. The lack of relationship between behavioral and EEG measures, and between these measures and individual differences in drinking behaviour may be attributed to methodological features of the PIT task and to characteristics of our sample.

  17. Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading

    Directory of Open Access Journals (Sweden)

    Thomas G. Di Virgilio

    2016-11-01

    Discussion: Sub-concussive head impacts routine in soccer heading are associated with immediate, measurable electrophysiological and cognitive impairments. Although these changes in brain function were transient, these effects may signal direct consequences of routine soccer heading on (long-term brain health which requires further study.

  18. Animal studies on the role of sleep in memory : From behavioral performance to molecular mechanisms

    NARCIS (Netherlands)

    Havekes, Robbert; Meerlo, Peter; Abel, Ted; Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Although the exact functions of sleep remain a topic of debate, several hypotheses propose that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. For over a century, researchers have applied a wide variety of behavioral, electrophysiological, biochemical and

  19. Decrement in operant performance produced by NMDA receptor antagonists in the rat: tolerance and cross-tolerance.

    Science.gov (United States)

    Dravolina, O A; Zvartau, E E; Bespalov, A Y

    2000-04-01

    Current perspectives on the clinical use of NMDA receptor antagonists infer repeated administration schedules for the management of different pathological states. The development of tolerance and cross-tolerance between different NMDA receptor antagonists may be an important factor contributing to the clinical efficacy of these drugs. The present study aimed to characterize the development of tolerance and cross-tolerance to the ability of various site-selective NMDA receptor antagonists to produce a decrement of operant responding (multiple extinction 9 s fixed-interval 1-s schedule of water reinforcement). Acute administration of D-CPPen (SDZ EAA 494; 1-5.6 mg/kg), dizocilpine (MK-801; 0.03-0.3 mg/kg), memantine (0.3-17 mg/kg), ACEA-1021 (10-56 mg/kg), and eliprodil (1-30 mg/kg) differentially affected operant responding. Both increases and decreases in response rates and accuracy of responding were observed. Repeated preexposure to D-CPPen (5.6 mg/kg, once a day for 7 days) attenuated a behavioral disruption produced by an acute challenge with D-CPPen or ACEA-1021, but potentiated the effects of dizocilpine, memantine, and eliprodil. Based on the present results, one can suggest that the repeated administration of a competitive NMDA receptor antagonist differentially affects the functional activity of various sites on NMDA receptor complex.

  20. Genetic behavior of morpho-physiological traits and their role for breeding drought tolerant wheat

    International Nuclear Information System (INIS)

    Saleem, S.; Kashif, M.

    2016-01-01

    The development of drought tolerant and high yielding varieties/germplasm is the major objective of any wheat breeding program. In the present study genetic architecture of physiological traits, yield and yield related parameters were studied using the generation mean analysis to improve grain yield under drought stress. A drought tolerant line, 9877 and a drought susceptible line, NR371 were crossed to develop six generations (P/sub 1/, P/sub 2/, F/sub 1/, BC/sub 1/, BC/sub 2/, and F/sub 2/). Results revealed additive, dominant and epistatic effects involved in the inheritance of characters which varied with trait and stress. Additive gene action was observed for canopy temperature, Chlorophyll a and turgor potential. Although narrow sense heritability estimates for some traits were low but canopy temperature, chlorophyll a and turgor potential expressed reasonably high heritability that supports the results of gene action providing an opportunity for early generation selection to use in a breeding program. The estimation of heritability for leaf carotenoids and turgor potential along with gene action for leaf carotenoids is a new work in wheat. The findings of present study suggested that physiological and bio-chemical traits are the indicators of stress tolerance and their utilization in developing high yielding drought tolerant wheat germplasm can expedite the breeding for stress tolerance. (author)

  1. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    Science.gov (United States)

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  2. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts

    International Nuclear Information System (INIS)

    Tormos, Alvaro; Millet, José; Guill, Antonio; Chorro, Francisco J; Cánoves, Joaquín; Mainar, Luis; Such, Luis; Alberola, Antonio; Trapero, Isabel; Such-Miquel, Luis

    2008-01-01

    As a result of their modulating effects upon myocardial electrophysiology, both hypo- and hyperthermia can be used to study the mechanisms that generate or sustain cardiac arrhythmias. The present study describes an original electrode developed with thick-film technology and capable of controlling regional temperature variations in the epicardium while simultaneously registering its electrical activity. In this way, it is possible to measure electrophysiological parameters of the heart at different temperatures. The results obtained with this device in a study with isolated and perfused rabbit hearts are reported. An exploration has been made of the effects of local temperature changes upon the electrophysiological parameters implicated in myocardial conduction. Likewise, an analysis has been made of the influence of local temperature upon ventricular fibrillation activation frequency. It is concluded that both regional hypo- and hyperthermia exert reversible and opposite effects upon myocardial refractoriness and conduction velocity in the altered zone. The ventricular activation wavelength determined during constant pacing at 250 ms cycles is not significantly modified, however. During ventricular fibrillation, the changes in the fibrillatory frequency do not seem to be transmitted to normal temperature zones

  3. Biofeedback in psychomotor training. Electrophysiological basis.

    Science.gov (United States)

    Bazanova, O M; Mernaya, E M; Shtark, M B

    2009-06-01

    The influences of individual musical practice and the same practice supplemented with biofeedback using electrophysiological markers for optimum music-performing activity were studied in 39 music students. Traditional technical practice produced increases in integral EMG power and decreases in alpha activity in most of the students with initially low maximum alpha activity peak frequencies. Similar practice but combined with individual sessions of alpha-EEG/EMG biofeedback were accompanied by increases in the frequency, bandwidth, and activation responses of EEG alpha rhythms in all subjects, along with decreases in EEG integral power. The efficacy of training with biofeedback and the ability to experience psychomotor learning depended on the initial individual characteristics of EEG alpha activity.

  4. Lyme carditis. Electrophysiologic and histopathologic study

    International Nuclear Information System (INIS)

    Reznick, J.W.; Braunstein, D.B.; Walsh, R.L.; Smith, C.R.; Wolfson, P.M.; Gierke, L.W.; Gorelkin, L.; Chandler, F.W.

    1986-01-01

    To further define the nature of Lyme carditis, electrophysiologic study and endomyocardial biopsy were performed in a patient with Lyme disease, whose principal cardiac manifestation was high-degree atrioventricular block. Intracardiac recording demonstrated supra-Hisian block and complete absence of an escape mechanism. Gallium 67 scanning demonstrated myocardial uptake, and right ventricular endomyocardial biopsy revealed active lymphocytic myocarditis. A structure compatible with a spirochetal organism was demonstrated in one biopsy specimen. It is concluded that Lyme disease can produce active myocarditis, as suggested by gallium 67 imaging and confirmed by endomyocardial biopsy. Furthermore, the presence of high-grade atrioventricular block in this disease requires aggressive management with temporary pacemaker and corticosteroid therapy

  5. The predator and prey behaviors of crabs: from ecology to neural adaptations.

    Science.gov (United States)

    Tomsic, Daniel; Sztarker, Julieta; Berón de Astrada, Martín; Oliva, Damián; Lanza, Estela

    2017-07-01

    Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge - acquired through both laboratory and field studies - on the visually guided escape behavior of the crab Neohelice granulata Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches. © 2017. Published by The Company of Biologists Ltd.

  6. Role of Electrophysiological Study and Catheter Ablation for Recurrent Ventricular Tachycardia Complicating Myocarditis

    Directory of Open Access Journals (Sweden)

    Emanuele Cecchi

    2012-01-01

    Full Text Available Here we report the case of a 31-year-old man admitted to our hospital with echocardiografic and Cardiac Magnetic Resonance signs of myocarditis complicated by ventricular tachycardia, initially resolved with direct current shock. After the recurrence of ventricular tachycardia the patient was submitted to electrophysiological study revealing a re-entrant circuit at the level of the medium segment of interventricular septum, successfully treated with transcatheter ablation. This case highlights how the presence of recurrent ventricular arrhythmias at the onset of acute myocarditis, suspected or proven, could be associated with a pre-existing arrhythmogenic substrate, therefore these patients should be submitted to electrophysiological study in order to rule out the presence of arrhythmogenic focuses that can be treated with transcatheter ablation.

  7. A low-energy x-ray irradiator for electrophysiological studies

    International Nuclear Information System (INIS)

    Schauer, D.A.; Zeman, G.H.; Pellmar, T.C.

    1989-01-01

    A 50 kVp molybdenum target/filter x-ray tube has been installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy min -1 (17.4 keV weighted average photons) have been used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application. (author)

  8. Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway.

    Science.gov (United States)

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M

    2015-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.

  9. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma

    OpenAIRE

    Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo

    2013-01-01

    Background: In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods: Electrophysiological studies included bilateral electrical transcrania...

  10. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  12. Tolerance and Efficacy of Emamectin Benzoate and Ivermectin for the Treatment of Pseudocapillaria tomentosa in Laboratory Zebrafish (Danio rerio)

    OpenAIRE

    Collymore, Chereen; Watral, Virginia; White, Julie R.; Colvin, Michael E.; Rasmussen, Skye; Tolwani, Ravi J.; Kent, Michael L.

    2014-01-01

    Tolerance of adult zebrafish and efficacy of emamectin benzoate and ivermectin in eliminating Pseudocapillaria tomentosa infection were evaluated. In the tolerance study, behavioral changes, fecundity, histopathology, and mortality were evaluated for in-feed administration of emamectin (0.05, 0.10, and 0.25 mg/kg) and ivermectin (0.05 and 0.10 mg/kg). All doses of emamectin were well tolerated. Ivermectin 0.05 mg/kg administration resulted in mild behavioral changes and a transient decrease i...

  13. Augmentation of the development of behavioral tolerance to cannabinoid administration through pavlovian conditioning.

    Science.gov (United States)

    Hill, Matthew N; Gorzalka, Boris B; Choi, Joyce W

    2004-01-01

    This investigation examined the effects, in female rats, of a Pavlovian conditioning paradigm on the development of tolerance to hypolocomotion induced by the cannabinoid agonist HU-210. Rats were administered HU-210 and placebo in either an associative or a nonassociative fashion. The results indicated that rats in the associative paradigm developed tolerance significantly faster than those in the nonassociative group (p conditioning, but that these physiological alterations are not contingent upon the associative parameters used for drug administration. Copyright 2004 S. Karger AG, Basel

  14. Emotional Reactivity, Regulation and Childhood Stuttering: A Behavioral and Electrophysiological Study

    Science.gov (United States)

    Arnold, Hayley S.; Conture, Edward G.; Key, Alexandra P. F.; Walden, Tedra

    2011-01-01

    The purpose of this preliminary study was to assess whether behavioral and psychophysiological correlates of emotional reactivity and regulation are associated with developmental stuttering, as well as determine the feasibility of these methods in preschool-age children. Nine preschool-age children who stutter (CWS) and nine preschool-age children…

  15. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  16. 3D stereotaxis for epileptic foci through integrating MR imaging with neurological electrophysiology data

    International Nuclear Information System (INIS)

    Luo Min; Peng Chenglin; Wang Kang; Lei Wenyong; Luo Song; Wang Xiaolin; Wang Xuejian; Wu Ruoqiu; Wu Guofeng

    2005-01-01

    Objective: To improve the accuracy of the epilepsy diagnoses by integrating MR image from PACS with data from neurological electrophysiology. The integration is also very important for transmiting diagnostic information to 3D TPS of radiotherapy. Methods: The electroencephalogram was redisplayed by EEG workstation, while MR image was reconstructed by Brainvoyager software. 3D model of patient brain was built up by combining reconstructed images with electroencephalogram data in Base 2000. 30 epileptic patients (18 males and 12 females) with their age ranged from 12 to 54 years were confirmed by using the integrated MR images and the data from neurological electrophysiology and their 3D stereolocating. Results: The corresponding data in 3D model could show the real situation of patients' brain and visually locate the precise position of the focus. The suddessful rate of 3D guided operation was greatly improved, and the number of epileptic onset was markedly decreased. The epilepsy was stopped for 6 months in 8 of the 30 patients. Conclusion: The integration of MR image and information of neurological electrophysiology can improve the diagnostic level for epilepsy, and it is crucial for imp roving the successful rate of manipulations and the epilepsy analysis. (authors)

  17. Clinical and electrophysiological aspects of tics in children.

    Science.gov (United States)

    Safiullina, G I; Safiullina, A A

    2015-01-01

    Tics are diverse in nature inappropriate movements or vocalizations. They significantly degrade patients' quality of life, lead to social difficulties, and disturbance of learning especially during exacerbations. The prevalence of tics among children ranges from 4% to 24%, thus emphasizing the relevance of the problem. To study clinical and electrophysiological features of tics in children with development of new treatment methods. We conducted a comprehensive clinical and electrophysiological examination of 50 patients with tics, aged 5 to 15 years. The control group consisted of 20 healthy children. The research included a thorough study of the history, neurological examination, manual testing of skeletal muscles, psychological testing. Electrophysiological examination included a review of the functional state of corticospinal tract (CST) by the method of magnetic stimulation (MS), study of polysynaptic reflex excitability (PRE) according to a late component of the blink reflex (BR). Statistical analysis included parametric and nonparametric methods of data processing. All children of the study group showed signs of minimal brain dysfunction (MBD), they had complicated antenatal and postnatal history (trauma, disease, occurring with intoxication). There was a trend towards the increase of MBD signs with worsening of tics. Manual diagnosis in patients identified functional blockade at different levels of the vertebral column, sacroiliac joints, we identified latent myofascial trigger points (MFTP) mainly in the cervical-collar zone, in the area of the paravertebral muscles, periosteal triggers in the area of the sacroiliac joints.The research allowed determining decrease in propagation velocity of excitation (PVE) throughout CST in patients with tics. Correlation analysis revealed a negative correlation between the severity of tics and PVE (r = -0.38; p tics: I - low and moderate type of reflex responses; and II - high type of reflex responses. Collation of data

  18. RIVETS: a mechanical system for in vivo and in vitro electrophysiology and imaging.

    Directory of Open Access Journals (Sweden)

    Jason E Osborne

    Full Text Available A number of recent studies have provided compelling demonstrations that both mice and rats can be trained to perform a variety of behavioral tasks while restrained by mechanical elements mounted to the skull. The independent development of this technique by a number of laboratories has led to diverse solutions. We found that these solutions often used expensive materials and impeded future development and modification in the absence of engineering support. In order to address these issues, here we report on the development of a flexible single hardware design for electrophysiology and imaging both in brain tissue in vitro. Our hardware facilitates the rapid conversion of a single preparation between physiology and imaging system and the conversion of a given system between preparations. In addition, our use of rapid prototyping machines ("3D printers" allows for the deployment of new designs within a day. Here, we present specifications for design and manufacturing as well as some data from our lab demonstrating the suitability of the design for physiology in behaving animals and imaging in vitro and in vivo.

  19. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    Science.gov (United States)

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  20. From rapid place learning to behavioral performance: a key role for the intermediate hippocampus.

    Directory of Open Access Journals (Sweden)

    Tobias Bast

    2009-04-01

    Full Text Available Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells. We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping, failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial place learning into navigational performance.

  1. Early postnatal development of electrophysiological and histological properties of sensory sural nerves in male rats that were maternally deprived and artificially reared: Role of tactile stimulation.

    Science.gov (United States)

    Zempoalteca, Rene; Porras, Mercedes G; Moreno-Pérez, Suelem; Ramirez-Funez, Gabriela; Aguirre-Benítez, Elsa L; González Del Pliego, Margarita; Mariscal-Tovar, Silvia; Mendoza-Garrido, Maria E; Hoffman, Kurt Leroy; Jiménez-Estrada, Ismael; Melo, Angel I

    2018-04-01

    Early adverse experiences disrupt brain development and behavior, but little is known about how such experiences impact on the development of the peripheral nervous system. Recently, we found alterations in the electrophysiological and histological characteristics of the sensory sural (SU) nerve in maternally deprived, artificially reared (AR) adult male rats, as compared with maternally reared (MR) control rats. In the present study, our aim was to characterize the ontogeny of these alterations. Thus, male pups of four postnatal days (PND) were (1) AR group, (2) AR and received daily tactile stimulation to the body and anogenital region (AR-Tactile group); or (3) reared by their mother (MR group). At PND 7, 14, or 21, electrophysiological properties and histological characteristics of the SU nerves were assessed. At PND 7, the electrophysiological properties and most histological parameters of the SU nerve did not differ among MR, AR, and AR-Tactile groups. By contrast, at PND 14 and/or 21, the SU nerve of AR rats showed a lower CAP amplitude and area, and a significant reduction in myelin area and myelin thickness, which were accompanied by a reduction in axon area (day 21 only) compared to the nerves of MR rats. Tactile stimulation (AR-Tactile group) partially prevented most of these alterations. These results suggest that sensory cues from the mother and/or littermates during the first 7-14 PND are relevant for the proper development and function of the adult SU nerve. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 351-362, 2018. © 2017 Wiley Periodicals, Inc.

  2. Analyzing clinical and electrophysiological characteristics of Paroxysmal Dyskinesia

    Directory of Open Access Journals (Sweden)

    Jue-qian Zhou

    2011-01-01

    Full Text Available The classification, clinical and electrophysiological characteristics, treatment outcome and pathogenesis of paroxysmal dyskinesia were summarized and analyzed. Paroxysmal dyskinesia was classified into three types. Different types had different incentives in clinical practice. Patients were mostly male adolescents, and the attacks, which were in various forms, manifested as dysmyotonia of choreoathetosis, body torsion and facemaking; no disturbance of consciousness during attacks. Electroencephalogram and other examinations showed no specific abnormalities during both the attacks and interictal period. Paroxysmal dyskinesia was an independent disease and different from epilepsy.

  3. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  4. Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Susana García-Cerro

    Full Text Available Down syndrome (DS phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y-phosphorylation regulated kinase 1A gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/- male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area or behavioral (i.e., hyperactivity/attention alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting

  5. When tolerance leads to intolerance: accessibility effects on social judgment.

    Science.gov (United States)

    Araya, Tadesse; Ekehammar, Bo

    2009-08-01

    We investigated the effects of unobtrusively primed constructs that were evocative of tolerance (e.g., tolerant, nonprejudiced) on subsequent task performances and found, contrary to our expectation, contrast effects in the judgment of an ambiguous behavioral description (Study 1 and 2). Suspecting that these results might be the outcome of social-comparison processes, in Study 3, we attempted to corroborate our findings by providing the participants with either an explicit or implicit comparison standard. The results showed that the participants who were provided with the implicit comparison standard evaluated the target behavior as more intolerant as compared to those with the explicit or no comparison standard. The results are discussed in relation to the moderating role of automatic social-comparison processes in the incidence of assimilation and contrast effects and the reduction of prejudice.

  6. Effects of pH on embryo tolerance and adult behavior in the tiger salamander, Ambystoma tigrinum tigrinum

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, H H; Howard, R D; Whitten, K A [Purdue Univ., Lafayette, IN (United States). Dept. of Biological Sciences

    1995-08-01

    Adult discrimination ability and embryo performance was examined under different pH conditions in the eastern tiger salamander. Individuals from three populations were collected in habitats that differed naturally in pH. Two pH treatments were used to determine adult pH discrimination ability, and eight pH treatments to evaluate embryo performance. Results suggested that the pH of the source-population habitat could influence breeding-habitat discrimination by adults. Decreasing pH produced similar patterns of lethal and sublethal effects on embryos from the three populations, with reduced performance at low pH. The pH at which 50% mortality occurs was estimated at 4.2, suggesting that tiger salamanders were relatively acid tolerant. The study suggested that adult behavior patterns could influence the success of population reintroductions to previously acidified areas. 78 refs., 2 tabs., 4 figs.

  7. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    . A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  8. Pediatric Electrophysiology in India: A Sub-speciality Come of Age

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2008-05-01

    Full Text Available Electrophysiology started in India in the early 70's with the earliest published diagnostic His bundle studies coming from the All India Institute of Medical Sciences by Bhatia ML et al and the GB Pant Hospital by Khalilullah et al . That era was remarkable with the first indigenously made temporary pacemaker being used to treat complete heart block as early as in 1970

  9. Effect of model choice and sample size on statistical tolerance limits

    International Nuclear Information System (INIS)

    Duran, B.S.; Campbell, K.

    1980-03-01

    Statistical tolerance limits are estimates of large (or small) quantiles of a distribution, quantities which are very sensitive to the shape of the tail of the distribution. The exact nature of this tail behavior cannot be ascertained brom small samples, so statistical tolerance limits are frequently computed using a statistical model chosen on the basis of theoretical considerations or prior experience with similar populations. This report illustrates the effects of such choices on the computations

  10. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders.

    Science.gov (United States)

    Clark, C Richard; Galletly, Cherrie A; Ash, David J; Moores, Kathryn A; Penrose, Rebecca A; McFarlane, Alexander C

    2009-04-01

    We provide a systematic, evidence-based medicine (EBM) review of the field of electrophysiology in the anxiety disorders. Presently, electrophysiological studies of anxiety focus primarily on etiological aspects of brain dysfunction. The review highlights many functional similarities across studies, but also identifies patterns that clearly differentiate disorder classifications. Such measures offer clinical utility as reliable and objective indicators of brain dysfunction in individuals and indicate potential as biomarkers for the improvement of diagnostic specificity and for informing treatment decisions and prognostic assessments. Common to most of the anxiety disorders is basal instability in cortical arousal, as reflected in measures of quantitative electroencephalography (qEEG). Resting electroencephalographic (EEG) measures tend to correlate with symptom sub-patterns and be exacerbated by condition-specific stimulation. Also common to most of the anxiety disorders are condition-specific difficulties with sensory gating and the allocation and deployment of attention. These are clearly evident from evoked potential (EP) and event-related potential (ERP) electrical measures of information processing in obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), panic disorder (PD), generalized anxiety disorder (GAD) and the phobias. Other'ERP measures clearly differentiate the disorders. However, there is considerable variation across studies, with inclusion and exclusion criteria, medication status and control group selection not standardized within condition or across studies. Study numbers generally preclude analysis for confound removal or for the derivation of diagnostic biomarker patterns at this time. The current trend towards development of databases of brain and cognitive function is likely to obviate these difficulties. In particular, electrophysiological measures of function are likely to play a significant role in the development and

  11. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  12. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs.

    Science.gov (United States)

    Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won

    2018-06-14

    We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.

  13. Electrophysiologic characteristics of tremor in Parkinson?s disease and essential tremor

    Directory of Open Access Journals (Sweden)

    Ederson Cichaczewski

    2014-04-01

    Full Text Available Tremor in essential tremor (ET and Parkinson’s disease (PD usually present specific electrophysiologic profiles, however amplitude and frequency may have wide variations. Objective: To present the electrophysiologic findings in PD and ET. Method: Patients were assessed at rest, with posture and action. Seventeen patients with ET and 62 with PD were included. PD cases were clustered into three groups: predominant rest tremor; tremor with similar intensity at rest, posture and during kinetic task; and predominant kinetic tremor. Results: Patients with PD presented tremors with average frequency of 5.29±1.18 Hz at rest, 5.79±1.39 Hz with posture and 6.48±1.34 Hz with the kinetic task. Tremor in ET presented with an average frequency of 5.97±1.1 Hz at rest, 6.18±1 Hz with posture and 6.53±1.2 Hz with kinetic task. Seven (41.2% also showed rest tremor. Conclusion: The tremor analysis alone using the methodology described here, is not sufficient to differentiate tremor in ET and PD.

  14. Social Studies Teachers’ Perceptions of Tolerance

    Directory of Open Access Journals (Sweden)

    Hatice Türe

    2014-10-01

    Full Text Available Problem: Tolerance is one of the values which citizens should have in today's multicultural and democratic society. Educational system should teach tolerance to the individuals in a democratic society. Tolerance can be given through curricula in educational process. Social studies is one of the courses for conducting tolerance education. Skills and perspectives of teachers are important for tolerance education in social studies. The purpose of this study is to understand social studies teachers' perceptions of tolerance. Method: In the study, qualitative research method and phenomenology that is one of the qualitative research designs was employed. The participants were determined using criterion sampling. 10 social studies teachers graduated from social studies education departments working at schools of Eskisehir Provincial Directorate of National Education participated in the study. The research process consisted of two phases. The data were gathered through semi-structured interviews. The interviews were conducted in two steps in order to make an in-depth analysis. In Phase I of the study, semi-structured interviews were conducted with 10 teachers in December and January months during the 2012-2013 school year. The data obtained from the first interviews were also the base for the questions in the second interviews. In Phase II of the study, semi-structured interviews were again conducted with 10 teachers who participated in the first interviews in April and May months during the 2012-2013 school year. Teacher Interview Form-1 in the first interviews and Teacher Interview Form-2 in the second interviews were used for data collection. As for data analysis, thematic analysis technique was used. The data were analysed, the findings were defined and interpreted based on the research questions. Findings: The findings of the study revealed that the social studies teachers described tolerance as respecting ideas, values, beliefs and behaviors

  15. Prognostic significance of electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery.

    Science.gov (United States)

    van Dinther, J J S; Van Rompaey, V; Somers, T; Zarowski, A; Offeciers, F E

    2011-01-01

    To assess the prognostic significance of pre-operative electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery. Retrospective study design in a tertiary referral neurology unit. We studied a total of 123 patients with unilateral vestibular schwannoma who underwent microsurgical removal of the lesion. Nine patients were excluded because they had clinically abnormal pre-operative facial function. Pre-operative electrophysiological facial nerve function testing (EPhT) was performed. Short-term (1 month) and long-term (1 year) post-operative clinical facial nerve function were assessed. When pre-operative facial nerve function, evaluated by EPhT, was normal, the outcome from clinical follow-up at 1-month post-operatively was excellent in 78% (i.e. HB I-II) of patients, moderate in 11% (i.e. HB III-IV), and bad in 11% (i.e. HB V-VI). After 1 year, 86% had excellent outcomes, 13% had moderate outcomes, and 1% had bad outcomes. Of all patients with normal clinical facial nerve function, 22% had an abnormal EPhT result and 78% had a normal result. No statistically significant differences could be observed in short-term and long-term post-operative facial function between the groups. In this study, electrophysiological tests were not able to predict facial nerve outcome after vestibular schwannoma surgery. Tumour size remains the best pre-operative prognostic indicator of facial nerve function outcome, i.e. a better outcome in smaller lesions.

  16. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  17. Role of adenosine receptors in caffeine tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, S.G.; Mante, S.; Minneman, K.P. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  18. Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures

    International Nuclear Information System (INIS)

    Chen, Wen; Liu, Ze; Robinson, Hannah Mae; Schroers, Jan

    2014-01-01

    Stochastic cellular structures are prevalent in nature and engineering materials alike. They are difficult to manipulate and study systematically and almost always contain imperfections. To design and characterize various degrees of imperfections in perfect periodic, stochastic and natural cellular structures, we fabricate a broad range of metallic glass cellular structures from perfectly periodic to highly stochastic by using a novel artificial microstructure approach based on thermoplastic replication of metallic glasses. For these cellular structures, precisely controlled imperfections are implemented and their effects on the mechanical response are evaluated. It is found that the mechanical performance of the periodic structures is generally superior to that of the stochastic structures. However, the stochastic structures experience a much higher tolerance to flaws than the periodic structure, especially in the plastic regime. The different flaw tolerance is explained by the stress distribution within the various structures, which leads to an overall 'strain-hardening' behavior of the stochastic structure compared to a 'strain-softening' behavior in the periodic structure. Our findings reveal how structure, 'strain-hardening' and flaw tolerance are microscopically related in structural materials

  19. Wearable Multi-Channel Microelectrode Membranes for Elucidating Electrophysiological Phenotypes of Injured Myocardium

    Science.gov (United States)

    Cao, Hung; Yu, Fei; Zhao, Yu; Zhang, Xiaoxiao; Tai, Joyce; Lee, Juhyun; Darehzereshki, Ali; Bersohn, Malcolm; Lien, Ching-Ling; Chi, Neil C.; Tai, Yu-Chong; Hsiai, Tzung K.

    2014-01-01

    Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrated the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights in long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients. PMID:24945366

  20. Antiepileptic effect of fisetin in iron-induced experimental model of traumatic epilepsy in rats in the light of electrophysiological, biochemical, and behavioral observations.

    Science.gov (United States)

    Das, Jharana; Singh, Rameshwar; Sharma, Deepak

    2017-05-01

    Traumatic epilepsy is defined by episodes of recurring seizures secondary to severe brain injury. Though drugs are found effective to control seizures, their long-term use have been observed to increase reactive oxygen species in animals. Flavonoid fisetin, a natural bioactive phytonutrient reported to exert anticonvulsive effect in experimental seizure models. But, trauma-induced seizures could not be prevented by anticonvulsants was reported in some clinical studies. To study the effect of fisetin on epileptiform electrographic activity in iron-induced traumatic epilepsy and also the probable reason behind the effect in rats. Fisetin pretreatment (20 mg/kg body wt., p.o.) of rats for 12 weeks were chosen followed by injecting iron (5 µl, 100 mM) stereotaxically to generate iron-induced epilepsy. Experimental design include electrophysiological study (electroencephalograph in correlation with multiple unit activity (MUA) in the cortex and CA1 subfield of the hippocampus; spectral analysis of seizure and seizure-associated behavioral study (Morris water maze for spatial learning, open-field test for anxiety) and biochemical study (lipid peroxidation, Na + ,K + -ATPase activity) in both the cortex and the hippocampus. Fisetin pretreatment was found to prevent the development of iron-induced electrical seizure and decrease the corresponding MUA in the cortex (*P˂0.05) as well as in the hippocampus (***P˂0.001). Fisetin pretreatment decreased the lipid peroxides (*P˂0.05) and retained the Na + ,K + -ATPase activity (*P˂0.05) which was found altered in the epileptic animals and also found to attenuate the seizure-associated cognitive dysfunctions. This study demonstrated the antiepileptic action of fisetin in iron-induced model of epileptic rats by inhibiting oxidative stress.

  1. Behavioral and neurophysiological study of attentional and inhibitory processes in ADHD-combined and control children.

    Science.gov (United States)

    Baijot, S; Deconinck, N; Slama, H; Massat, I; Colin, C

    2013-12-01

    This study compares behavioral and electrophysiological (P300) responses recorded in a cued continuous performance task (CPT-AX) performed by children with attention deficit hyperactivity disorder-combined subtype (ADHD-com) and age-matched healthy controls. P300 cognitive-evoked potentials and behavioral data were recorded in eight children with ADHD (without comorbidity) and nine control children aged 8-12 years while performing a CPT-AX task. Such task enables to examine several kinds of false alarms and three different kinds of P300 responses: the "Cue P300", the "Go P300" and the "NoGo P300", respectively, associated with preparatory processing/attentional orienting, motor/response execution and motor/response inhibition. Whereas hit rates were about 95% in each group, ADHD children made significantly more false alarm responses (inattention- and inhibition-related) than control children. ADHD children had a marginally smaller Cue P300 than the control children. Behavioral and electrophysiological findings both highlighted inhibition and attention deficits in ADHD-com children in the CPT-AX task. A rarely studied kind of false alarm, the "Other" FA, seems to be a sensitive FA to take into account, even if its interpretation remains unclear.

  2. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies.

    Science.gov (United States)

    Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad

    2018-05-01

    We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.

  3. Commentary on: Are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research. Excessive behaviors are not necessarily addictive behaviors.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu

    2015-09-01

    The commentary aims to provide clarity to the article "Are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research." We provide another viewpoint for the important issues of behavior addiction. The course of behavior addiction should be further studied. The criteria of withdrawal and tolerance of behavior addiction are ill-defined and need to be further evaluated. The etiology, course, presentation, and functional impairment of behavior addiction should be validated by evidence-based data before being defined as a disorder.

  4. Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Victoria Linehan

    2018-03-01

    Full Text Available Orexin and melanin-concentrating hormone (MCH neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear whether these neurons are functionally mature at this period and whether these studies can be generalized to adult cells. Therefore, we examined the electrophysiological properties of orexin and MCH neurons in brain slices from post-weaning rats and found that MCH neurons undergo an age-dependent reduction in excitability, but not orexin neurons. Specifically, MCH neurons displayed an age-dependent hyperpolarization of the resting membrane potential (RMP, depolarizing shift of the threshold, and decrease in excitatory transmission, which reach the adult level by 7 weeks of age. In contrast, basic properties of orexin neurons were stable from 4 weeks to 14 weeks of age. Furthermore, a robust short-term facilitation of excitatory synapses was found in MCH neurons, which showed age-dependent changes during the post-weaning period. On the other hand, a strong short-term depression was observed in orexin neurons, which was similar throughout the same period. These differences in synaptic responses and age dependence likely differentially affect the network activity within the lateral hypothalamus where these cells co-exist. In summary, our study suggests that orexin neurons are electrophysiologically mature before adolescence whereas MCH neurons continue to develop until late adolescence. These changes in MCH neurons may contribute to growth spurts or consolidation of adult sleep patterns associated with adolescence. Furthermore, these results highlight the importance of considering the age of animals in studies involving MCH neurons.

  5. Bridging the Gap between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory

    Science.gov (United States)

    Eichenbaum, Howard; Fortin, Norbert J.

    2005-01-01

    The notion that non-human animals are capable of episodic memory is highly controversial. Here, we review recent behavioral work from our laboratory showing that the fundamental features of episodic memory can be observed in rats and that, as in humans, this capacity relies on the hippocampus. We also discuss electrophysiological evidence, from…

  6. A Quantitative Electrophysiological Biomarker of Duplication 15q11.2-q13.1 Syndrome.

    Directory of Open Access Journals (Sweden)

    Joel Frohlich

    Full Text Available Duplications of 15q11.2-q13.1 (Dup15q syndrome are highly penetrant for autism spectrum disorder (ASD. A distinct electrophysiological (EEG pattern characterized by excessive activity in the beta band has been noted in clinical reports. We asked whether EEG power in the beta band, as well as in other frequency bands, distinguished children with Dup15q syndrome from those with non-syndromic ASD and then examined the clinical correlates of this electrophysiological biomarker in Dup15q syndrome.In the first study, we recorded spontaneous EEG from children with Dup15q syndrome (n = 11, age-and-IQ-matched children with ASD (n = 10 and age-matched typically developing (TD children (n = 9 and computed relative power in 6 frequency bands for 9 regions of interest (ROIs. Group comparisons were made using a repeated measures analysis of variance. In the second study, we recorded spontaneous EEG from a larger cohort of individuals with Dup15q syndrome (n = 27 across two sites and examined age, epilepsy, and duplication type as predictors of beta power using simple linear regressions.In the first study, spontaneous beta1 (12-20 Hz and beta2 (20-30 Hz power were significantly higher in Dup15q syndrome compared with both comparison groups, while delta (1-4 Hz was significantly lower than both comparison groups. Effect sizes in all three frequency bands were large (|d| > 1. In the second study, we found that beta2 power was significantly related to epilepsy diagnosis in Dup15q syndrome.Here, we have identified an electrophysiological biomarker of Dup15q syndrome that may facilitate clinical stratification, treatment monitoring, and measurement of target engagement for future clinical trials. Future work will investigate the genetic and neural underpinnings of this electrophysiological signature as well as the functional consequences of excessive beta oscillations in Dup15q syndrome.

  7. Unique roles of antisocial personality disorder and psychopathic traits in distress tolerance.

    Science.gov (United States)

    Sargeant, Marsha N; Daughters, Stacey B; Curtin, John J; Schuster, Randi; Lejuez, C W

    2011-11-01

    Previous research indicates that individuals with antisocial personality disorder (ASPD) evidence low distress tolerance, which signifies impaired ability to persist in goal-directed behavior during an aversive situation, and is associated with a variety of poor interpersonal and drug use outcomes. Based on theory and research indicating that psychopathic traits are associated with hypo-reactivity in emotional responding, a unique hypothesis emerges where psychopathic traits should have the opposite effect of ASPD and be related to high levels of distress tolerance. In a sample of 107 substance-dependent patients in an inner-city substance use residential treatment facility, this hypothesis was supported. ASPD was related to lower distress tolerance, while psychopathic traits were related to higher distress tolerance, with each contributing unique variance. Findings are discussed in relation to different presentations of distress tolerance as a function of psychopathic traits among those with an ASPD diagnosis.

  8. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.

    Science.gov (United States)

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-10-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.

  9. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  10. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  11. Electrophysiological Markers of Categorical Perception of Color in 7-Month Old Infants

    Science.gov (United States)

    Clifford, Alexandra; Franklin, Anna; Davies, Ian R. L.; Holmes, Amanda

    2009-01-01

    The origin of color categories has been debated by psychologists, linguists and cognitive scientists for many decades. Here, we present the first electrophysiological evidence for categorical responding to color before color terms are acquired. Event-related potentials were recorded on a visual oddball task in 7-month old infants. Infants were…

  12. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Science.gov (United States)

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  13. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  14. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  15. Female preponderance in atrioventricular node reentrant tachycardia, but no sex related electrophysiological differences

    Directory of Open Access Journals (Sweden)

    Claes Williamsson

    2014-01-01

    Full Text Available The mechanism behind the female preponderance for atrio-ventricular node reentrant tachycardia (AVNRT is not clear. We compared baseline electrophysiological measurements and clinical data in 141 consecutive patients (96 women who underwent successful AVNRT ablation at their fi rst therapeutic procedure. Women had on average 9% higher resting heart rate than men (p<0.05, but were similar in all measures of AV node function. Isoproterenol infusion was required for AVNRT induction in 69 cases (49%, and the need for isoproterenol was associated with lower resting heart rate and longer anterograde and retrograde AV node refractory periods (p<0.05 for comparisons, but not with sex. We conclude that the spectrum of baseline AV node physiology in AVNRT patients is wide, and is similar in men and women. The female preponderance for AVNRT cannot be explained from comparisons of baseline AV node electrophysiological properties.

  16. Distress Tolerance Treatment for Weight Concern in Smoking Cessation Among Women: The WE QUIT Pilot Study.

    Science.gov (United States)

    Bloom, Erika Litvin; Wing, Rena R; Kahler, Christopher W; Thompson, J Kevin; Meltzer, Sari; Hecht, Jacki; Minami, Haruka; Price, Lawrence H; Brown, Richard A

    2017-07-01

    Fear of gaining weight after quitting cigarette smoking is a major barrier to smoking cessation among women. Distress tolerance, which refers to one's ability and willingness to tolerate physical and emotional discomfort, predicts successful behavior change. Novel interventions rooted in Acceptance and Commitment Therapy (ACT) have emerged that aim to increase distress tolerance and engagement in values-oriented behavior. In this study, we developed a 9-week, group-based distress tolerance intervention for weight concern in smoking cessation among women (DT-W). Using an iterative process, we piloted DT-W with two small groups ( n = 4 and n = 7) of female weight-concerned smokers. Results indicated that we successfully established the feasibility and acceptability of DT-W, which was well-attended and well-received. Biochemically verified 7-day point-prevalence abstinence rates at post-intervention, 1, 3, and 6 months were 64%, 36%, 27%, and 27%, respectively. We are now evaluating DT-W in a randomized controlled trial.

  17. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  18. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI.

    Science.gov (United States)

    Parney, Ian F; Goerss, Stephan J; McGee, Kiaran; Huston, John; Perkins, William J; Meyer, Frederic B

    2010-05-01

    Awake craniotomy and electrophysiologic mapping (EPM) is an established technique to facilitate the resection of near eloquent cortex. Intraoperative magnetic resonance imaging (iMRI) is increasingly used to aid in the resection of intracranial lesions. Standard draping protocols in high-field iMRI units make awake craniotomies challenging, and only two groups have previously reported combined EPM and high-field iMRI. We present an illustrative case describing a simple technique for combining awake craniotomy and EPM with high-field iMRI. A movable platter is used to transfer the patient from the operating table to a transport trolley and into the adjacent MRI and still maintaining the patient's surgical position. This system allows excess drapes to be removed, facilitating awake craniotomy. A 57-year-old right-handed man presented with new onset seizures. Magnetic resonance imaging demonstrated a large left temporal mass. The patient underwent an awake, left frontotemporal craniotomy. The EPM demonstrated a single critical area for speech in his inferior frontal gyrus. After an initial tumor debulking, the scalp flap was loosely approximated, the wound was covered with additional drapes, and the excess surrounding drapes were trimmed. An iMRI was obtained. The image-guidance system was re-registered and the patient was redraped. Additional resection was performed, allowing extensive removal of what proved to be an anaplastic astrocytoma. The patient tolerated this well without any new neurological deficits. Standard protocols for positioning and draping in high-field iMRI units make awake craniotomies problematic. This straightforward technique for combined awake EPM and iMRI may facilitate safe removal of large lesions in eloquent cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Electrophysiological signal analysis and visualization using Cloudwave for epilepsy clinical research.

    Science.gov (United States)

    Jayapandian, Catherine P; Chen, Chien-Hung; Bozorgi, Alireza; Lhatoo, Samden D; Zhang, Guo-Qiang; Sahoo, Satya S

    2013-01-01

    Epilepsy is the most common serious neurological disorder affecting 50-60 million persons worldwide. Electrophysiological data recordings, such as electroencephalogram (EEG), are the gold standard for diagnosis and pre-surgical evaluation in epilepsy patients. The increasing trend towards multi-center clinical studies require signal visualization and analysis tools to support real time interaction with signal data in a collaborative environment, which cannot be supported by traditional desktop-based standalone applications. As part of the Prevention and Risk Identification of SUDEP Mortality (PRISM) project, we have developed a Web-based electrophysiology data visualization and analysis platform called Cloudwave using highly scalable open source cloud computing infrastructure. Cloudwave is integrated with the PRISM patient cohort identification tool called MEDCIS (Multi-modality Epilepsy Data Capture and Integration System). The Epilepsy and Seizure Ontology (EpSO) underpins both Cloudwave and MEDCIS to support query composition and result retrieval. Cloudwave is being used by clinicians and research staff at the University Hospital - Case Medical Center (UH-CMC) Epilepsy Monitoring Unit (EMU) and will be progressively deployed at four EMUs in the United States and the United Kingdomas part of the PRISM project.

  20. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    Energy Technology Data Exchange (ETDEWEB)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.; Jakopin, J.; Fidler, V.; Turk, J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combined electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.

  1. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    International Nuclear Information System (INIS)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.; Jakopin, J.; Fidler, V.; Turk, J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combined electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates

  2. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  3. Electrophysiological Correlates of Reading the Single- and Interactive-Mind

    Science.gov (United States)

    Wang, Yi-Wen; Zheng, Yu-Wei; Lin, Chong-De; Wu, Jie; Shen, De-Li

    2011-01-01

    Understanding minds is the cognitive basis of successful social interaction. In everyday life, human mental activity often happens at the moment of social interaction among two or multiple persons instead of only one-person. Understanding the interactive mind of two- or multi-person is more complex and higher than understanding the single-person mind in the hierarchical structure of theory of mind. Understanding the interactive mind maybe differentiate from understanding the single mind. In order to examine the dissociative electrophysiological correlates of reading the single mind and reading the interactive mind, the 64 channels event-related potentials were recorded while 16 normal adults were observing three kinds of Chinese idioms depicted physical scenes, one-person with mental activity, and two- or multi-person with mental interaction. After the equivalent N400, in the 500- to 700-ms epoch, the mean amplitudes of late positive component (LPC) over frontal for reading the single mind and reading the interactive mind were significantly more positive than for physical representation, while there was no difference between the former two. In the 700- to 800-ms epoch, the mean amplitudes of LPC over frontal–central for reading the interactive mind were more positive than for reading the single mind and physical representation, while there was no difference between the latter two. The present study provides electrophysiological signature of the dissociations between reading the single mind and reading the interactive mind. PMID:21845178

  4. Electrophysiological correlates of reading the single- and interactive-mind

    Directory of Open Access Journals (Sweden)

    Yi-Wen eWang

    2011-07-01

    Full Text Available Understanding minds is the cognitive basis of successful social interaction. In everyday life, human mental activity often happens at the moment of social interaction among two or multiple persons instead of only one person. Understanding the interactive mind of two- or multi-person is more complex and higher than understanding the single-person mind in the hierarchical structure of theory-of-mind. Understanding the interactive mind maybe differentiate from understanding the single mind. In order to examine the dissociative electrophysiological correlates of reading the single mind and reading the interactive mind, the 64 channels event-related potentials (ERP were recorded while 16 normal adults were observing three kinds of Chinese idioms depicted physical scenes, one-person with mental activity and two- or multi-person with mental interaction. After the equivalent N400, in the 500- to 700-ms epoch, the mean amplitudes of late positive component (LPC over frontal for reading the single mind and reading the interactive mind were significantly more positive than for physical representation, while there was no difference between the former two. In the 700-to 800-ms epoch, the mean amplitudes of LPC over frontal-central for reading the interactive mind were more positive than for reading the single mind and physical representation, while there was no difference between the latter two. The present study provides electrophysiological signature of the dissociations between reading the single mind and reading the interactive mind.

  5. Conduction disturbances after TAVR: Electrophysiological studies and pacemaker dependency.

    Science.gov (United States)

    Makki, Nader; Dollery, Jenn; Jones, Danielle; Crestanello, Juan; Lilly, Scott

    Permanent pacemaker (PPM) placement occurs in 5-20% of patients after transcatheter aortic valve replacement (TAVR). Although predictors of pacemaker implantation have been established, features that predispose patients to pacemaker utilization on follow up have not been widely reported. We performed a retrospective review of patients undergoing commercial TAVR between 2011 and 2016. We collated patients that underwent in-hospital PPM implantation and had a follow up of at least 3months. Data abstraction was performed for electrophysiological studies (EPS), pacemaker indication, timing, and device interrogation for pacemaker dependency on follow up. A total of 24 patients received in-hospital PPM post-TAVR (14% of total cohort), and mean follow up was 22months. Indications for PPM included resting complete heart block (CHB; 15/24, 63%), left bundle branch block and abnormal electrophysiological study (EPS; 7/24, 29%), alternating bundle branch block (1/24, 4%) and tachy-brady syndrome (1/24, 4%). Pacemaker dependency (underlying ventricular asystole, complete heart block, or >50% pacing) occurred in 8/24 patients (33%) during follow-up, 7 of whom had resting CHB, and one with CHB invoked during EPS. Pacemaker dependency after TAVR is common among those that exhibited CHB, but not among those with a prolonged HV delay during EPS. Although preliminary, these observations are relevant to management of rhythm disturbances after TAVR, and may inform the practice of EPS-based PPM implantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  7. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  8. Scalable Electrophysiology in Intact Small Animals with Nanoscale Suspended Electrode Arrays

    OpenAIRE

    Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Ben W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T.

    2017-01-01

    Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires low-throughput and invasive dissections. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the fi...

  9. Neural ensemble communities: Open-source approaches to hardware for large-scale electrophysiology

    Science.gov (United States)

    Siegle, Joshua H.; Hale, Gregory J.; Newman, Jonathan P.; Voigts, Jakob

    2014-01-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is “open” or “closed”: that is, whether or not the system’s schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614

  10. Behavioral and Electrophysiological Differences in Executive Control between Monolingual and Bilingual Children

    Science.gov (United States)

    Barac, Raluca; Moreno, Sylvain; Bialystok, Ellen

    2016-01-01

    This study examined executive control in sixty-two 5-year-old children who were monolingual or bilingual using behavioral and event-related potentials (ERPs) measures. All children performed equivalently on simple response inhibition (gift delay), but bilingual children outperformed monolinguals on interference suppression and complex response…

  11. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse

    Science.gov (United States)

    Hadas, Itay; Lazarovits, Avi; Alyagon, Uri; Eliraz, Daniel; Zangen, Abraham

    2017-01-01

    Background Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes. Method Subjects lacking previous experience with smartphones (n = 35) were compared to a matched group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG) combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention. Results Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage. Conclusion Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC) excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition. PMID:28678870

  12. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse.

    Directory of Open Access Journals (Sweden)

    Aviad Hadar

    Full Text Available Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes.Subjects lacking previous experience with smartphones (n = 35 were compared to a matched group of heavy smartphone users (n = 16 on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG combined with transcranial magnetic stimulation (TMS over the right prefrontal cortex (rPFC. In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention.Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage.Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition.

  13. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  14. Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals

    NARCIS (Netherlands)

    Zhou, D.; Loon, van J.J.A.; Wang, C.Z.

    2010-01-01

    Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice

  15. Cognitive training and selective attention in the aging brain: an electrophysiological study.

    Science.gov (United States)

    O'Brien, Jennifer L; Edwards, Jerri D; Maxfield, Nathan D; Peronto, Carol L; Williams, Victoria A; Lister, Jennifer J

    2013-11-01

    Age-related deficits in selective attention are hypothesized to result from decrements in inhibition of task-irrelevant information. Speed of processing (SOP) training is an adaptive cognitive intervention designed to enhance processing speed for attention tasks. The effectiveness of SOP training to improve cognitive and everyday functional performance is well documented. However, underlying mechanisms of these training benefits are unknown. Participants completed a visual search task evaluated using event-related potentials (ERPs) before and after 10 weeks of SOP training or no contact. N2pc and P3b components were evaluated to determine SOP training effects on attentional resource allocation and capacity. Selective attention to a target was enhanced after SOP training compared to no training. N2pc and P3b amplitudes increased after training, reflecting attentional allocation and capacity enhancement, consistent with previous studies demonstrating behavioral improvements in selective attention following SOP training. Changes in ERPs related to attention allocation and capacity following SOP training support the idea that training leads to cognitive enhancement. Specifically, we provide electrophysiological evidence that SOP training may be successful in counteracting age-related declines in selective attention. This study provides important evidence of the underlying mechanisms by which SOP training improves cognitive function in older adults. Published by Elsevier Ireland Ltd.

  16. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  17. [Biofeedback in psychomotor training. Electrophysiological bases].

    Science.gov (United States)

    Bazanova, O M; Mernaia, E M; Shtark, M B

    2008-05-01

    Comparison of influence of usual musical practice and the same trainings but using biofeedback on electrophysiological and psychological markers of optimal psychomotor functioning in 39 students-musicians revealed that the obvious musical practice caused psychomotor pressure in most students (with initially low individual alpha peak frequency), whereas similar practice combined with an individualized session of alpha-EEG/EMG biofeedback was accompanied by increase of alpha-activity in all examinees and a decrease (reduction) of integrated EMG that indicated reaching of optimal psychomotor functioning. It appears that the psychomotor learning ability depends on the baseline individual alpha-activity. Individual alpha peak frequency was associated with fluency and efficiency of psychomotor performance, individual alpha band width--with plasticity and creativity, individual amount of alpha suppression in response to opening eyes--with the level of selfactualization. These alpha activity EEG indices correlated with efficiency of the biofeedback training.

  18. Crafting tolerance

    DEFF Research Database (Denmark)

    Kirchner, Antje; Freitag, Markus; Rapp, Carolin

    2011-01-01

    Ongoing changes in social structures, orientation, and value systems confront us with the growing necessity to address and understand transforming patterns of tolerance as well as specific aspects, such as social tolerance. Based on hierarchical analyses of the latest World Values Survey (2005......–08) and national statistics for 28 countries, we assess both individual and contextual aspects that influence an individual's perception of different social groupings. Using a social tolerance index that captures personal attitudes toward these groupings, we present an institutional theory of social tolerance. Our...

  19. period-Regulated Feeding Behavior and TOR Signaling Modulate Survival of Infection.

    Science.gov (United States)

    Allen, Victoria W; O'Connor, Reed M; Ulgherait, Matthew; Zhou, Clarice G; Stone, Elizabeth F; Hill, Vanessa M; Murphy, Keith R; Canman, Julie C; Ja, William W; Shirasu-Hiza, Mimi M

    2016-01-25

    Most metazoans undergo dynamic, circadian-regulated changes in behavior and physiology. Currently, it is unknown how circadian-regulated behavior impacts immunity against infection. Two broad categories of defense against bacterial infection are resistance, control of microbial growth, and tolerance, control of the pathogenic effects of infection. Our study of behaviorally arrhythmic Drosophila circadian period mutants identified a novel link between nutrient intake and tolerance of infection with B. cepacia, a bacterial pathogen of rising importance in hospital-acquired infections. We found that infection tolerance in wild-type animals is stimulated by acute exposure to dietary glucose and amino acids. Glucose-stimulated tolerance was induced by feeding or direct injection; injections revealed a narrow window for glucose-stimulated tolerance. In contrast, amino acids stimulated tolerance only when ingested. We investigated the role of a known amino-acid-sensing pathway, the TOR (Target of Rapamycin) pathway, in immunity. TORC1 is circadian regulated and inhibition of TORC1 decreased resistance, as in vertebrates. Surprisingly, inhibition of the less well-characterized TOR complex 2 (TORC2) dramatically increased survival, through both resistance and tolerance mechanisms. This work suggests that dietary intake on the day of infection by B. cepacia can make a significant difference in long-term survival. We further demonstrate that TOR signaling mediates both resistance and tolerance of infection and identify TORC2 as a novel potential therapeutic target for increasing survival of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The influence of object and background color manipulations on the electrophysiological indices of recognition memory.

    Science.gov (United States)

    Ecker, Ullrich K H; Zimmer, Hubert D; Groh-Bordin, Christian

    2007-12-14

    In a recognition memory experiment, the claim was tested that intrinsic object features contribute to familiarity, whereas extrinsic context features do not. We used the study-test manipulation of color to investigate the perceptual specificity of ERP old-new effects associated with familiarity and recollection. Color was either an intrinsic surface feature of the object or a feature of the surrounding context (a frame encasing the object); thus, the same feature was manipulated across intrinsic/extrinsic conditions. Subjects performed a threefold (same color/different color/new object) decision, making feature information task-relevant. Results suggest that the intrinsic manipulation of color affected the mid-frontal old-new effect associated with familiarity, while this effect was not influenced by extrinsic manipulation. This ERP pattern could not be explained by basic behavioral performance differences. It is concluded that familiarity can be perceptually specific with regard to intrinsic information belonging to the object. The putative electrophysiological signature of recollection - a late parietal old-new effect - was not present in the data, and reasons for this null effect are discussed.

  1. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones

    Science.gov (United States)

    William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig

    2005-01-01

    We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...

  2. Electrophysiological evidence of atypical processing underlying mental set shifting in ecstasy polydrug and polydrug users.

    Science.gov (United States)

    Roberts, Carl A; Fairclough, Stephen H; McGlone, Francis P; Fisk, John E; Montgomery, Catharine

    2013-12-01

    Executive functioning deficits are reported in ecstasy users. However research into mental set switching has been equivocal, with behavioral studies suggesting the function is preserved. The current study sought to address the issue of switching deficits in ecstasy users by combining behavioral performance with electrophysiological correlates (electroencephalography; EEG). Twenty ecstasy polydrug users, 20 nonecstasy polydrug users, and 20 drug naive controls were recruited. Participants completed questionnaires about their drug use, sleep quality, fluid intelligence, and current mood state. Each participant completed a mental set switching task (the number-letter task) while EEG measures were recorded. Analysis of variance (ANOVA) revealed no between-group differences on performance of the task; however a regression suggested that ecstasy use was a significant predictor for performance, after controlling for cannabis use. Mixed ANOVA revealed a significant effect of group on the P3, with significant differences between both drug groups and naives. There was also an interaction between electrode and group on the P2 component, with ecstasy users differing from both other groups. On the P3 component the results suggest a reduction in positivity at parieto-occipital electrodes for drug users compared to controls. Furthermore a significant increase in negativity in ecstasy users compared to control groups could be observed in several occipito-parietal electrodes at an N2 component as well as observable atypicalities in early processing (P2) displayed by ecstasy users and polydrug controls. The present study provides evidence of atypical processing of attentional shifting in ecstasy and polydrug users. Deficits in this executive function could reflect cognitive inflexibility and paucity of rapid behavioral adjustment, which may be problematic in real world situations.

  3. Occupational stress and suicidality among firefighters: Examining the buffering role of distress tolerance.

    Science.gov (United States)

    Stanley, Ian H; Boffa, Joseph W; Smith, Lia J; Tran, Jana K; Schmidt, N Brad; Joiner, Thomas E; Vujanovic, Anka A

    2018-05-24

    Past research indicates that firefighters are at increased risk for suicide. Firefighter-specific occupational stress may contribute to elevated suicidality. Among a large sample of firefighters, this study examined if occupational stress is associated with multiple indicators of suicide risk, and whether distress tolerance, the perceived and/or actual ability to endure negative emotional or physical states, attenuates these associations. A total of 831 firefighters participated (mean [SD] age = 38.37y[8.53y]; 94.5% male; 75.2% White). The Sources of Occupational Stress-14 (SOOS-14), Distress Tolerance Scale (DTS), and Suicidal Behaviors Questionnaire-Revised (SBQ-R) were utilized to examine firefighter-specific occupational stress, distress tolerance, and suicidality, respectively. Consistent with predictions, occupational stress interacted with distress tolerance, such that the effects of occupational stress on suicide risk, broadly, as well as lifetime suicide threats and current suicidal intent, specifically, were attenuated at high levels of distress tolerance. Distress tolerance may buffer the effects of occupational stress on suicidality among firefighters. Pending replication, findings suggest that distress tolerance may be a viable target for suicide prevention initiatives within the fire service. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Tolerance to non-opioid analgesics is opioid-sensitive in nucleus raphe magnus

    Directory of Open Access Journals (Sweden)

    Merab G Tsagareli

    2011-07-01

    Full Text Available Repeated injection of opioid analgesics can lead to a progressive loss of its effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs in the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM in the following four days result in progressively less antinociception, i.e. produce the development of tolerance to these drugs in mail rats. Special control experiments showed that post-treatment with μ-opioid antagonist naloxone in NRM significantly decreased antinociceptive effects of NSAIDs at the first day in behavioral tail flick reflex (TF and hot plate (HP latencies. At the second day, naloxone generally had trend effects in both TF and HP tests impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion on endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.

  5. Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent.

    Science.gov (United States)

    Yang, Zhi-fang; Li, Ci-zhen; Wang, Wei; Chen, Ying-min; Zhang, Ying; Liu, Yuan-mou; Wang, Hong-wei

    2011-03-01

    To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone. Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells. Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (V(max)) of the fAP by 24.4%, and Na(+) current (I(Na)) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and V(max) of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca(2+) current (I(CaL)) and the K(+) tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and V(max) of the fAP and sAP, and both slowed the automatic heart rate. Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit I(Na), I(CaL), and I(Kr) currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.

  6. Novel electrophysiological approaches to clinical epilepsy. Diagnosis and treatment

    International Nuclear Information System (INIS)

    Kanazawa, Kyoko; Matsumoto, Riki; Ikeda, Akio; Kinoshita, Masako

    2011-01-01

    Seizure onset zone (SOZ) is currently defined by ictal epileptiform discharges, which are most commonly recorded as regional low-voltage fast waves or repetitive spikes. Interictal epileptiform discharges, on the other hand, are not specific enough for SOZ as they are recorded at zones other than the SOZ; they are also recorded from areas that do not generate the ictal pattern and from areas to which ictal discharges propagate. Besides spikes and sharp waves, a novel index of human epileptogenicity has been investigated in association with wide-band electroencephalography (EEG) analysis. We primarily noted the following during clinical neurophysiological analysis for clinical epilepsy. Recent development of digital EEG technology enabled us to record wide-band EEG in a clinical setting. Thus, high frequency (>200 Hz) and low frequency (<1 Hz) components can be reliably recorded using subdural electrodes. Direct current shift, slow shift, ripple, and fast ripple can be well delineated, and they will be potentially useful in the diagnosis and management of epileptic patients. Fiber tractography (morphological parameter) and cortico-cortical-evoked potentials with single cortical stimulation (electrophysiological parameter) elucidated cortico-cortical connections in human brain. The data thus obtained can help us understand the mechanism of seizure propagation and normal cortical functional connectivity. Non-invasive simultaneous recording of EEG and functional magnetic resonance imaging (fMRI) provided information on the roles of deep brain structures associated with scalp-recorded epileptiform discharges. Interventional neurophysiology can shed light on the non-pharmacological treatment of epilepsy. In this report, we discuss these novel electrophysiological approaches to the diagnosis and treatment of clinical epilepsy. (author)

  7. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    Science.gov (United States)

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  8. TOLERANCE AS A PROFESSIONALIZATION FACTOR OF NURSES IN PSYCHIATRY

    Directory of Open Access Journals (Sweden)

    Irina Vyacheslavovna Klimentova

    2016-02-01

    Full Text Available Nurses in psychiatric service are a special group of nursing professionals. Their individualization is due to the specific needs of their patients who have increased level of aggressiveness, behavioral and communicative deviations and problems in self-service. These patients’ quality factors increase the risks of medical staff intolerance. As mechanisms of intolerance decrease some specific mechanisms of tolerance are developed in professional nursing practices. These include specific corporative standards, religious practices and forms of group action.Staff members can approve, ignore or condemn intolerance towards patients, the regulatory basis for this position at the level of subcultural organizational standards meaning the application of moral sanctions to an offender. Active inclusion of religious affiliations in the life of psychiatric healthcare institutions allows external moral arbitrator to enter professional space influencing both the behavior of professionals and the system of moral standards. Specificity of nursing profession in psychiatry requires additional means of inprofessionalization and professional improvement which are spontaneous practices of mentoring (guidance in psychiatric hospital. All the mechanisms of tolerance increase hold professional community of nurses in psychiatry together.

  9. Effect of olanzapine combined with modified electroconvulsive therapy on cytokines, sTNFRs and neural electrophysiological characteristics in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2016-12-01

    Full Text Available Objective: To analyze the effect of olanzapine combined with modified electroconvulsive therapy on cytokines, sTNFRs and neural electrophysiological characteristics in patients with schizophrenia. Methods: Patients with schizophrenia treated in our hospital between March 2013 and March 2016 were selected and randomly divided into two groups, the observation group received olanzapine combined with modified electroconvulsive therapy, and the control group received olanzapine therapy. After 6 weeks of treatment, serum levels of soluble tumor necrosis factor receptor (sTNFR, acute phase reaction proteins and brain function indexes as well as the neural electrophysiological characteristics were compared between the two groups. Results: After 6 weeks of treatment, serum sTNFRs, CRP, CER and AAG content of observation group were lower than those of control group while TRF content was higher than that of control group; serum brain function indexes NGF and BDNF content were higher than those of control group while GFAP, S100B, NSE and Hcy content were lower than those of control group; nerve electrophysiology indexes P300, LPP and ERN amplitude were higher than those of control group while LPP amplitude was lower than that of control group. Conclusions: Olanzapine combined with modified electroconvulsive therapy can optimize the condition of schizophrenia, reduce the abnormal degree of nerve electrophysiology and help to improve treatment outcome.

  10. Clinical, Electrophysiological, and Serological Evaluation of Patients with Cramp-Fasciculation Syndrome.

    Science.gov (United States)

    Poyraz, Mürüvvet; Matur, Zeliha; Aysal, Fikret; Tüzün, Erdem; Hanoğlu, Lütfü; Öge, A Emre

    2017-06-01

    Cramp-fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability syndrome. There are only a few reports on clinical and serological profile of a CFS cohort that was followed up by a single outpatient clinic. Clinical, electrophysiological, and serological features of 6 CFS patients (5 men, 1 woman; 27-65 years old) were investigated. All patients presented with cramps, fasciculations, muscle pain, and autonomic symptoms, and 2 also reported numbness and burning sensation in limbs, suggestive of neuropathic pain. Antibodies to uncharacterized voltage-gated potassium channel (VGKC)-complex proteins were found in 2 patients and to contactin-associated protein-like 2 (CASPR2) in 1 patient. None of the patients had a tumor. Most of the patients revealed prolonged after-discharges following tibial nerve stimulation. Nerve conduction studies and R-R interval variability tests were normal, whereas sympathetic skin responses were increased in amplitude in 3 seronegative patients. Five patients showed favorable response to carbamazepine or pregabalin treatment, whereas 1 VGKC-antibody-positive patient was resistant to carbamazepine and immunosuppressant treatment. Neuropathic pain and VGKC-complex antibodies may be encountered in CFS patients. Although autonomic symptoms are commonly found in CFS, routine autonomic system tests which are done in electrophysiology laboratories might yield normal results.

  11. Compromise and Toleration

    DEFF Research Database (Denmark)

    Rostbøll, Christian F.

    Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature, justifi...... in compromise are more stringent than those for being tolerated. Still, the limits of compromise cannot be drawn to narrowly if it is to remain its value as a form of agreement that respects and embodies the differences of opinion in society.......Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature......, justification, and limits of compromise if we see it merely as a matter of toleration. While toleration is mainly a matter of accepting citizens' equal right to co-existence as subjects to law, political compromise includes the parties in making law – it makes them co-authors of law. Toleration entails...

  12. Impact of KChIP2 on Cardiac Electrophysiology and the Progression of Heart Failure

    DEFF Research Database (Denmark)

    Grubb, Søren; Callø, Kirstine; Thomsen, Morten B

    2012-01-01

    Electrophysiological remodeling of cardiac potassium ion channels is important in the progression of heart failure. A reduction of the transient outward potassium current (I(to)) in mammalian heart failure is consistent with a reduced expression of potassium channel interacting protein 2 (KChIP2...

  13. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  14. Supervisor tolerance-responsiveness to substance abuse and workplace prevention training: use of a cognitive mapping tool.

    Science.gov (United States)

    Bennett, Joel B; Lehman, Wayne E K

    2002-02-01

    Supervisor tolerance-responsiveness, referring to the attitudes and behaviors associated with either ignoring or taking proactive steps with troubled employees, was investigated in two studies. The studies were conducted to help examine, understand and improve supervisor responsiveness to employee substance abuse. Study 1 examined supervisor response to and tolerance of coworker substance use and ways of interfacing with the Employee Assistance Program (EAP) in two workplaces (n = 244 and 107). These surveys suggested that engaging supervisors in a dialogue about tolerance might improve their willingness to use the EAP. Study 2 was a randomized control field experiment that assessed a team-oriented training. This training adopted a cognitive mapping technique to help improve supervisor responsiveness. Supervisors receiving this training (n = 29) were more likely to improve on several dimensions of responsiveness (e.g. likely to contact the EAP) than were supervisors who received a more didactic, informational training (n = 23) or a no-training control group (n = 17). Trained supervisors also showed increases in their own help-seeking behavior. Procedures and maps from the mapping activity (two-stage conversational mapping) are described. Overall, results indicate that while supervisor tolerance of coworker substance use inhibits EAP utilization, it may be possible to address this tolerance using team-oriented prevention training in the work-site.

  15. Teaching Tolerance? Associational Diversity and Tolerance Formation

    DEFF Research Database (Denmark)

    Rapp, Carolin; Freitag, Markus

    2015-01-01

    , a closer look is taken at how associational diversity relates to the formation of tolerance and the importance of associations as schools of tolerance are evaluated. The main theoretical argument follows contact theory, wherein regular and enduring contact in diverse settings reduces prejudice and thereby...

  16. Database mirroring in fault-tolerant continuous technological process control

    Directory of Open Access Journals (Sweden)

    R. Danel

    2015-10-01

    Full Text Available This paper describes the implementations of mirroring technology of the selected database systems – Microsoft SQL Server, MySQL and Caché. By simulating critical failures the systems behavior and their resilience against failure were tested. The aim was to determine whether the database mirroring is suitable to use in continuous metallurgical processes for ensuring the fault-tolerant solution at affordable cost. The present day database systems are characterized by high robustness and are resistant to sudden system failure. Database mirroring technologies are reliable and even low-budget projects can be provided with a decent fault-tolerant solution. The database system technologies available for low-budget projects are not suitable for use in real-time systems.

  17. A strategy to measure electrophysiological changes with photoacoustic imaging (Conference Presentation)

    Science.gov (United States)

    Sepela, Rebecka J.; Sherlock, Benjamin E.; Tian, Lin; Marcu, Laura; Sack, Jon

    2017-03-01

    Photoacoustic imaging is an emerging technology capable of both functional and structural biological imaging. Absorption and scattering in tissue limit the penetration depth of conventional microscopy techniques to live cell imaging. This technology could permit photoacoustic imaging of electrophysiological dynamics in deep tissue, such as the brain. Further optimization of this technology could lead to concurrent imaging of neural activity and hemodynamic responses, a crucial step towards understanding neurovascular coupling in the brain.

  18. Tolerance of Snakes to Hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Sensitivity of carotid blood flow to +Gz (head-to-tail) acceleration was studied in six species of snakes hypothesized to show varied adaptive cardiovascular responses to gravity. Blood flow in the proximal carotid artery was measured in 15 snakes before, during and following stepwise increments of +0.25Gz force produced on a 2.4 m diameter centrifuge. During centrifugation each snake was confined to a straight position within an individually- fitted acrylic tube with the head facing the center of rotation. We measured the centrifugal force at the tail of the snake in order to quantify the maximum intensity of force gradient promoting antero-posterior pooling of blood. Tolerance to increased gravity was quantified as the acceleration force at which carotid blood flow ceased. This parameter varied according to the gravitational adaptation of species defined by their ecology and behavior. At the extremes, carotid blood flow decreased in response to increasing gravity and approached zero near +1Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2Gz. Surprisingly, tolerant (arboreal) species withstood hypergravic forces of +2 to +3 G. for periods up to 1 h without cessation of carotid blood flow or apparent loss of consciousness. Data suggest that relatively tight skin of the tolerant species provides a natural antigravity suit which is of prime importance in counteracting Gz stress on blood circulation.

  19. Stimfit: quantifying electrophysiological data with Python

    Directory of Open Access Journals (Sweden)

    Segundo Jose Guzman

    2014-02-01

    Full Text Available Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals.

  20. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2004-01-01

    BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S

  1. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  2. A theory of drug tolerance and dependence I: a conceptual analysis.

    Science.gov (United States)

    Peper, Abraham

    2004-08-21

    A mathematical model of drug tolerance and its underlying theory is presented. The model extends a first approach, published previously. The model is essentially more complex than the generally used model of homeostasis, which is demonstrated to fail in describing tolerance development to repeated drug administrations. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary only in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behavior to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes. In addition, it establishes a relation between the drug dose at any moment, and the resulting drug effect and relates the magnitude of the reactions following withdrawal to the rate of tolerance and other parameters involved in the tolerance process. The present paper analyses the concept behind the model. The next paper discusses the mathematical model.

  3. Electrophysiology Catheter-Facilitated coronary sinus cannulation and implantation of cardiac resynchronization therapy systems

    Directory of Open Access Journals (Sweden)

    Antonis S. Manolis, MD, FESC, FACC, FHRS

    2018-01-01

    Full Text Available Background: Cardiac resynchronization therapy (CRT device implantation is hampered by difficult placement of the left ventricular (LV lead. We have routinely used a steerable electrophysiology catheter to guide coronary sinus (CS cannulation and facilitate LV lead positioning. The aim of this prospective study is to present our results with this approach in 138 consecutive patients receiving a CRT device over 10 years. Methods: The study included 120 men and 18 women, aged 64.8±11.4 years, with coronary disease (n=63, cardiomyopathy (n=72, or other disease (n=3, and mean ejection fraction of 24.5±4.5%. Devices were implanted for refractory heart failure and dyssynchrony, all but 2 in the presence of left bundle branch block. Implanted devices included biventricular pacemakers (CRT-P (n=33 and cardioverter defibrillators (CRT-D (n=105. Results: Using the electrophysiology catheter, the CS could be engaged in 134 (97.1% patients. In 4 patients failing CS cannulation, a dual-chamber device was implanted in 2, and bifocal right ventricular pacing was effected in 2. Bifocal (n=2 or conventional (n=1 systems were implanted in another 3 patients, in whom the LV lead got dislodged (n=2 or removed because of local dissection (n=1. Thus, finally, a CRT system was successfully established in 131 (94.9% patients. There were 3 patients with CS dissection, of whom 1 was complicated by cardiac tamponade managed with pericardiocentesis. There were no perioperative deaths. During follow-up (31.0±21.2 months, clinical improvement was reported by 108 (82.4% patients. Conclusion: Routine use of an electrophysiology catheter greatly facilitated CS cannulation and successful LV lead placement in ∼95% of patients undergoing CRT system implantation. Keywords: heart failure, cardiac resynchronization therapy, implantable cardioverter defibrillator, coronary sinus, left ventricular lead

  4. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    Science.gov (United States)

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  5. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging.

    Science.gov (United States)

    Eugene, Andy R; Masiak, Jolanta

    2016-06-01

    Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.

  6. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  7. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior.

    Directory of Open Access Journals (Sweden)

    Jose V Die

    Full Text Available To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature. Proteins were extracted from leaves of non-acclimated (NA and cold acclimated (CA plants of the hardier thermonastic species, R. catawbiense (Cata., and from leaves of cold acclimated plants of the less hardy, non-thermonastic R. ponticum (Pont.. All three protein samples (Cata.NA, Cata.CA, and Pont.CA were labeled with different CyDyes and separated together on a single gel. Triplicate gels were run and protein profiles were compared resulting in the identification of 72 protein spots that consistently had different abundances in at least one pair-wise comparison. From the 72 differential spots, we chose 56 spots to excise and characterize further by mass spectrometry (MS. Changes in the proteome associated with the seasonal development of cold acclimation were identified from the Cata.CA-Cata.NA comparisons. Differentially abundant proteins associated with the acquisition of superior freezing tolerance and with the thermonastic response were identified from the Cata.CA-Pont.CA comparisons. Our results indicate that cold acclimation in rhododendron involves increases in abundance of several proteins related to stress (freezing/desiccation tolerance, energy and carbohydrate metabolism, regulation/signaling, secondary metabolism (possibly involving cell wall remodeling, and permeability of the cell membrane. Cold acclimation also involves decreases in abundance of several proteins involved in photosynthesis. Differences in freezing tolerance between genotypes can probably be attributed to observed differences in levels of proteins involved in these functions. Also

  8. Electrophysiological correlates of mental navigation in blind and sighted people.

    Science.gov (United States)

    Kober, Silvia Erika; Wood, Guilherme; Kampl, Christiane; Neuper, Christa; Ischebeck, Anja

    2014-10-15

    The aim of the present study was to investigate functional reorganization of the occipital cortex for a mental navigation task in blind people. Eight completely blind adults and eight sighted matched controls performed a mental navigation task, in which they mentally imagined to walk along familiar routes of their hometown during a multi-channel EEG measurement. A motor imagery task was used as control condition. Furthermore, electrophysiological activation patterns during a resting measurement with open and closed eyes were compared between blind and sighted participants. During the resting measurement with open eyes, no differences in EEG power were observed between groups, whereas sighted participants showed higher alpha (8-12Hz) activity at occipital sites compared to blind participants during an eyes-closed resting condition. During the mental navigation task, blind participants showed a stronger event-related desynchronization in the alpha band over the visual cortex compared to sighted controls indicating a stronger activation in this brain region in the blind. Furthermore, groups showed differences in functional brain connectivity between fronto-central and parietal-occipital brain networks during mental navigation indicating stronger visuo-spatial processing in sighted than in blind people during mental navigation. Differences in electrophysiological parameters between groups were specific for mental navigation since no group differences were observed during motor imagery. These results indicate that in the absence of vision the visual cortex takes over other functions such as spatial navigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.

    Science.gov (United States)

    Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio

    2008-11-15

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.

  10. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  11. A comparison of neuronal growth cone and cell body membrane: electrophysiological and ultrastructural properties.

    Science.gov (United States)

    Guthrie, P B; Lee, R E; Kater, S B

    1989-10-01

    This study investigated a broad set of general electrophysiological and ultrastructural features of growth cone and cell body membrane of individual neurons where membrane from different regions of the same neuron can be directly compared. Growth cones were surgically isolated from identified adult Helisoma neurons in culture and compared with the cell body using whole-cell patch-clamp recording techniques. All isolated growth cones generated overshooting regenerative action potentials. Five neurons (buccal neurons B4, B5, and B19; pedal neurons P1 and P5) were selected that displayed distinctive action potential waveforms. In all cases, the growth cone action potential was indistinguishable from the cell body action potential and different from growth cones from other identified neurons. Two of these neurons (B5 and B19) were studied further using voltage-clamp procedures; growth cones and cell bodies again revealed major similarities within one neuron type and differences between neuron types. The only suggested difference between the growth cone and cell body was an apparent reduction in the magnitude of the A-current in the growth cone. Peak inward and outward current densities, as with other electrophysiological features, were different between neuron types, but were, again, similar between the growth cone and the cell body of the same neuron. Freeze-fracture analysis of intramembraneous particles (IMPs) was also performed on identified regions of the same neuron in culture. Both the density and the size distribution of IMPs were the same in growth cone, cell body, and neurite membranes. In these general electrophysiological and ultrastructural characteristics, therefore, growth cone membranes appear to retain the identity of the parent neuron cell body membrane.

  12. Multiscale electrophysiology format: an open-source electrophysiology format using data compression, encryption, and cyclic redundancy check.

    Science.gov (United States)

    Brinkmann, Benjamin H; Bower, Mark R; Stengel, Keith A; Worrell, Gregory A; Stead, Matt

    2009-01-01

    Continuous, long-term (up to 10 days) electrophysiological monitoring using hybrid intracranial electrodes is an emerging tool for presurgical epilepsy evaluation and fundamental investigations of seizure generation. Detection of high-frequency oscillations and microseizures could provide valuable insights into causes and therapies for the treatment of epilepsy, but requires high spatial and temporal resolution. Our group is currently using hybrid arrays composed of up to 320 micro- and clinical macroelectrode arrays sampled at 32 kHz per channel with 18-bits of A/D resolution. Such recordings produce approximately 3 terabytes of data per day. Existing file formats have limited data compression capabilities, and do not offer mechanisms for protecting patient identifying information or detecting data corruption during transmission or storage. We present a novel file format that employs range encoding to provide a high degree of data compression, a three-tiered 128-bit encryption system for patient information and data security, and a 32-bit cyclic redundancy check to verify the integrity of compressed data blocks. Open-source software to read, write, and process these files are provided.

  13. PSYCHOLOGICAL MODEL OF THE DEVELOPMENT OF COMMUNICATIVE TOLERANCE OF STUDENTS - FUTURE MEDICAL WORKERS

    Directory of Open Access Journals (Sweden)

    Daria Romanovna Pleshakova

    2015-12-01

    Full Text Available The article is devoted to studying the phenomenon of communicative tolerance. Possession of communicative tolerance skills has a positive effect on the success of medicine workers professional communication.Purpose. To characterize the phenomenon of communicative tolerance in terms of its structure and to present psychological model of communicative tolerance of students as future medical workers.The method and methodology of the work: the theoretical analysis of literature on the study’s issue; modeling of a diagnosis program and program of personality development of students; analysis, synthesis and systematization of data obtained during the studyResults: the author proposed his own understanding of the phenomenon of communicative tolerance. The author specifies the main psychological and pedagogical conditions conducive to the successful implementation of developmental program. There are components which are isolated and characterized in the structure of the phenomenon of communicative tolerance: motivational, cognitive, moral, emotional and volitional, the reflexive, behavioral, according to which the blocks of developmental program of communicative tolerance are emphasized, also the main goals, which have to be fulfilled within the block of the developmental program, are pointed out. The performance index of developmental program is formulated.Application of the results: data contained in the paper can be used in further studies on the issue of communicative tolerance, as well as will become the basis of creating the developmental program of communicative tolerance of students as future medical workers.

  14. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.

    Science.gov (United States)

    Siegle, Joshua H; López, Aarón Cuevas; Patel, Yogi A; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard 'open-loop' visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  15. Brain imaging and electrophysiology biomarkers: is there a role in poverty and education outcome research?

    Science.gov (United States)

    Pavlakis, Alexandra E; Noble, Kimberly; Pavlakis, Steven G; Ali, Noorjahan; Frank, Yitzchak

    2015-04-01

    Prekindergarten educational interventions represent a popular approach to improving educational outcomes, especially in children from poor households. Children from lower socioeconomic groups are at increased risk for delays in cognitive development that are important for school success. These delays, which may stem from stress associated with poverty, often develop before kindergarten. Early interventions have been proposed, but there is a need for more information on effectiveness. By assessing socioeconomic differences in brain structure and function, we may better be able to track the neurobiologic basis underlying children's cognitive improvement. We conducted a review of the neuroimaging and electrophysiology literature to evaluate what is known about differences in brain structure and function as assessed by magnetic resonance imaging and electrophysiology and evoked response potentials among children from poor and nonpoor households. Differences in lower socioeconomic groups were found in functional magnetic resonance imaging, diffusion tensor imaging, and volumetric magnetic resonance imaging as well as electroencephalography and evoked response potentials compared with higher socioeconomic groups. The findings suggest a number of neurobiologic correlates for cognitive delays in children who are poor. Given this, we speculate that magnetic resonance imaging and electrophysiology parameters might be useful as biomarkers, after more research, for establishing the effectiveness of specific prekindergarten educational interventions. At the very least, we suggest that to level the playing field in educational outcomes, it may be helpful to foster communication and collaboration among all professionals involved in the care and education of children. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Remember Tolerance Differently

    DEFF Research Database (Denmark)

    Tønder, Lars

    2012-01-01

    This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history, not by inv......This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history......, not by invoking a critique external to contemporary democratic theory, but by witnessing the history of tolerance paraliptically, with an eye to what it obscures and yet presupposes....

  17. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  18. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    Science.gov (United States)

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  19. The value of adrenaline in the induction of supraventricular tachycardia in the electrophysiological laboratory.

    Science.gov (United States)

    Cismaru, Gabriel; Rosu, Radu; Muresan, Lucian; Puiu, Mihai; Andronache, Marius; Hengan, Erika; Ispas, Daniel; Gusetu, Gabriel; Pop, Dana; Mircea, Petru Adrian; Zdrenghea, Dumitru

    2014-11-01

    The most commonly used drug for the facilitation of supraventricular tachycardia (SVT) induction in the electrophysiological (EP) laboratory is isoprenaline. Despite isoprenaline's apparent indispensability, availability has been problematic in some European countries. Alternative sympatomimethic drugs such as adrenaline have therefore been tried. However, no studies have determined the sensitivity and specificity of adrenaline for the induction of SVT. The objective of this study was to determine the sensitivity and specificity of adrenaline for the induction of SVT. Between February 2010 and July 2013, 336 patients underwent an EP study for prior documented SVT. In 66 patients, adrenaline was infused because tachycardia was not induced under basal conditions. This group was compared with 30 control subjects with no history of SVT. Programmed atrial stimulation was carried out during baseline state and repeated after an infusion of adrenaline (dose ranging from 0.05 mcg/kgc to 0.3 mcg/kgc). The endpoint was the induction of SVT. Among 66 patients with a history of SVT but no induction under basal conditions, adrenaline facilitated induction in 54 patients (82%, P Adrenaline was generally well tolerated, except for two patients (3.0%), where it had to be discontinued due to headache and high blood pressure or lumbar pain. Adrenaline infusion has a high sensitivity (82%) and specificity (100%) for the induction of SVT in patients with prior documented SVT. Therefore, it could serve as an acceptable alternative to isoprenaline, when the latter is not available. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  20. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  1. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cíntia Lacerda Ramos

    2013-09-01

    Full Text Available Sixty six indigenous Saccharomyces cerevisiae strains were evaluated in stressful conditions (temperature, osmolarity, sulphite and ethanol tolerance and also ability to flocculate. Eighteen strains showed tolerant characteristics to these stressful conditions, growing at 42 ºC, in 0.04% sulphite, 1 mol L-1 NaCl and 12% ethanol. No flocculent characteristics were observed. These strains were evaluated according to their fermentative performance in sugar cane juice. The conversion factors of substrates into ethanol (Yp/s, glycerol (Yg/s and acetic acid (Yac/s, were calculated. The highest values of Yp/s in sugar cane juice fermentation were obtained by four strains, one isolated from fruit (0.46 and the others from sugar cane (0.45, 0.44 and 0.43. These values were higher than the value obtained using traditional yeast (0.38 currently employed in the Brazilian bioethanol industry. The parameters Yg/s and Yac/s were low for all strains. The UFLA FW221 presented the higher values for parameter related to bioethanol production. Thus, it was tested in co-culture with Lactobacillus fermentum. Besides this, a 20-L vessel for five consecutive batches of fermentation was performed. This strain was genetically stable and remained viable during all batches, producing high amounts of ethanol. The UFLA FW221 isolated from fruit was suitable to produce bioethanol in sugar cane juice. Therefore, the study of the biodiversity of yeasts from different environmental can reveal strains with desired characteristics to industrial applications.

  2. How Investor Perceptions Drive Actual Trading and Risk-Taking Behavior

    NARCIS (Netherlands)

    Hoffmann, A.O.I.; Post, T.; Pennings, J.M.E.

    2015-01-01

    Recent work in behavioral finance showed how investors’ perceptions (i.e., return expectations, risk tolerance, and risk perception) affect hypothetical trading and risk-taking behavior. However, are such perceptions also capable of explaining actual trading and risktaking behavior? To answer this

  3. Electrophysiological and neurochemical changes in the rat hippocampus after in vitro and in vivo treatments with cocaine

    International Nuclear Information System (INIS)

    Yasuda, R.P.

    1986-01-01

    The in vitro and in vivo effects of cocaine in the noradrenergic pathway in the rat hippocampus were examined. Although the blockade of [ 3 H]-norepinephrine-uptake by cocaine has been well-characterized in both the central and peripheral nervous systems, investigations characterizing the electrophysiological effects of cocaine in the central nervous system have been limited. The first part of this thesis examines the relationship between the ability of cocaine to potentiate the electrophysiological response to norepinephrine (NE) and the ability of cocaine to block noradrenergic high affinity uptake in rat hippocampal slices. The second part of this thesis examines the effects of the repeated administration of cocaine on noradrenergic pre- and postsynaptic function and receptors of the rat hippocampus. These studies demonstrate that after repeated administration of cocaine (10 mg/kg/day) for 8 and 14 days there is a 50% decrease in NE high affinity uptake in the rat hippocampus. This was accompanied by a 40% increase in a binding site for NE uptake inhibitors at 14 days. In contrast to these effects, there was no effect on β-adrenergic receptor number or the isoproterenol induced electrophysiological responsiveness in the rat hippocampus. The conclusion of these studies is that the repeated administration of cocaine has a greater effect on presynaptic targets in the noradrenergic system than on postsynaptic neurons

  4. Electrophysiological study for comparing the effect of biological activity between type A botulinum toxins in rat gastrocnemius muscle.

    Science.gov (United States)

    Kim, C-S; Jang, W S; Son, I P; Nam, S H; Kim, Y I; Park, K Y; Kim, B J; Kim, M N

    2013-09-01

    New cosmetic applications and products based on the effects of botulinum toxin (BTX) treatment have stimulated demand for this class of natural compounds. This demand generates the need for appropriate standardized protocols to test and compare the effectiveness of new BTX preparations. Based on the previously described electrophysiological methods, we measured and compared the inhibitory effects of two BTX type A (BTX-A) preparations on neuromuscular transmission through split-body test. The effectiveness was evaluated in terms of the compound muscle action potential (CMAP) and conduction velocity after BTX-A injection. We used a split-body method to compare two different BTX-As in the rat. Based on the changes in the CMAP, the two different BTX-As induced paralytic effect on the rat tibialis anterior muscle. However, the two different BTX-A preparations did not differ significantly in effectiveness and did not induce a delay in conduction velocity. The new BTX-A preparation used in this electrophysiological study had similar effect compared with the previously marketed BTX-A.[AQ: Please approve the edits made to the sentence "The new BTX-A preparation…") We propose that a split-body electrophysiological protocol will be useful in establishing the comparative effectiveness of new BTX products.

  5. Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology

    Science.gov (United States)

    Yamakawa, Kentaro; Howard-Quijano, Kimberly; Zhou, Wei; Rajendran, Pradeep; Yagishita, Daigo; Vaseghi, Marmar; Ajijola, Olujimi A.; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1–T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks. PMID:26661096

  6. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data

    NARCIS (Netherlands)

    Oostenveld, R.; Fries, P.; Maris, E.G.G.; Schoffelen, J.M.

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow

  7. Mapping of electrophysiological response to transcranial infrared laser stimulation on the human brain in vivo measured by electroencephalography (Conference Presentation)

    Science.gov (United States)

    Wang, Xinlong; Reddy, Divya Dhandapani; Gonzalez-Lima, F.; Liu, Hanli

    2017-02-01

    Transcranial infrared laser stimulation (TILS) is a non-destructive and non-thermal photobiomodulation therapy or process on the human brain; TILS uses infrared light from lasers or LEDs and has gained increased recognition for its beneficial effects on a variety of neurological and psychological conditions. While the mechanism of TILS has been assumed to stem from cytochrome-c-oxidase (CCO), which is the last enzyme in the electron transportation chain and is the primary photoacceptor, no literature is found to report electrophysiological response to TILS. In this study, a 64-channel electroencephalography (EEG) system was employed to monitor electrophysiological activities from 15 healthy human participants before, during and after TILS. A placebo experimental protocol was also applied for rigorous comparison. After recording a 3-minute baseline, we applied a 1064-nm laser with a power of 3.5W on the right forehead of each human participant for 8 minutes, followed by a 5-minute recovery period. In 64-channel EEG data analysis, we utilized several methods (root mean square, principal component analysis followed by independent component analysis, permutation conditional mutual information, and time-frequency wavelet analysis) to reveal differences in electrophysiological response to TILS between the stimulated versus placebo group. The analyzed results were further investigated using general linear model and paired t-test to reveal statistically meaningful responses induced by TILS. Moreover, this study will provide spatial mapping of human electrophysiological and possibly neural network responses to TILS for first time, indicating the potential of EEG to be an effective method for monitoring neurological improvement induced by TILS.

  8. Sentence-Level Effects of Literary Genre: Behavioral and Electrophysiological Evidence

    Directory of Open Access Journals (Sweden)

    Stefan Blohm

    2017-11-01

    Full Text Available The current study used event-related brain potentials (ERPs and behavioral measures to examine effects of genre awareness on sentence processing and evaluation. We hypothesized that genre awareness modulates effects of genre-typical manipulations. We manipulated instructions between participants, either specifying a genre (poetry or not (neutral. Sentences contained genre-typical variations of semantic congruency (congruent/incongruent and morpho-phonological features (archaic/contemporary inflections. Offline ratings of meaningfulness (n = 64/group showed higher average ratings for semantically incongruent sentences in the poetry vs. neutral condition. ERPs during sentence reading (n = 24/group; RSVP presentation at a fixed per-constituent rate; probe task showed a left-lateralized N400-like effect for contemporary vs. archaic inflections. Semantic congruency elicited a bilateral posterior N400 effect for incongruent vs. congruent continuations followed by a centro-parietal positivity (P600. While N400 amplitudes were insensitive to the genre, the latency of the P600 was delayed by the poetry instruction. From these results, we conclude that during real-time sentence comprehension, readers are sensitive to subtle morphological manipulations and the implicit prosodic differences that accompany them. By contrast, genre awareness affects later stages of comprehension.

  9. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  10. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  11. Behavioral Approach System Sensitivity and Risk Taking Interact to Predict Left-Frontal EEG Asymmetry

    OpenAIRE

    Black, Chelsea L.; Goldstein, Kim E.; LaBelle, Denise R.; Brown, Christopher W.; Harmon-Jones, Eddie; Abramson, Lyn Y.; Alloy, Lauren B.

    2014-01-01

    The Behavioral Approach System (BAS) hypersensitivity theory of bipolar disorder (BD; Alloy & Abramson, 2010; Depue & Iacono, 1989) suggests that hyperreactivity in the BAS results in the extreme fluctuations of mood characteristic of BD. In addition to risk conferred by BAS hypersensitivity, cognitive and personality variables may play a role in determining risk. We evaluated relationships among BAS sensitivity, risk taking, and an electrophysiological correlate of approach motivation, relat...

  12. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  13. Motor Neuropathy in Hypothyroidism: Clinical and Electrophysiological Findings

    Directory of Open Access Journals (Sweden)

    Sabina Yeasmin

    2009-11-01

    Full Text Available Background: Hypothyroidism is a clinical condition associated with low levels of thyroid hormones with raised TSH. Peripheral neuropathy may be associated with hypothyroidism which usually develops insidiously over a long period of time due to irregular taking of drugs or lack of thyroid hormone replacement. Objectives: The present study was done to evaluate the clinical and electro-physiological findings in hypothyroid patients in order to evaluate the neuromuscular dysfunction as well as motor neuropathy. Method: In this study, 70 subjects with the age range from 20 to 50 years of both sexes were included of whom 40 hypothyroids were taken in study group (B with the duration of 6 months to 5 years and 30 healthy euthyroid subjects were taken as control (Group A. On the basis of their TSH level, group B was further divided into group B1 with TSH level <60 MIU /L (less severe and group B2 with TSH >60 MIU /L (severe group. The d latency and NCV for motor nerve function were measured by NCV machine in median and ulnar nerve for upper limb and in common peroneal nerve for lower limb. TT3, TT4 were measured by RIA and TSH by IRMA method. All these parameters were measured on the day 1 (one of their first visit. Data were analysed statistically by ANOVA and Z test. Result: Both TT3, TT4 levels were significantly (P<0.01 lower in hypothyroids in comparison to those of control. Diminished or absence of most of the deep tendon reflexes were found in all the hypothyroids. Most of the patients (67.5% showed significantly higher (P <0.01 motor distal latencies (MDL with lower (P> 0.001 conduction velocities (MNCV and all these changes were more marked in group B2. Conclusion: So, the study revealed that motor neuropathy may be a consequence of hypothyroidism.DOI: 10.3329/bsmmuj.v1i1.3692 Key Words: Hypothyroidism; neuropathy; electrophysiology BSMMU J 2008; 1(1: 15-18

  14. Exchanging grooming, but not tolerance and aggression in common marmosets (Callithrix jacchus).

    Science.gov (United States)

    Campennì, Marco; Manciocco, Arianna; Vitale, Augusto; Schino, Gabriele

    2015-02-01

    In this study, we investigated the reciprocal exchanges of grooming, tolerance and reduced aggression in common marmosets (Callithrix jacchus), a cooperatively breeding primate whose groups are typically characterized by uniformly high genetic relatedness and high interdependency between group members. Both partner control and partner choice processes played a role in the reciprocal exchanges of grooming. In contrast, we did not find any evidence of reciprocity between grooming and tolerance over a preferred food source or between grooming and reduced aggression. Thus, reciprocity seems to play a variable role in the exchange of cooperative behaviors in marmosets. © 2014 Wiley Periodicals, Inc.

  15. Simple Ion Channels: From Structure to Electrophysiology and Back

    Science.gov (United States)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  16. How investor perceptions drive actual trading and risk-taking behavior

    NARCIS (Netherlands)

    Hoffmann, A.O.I.; Post, T.; Pennings, J.M.E.

    2015-01-01

    Recent work in behavioral finance showed how investors' perceptions (i.e., return expectations, risk tolerance, and risk perception) affect hypothetical trading and risk-taking behavior. However, are such perceptions also capable of explaining actual trading and risk-taking behavior? To answer this

  17. The relationship between distress tolerance and antisocial personality disorder among male inner-city treatment seeking substance users.

    Science.gov (United States)

    Daughters, Stacey B; Sargeant, Marsha N; Bornovalova, Marina A; Gratz, Kim L; Lejuez, C W

    2008-10-01

    There is currently limited research on the potential mechanisms underlying the development of antisocial personality disorder (ASPD). One such mechanism, distress tolerance (defined as an individual's behavioral persistence in the face of emotional distress) may underlie the development of ASPD and its associated behavioral difficulties. It was hypothesized that substance users with ASPD would evidence significantly lower levels of distress tolerance than substance users without ASPD. To test this relationship, we assessed 127 inner-city males receiving residential substance abuse treatment with two computerized laboratory measures of distress tolerance. The mean age of the sample was 40.1 years (SD = 9.8) and 88.2% were African American. As expected, multiple logistic regression analyses indicated that distress intolerance significantly predicted the presence of an ASPD diagnosis, above and beyond key covariates including substance use frequency and associated Axis I and II psychopathology. Findings suggest that distress tolerance may be a key factor in understanding the development of ASPD, setting the stage for future studies expanding on the nature of this relationship, as well as the development of appropriate interventions for this at-risk group.

  18. Frontal negativity: An electrophysiological index of interpersonal guilt.

    Science.gov (United States)

    Leng, Bingbing; Wang, Xiangling; Cao, Bihua; Li, Fuhong

    2017-12-01

    The present study aimed to reveal the temporal course and electrophysiological correlates of interpersonal guilt. Human participants were asked to perform multiple rounds of a dot-estimation task with their partners, while event-related potential being recorded. The paired participants were informed that they would win money if both responded correctly; otherwise, both of them would lose money. The feeling of guilt in Self-Wrong condition (SW) was significantly higher than that in Both-Wrong and Partner-Wrong conditions. At approximately 350 ms after the onset of feedback presentation, greater negativities were observed in the frontal regions in the guilt condition (i.e., SW) than those in the non-guilt condition. The guilt-modulated frontal negativity might reflect the interactions of self-reflection, condemnation, and negative emotion.

  19. Hurried driving: Relationship to distress tolerance, driver anger, aggressive and risky driving in college students.

    Science.gov (United States)

    Beck, Kenneth H; Daughters, Stacey B; Ali, Bina

    2013-03-01

    Being a hurried driver is associated with a variety of risky driving behaviors, yet the mechanisms underlying this behavior remain unknown. Distress tolerance, defined as an individual's capability to experience and endure negative emotional states, was examined as a predictor of hurried driving among 769 college students. Results indicate that after controlling for age, gender, race, ethnicity, the student's year in school, their grade point average, driving frequency, angry driving, aggressive driving as well as other forms of self-reported risky driving; hurried driving was significantly associated with lower levels of distress tolerance. Hurried drivers also reported greater levels of frustration and impatience with other drivers, suggesting that they have difficulty in withstanding or coping with negative psychological states when driving. Traditional traffic safety campaigns that emphasize enforcement may be less successful with these drivers. The need to develop campaigns that address the affective coping abilities that contribute to this behavioral pattern is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Relationship between Tolerance of Ambiguity and Stereotyping: Implications for BSW Education

    Science.gov (United States)

    Valutis, Stephanie A.

    2015-01-01

    Ambiguity tolerance and intolerance can influence one's professional practice. The study of such influences remains sparse within the social work literature. Behaviors that reduce uncertainty, including categorizing or stereotyping, are used by those who feel discomfort in ambiguous situations. This study explores explore the relationship between…

  1. Effects of aspartame on the evaluation of electrophysiological responses in Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2016-07-01

    Full Text Available Aspartame is a non-nutritive sweetener that is used predominantly in various ‘diet’ and ‘low-calorie’ products, such as beverages, instant breakfasts, desserts, breath mints, sugar-free chewing gum, vitamins, and pharmaceuticals, consumed by millions of people who are attempting weight loss, young adults and diabetic persons. On a weight basis, the metabolism of aspartame generates approximately 50% phenylalanine, 40% aspartic acid and 10% methanol. The detailed mechanisms of the effects of aspartame on the electrophysiological response are still unclear; therefore, this study was designed to clarify whether longer-term aspartame consumption has any effect on the electrophysiological response in Wistar albino rats. The oral administration of aspartame in a safe dose of 40 mg/kg bodyweight/day (as recommended by EFSA, 2012 was tested in Wistar albino rats for a longer period (90 days. Electrophysiological responses, including heart rate variability (HRV and electroencephalogram (EEG pattern, were assessed in a folate-deficient animal model along with control animals using BIOPAC and EEG equipment (model RMS EEG–24 brain new-plus: RMS – Recorder and Medicare systems. In this study, the folate-deficient animal model was used to mimic human methanol metabolism in rats. After 90 days of aspartame treatment, a significant alteration was observable in the time domain [Mean RR (ms SDNN (ms RMSSD (ms PNN50 (%] and the frequency domain [LF, HF, and LF/HF ratio] with significantly impaired frequency and amplitude of the fronto-parietal and occipital EEG waves at p ≤ 0.05. The results of this study clearly indicate that the oral consumption of aspartame reduced HRV, with sympathetic dominance and loss of vagal tone, and altered sympathovagal activity along with impairment of learning and memory, showing an additional effect on health within this study duration. The aspartame metabolites methanol and formaldehyde may be the causative factors

  2. Transcranial extracellular impedance control (tEIC modulates behavioral performances.

    Directory of Open Access Journals (Sweden)

    Ayumu Matani

    Full Text Available Electric brain stimulations such as transcranial direct current stimulation (tDCS, transcranial random noise stimulation (tRNS, and transcranial alternating current stimulation (tACS electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons and impedances (volume conductors. Such a brain model is linear, as is often the case with the electroencephalogram (EEG forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC. We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance.

  3. A behavioural and electrophysiological investigation of the effect of bilingualism on aging and cognitive control.

    Science.gov (United States)

    Kousaie, Shanna; Phillips, Natalie A

    2017-01-08

    Given previous, but inconsistent, findings of language group differences on cognitive control tasks the current investigation examined whether such differences could be demonstrated in a sample of older bilingual adults. Monolingual and bilingual older adults performed three cognitive control tasks that have previously been used in the literature (i.e., Stroop, Simon and flanker tasks) while brain electrophysiological recordings took place. Both behavioural (response time and accuracy) and event-related brain potentials (ERPs; N2 and P3 amplitude and latency) were compared across the two language groups. Processing differences between monolinguals and bilinguals were identified for each task, although the locus differed across the tasks. Language group differences were most clear in the Stroop task, with bilinguals showing superior performance both behaviourally and electrophysiologically. In contrast, for the Simon and flanker tasks there were electrophysiological differences indicating language group processing differences at the level of conflict monitoring (Simon task only) and stimulus categorization (Simon and flanker tasks), but no behavioural differences. These findings support suggestions that these three tasks that are often used to examine executive control processes show little convergent validity; however, there are clear language group differences for each task that are suggestive of superior performance for bilinguals, with behavioural differences emerging only in the linguistic Stroop task. Furthermore, it is clear that behavioural measures alone do not capture the language group effects in their entirety, and perhaps processing differences between language groups are more marked in a sample of older adults who are experiencing age-related cognitive changes than in younger adults who are at the peak of their cognitive capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Improving Student Behavior.

    Science.gov (United States)

    Green, Pamela; Gilbert, Janice T.

    This report describes a program for improving the behavior of seventh and eighth grade students with learning disabilities in a self-contained classroom setting. Analysis of probable causes revealed that students demonstrated a lack of problem-solving skills, showed a low frustration tolerance, and exhibited poor self-concepts. Two major…

  5. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  6. Importance of electromyography and the electrophysiological severity scale in forensic reports.

    Science.gov (United States)

    Bilgin, Nursel Gamsiz; Ozge, Aynur; Mert, Ertan; Yalçinkaya, Deniz E; Kar, Hakan

    2007-05-01

    Forensic reports on traumatic peripheral nerve injuries include dysfunction degrees of extremities, which are arranged according to the Turkish Penalty Code. The aim of this study is to discuss the role and importance of electromyography while preparing forensic reports in the cases of traumatic peripheral nerve injuries and the usefulness of scoring systems. A modified global scale, recommended by Mondelli et al., was used to assess the electrophysiological impairment of each peripheral nerve. Forensic reports of 106 patients, reported between 2002 and 2004, were evaluated. Thirty-four percent of the cases were reported as "total loss of function," 41.5% were reported as "functional disability," and there were no dysfunctions in the other cases in forensic reports that were prepared based on Council of Social Insurance Regulations of Health Processes and Guide prepared by the Council of Forensic Medicine and profession associations of forensic medicine. When we rearranged these forensic reports based on the electrophysiological severity scale (ESS), it was clearly found that all of the score 2 cases and 86.7% of the score 3 cases corresponded to "functional disability" and 91.4% of the score 4 cases correspond to "total loss of function." We found a significant correlation between the ESS and functional evaluation in peripheral nerve injury cases. Evaluation of functional disabilities in peripheral nerve injuries with the ESS represents a standardized and objective method used for forensic reports.

  7. Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study.

    Science.gov (United States)

    Wischnewski, Miles; Bekkering, Harold; Schutter, Dennis J L G

    2018-04-01

    During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity (FRN), P3a, and P3b are event-related brain potentials (ERPs) linked to dissociable stages of feedback and attentional processing during decision making. Even though these ERPs are influenced by both reward- and punishment-related feedback, it remains unclear how extrinsic information during uncertainty modulates these brain potentials. In this study, the effects of advice cues on decision making were investigated in two separate experiments. In the first experiment, electroencephalography (EEG) was recorded in healthy volunteers during a decision-making task in which the participants received reward or punishment feedback preceded by novice, amateur, or expert advice. The results showed that the P3a component was significantly influenced by the subjective predictive value of an advice cue, whereas the FRN and P3b were unaffected by the advice cues. In the second, sham-controlled experiment, cathodal transcranial direct current stimulation (ctDCS) was administered in conjunction with EEG in order to explore the direct contributions of the frontal cortex to these brain potentials. Results showed no significant change in either advice-following behavior or decision times. However, ctDCS did decrease FRN amplitudes as compared to sham, with no effect on the P3a or P3b. Together, these findings suggest that advice information may act primarily on attention allocation during feedback processing, whereas the electrophysiological correlates of the detection and updating of internal prediction models are not affected.

  8. Duration of in vivo endotoxin tolerance in horses.

    Science.gov (United States)

    Holcombe, Susan J; Jacobs, Carrie C; Cook, Vanessa L; Gandy, Jeffery C; Hauptman, Joseph G; Sordillo, Lorraine M

    2016-05-01

    Endotoxemia models are used to study mechanisms and treatments of early sepsis. Repeated endotoxin exposures induce periods of endotoxin tolerance, characterized by diminished proinflammatory responses to lipopolysaccharide (LPS) and modulated production of proinflammatory cytokines. Repeated measure designs using equine endotoxemia models are rarely performed, despite the advantages associated with reduced variability, because the altered responsiveness would confound study results and because the duration of equine endotoxin tolerance is unknown. We determined the interval of endotoxin tolerance, in vivo, in horses based on physical, clinicopathologic, and proinflammatory gene expression responses to repeated endotoxin exposures. Six horses received 30 ng/kg LPS in saline infused over 30 min. Behavior pain scores, physical examination parameters, and blood for complete blood count and proinflammatory gene expression were obtained at predetermined intervals for 24h. Horses received a total of 3 endotoxin exposures. The first exposure was LPS 1, followed 7 days later by LPS 7 or 14-21 days later by LPS 14-21. Lipopolysaccharide exposures were allocated in a randomized, crossover design. Lipopolysaccharide produced clinical and clinicopathologic signs of endotoxemia and increased expression of tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and IL-8, PHorses exhibited evidence of endotoxin tolerance following LPS 7 but not following LPS 14-21. Horses had significantly lower pain scores, heart rates, respiratory rates and duration of fever, after LPS 7 compared to LPS 1 and LPS 14-21, Phorses after LPS 7, P=0.05. Clinical parameters and TNFα gene expression were similar or slightly increased in horses following LPS 14-21 compared to measurements made in horses following LPS 1, suggesting that endotoxin tolerance had subsided. A minimum of 3 weeks between experiments is warranted if repeated measures designs are used to assess in vivo response to endotoxin in

  9. Evaluation of serum indexes and electrophysiological characteristics after ziprasidone combined with modified electroconvulsive therapy for schizophrenian

    Directory of Open Access Journals (Sweden)

    Hong-Bo Cao

    2017-06-01

    Full Text Available Objective: To study the effect of ziprasidone combined with modified electroconvulsive therapy (MECT on serum indexes and electrophysiological characteristics of schizophrenia. Methods: A total of 44 patients with schizophrenia treated in our hospital between May 2014 and July 2016 were selected and randomly divided into MECT group and control group, MECT group received ziprasidone combined with MECT therapy and control group received ziprasidone therapy. Before treatment as well as 1 month, 2 months and 3 months after treatment, serum nerve cytokine levels and inflammatory factor levels as well as nerve electrophysiology parameters were detected. Results: 1 month, 2 months and 3 months after treatment, serum BDNF, GDNF and NGF levels of both groups were significantly higher than those before treatment, IL-1β, IL-6, IL-17 and TNF-α levels were significantly lower than those before treatment, P300 and N2-P3 latency were significantly shorter than those before treatment, and P300 and N2-P3 amplitude were significantly higher than those before treatment; serum BDNF, GDNF and NGF levels of MECT group were significantly higher than those of control group, IL-1β, IL-6, IL-17 and TNF-α levels were significantly lower than those of control group, P300 and N2-P3 latency were significantly shorter than those of control group, and P300 and N2-P3 amplitude were significantly higher than those of control group. Conclusion: Ziprasidone combined with modified electroconvulsive therapy can improve neuron function, reduce neuron damage and adjust nerve electrophysiology function.

  10. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells.

    Science.gov (United States)

    Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A

    2017-04-18

    Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56.

  11. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  12. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  13. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Use of cognitive behavioral therapy and token economy to alleviate dysfunctional behavior in children with attention-deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Luzia Flavia Coelho

    2015-11-01

    Full Text Available Medication has proved highly efficacious as a means of alleviating general symptoms of attention-deficit hyperactivity disorder (ADHD. However many patients remain functionally impaired by inappropriate behavior. The present study analyzed the use of cognitive behavioral therapy (CBT with the Token Economy (TE technique to alleviate problem behavior for 25 participants with ADHD, all children (19 boys, mean age 10.11 on long-term methylphenidate medication, who were given 20 CBT sessions with 10 weeks of TE introduced as of session 5. Their ten most acute problem behaviors were selected and written records kept. On weekdays, parents recorded each inappropriate behavior and provided a suitable model for their actions. At weekly sessions, problem behaviors were counted and incident-free participants rewarded with a token. To analyze improvement (less frequent problem behavior, a list of 11 behavioral categories was rated: inattention, impulsivity, hyperactivity, disorganization, disobeying rules and routines, poor self-care, verbal/physical aggression, low frustration tolerance, compulsive behavior, antisocial behavior, lacking in initiative and distraction. Two CBT specialists categorized behaviors and an ADHD specialist ruled on discrepancies. Statistical analyses used were Generalized Estimating Equations with Poisson distribution and autoregressive order correlation structure. In the course of the sessions, problematic behaviors decreased significantly in 7 categories: impulsiveness, hyperactivity, disorganization, disobeying rules and routine, poor self-care, low frustration tolerance, compulsive behaviors, and antisocial behaviors. Caregiver attitudes to children's inappropriate behavior were discussed and reshaped. As functional improvement was observed on applying TE for 10 weeks, this type of intervention may be useful as an auxiliary strategy combined with medication.

  15. Use of Cognitive Behavioral Therapy and Token Economy to Alleviate Dysfunctional Behavior in Children with Attention-Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Coelho, Luzia Flavia; Barbosa, Deise Lima Fernandes; Rizzutti, Sueli; Muszkat, Mauro; Bueno, Orlando Francisco Amodeo; Miranda, Monica Carolina

    2015-01-01

    Medication has proved highly efficacious as a means of alleviating general symptoms of attention-deficit hyperactivity disorder (ADHD). However, many patients remain functionally impaired by inappropriate behavior. The present study analyzed the use of cognitive behavioral therapy (CBT) with the Token-Economy (TE) technique to alleviate problem behavior for 25 participants with ADHD, all children (19 boys, mean age 10.11) on long-term methylphenidate medication, who were given 20 CBT sessions with 10 weeks of TE introduced as of session 5. Their ten most acute problem behaviors were selected and written records kept. On weekdays, parents recorded each inappropriate behavior and provided a suitable model for their actions. At weekly sessions, problem behaviors were counted and incident-free participants rewarded with a token. To analyze improvement (less frequent problem behavior), a list of 11 behavioral categories was rated: inattention, impulsivity, hyperactivity, disorganization, disobeying rules and routines, poor self-care, verbal/physical aggression, low frustration tolerance, compulsive behavior, antisocial behavior, lacking in initiative and distraction. Two CBT specialists categorized behaviors and an ADHD specialist ruled on discrepancies. Statistical analyses used were Generalized Estimating Equations with Poisson distribution and autoregressive order correlation structure. In the course of the sessions, problematic behaviors decreased significantly in seven categories: impulsiveness, hyperactivity, disorganization, disobeying rules and routine, poor self-care, low frustration tolerance, compulsive behaviors, and antisocial behaviors. Caregiver attitudes to children's inappropriate behavior were discussed and reshaped. As functional improvement was observed on applying TE for 10 weeks, this type of intervention may be useful as an auxiliary strategy combined with medication.

  16. Spyke Viewer: a flexible and extensible platform for electrophysiological data analysis

    Directory of Open Access Journals (Sweden)

    Robert ePröpper

    2013-11-01

    Full Text Available Spyke Viewer is an open source application designed to help researchers analyze data from electrophysiological recordings or neural simulations. It provides a graphical data browser and supports finding and selecting relevant subsets of the data. Users can interact with the selected data using an integrated Python console or plugins. Spyke Viewer includes plugins for several common visualizations and allows users to easily extend the program by writing their own plugins. New plugins are automatically integrated with the graphical interface. Additional plugins can be downloaded and shared on a dedicated website.

  17. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  18. X-ray induced behavioral reactions and detection mechanisms in the Shrimp

    International Nuclear Information System (INIS)

    Kernek, S.P.; Kimeldorf, D.J.

    1975-01-01

    Red Ghost Shrimp, Callianassa californiensis, were shown from behavioral and electrophysiological studies to respond to ionizing radiation. When exposed to x-rays at 52 R/sec, the majority of intact animals could detect and avoid further irradiation by escaping into a shielded section of the test chamber. Animals continued to display escape responses after removal of eyestalks and antennae. Significant avoidance activity also occurred with partial-body exposure and indicated the existance of a radiation-sensitive receptor on the abdomen. Electro retinograms elicited by β- and x-radiation sources corresponded closely with the waveforms produced by visible light stimulation. Electroantennograms were recorded from isolated antennules following stimulation with glutamic acid, β- and x-radiation. Biphasic on-off phases were recorded with an intermediate phase present during the longer duration exposures. Similarly, bioelectrical potentials were recorded from swimmeret preparations with exposure to β-and x-radiation. The electrophysiological evidence indicates that the eye, antennules, and possibly chemoreceptors on the abdominal segments serve as routes for detection of ionizing radiations. (author)

  19. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    Science.gov (United States)

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  20. The diagnostic efficacy of clinical findings and electrophysiological studies in carpal tunnel syndrome

    OpenAIRE

    Buyukkoyuncu Pekel, Nilufer; Nar Senol, Pelin; Yildiz, Demet; Kilic, Ahmet Kasim; Kamaci Sener, Deniz; Seferoglu, Meral; Gunes, Aygul

    2017-01-01

    Objective. The aim of the study was to examine the relation between clinical findings, neurological examination and electrophysiological studies in diagnosing carpal tunnel syndrome (CTS) and share our institutional experience in patients with CTS. Methods. Patients presenting with complaints of pain, paresthesia, and weakness in hands who diagnosed CTS between 2014 and 2015 were examined retrospectively. Demographic characteristics, clinical and neurological examination findings and electrod...

  1. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  2. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  3. Genetic analysis of the electrophysiological response to salicin, a bitter substance, in a polyphagous strain of the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Tetsuya Iizuka

    Full Text Available Sawa-J is a polyphagous silkworm (Bombyx mori L. strain that eats various plant leaves that normal silkworms do not. The feeding preference behavior of Sawa-J is controlled by one major recessive gene(s on the polyphagous (pph locus, and several minor genes; moreover, its deterrent cells possess low sensitivity to some bitter substances including salicin. To clarify whether taste sensitivity is controlled by the pph locus, we conducted a genetic analysis of the electrophysiological characteristics of the taste response using the polyphagous strain Sawa-J·lem, in which pph is linked to the visible larval marker lemon (lem on the third chromosome, and the normal strain Daiankyo, in which the wild-type gene of pph (+(pph is marked with Zebra (Ze. Maxillary taste neurons of the two strains had similar dose-response relationships for sucrose, inositol, and strychnine nitrate, but the deterrent cell of Sawa-J·lem showed a remarkably low sensitivity to salicin. The F(1 generation of the two strains had characteristics similar to the Daiankyo strain, consistent with the idea that pph is recessive. In the BF(1 progeny between F(1 females and Sawa-J·lem males where no crossing-over occurs, the lem and Ze phenotypes corresponded to different electrophysiological reactions to 25 mM salicin, indicating that the gene responsible for taste sensitivity to salicin is located on the same chromosome as the lem and Ze genes. The normal and weak reactions to 25 mM salicin were segregated in crossover-type larvae of the BF(1 progeny produced by a reciprocal cross, and the recombination frequency agreed well with the theoretical ratio for the loci of lem, pph, and Ze on the standard linkage map. These results indicate that taste sensitivity to salicin is controlled by the gene(s on the pph locus.

  4. Electrophysiological Basis of Fecal Incontinence and Its Implications for Treatment

    Science.gov (United States)

    2017-01-01

    The majority of patients with neuropathic incontinence and other pelvic floor conditions associated with straining at stool have damage to the pudendal nerves distal to the ischial spine. Sacral nerve stimulation appears to be a promising innovation and has been widely adopted and currently considered the standard of care for adults with moderate to severe fecal incontinence and following failed sphincter repair. From a decision-to-treat perspective, the short-term efficacy is good (70%–80%), but the long-term efficacy of sacral nerve stimulation is around 50%. Newer electrophysiological tests and improved anal endosonography would more effectively guide clinical decision making. PMID:29159162

  5. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2013-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...... that avoids various so-called ‘paradoxes of toleration’. The paper first examines whether Forst’s respect conception can be applied descriptively to distinguish between actual patterns of behaviour and classify different acts of toleration. Then the focus is shifted to toleration out of respect as a normative...

  6. Clinical Characteristics, Electrophysiology, and Skin Biopsy of 38 Peripheral Neuropathy Cases with Small Fiber Involvement of Various Etiologies

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2017-01-01

    Conclusions: IENFD of patients included in the present study weakly correlated with various electrophysiological parameters. Small and large fibers are more involved in patients with MS-related PN than in patients with idiopathic PN.

  7. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    Science.gov (United States)

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The political limit of tolerance O limite político da tolerância

    Directory of Open Access Journals (Sweden)

    Joseph Yvon Thériault

    2008-06-01

    Full Text Available In the contemporary discussions about democracy modifications, tolerance has been frequently evoked in order to express the way by which the democracies respond to the new demands of plurality recognition. While drawing the general lines of the connection between tolerance and democracy, the present article intends to deepen the comprehension of tolerance’s places and limits inside the democracy. After that, the text should evaluate the reach of the contemporary use of tolerance. Keywords: Democracy. Tolerance. Political theory. National Identity. Nas discussões contemporâneas sobre as transformações da democracia, a tolerância é com freqüência evocada para expressar o modo pelo qual as democracias respondem às novas exigências de reconhecimento da pluralidade. Ao esboçar as linhas gerais da relação entre tolerância e democracia, o presente artigo pretende aprofundar a compreensão do lugar e dos limites da tolerância na democracia. Em um segundo momento, tratará de avaliar o alcance do uso contemporâneo da tolerância. Palavras-chave: Democracia. Tolerância. Teoria Política. Identidade Nacional.

  9. OpenElectrophy: an electrophysiological data- and analysis-sharing framework

    Directory of Open Access Journals (Sweden)

    Samuel Garcia

    2009-05-01

    Full Text Available Progress in experimental tools and design is allowing the acquisition of increasingly large datasets. Storage, manipulation and efficient analyses of such large amounts of data is now a primary issue. We present OpenElectrophy, an electrophysiological data and analysis sharing framework developed to fill this niche. It stores all experiment data and meta-data in a single central MySQL database, and provides a graphic user interface to visualize and explore the data, and a library of functions for user analysis scripting in Python. It implements multiple spike sorting methods, and oscillation detection based on the ridge extraction methods due to Roux et. al., 2007. OpenElectrophy is open-source and is freely available for download at http://neuralensemble.org/trac/OpenElectrophy.

  10. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Science.gov (United States)

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian

    2018-04-03

    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  11. Electrophysiological changes in patients with liver cirrhosis in a tertiary care hospital in karachi, pakistan

    International Nuclear Information System (INIS)

    Parkash, O.; Mohyuddin, G.R.; Ayub, A.; Nazir, I.

    2017-01-01

    Electrophysiological changes in cirrhosis are well known but least investigated especially in our country hence we wanted to see electrophysiological changes especially QT interval in cirrhotic patients. Methods: A cross-sectional study was conducted at Aga Khan University Hospital Karachi (AKUH) in which medical records (duration 2008-2010) of cirrhotic patients were reviewed. Results: Three hundred and eighty cirrhotic patients' charts were studied, 227 (59.7 percent) were male and mean age of this cohort was 52.8+-12.6 years. The most common cause for CLD was Hepatitis C (CHC) in 260 (68.4 percent), NBNC in 56(14.7 percent) and HBV in 51 (13.4 percent). Only 225 had complete ECG workup, the mean corrected QT interval was 0.44+-0.067 sec. Among the electrophysiological abnormalities, 79 (35 percent) had a prolonged corrected QT interval, 7 (3.1 percent) had a prolonged PR interval (>0.22s) and prolonged QRS duration was seen in 23 (10.4 percent) patients. QT prolongation was seen in 1 of the 5 patients with Child Class A (20 percent), 22 of the 73 patients with Child Class B (30.1 percent), and 25 of the 61 patients with Child Class C (41 percent). However, this difference however was not statistically significant. (p value=.331). Conclusion: We conclude that QT prolongation is more frequent in patients with liver cirrhosis especially when the disease is more advanced like in Child C hence these patients are more prone to sudden cardiac death. Moreover, this study shows that the risk associated with QT prolongation is present through all classes of liver cirrhosis. We recommend that routine cardiac screening with ECG of all cirrhotic patients be performed. (author)

  12. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  13. Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells

    Science.gov (United States)

    2010-01-14

    Thus, in this Chapter we report a detail study of the electrode behavior of pure Ni/GDC and Ni/YSZ cermet anodes in weakly humidified H2 fuel...impedance behavior for the oxidation reaction in hydrogen, methane and ethanol over a pure and Pd-impregnated Ni/GDC anode of SOFC were also studied ...surfaces [1]. So Ni/YSZ based cermet anodes have a very low tolerance to fuels containing H2S even at a very low level (ppm) [2]. Thus, the development of

  14. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  15. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  16. Endogenous opiates and behavior: 2014.

    Science.gov (United States)

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  17. Closed-loop, open-source electrophysiology

    Directory of Open Access Journals (Sweden)

    John D Rolston

    2010-09-01

    Full Text Available Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents to the neuronal network. Multi-unit or local field potential recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation triggered by recordings with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.

  18. Tolerance and efficacy of emamectin benzoate and ivermectin for the treatment of Pseudocapillaria tomentosa in laboratory zebrafish (Danio rerio).

    Science.gov (United States)

    Collymore, Chereen; Watral, Virginia; White, Julie R; Colvin, Michael E; Rasmussen, Skye; Tolwani, Ravi J; Kent, Michael L

    2014-10-01

    Tolerance of adult zebrafish and efficacy of emamectin benzoate and ivermectin in eliminating Pseudocapillaria tomentosa infection were evaluated. In the tolerance study, behavioral changes, fecundity, histopathology, and mortality were evaluated for in-feed administration of emamectin (0.05, 0.10, and 0.25 mg/kg) and ivermectin (0.05 and 0.10 mg/kg). All doses of emamectin were well tolerated. Ivermectin 0.05 mg/kg administration resulted in mild behavioral changes and a transient decrease in fecundity. Ivermectin 0.10 mg/kg administration resulted in severe behavioral changes and some mortality. In the efficacy study, emamectin (0.05 and 0.25 mg/kg) and ivermectin (0.05 mg/kg) were evaluated for their efficacy in eliminating P. tomentosa infection. Emamectin reduced parasite burden in infected zebrafish, and ivermectin eliminated intestinal nematode infections. Despite a small margin of safety, ivermectin 0.05 mg/kg was effective at eliminating P. tomentosa infection in adult zebrafish. Higher doses or a longer course of treatment may be needed for complete elimination of P. tomentosa infection using emamectin. In this study, we propose two possible treatments for intestinal nematode infections in zebrafish.

  19. Fluent conceptual processing and explicit memory for faces are electrophysiologically distinct.

    Science.gov (United States)

    Voss, Joel L; Paller, Ken A

    2006-01-18

    Implicit memory and explicit memory are fundamentally different manifestations of memory storage in the brain. Yet, conceptual fluency driven by previous experience could theoretically be responsible for both conceptual implicit memory and aspects of explicit memory. For example, contemplating the meaning of a word might serve to speed subsequent processing of that word and also make it seem familiar. We examined electrophysiological correlates of conceptual priming with 180 celebrity faces to determine whether or not they resemble electrophysiological correlates of explicit memory. Celebrity faces are ideal for this purpose because they carry with them preexisting conceptual information (i.e., biographical facts) that can selectively be brought to mind such that conceptual processing can be manipulated systematically. In our experiment, exposure to biographical information associated with only one-half of the celebrities yielded conceptual priming for those faces, whereas all faces were perceptually primed. Conceptual priming was indexed by positive brain potentials over frontal regions from approximately 250 to 500 ms. Explicit memory retrieval was associated with later brain potentials over posterior regions that were strikingly similar to potentials previously associated with pure familiarity for faces (when a face seems familiar in the absence of retrieval of any specific information about previous occurrence). Furthermore, the magnitude of conceptual priming was correlated across subjects with the amplitude of frontal but not posterior potentials, whereas the opposite was true for explicit memory. Distinct brain processes were thus associated with conceptual priming and conscious recognition of faces, thus providing a sharper focus on the border between implicit and explicit memory.

  20. Lactose tolerance tests

    Science.gov (United States)

    Hydrogen breath test for lactose tolerance ... Two common methods include: Lactose tolerance blood test Hydrogen breath test The hydrogen breath test is the preferred method. It measures the amount of hydrogen ...

  1. Memantine reduces stealing behavior and impulsivity in kleptomania

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Schreiber, Liana R N

    2013-01-01

    Kleptomania is characterized by repetitive stealing behavior and has been associated with deleterious unwanted outcomes including forensic contact and increased rates of suicidal behavior. Very few trials have been conducted to investigate pharmacological treatment options for this neglected...... was generally well tolerated. This study shows the effectiveness of memantine in reducing urges to shoplift and shoplifting behavior along with improving impulsivity, mood, anxiety, and psychosocial functioning....

  2. Electrophysiological correlates of the autobiographical Implicit Association Test (aIAT: response conflict and conflict resolution.

    Directory of Open Access Journals (Sweden)

    Maddalena Marini

    2016-08-01

    Full Text Available The autobiographical IAT (aIAT is an implicit behavioral instrument that can detect autobiographical memories encoded in an individual’s mind by measuring how quickly this person can categorize and associate sentences related to a specific event with the logical dimensions true and false. Faster categorization when an event (e.g., I went to Paris is associated with the dimension true than false indicates that that specific event is encoded as true in the individual’s mind. The aim of this study is to investigate the electrophysiological correlates of the aIAT, used as a memory-detection technique (i.e., to identify which of two events is true. To this end, we recorded ERPs while participants performed an aIAT assessing which of two playing cards they had previously selected. We found an increased N200 and a decreased LPC (or P300 at the fronto-central sites when participants associated the selected playing card with the dimension false than true. Notably, both components have been previously and consistently reported in studies investigating deception. These results suggest that associating a true autobiographical event with the concept of false may involve the same cognitive processes associated with deception.

  3. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hua-Guang Zheng

    2015-01-01

    Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  4. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    Deterre, Philippe

    1983-01-01

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein [fr

  5. Electrophysiological and Pharmacological Analyses of Nav1.9 Voltage-Gated Sodium Channel by Establishing a Heterologous Expression System

    Directory of Open Access Journals (Sweden)

    Xi Zhou

    2017-11-01

    Full Text Available Nav1. 9 voltage-gated sodium channel is preferentially expressed in peripheral nociceptive neurons. Recent progresses have proved its role in pain sensation, but our understanding of Nav1.9, in general, has lagged behind because of limitations in heterologous expression in mammal cells. In this work, functional expression of human Nav1.9 (hNav1.9 was achieved by fusing GFP to the C-terminal of hNav1.9 in ND7/23 cells, which has been proved to be a reliable method to the electrophysiological and pharmacological studies of hNav1.9. By using the hNav1.9 expression system, we investigated the electrophysiological properties of four mutations of hNav1.9 (K419N, A582T, A842P, and F1689L, whose electrophysiological functions have not been determined yet. The four mutations significantly caused positive shift of the steady-state fast inactivation and therefore increased hNav1.9 activity, consistent with the phenotype of painful peripheral neuropathy. Meanwhile, the effects of inflammatory mediators on hNav1.9 were also investigated. Impressively, histamine was found for the first time to enhance hNav1.9 activity, indicating its vital role in hNav1.9 modulating inflammatory pain. Taken together, our research provided a useful platform for hNav1.9 studies and new insight into mechanism of hNav1.9 linking to pain.

  6. The Use of DREADDs to Deconstruct Behavior

    Directory of Open Access Journals (Sweden)

    Paul D Whissell

    2016-05-01

    Full Text Available A central goal in understanding brain function is to link specific cell populations to behavioral outputs. In recent years, the selective targeting of specific neural circuits has been made possible with the development of new experimental approaches, including chemogenetics. This technique allows for the control of molecularly-defined subsets of cells through engineered G protein-coupled receptors (GPCRs, which have the ability to activate or silence neuronal firing. Through chemogenetics, neural circuits are being linked to behavioral outputs at an unprecedented rate. Further, the coupling of chemogenetics with imaging techniques to monitor neural activity in freely-moving animals now makes it possible to deconstruct the complex whole-brain networks that are fundamental to behavioral states. In this review, we highlight a specific chemogenetic application known as DREADDs (Designer Receptors Exclusively Activated by Designer Drugs. DREADDs are used ubiquitously to modulate GPCR activity in vivo and have been widely applied in the basic sciences, particularly in the field of behavioral neuroscience. Here, we focus on the impact and utility of DREADD technology in dissecting the neural circuitry of various behaviors including memory, cognition, reward, feeding, anxiety and pain. By using DREADDs to monitor the electrophysiological, biochemical, and behavioral outputs of specific neuronal types, researchers can better understand the links between brain activity and behavior. Additionally, DREADDs are useful in studying the pathogenesis of disease and may ultimately have therapeutic potential.

  7. An electrophysiological analysis of altered cognitive functions in Huntington disease.

    Science.gov (United States)

    Münte, T F; Ridao-Alonso, M E; Preinfalk, J; Jung, A; Wieringa, B M; Matzke, M; Dengler, R; Johannes, S

    1997-09-01

    Neuropsychological deficits are a main feature of Huntington disease (HD) with previous data suggesting involvement of memory functions and visual processing. To increase the knowledge about cognitive malfunction in HD in the domains of visual processing and memory by the use of modern electrophysiological techniques (event-related potentials [ERPs]). A case-control design was used. Three ERP paradigms were used; a parallel visual search paradigm allowed for the simultaneous processing of a multi-element visual array in search of a target stimulus, while a serial search paradigm with varied numbers of distractor items necessitated a serial one by one scanning of the arrays. The third experiment was a word-recognition memory task. The measurements were obtained in a neurophysiological laboratory of a university hospital. Nine patients with HD and 9 control subjects matched for age, sex, and education were studied. Components of averaged ERPs were quantified by latency and amplitude measures and subjected to statistical analysis. Behavioral measures (search time, hit rate, and recognition accuracy) were assessed as well. The early visual components showed a significant latency shift (delay of about 50 milliseconds) in HD. In the search paradigms the P3 components differentiating target and standard stimuli were virtually absent in HD as was the ERP effect indexing word recognition. This was accompanied by a marked delay in search times and lower hit rates in the search tasks and a grossly reduced recognition accuracy in the memory task. The results suggest marked impairments of patients with HD in early visual sensory processing (early components). Deficits in visual search might be attributed to an impairment to deploy attentional resources across the visual field and/or an inability to control eye movements. The ERPs in the memory task differed grossly from similar data obtained by others in patients with Alzheimer disease, suggesting a different neural basis for

  8. Electrophysiological indices of response inhibition in a Go/NoGo task predict self-control in a social context.

    Directory of Open Access Journals (Sweden)

    Kyle Nash

    Full Text Available Recent research demonstrates that response inhibition-a core executive function-may subserve self-regulation and self-control. However, it is unclear whether response inhibition also predicts self-control in the multifaceted, high-level phenomena of social decision-making. Here we examined whether electrophysiological indices of response inhibition would predict self-control in a social context. Electroencephalography was recorded as participants completed a widely used Go/NoGo task (the cued Continuous Performance Test. Participants then interacted with a partner in an economic exchange game that requires self-control. Results demonstrated that greater NoGo-Anteriorization and larger NoGo-P300 peak amplitudes-two established electrophysiological indices of response inhibition-both predicted more self-control in this social game. These findings support continued integration of executive function and self-regulation and help extend prior research into social decision-making processes.

  9. Processing graded feedback: electrophysiological correlates of learning from small and large errors.

    Science.gov (United States)

    Luft, Caroline Di Bernardi; Takase, Emilio; Bhattacharya, Joydeep

    2014-05-01

    Feedback processing is important for learning and therefore may affect the consolidation of skills. Considerable research demonstrates electrophysiological differences between correct and incorrect feedback, but how we learn from small versus large errors is usually overlooked. This study investigated electrophysiological differences when processing small or large error feedback during a time estimation task. Data from high-learners and low-learners were analyzed separately. In both high- and low-learners, large error feedback was associated with higher feedback-related negativity (FRN) and small error feedback was associated with a larger P300 and increased amplitude over the motor related areas of the left hemisphere. In addition, small error feedback induced larger desynchronization in the alpha and beta bands with distinctly different topographies between the two learning groups: The high-learners showed a more localized decrease in beta power over the left frontocentral areas, and the low-learners showed a widespread reduction in the alpha power following small error feedback. Furthermore, only the high-learners showed an increase in phase synchronization between the midfrontal and left central areas. Importantly, this synchronization was correlated to how well the participants consolidated the estimation of the time interval. Thus, although large errors were associated with higher FRN, small errors were associated with larger oscillatory responses, which was more evident in the high-learners. Altogether, our results suggest an important role of the motor areas in the processing of error feedback for skill consolidation.

  10. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  11. Intolerant tolerance.

    Science.gov (United States)

    Khushf, G

    1994-04-01

    The Hyde Amendment and Roman Catholic attempts to put restrictions on Title X funding have been criticized for being intolerant. However, such criticism fails to appreciate that there are two competing notions of tolerance, one focusing on the limits of state force and accepting pluralism as unavoidable, and the other focusing on the limits of knowledge and advancing pluralism as a good. These two types of tolerance, illustrated in the writings of John Locke and J.S. Mill, each involve an intolerance. In a pluralistic context where the free exercise of religion is respected, John Locke's account of tolerance is preferable. However, it (in a reconstructed form) leads to a minimal state. Positive entitlements to benefits like artificial contraception or nontherapeutic abortions can legitimately be resisted, because an intolerance has already been shown with respect to those that consider the benefit immoral, since their resources have been coopted by taxation to advance an end that is contrary to their own. There is a sliding scale from tolerance (viewed as forbearance) to the affirmation of communal integrity, and this scale maps on to the continuum from negative to positive rights.

  12. Changes in bacillus thuringiensis tolerance levels due to hybridization of Bt-tolerant and susceptible silkworm populations

    International Nuclear Information System (INIS)

    Begumad, H.A.; Hassana, E.; Dingleb, J.; Alshehic, A.A.

    2012-01-01

    Males and females of a Bt-tolerant mulberry silkworm (Bombyx mori L.) population were crossed with females and males of a Bt-susceptible population, to produce Bt-tolerant silkworm hybrids, and to determine the expression of the Bt-tolerance pattern in the F 1 hybrids. It was observed that when a Bt-tolerant (42% larval mortality) female (BtT ) silkworm was crossed with a Bt-susceptible (85% larval mortality) male (BtS ), the resultant F 1 offspring showed lower levels of Bt-tolerance (87% larval mortality). On the other hand, when a Bt-tolerant male (BtT ) was crossed with a Bt-susceptible female (BtS ), the F 1 hybrid showed higher levels of Bt-tolerance (35% larval mortality) characteristic. The probit statistics showed that both hybrids expressed Bt-tolerance or susceptible levels similar to their male parents. These different patterns of Bt-tolerance in F 1 hybrids might be due to the transferring of a Bt-tolerant gene, from the parents to offspring, through the homozygotic male (ZZ) silkworm. (author)

  13. Suppressor cells in transplantation tolerance. I. Analysis of the suppressor status of neonatally and adoptively tolerized rats

    International Nuclear Information System (INIS)

    Dorsch, S.; Roser, B.

    1982-01-01

    The lymphocytes from neonatally tolerant rats which adoptively transfer tolerance to sublethally irradiated recipients do so by specifically suppressing the regeneration of alloreactivity which normally occurs after irradiation. Although tolerant cells will only partially suppress normal alloreactive cells when the two are mixed in near equivalent numbers, experiments in which the interval between injection of tolerant and normal cells into irradiated recipients was gradually extended, indicated that total suppression of normally alloreactive cells was achieved after 8 weeks of prior residence of tolerant cells in the adoptive host. Further evidence that tolerant cells would only suppress if present in excess of normal cells was obtained by reducing the tolerant cell population in tolerant donor rats by whole body irradiation. These animals then lost their ability to suppress normal alloreactive cells administered to them. The immune status of adoptively tolerized animals did not mimic that of the donors of the tolerant cells. Even where full tolerance, as measured by skin graft survival, failure to synthesize alloantibodies, and capacity to further transfer skin graft tolerance to secondary recipients, was evident the lymphocytes of these animals showed considerable graft-versus-host (GVH) reactivity. The persistence of tolerance through repeated adoptive transfers was correlated with the persistence of donor (chimeric) cells and the indicator skin graft on adoptive recipients only amplified tolerance expression where the inocula of tolerant cells given was weakly suppressive. Finally, removal of the minor population of chimeric cells from tolerant inocula using cytotoxic alloantisera abolished the capacity to transfer tolerance. These results imply an active role for chimeric cells which is best understood as an immune response involving proliferation driven by the idiotypes of the alloreceptors on host cells

  14. Introduction to solid supported membrane based electrophysiology.

    Science.gov (United States)

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  15. Suppressor cells in transplantation tolerance: I. analysis of the suppressor status of neonatally and adoptively tolerized rats

    International Nuclear Information System (INIS)

    Dorsch, S.; Roser, B.

    1982-01-01

    The lymphocytes from neonatally tolerant rats which adoptively transfer tolerance to sublethally irradiated recipients do so by specificallly suppressing the regeneration of alloreactivity which normally occurs after irradiation. Although tolerant cells will only partially suppress normal alloreactive cells when the two are mixed in near equivalent numbers, experiments in which the interval between injection of tolerant and normal cells into irradiated recipients was gradually extended, indicated that total suppression of normally alloreactive cells was achieved after 8 weeks of prior residence of tolerant cells in the adoptive host. Further evidence that tolerant cells would only suppress if present in excess of normal cells was obtained by reducing the tolerant cell populaton in tolerant donor rats by whole body irradiation. The persistence of tolerance through repeated adoptive transfers was correlated with the persistence of donor (chimeric) cells and the indicator skin graft on adoptive recipients only amplified tolerance expression where the inocula of tolerant cells given was weakly suppressive

  16. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  17. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  18. High-Content Electrophysiological Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes (hPSC-CMs).

    Science.gov (United States)

    Kong, Chi-Wing; Geng, Lin; Li, Ronald A

    2018-01-01

    Considerable interest has been raised to develop human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as a model for drug discovery and cardiotoxicity screening. High-content electrophysiological analysis of currents generated by transmembrane cell surface ion channels has been pursued to complement such emerging applications. Here we describe practical procedures and considerations for accomplishing successful assays of hPSC-CMs using an automated planar patch-clamp system.

  19. Om tolerance

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2007-01-01

    Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik.......Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik....

  20. Effects of radiographic contrast media on cellular electrophysiology in the beating heart

    Energy Technology Data Exchange (ETDEWEB)

    Wolpers, H.G.; Baller, D.; Ensink, F.B.M.; Hoeft, A.; Korb, H.; Hellige, G.

    1982-01-01

    Electrophysiological effects of intracoronarily administered contrast media have been documented in 12 thoracotomized dogs at the cellular level by use of a modified microelectrode technique. Injections (n = 63) of 4 different contrast media uniformly led to a temporary cellular hyperpolarisation of the resting potential and prolongation of the action potential. Additional experiments with intracoronary injections of several electrolyte concentrations, mainly by a local deficiency of potassium ions and an excess of sodium ions. The significance of the findings for mechanisms underlying ECG-changes and ventricular arrhythmia by radiographic contrasts media will be discussed.

  1. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology

    DEFF Research Database (Denmark)

    Bak, N.; Ebdrup, B.H.; Oranje, B

    2017-01-01

    Deficits in information processing and cognition are among the most robust findings in schizophrenia patients. Previous efforts to translate group-level deficits into clinically relevant and individualized information have, however, been non-successful, which is possibly explained by biologically...... and sixty-five healthy controls underwent extensive electrophysiological and neurocognitive test batteries. Patients were assessed on the Positive and Negative Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D2 receptor antagonist, amisulpride (280.3±159 mg per...... day). A reduced principal component space based on 19 electrophysiological variables and 26 cognitive variables was used as input for a Gaussian mixture model to identify subgroups of patients. With support vector machines, we explored the relation between PANSS subscores and the identified subgroups...

  2. A behavioural and electrophysiological investigation of the effect of bilingualism on lexical ambiguity resolution in young adults

    Directory of Open Access Journals (Sweden)

    Shanna eKousaie

    2015-12-01

    Full Text Available Previous research suggests that bilinguals demonstrate superior cognitive control processes than monolinguals. The goal of the current investigation was to examine whether this bilingual advantage is observed in a language processing task that requires inhibition, i.e., lexical ambiguity processing. Monolingual and bilingual participants read sentences that biased the reading of a terminal homonym toward the subordinate or dominant reading (e.g., The doctor asked her to step onto the scale.. A relatedness judgement was made on target words that were related to the contextually appropriate (e.g., balance or inappropriate meaning (e.g., skin, or unrelated to either meaning (e.g., shoe while electrophysiological recording took place. The results revealed subtle processing differences between monolinguals and bilinguals that were evident in electrophysiological measures, but not in behavioural measures. These findings suggest that monolinguals rely on context to access the contextually appropriate meaning of a homonym to a greater extent than bilinguals, while bilinguals demonstrate simultaneous activation of both meanings.

  3. The peer effect on pain tolerance.

    Science.gov (United States)

    Engebretsen, Solveig; Frigessi, Arnoldo; Engø-Monsen, Kenth; Furberg, Anne-Sofie; Stubhaug, Audun; de Blasio, Birgitte Freiesleben; Nielsen, Christopher Sivert

    2018-05-19

    Twin studies have found that approximately half of the variance in pain tolerance can be explained by genetic factors, while shared family environment has a negligible effect. Hence, a large proportion of the variance in pain tolerance is explained by the (non-shared) unique environment. The social environment beyond the family is a potential candidate for explaining some of the variance in pain tolerance. Numerous individual traits have previously shown to be associated with friendship ties. In this study, we investigate whether pain tolerance is associated with friendship ties. We study the friendship effect on pain tolerance by considering data from the Tromsø Study: Fit Futures I, which contains pain tolerance measurements and social network information for adolescents attending first year of upper secondary school in the Tromsø area in Northern Norway. Pain tolerance was measured with the cold-pressor test (primary outcome), contact heat and pressure algometry. We analyse the data by using statistical methods from social network analysis. Specifically, we compute pairwise correlations in pain tolerance among friends. We also fit network autocorrelation models to the data, where the pain tolerance of an individual is explained by (among other factors) the average pain tolerance of the individual's friends. We find a significant and positive relationship between the pain tolerance of an individual and the pain tolerance of their friends. The estimated effect is that for every 1 s increase in friends' average cold-pressor tolerance time, the expected cold-pressor pain tolerance of the individual increases by 0.21 s (p-value: 0.0049, sample size n=997). This estimated effect is controlled for sex. The friendship effect remains significant when controlling for potential confounders such as lifestyle factors and test sequence among the students. Further investigating the role of sex on this friendship effect, we only find a significant peer effect of male friends

  4. Inheritance of electrophysiological responses to leaf saps of host- and nonhost plants in two helicoverpa species and their hybrids

    NARCIS (Netherlands)

    Tang, Q.B.; Huang, L.Q.; Wang, C.Z.; Tang, Q.B.T.; Zhan, H.; Loon, van J.J.A.

    2014-01-01

    The polyphagous cotton bollworm Helicoverpa armigera (Hubner) and the oligophagous oriental tobacco budworm Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae) display contrasting heritable feeding preferences for cotton and pepper leaves. In this study, electrophysiological response patterns to

  5. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  6. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-01-01

    Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR), P1-N1-P2 complex, and P300 component recording, were conducted. ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational disadvantage associated with cleft disorders, further research

  7. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    Science.gov (United States)

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  8. Anatomical and electrophysiological characterization of presumed dopamine-containing neurons within the supramammillary region of the rat.

    Science.gov (United States)

    Shepard, P D; Mihailoff, G A; German, D C

    1988-03-01

    A combination of immunocytochemical, electrophysiological and pharmacological techniques were employed to study the properties of neurons within the supramammillary (SUM) complex of the rat. The SUM region contains a small, but dense, population of tyrosine hydroxylase immunoreactive neurons. Following injection of the orthograde neuroanatomical tracer, Phaseolus Vulgaris leucoagglutinin, into the SUM region, heavy terminal labeling was observed in the lateral septal nucleus, diagonal band of Broca and bed nucleus of the stria terminalis. The electrophysiological and pharmacological properties of antidromically-activated SUM neurons revealed evidence of two neuronal populations. Both groups of neurons exhibited long duration action potentials (greater than 2 msec) and slow conduction velocities (less than 0.5 m/sec). However, cells in one group were characterized by slow and erratic firing rates and insensitivity to dopamine (DA) autoreceptor agonists. Cells in the other group typically exhibited no spontaneous activity but could be induced to discharge by iontophoretic application of glutamate. These latter cells were sensitive to DA autoreceptor stimulation. Of the two populations of mammilloseptal SUM neurons, the silent population exhibited several properties similar to those of midbrain DA neurons.

  9. Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches

    Directory of Open Access Journals (Sweden)

    Songhua Wang

    2014-04-01

    Full Text Available Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable’s entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP was prolonged after castration.These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches.

  10. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms or inter...

  11. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  13. Clinical and electrophysiological characteristics of patients with paroxysmal intra-His block with narrow QRS complexes.

    Science.gov (United States)

    Ragupathi, Loheetha; Johnson, Drew; Greenspon, Arnold; Frisch, Daniel; Ho, Reginald T; Pavri, Behzad B

    2018-04-18

    Atrioventricular (AV) block is usually due to infranodal disease and associated with a wide QRS complex; such patients often progress to complete AV block and pacemaker dependency. Uncommonly, infranodal AV block can occur within the His bundle with a narrow QRS complex. The aims of this study were to define clinical/echocardiographic characteristics of patients with AV block within the His bundle and report progression to pacemaker dependency. We retrospectively identified patients with narrow QRS complexes and documented intra-His delay or block at electrophysiology study (group A) or with electrocardiogram-documented Mobitz II AV block/paroxysmal AV block (group B). Clinical, electrophysiological, and echocardiographic variables at presentation and pacemaker parameters at the last follow-up visit were evaluated. Twenty-seven patients (19 women) were identified (mean age 64 ± 13 years; range, 38-85 years). Four patients who had block with narrow QRS complexes rarely progress to pacemaker dependency and require infrequent pacing. This entity is more common in women, with a higher prevalence of aortic and/or mitral annular calcification. If confirmed by additional studies, single-chamber pacemaker may be sufficient. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  15. Perceived organizational tolerance for workplace harassment and distress and drinking over time [harassment and mental health].

    Science.gov (United States)

    Richman, Judith A; Rospenda, Kathleen M; Flaherty, Joseph A; Freels, Sally; Zlatoper, Ken

    2004-01-01

    Research has linked workplace harassment and abuse with distress and drinking. However, increasing societal attention to sexual harassment (SH) has been accompanied by pressures on work organizations to censure harassing behaviors. We address altered perceptions of the organizational tolerance (OT) for SH and generalized workplace abuse (GWA), changes in the prevalence and incidence of these experiences, and their impact on distress and drinking behaviors. A cohort of workers completed a mail survey at three points in time. Questionnaires assessed perceptions of OT for SH and GWA, experiences of SH and GWA, coping, and distress and drinking behaviors. Both sexes perceived that tolerance of SH and GWA has decreased over time. Changes in reported prevalence of these experiences differed by gender, and incidence for both genders decreased more strongly than prevalence. The linkages between SH/GWA and distress and drinking changed over time, but in different ways for women and men. SH and GWA still have deleterious consequences, and replications of this research and greater efforts at prevention are needed.

  16. Microfluidic platform for electrophysiological recordings from host-stage hookworm Ascaris suum larvae: a new tool for anthelmenthic research

    Science.gov (United States)

    The screening of candidate compounds and natural products for anthelmintic activity is a key component of discovering new drugs against human and animal parasites. We previously validated in Caenorhabditis elegans a microfluidic device (‘chip’) that records non-invasively the tiny electrophysiologic...

  17. Electrophysiological changes in rats after modulated microwave irradiation

    International Nuclear Information System (INIS)

    Szabo, L.D.; Thuroczy, G.; Kubinyi, G.; Bakos, J.

    1992-01-01

    The effects of modulated microwave irradiation on the electrophysiological changes in rats were studied. The response of the central nervous system (CNS) was observed simultaneously to the cardiovascular system by using quantitative polygraphic measuring system. In acute experiments on rat the electroencephalogram (EEG), rheoencephalogram (REG) as an index of cerebral blood flow (CBF), brain tissue DC impedance and temperature, ECG were recorded in parallel before, during and after exposure of the brain localized amplitude (AM) modulated (16 Hz) and continuous wave (CW) microwave exposure. The average specific absorption rates (SAR) in the brain were 8.4 mW/g, 16.8 mW/g and 42 mW/g (CW) respectively. At thermal level CW exposure the delta band of EEG increased. In case of low intensities modulated exposure the beta band of EEG spectrum increased. No changes were observed during athermal CW irradiation on the EEG. Moderate modulation depended changes were measured in cerebral metabolism, cerebral blood flow and cardiorespiratoric system during microwave irradiation. (author)

  18. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    Science.gov (United States)

    Sooby Wood, E.; White, J. T.; Nelson, A. T.

    2017-02-01

    The air oxidation behavior of U3Si2, USi, and U3Si5 is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  19. Electrophysiological and psychophysical correlates of spatial summation to noxious heat: the possible role of A-delta fibers.

    Science.gov (United States)

    Granovsky, Y; Raz, N; Defrin, R

    2017-02-01

    Although spatial summation of pain (SSP) is central to the processing of pain intensity and quality, its mechanism is not fully understood. We previously found greater heat SSP in hairy than in glabrous skin, suggesting that perhaps A-mechano-heat II (AMH-II) nociceptors are the dominant subserving system. In order to further explore the role of A-delta fibers in heat-induced SSP, we analyzed the electrophysiological correlates of SSP under conditions that minimize the influence of skin thicknesses. Among 17 subjects, fast rate of rise (70 °C/sec) heat stimuli that induced a pre-fixed, similar, SSP magnitude for hairy and glabrous skin were repeatedly administered using large and small probes, during which time the contact heat-evoked potentials (CHEPs) and pain ratings were recorded. Both N2 and P2 amplitudes were larger in hairy than in glabrous skin, but a differential effect of SSP was found on the CHEPs. Despite similar psychophysical SSP in hairy and glabrous skin, the electrophysiological SSP reflected in N2 but not P2 amplitude was larger in hairy skin. Nevertheless, regardless of skin type, SSP was manifested by an increase in P2 amplitudes. Considering the uniform psychophysical SSP for the two skin types, the fast stimulation rate and lower activity of AMH-II in glabrous skin, a greater electrophysiological SSP in hairy than in glabrous skin may suggest that SSP is mainly subserved by AMH nociceptors. The overall SSP effect, manifested in greater P2 amplitude, may reflect specific brain responses aimed to prepare the individual to an increased potential tissue damage.

  20. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Directory of Open Access Journals (Sweden)

    Liu S

    2018-04-01

    Full Text Available Su Liu,1,2,* Jun-Li Yao,1,3,* Xin-Xin Wan,1,* Zhi-Jing Song,1 Shuai Miao,1,2 Ye Zhao,1,2 Xiu-Li Wang,1,2 Yue-Peng Liu4 1Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; 2Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; 3Department of Anesthesiology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China; 4Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China *These authors contributed equally to this work Purpose: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh signaling in opioid-induced hyperalgesia and tolerance. Methods: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF inhibitor K252 and anti-BDNF antibody were used. Results: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh

  1. Measuring the ambiguity tolerance of medical students: a cross-sectional study from the first to sixth academic years.

    Science.gov (United States)

    Weissenstein, Anne; Ligges, Sandra; Brouwer, Britta; Marschall, Bernhard; Friederichs, Hendrik

    2014-01-09

    Tolerance of ambiguity, or the extent to which ambiguous situations are perceived as desirable, is an important component of the attitudes and behaviors of medical students. However, few studies have compared this trait across the years of medical school. General practitioners are considered to have a higher ambiguity tolerance than specialists. We compared ambiguity tolerance between general practitioners and medical students. We designed a cross-sectional study to evaluate the ambiguity tolerance of 622 medical students in the first to sixth academic years. We compared this with the ambiguity tolerance of 30 general practitioners. We used the inventory for measuring ambiguity tolerance (IMA) developed by Reis (1997), which includes three measures of ambiguity tolerance: openness to new experiences, social conflicts, and perception of insoluble problems. We obtained a total of 564 complete data sets (return rate 90.1%) from medical students and 29 questionnaires (return rate 96.7%) from general practitioners. In relation to the reference groups defined by Reis (1997), medical students had poor ambiguity tolerance on all three scales. No differences were found between those in the first and the sixth academic years, although we did observe gender-specific differences in ambiguity tolerance. We found no differences in ambiguity tolerance between general practitioners and medical students. The ambiguity tolerance of the students that we assessed was below average, and appeared to be stable throughout the course of their studies. In contrast to our expectations, the general practitioners did not have a higher level of ambiguity tolerance than the students did.

  2. Damage-tolerance strategies for nacre tablets.

    Science.gov (United States)

    Wang, Shengnan; Zhu, Xinqiao; Li, Qiyang; Wang, Rizhi; Wang, Xiaoxiang

    2016-05-01

    Nacre, a natural armor, exhibits prominent penetration resistance against predatory attacks. Unraveling its hierarchical toughening mechanisms and damage-tolerance design strategies may provide significant inspiration for the pursuit of high-performance artificial armors. In this work, relationships between the structure and mechanical performance of nacre were investigated. The results show that other than their brick-and-mortar structure, individual nacre tablets significantly contribute to the damage localization of nacre. Affected by intracrystalline organics, the tablets exhibit a unique fracture behavior. The synergistic action of the nanoscale deformation mechanisms increases the energy dissipation efficiency of the tablets and contributes to the preservation of the structural and functional integrity of the shell. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays.

    Science.gov (United States)

    Pisciotta, Marzia; Morgavi, Giovanna; Jahnsen, Henrik

    2010-10-28

    Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating to CA1. Our study specifically addressed the activity-dependent changes of the propagation of traveling electrophysiological waves in organotypic hippocampal slices during epileptiform discharge and in particular our question is: what happens to the epileptic signals during their propagation through the slice? Multichannel data analysis enabled us to quantify an activity-dependent increase in the propagation velocity of spontaneous bursts. Moreover, through the evaluation of the coherence of the signals, it was possible to point out that only the lower-frequency components (propagation of electrophysiological activity becomes ineffective for those firing rates exceeding an upper bound or that some noise of neuronal origin was added to the signal during propagation. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Exercising during learning improves vocabulary acquisition: behavioral and ERP evidence.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Kulka, Anna; Gunter, Thomas C; Rothermich, Kathrin; Kotz, Sonja A

    2010-09-20

    Numerous studies have provided evidence that physical activity promotes cortical plasticity in the adult brain and in turn facilitates learning. However, until now, the effect of simultaneous physical activity (e.g. bicycling) on learning performance has not been investigated systematically. The current study aims at clarifying whether simultaneous motor activity influences verbal learning compared to learning in a physically passive situation. Therefore the learning behavior of 12 healthy subjects (4 male, 19-33 years) was monitored over a period of 3 weeks. During that time, behavioral and electrophysiological responses to memorized materials were measured. We found a larger N400 effect and better performance in vocabulary tests when subjects were physically active during the encoding phase. Thus, our data indicate that simultaneous physical activity during vocabulary learning facilitates memorization of new items. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Wolff-Parkinson-White syndrome in young people, from childhood to young adulthood: relationships between age and clinical and electrophysiological findings

    Directory of Open Access Journals (Sweden)

    Hae Jung Jung

    2011-12-01

    Full Text Available Purpose : The aim of the present study was to evaluate the characteristics of electrophysiologic studies (EPS and radiofrequency ablation (RFA performed in subjects aged less than 30 years with Wolff-Parkinson-White (WPW syndrome, particularly pediatric patients under 18 years of age, based on our experience. Methods : Two hundred and one consecutive patients with WPW syndrome were recruited and divided to 3 groups according to age: group 1, 6 to 17 years; group 2, 18 to 29 years; and group 3, 30 to 60 years. The clinical, electrophysiological, and therapeutic data for these patients were evaluated by a retrospective medical record review. Results : A total of 73 (36% of these patients were &lt;30 years of age. Although there were more males than females in group 2 (male:female, 31:11, there was no sex difference in group 1 (male:female, 16:15. Left accessory pathway was detected less frequently in group 1 (32%, 10/31 than in group 2 (57%, 24/42 and group 3 (63%, 81/128 (P=0.023 and P=0.002, respectively. Conclusion : The present study describes several different electrophysiological characteristics in children and adolescents with WPW syndrome. Therefore, when EPS and RFA are performed in children and adolescence with WPW syndrome, we recommend that these characteristics be considered.

  6. Electrophysiological and Morphological Properties of α and γ Motoneurons in the Rat Trigeminal Motor Nucleus

    Directory of Open Access Journals (Sweden)

    Kayo Nishimura

    2018-01-01

    Full Text Available The muscle contraction during voluntary movement is regulated by activities of α- and γ-motoneurons (αMNs and γMNs, respectively. The tension of jaw-closing muscles can be finely tuned over a wide range. This excellent function is likely to be achieved by the specific populations of αMNs innervating jaw-closing muscles. Indeed, we have recently demonstrated that in the rat dorsolateral trigeminal motor nucleus (dl-TMN, the size distribution of αMNs was bimodal and the population of smaller αMNs showed a size distribution similar to that of γMNs, by immunohistochemically identifying αMNs and γMNs based on the expressions of estrogen-related receptor gamma (Err3 and neuronal DNA binding protein NeuN together with ChAT. This finding suggests the presence of αMNs as small as γMNs. However, differences in the electrophysiological membrane properties between αMNs and γMNs remain unknown also in the dl-TMN. Therefore, in the present study, we studied the electrophysiological membrane properties of MNs in the dl-TMN of infant rats at postnatal days 7–12 together with their morphological properties using whole-cell current-clamp recordings followed by immunohistochemical staining with an anti-NeuN and anti-ChAT antibodies. We found that the ChAT-positive and NeuN-positive αMNs were divided into two subclasses: the first one had a larger cell body and displayed a 4-aminopyridine (4-AP-sensitive current while the second one had a smaller cell body and displayed a less prominent 4-AP-sensitive current and a low-threshold spike, suitable for their orderly recruitment. We finally found that γMNs showing ChAT-positive and NeuN-negative immunoreactivities had smaller cell bodies and displayed an afterdepolarization mediated by flufenamate-sensitive cation current. It is suggested that these electrophysiological and morphological features of MNs in the dl-TMN are well correlated with the precise control of occlusion.

  7. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault Injection for Validation

    Directory of Open Access Journals (Sweden)

    Dugan Um

    2010-01-01

    Full Text Available As today's machines become increasingly complex in order to handle intricate tasks, the number of sensors must increase for intelligent operations. Given the large number of sensors, detecting, isolating, and then tolerating faulty sensors is especially important. In this paper, we propose fault tolerance architecture suitable for a massive sensor array often found in highly advanced systems such as autonomous robots. One example is the sensitive skin, a type of massive sensor array. The objective of the sensitive skin is autonomous guidance of machines in unknown environments, requiring elongated operations in a remote site. The entirety of such a system needs to be able to work remotely without human attendance for an extended period of time. To that end, we propose a fault-tolerant architecture whereby component and analytical redundancies are integrated cohesively for effective failure tolerance of a massive array type sensor or sensor system. In addition, we discuss the evaluation results of the proposed tolerance scheme by means of fault injection and validation analysis as a measure of system reliability and performance.

  8. Radiologic Monitoring of Faculty and Staff in an Electrophysiology Lab Using a Real-Time Dose Monitoring System

    Science.gov (United States)

    Chardenet, Kathleen A.

    2016-01-01

    Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures…

  9. Selective proteomic analysis of antibiotic-tolerant cellular subpopulations in pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Babin, Brett M.; Atangcho, Lydia; van Eldijk, Mark B.

    2017-01-01

    involved in central carbon metabolism. We differentiated the immediate proteomic response, characterized by an increase in flagellar motility, from the long-term adaptive strategy, which included the upregulation of purine synthesis. This targeted, selective analysis of a bacterial subpopulation...... amino acid tagging (BONCAT) method to enable selective proteomic analysis of a Pseudomonas aeruginosa biofilm subpopulation. Through controlled expression of a mutant methionyl-tRNA synthetase, we targeted BONCAT labeling to cells in the regions of biofilm microcolonies that showed increased tolerance...... demonstrates how the study of proteome dynamics can enhance our understanding of biofilm heterogeneity and antibiotic tolerance. IMPORTANCE Bacterial growth is frequently characterized by behavioral heterogeneity at the single-cell level. Heterogeneity is especially evident in the physiology of biofilms...

  10. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani.

    Science.gov (United States)

    Piccolino, M

    1998-07-15

    Preceded by a companion paper on Galvani's life, this article is written on the occasion of the bicentenary of the death of Luigi Galvani. From his studies on the effects of electricity on frogs, the scientist of Bologna derived the hypothesis that animal tissues are endowed with an intrinsic electricity that is involved in fundamental physiological processes such as nerve conduction and muscle contraction. Galvani's work swept away from life sciences mysterious fluids and elusive entities like "animal spirits" and led to the foundation of a new science, electrophysiology. Two centuries of research work have demonstrated how insightful was Galvani's conception of animal electricity. Nevertheless, the scholar of Bologna is still largely misrepresented in the history of science, because the importance of his researches seems to be limited to the fact that they opened the paths to the studies of the physicist Alessandro Volta, which culminated in 1800 with the invention of the electric battery. Volta strongly opposed Galvani's theories on animal electricity. The matter of the scientific controversy between Galvani and Volta is examined here in the light of two centuries of electrophysiological studies leading to the modern understanding of electrical excitability in nerve and muscle. By surveying the work of scientists such as Nobili, Matteucci, du Bois-Reymond, von Helmholtz, Bernstein, Hermann, Lucas, Adrian, Hodgkin, Huxley, and Katz, the real matter of the debate raised by Galvani's discoveries is here reconsidered. In addition, a revolutionary phase of the 18th century science that opened the way for the development of modern neurosciences is reevaluated.

  11. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  12. Fault tolerance of the NIF power conditioning system

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1995-01-01

    The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test-bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation

  13. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease.

    Science.gov (United States)

    Beaumont, Vahri; Mrzljak, Ladislav; Dijkman, Ulrike; Freije, Robert; Heins, Mariette; Rassoulpour, Arash; Tombaugh, Geoffrey; Gelman, Simon; Bradaia, Amyaouch; Steidl, Esther; Gleyzes, Melanie; Heikkinen, Taneli; Lehtimäki, Kimmo; Puoliväli, Jukka; Kontkanen, Outi; Javier, Robyn M; Neagoe, Ioana; Deisemann, Heike; Winkler, Dirk; Ebneth, Andreas; Khetarpal, Vinod; Toledo-Sherman, Leticia; Dominguez, Celia; Park, Larry C; Munoz-Sanjuan, Ignacio

    2016-08-01

    Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD. Copyright © 2016. Published by Elsevier Inc.

  14. Tolerância ao frio do amendoim forrageiro Cold tolerance of forage peanut

    Directory of Open Access Journals (Sweden)

    Adriana Pires Soares Bresolin

    2008-08-01

    Full Text Available A produtividade de uma pastagem perene tropical, em regiões de clima temperado, é dependente de seu comportamento em relação às condições de temperatura. A avaliação da sensibilidade das plantas, através da sua exposição a temperaturas inferiores a 2°C em ambiente controlado, pode ser um procedimento bastante eficiente na predição de resistência, em função de assegurar uma homogeneidade dos níveis de frio. Considerando-se à reduzida disponibilidade de trabalhos científicos relacionados com a avaliação de leguminosas forrageiras tropicais quanto à tolerância ao frio, este experimento teve como objetivo avaliar o comportamento do amendoim forrageiro (cv. "Amarillo" sob temperaturas inferiores a 2°C. O delineamento experimental adotado foi completamente casualizado com 15 repetições e dois tratamentos, com exposição (CE e sem exposição ao frio (SE. Os caracteres mensurados foram: número de folhas por estolho, espessura do estolho e número de brotações novas. Os resultados indicaram que a exposição do amendoim forrageiro a um intervalo de temperatura de -1,0 a 1,3°C por um período de 3 horas é capaz de causar estresse de frio nas plantas, provocando uma redução no número de folhas e estimulando a formação de novas brotações, sem provocar a morte das plantas.The yield of tropical perennial forages in temperate climate areas depends on its cold tolerance. The exposure of genotypes to temperatures below 2oC, under controlled conditions is an efficient methodology to predict cold tolerance, since it maintains homogeneous levels of cold. Due to absence of information related to cold tolerance of tropical forages, this experiment was developed aiming to evaluate the behavior of forage peanut exposed to temperatures below 2oC. The design adopted was completely randomized with 15 replications and two treatments: exposed and not exposed to cold. The traits measured were: number of leaves per stolon; thickness

  15. A Multirelational Account of Toleration

    DEFF Research Database (Denmark)

    Ferretti, Maria Paola; Lægaard, Sune

    2013-01-01

    Toleration classically denotes a relation between two agents that is characterised by three components: objection, power, and acceptance overriding the objection. Against recent claims that classical toleration is not applicable in liberal democracies and that toleration must therefore either be ...

  16. State, religion and toleration

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2009-01-01

    Contribution to Religion and State - From separation to cooperation? Legal-philosophical reflections for a de-secularized world. (IVR Cracow Special Workshop). Eds. Bart. C. Labuschagne & Ari M. Solon. Abstract: Toleration is indeed a complex phenomenon. A discussion of the concept will have...... to underline not only the broadmindedness and liberty of individuals or of groups, but also the relevant distinctions and arguments in political philosophy, epistemology, philosophy of religion and philosophical anthropology and their connection with educational issues. Through a discussion of these relations......, the essay argues three theses: (1) Toleration is not reducible to an ethics of spiritual freedom. (2) Toleration is not neutral to fanatism. (3) Toleration involves esteem for the person....

  17. 78 FR 40027 - Novaluron; Pesticide Tolerances

    Science.gov (United States)

    2013-07-03

    ...). This regulation additionally deletes the time- limited tolerance for strawberry, as that tolerance..., pears, potatoes, strawberries, and tomatoes and utilized estimates for PCT for recently registered uses... deletes the time-limited tolerance for strawberry, as that tolerance expired on December 31, 2011. VI...

  18. Sex differences in behavioral and PKA cascade responses to repeated cocaine administration.

    Science.gov (United States)

    Zhou, Luyi; Sun, Wei-Lun; Weierstall, Karen; Minerly, Ana Christina; Weiner, Jan; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-10-01

    Previous studies have shown sex different patterns in behavioral responses to cocaine. Here, we used between-subject experiment design to study whether sex differences exist in the development of behavioral sensitization and tolerance to repeated cocaine, as well as the role of protein kinase A (PKA) signaling cascade in this process. Ambulatory and rearing responses were recorded in male and female rats after 1 to 14 days of administration of saline or cocaine (15 mg/kg; ip). Correspondent PKA-associated signaling in the nucleus accumbens (NAc) and caudate-putamen (CPu) was measured at each time point. Our results showed that females exhibited higher cocaine-induced behavioral responses and developed behavioral sensitization and tolerance faster than males. Whereas females developed behavioral sensitization to cocaine after 2 days and tolerance after 14 days, male rats developed sensitization after 5 days. In addition, cocaine induced a sexual dimorphic pattern in the progression of neuronal adaptations on the PKA cascade signaling in region (NAc vs. CPu) and time (days of cocaine administration)-dependent manners. In general, more PKA signaling cascade changes were found in the NAc of males on day 5 and in the CPu of females with repeated cocaine injection. In addition, in females, behavioral activities positively correlated with FosB levels in the NAc and CPu and negatively correlated with Cdk5 and p35 in the CPu, while no correlation was observed in males. Our studies suggest that repeated cocaine administration induced different patterns of behavioral and molecular responses in the PKA cascade in male and female rats.

  19. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    Energy Technology Data Exchange (ETDEWEB)

    Sooby Wood, E., E-mail: sooby@lanl.gov; White, J.T.; Nelson, A.T.

    2017-02-15

    The air oxidation behavior of U{sub 3}Si{sub 2}, USi, and U{sub 3}Si{sub 5} is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  20. Paradoxical Behavior of Granger Causality

    Science.gov (United States)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  1. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays

    DEFF Research Database (Denmark)

    Pisciotta, Marzia; Morgavi, Giovanna; Jahnsen, Henrik

    2010-01-01

    Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling...... activity are completely coherent with respect to the activity originating in the CA3, while components at higher frequencies lose the coherence, possibly suggesting that the cellular mechanism mediating propagation of electrophysiological activity becomes ineffective for those firing rates exceeding...... epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating...

  2. Electrophysiological evaluation of Wolff-Parkinson-White Syndrome

    Science.gov (United States)

    Brembilla-Perrot, Beatrice

    2002-01-01

    Sudden death might complicate the follow-up of symptomatic patients with the Wolff-Parkinson-White syndrome (WPW) and might be the first event in patients with asymptomatic WPW. The risk of sudden death is increased in some clinical situations. Generally, the noninvasive studies are unable to predict the risk of sudden death correctly . The electrophysiological study is the best means to detect the risk of sudden death and to evaluate the nature of symptoms. Methods used to define the prognosis of WPW are well-defined. At first the maximal rate of conduction through the accessory pathway is evaluated; programmed atrial stimulation using 1 and 2 extrastimuli delivered at different cycle lengths is then used to determine the accessory pathway refractory period and to induce a supraventricular tachycardia. These methods should be performed in the control state and repeated in adrenergic situations either during exercise test or more simply during a perfusion of small doses of isoproterenol. The induction of an atrial fibrillation with rapid conduction through the accessory pathway (> 240/min in control state, > 300/min after isoproterenol) is the sign of a form of WPW at risk of sudden death. PMID:16951730

  3. Electrophysiological evaluation of Wolff-Parkinson-White Syndrome

    Directory of Open Access Journals (Sweden)

    Béatrice Brembilla-Perrot

    2002-10-01

    Full Text Available Sudden death might complicate the follow-up of symptomatic patients with the Wolff-Parkinson-White syndrome (WPW and might be the first event in patients with asymptomatic WPW. The risk of sudden death is increased in some clinical situations. Generally, the noninvasive studies are unable to predict the risk of sudden death correctly . The electrophysiological study is the best means to detect the risk of sudden death and to evaluate the nature of symptoms. Methods used to define the prognosis of WPW are well-defined. At first the maximal rate of conduction through the accessory pathway is evaluated; programmed atrial stimulation using 1 and 2 extrastimuli delivered at different cycle lengths is then used to determine the accessory pathway refractory period and to induce a supraventricular tachycardia. These methods should be performed in the control state and repeated in adrenergic situations either during exercise test or more simply during a perfusion of small doses of isoproterenol. The induction of an atrial fibrillation with rapid conduction through the accessory pathway (> 240/min in control state, > 300/min after isoproterenol is the sign of a form of WPW at risk of sudden death.

  4. Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination process and the stress tolerance level

    NARCIS (Netherlands)

    Soeda, Y.; Konings, M.C.J.M.; Vorst, O.F.J.; Houwelingen, van A.M.M.L.; Stoopen, G.M.; Maliepaard, C.A.; Kodde, J.; Bino, R.J.; Groot, S.P.C.; Geest, van der A.H.M.

    2005-01-01

    During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were

  5. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Science.gov (United States)

    2012-02-01

    ...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance and Fatigue Evaluation for Metallic Structures; Correction AGENCY: Federal Aviation Administration... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1...

  6. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia; Marzullo, Paolo

    2016-01-01

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic "9"9"mTc-tetrofosmin and "1"2"3I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target. (orig.)

  7. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia [University Hospital of Pisa, Cardio-Thoracic and Vascular Department, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2016-12-15

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic {sup 99m}Tc-tetrofosmin and {sup 123}I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target

  8. Electrophysiologic similarities of overdose between digoxin and bufadienolides found in a Chinese aphrodisiac

    Directory of Open Access Journals (Sweden)

    Maxwell Bressman

    2017-02-01

    Full Text Available Classically derived from toad venom, bufadienolides are a group of cardioactive steroids with properties similar to digoxin. Some traditional Chinese medications, including several aphrodisiacs, contain bufadienolides. Owing to their physiologic similarities to digoxin, bufadienolides have been shown to produce a toxic profile similar to that of digoxin and there have been multiple case reports of the use of these aphrodisiacs resulting in death. This report will describe a case that illustrates the electrophysiologic similarities between bufadienolide toxicity and digoxin toxicity as well as the treatment of bufadienolide toxicity.

  9. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.

    Science.gov (United States)

    Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit

    2017-02-01

    This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105

  10. Electrophysiological Monitoring of Injury ProgressionIn the Rat Cerebellar Cortex

    Directory of Open Access Journals (Sweden)

    Gokhan eOrdek

    2014-10-01

    Full Text Available The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI. The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing and mossy fibers. Here we demonstrate the use of cerebellar evoked potentials (EPs mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI. A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML of the posterior cerebellum via multi-electrode arrays (MEA. Post-injury evoked response amplitudes (EPAs were analyzed on a daily basis for one week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72±4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 hours of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24% were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47±0.1 to 0.35±0.04, p<0.001 along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.

  11. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  12. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  13. Effectiveness of a Forward Collision Warning System in simple and in dual task from an electrophysiological perspective.

    Science.gov (United States)

    Bueno, Mercedes; Fort, Alexandra; Francois, Mathilde; Ndiaye, Daniel; Deleurence, Philippe; Fabrigoule, Colette

    2013-04-29

    Forward Collision Warning Systems (FCWS) are expected to assist drivers; however, it is not completely clear whether these systems are of benefit to distracted drivers as much as they are to undistracted drivers. This study aims at investigating further the analysis of the effectiveness of a surrogate FCWS according to the attentional state of participants. In this experiment electrophysiological and behavioural data were recording while participants were required to drive in a simple car simulator and to react to the braking of the lead vehicle which could be announced by a warning system. The effectiveness of this warning system was evaluated when drivers were distracted or not by a secondary cognitive task. In a previous study, the warning signal was not completely effective likely due to the presence of another predictor of the forthcoming braking which competes with the warning. By eliminating this secondary predictor in the present study, the results confirmed the negative effect of the secondary task and revealed the expected effectiveness of the warning system at behavioural and electrophysiological levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat.

    Science.gov (United States)

    Shepard, P D; German, D C

    1988-11-01

    The electrophysiological and pharmacological properties of dopaminergic neurons were systematically examined throughout the anterior-posterior extent of the substantia nigra zona compacta in the rat. Cells were characterized in terms of their (1) firing pattern, (2) firing rate, (3) antidromic response properties, and (4) inhibition in firing rate following dopaminergic agonist administration. These properties were then related to the cell's position within one of four anterior-posterior segments of the nucleus. There were three types of neuronal discharge pattern encountered; irregular, burst and regular. Cells which exhibited different firing patterns exhibited different firing rates and anatomical locations within the substantia nigra zona compacta. All neurons were antidromically activated from the striatum, however, the burst- and regular-firing cells exhibited significantly faster estimated conduction velocities than irregular-firing cells. The irregular-firing cells were most sensitive to dopaminergic autoreceptor agonists whereas the burst-firing cells were most sensitive to an indirect-acting dopaminergic agonist. These experiments provide both electrophysiological and pharmacological evidence to indicate that nigrostriatal dopaminergic neurons are composed of distinct subpopulations which are characterized by their firing pattern.

  15. Radiation exposure of an anaesthesiologist in catheterisation and electrophysiological cardiac procedures

    International Nuclear Information System (INIS)

    Andreoli, Stefano; Moretti, Renzo; Lorini, Ferdinando Luca; Lagrotta, Mariavittoria

    2016-01-01

    Sometimes, cardiac catheterisation and electrophysiological procedures, diagnostic and interventional, require an anaesthesiological support. The anaesthesiologist receives radiation doses depending on various factors, such as type of procedure and exposure modality, anaesthesiological technique, individual protective devices and operator experience. The aim of this study was to investigate the dose per procedure, the exposure inhomogeneity and the effective dose, E, of a senior anaesthesiologist in the haemodynamic laboratory of Ospedali Riuniti, Bergamo. The dose monitoring was routinely performed with sets of several thermoluminescent dosemeters and an electronic personal dosemeter. The study covered 300 consecutive procedures over 1 y. The anaesthesiologist wore a protective apron, a thyroid collar and glasses (0.5 mm lead-equivalent). (authors)

  16. Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher Joel Roome

    2014-11-01

    Full Text Available Chronic cranial windows have been instrumental in advancing optical studies in vivo, permitting long-term, high-resolution imaging in various brain regions. However, once a window is attached it is difficult to regain access to the brain under the window for cellular manipulations. Here we describe a simple device that combines long term in vivo optical imaging with direct brain access via glass or quartz pipettes and metal, glass, or quartz electrodes for cellular manipulations like dye or drug injections and electrophysiological stimulations or recordings while keeping the craniotomy sterile. Our device comprises a regular cranial window glass coverslip with a drilled access hole later sealed with biocompatible silicone. This chronic cranial window with access port is cheap, easy to manufacture, can be mounted just as the regular chronic cranial window, and is self-sealing after retraction of the pipette or electrode. We demonstrate that multiple injections can be performed through the silicone port by repetitively bolus loading calcium sensitive dye into mouse barrel cortex and recording spontaneous cellular activity over a period of weeks. As an example to the extent of its utility for electrophysiological recording, we describe how simple removal of the silicone seal can permit patch pipette access for whole-cell patch clamp recordings in vivo. During these chronic experiments we do not observe any infections under the window or impairment of animal health.

  17. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions.

    Science.gov (United States)

    Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca

    2017-10-01

    Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Electrophysiologic studies of the thoracic limb of the horse.

    Science.gov (United States)

    Blythe, L L; Kitchell, R L

    1982-09-01

    The cutaneous innervation of the thoracic limb was investigated in 18 barbiturate-anesthetized horses, using electrophysiologic techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least 4 horses by stroking the hairs with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed areas of considerable overlap. The part of a CA of a given nerve supplied only by that nerve is referred to as its autonomous zone (AZ). In contrast to the standard textbook illustrations cutaneous branches of the axillary, radial, musculocutaneous, and ulnar nerves overlapped extensively in the antebrachium. Clinically testable AZ were found in the antebrachium for the caudal cutaneous antebrachial nerve of the ulnar nerve and in the carpus and manus for the cutaneous branches of the median, ulnar, and musculocutaneous nerves; AZ were not found for the cutaneous branches of the radial and axillary nerves.

  19. Electrophysiology of Cranial Nerve Testing: Trigeminal and Facial Nerves.

    Science.gov (United States)

    Muzyka, Iryna M; Estephan, Bachir

    2018-01-01

    The clinical examination of the trigeminal and facial nerves provides significant diagnostic value, especially in the localization of lesions in disorders affecting the central and/or peripheral nervous system. The electrodiagnostic evaluation of these nerves and their pathways adds further accuracy and reliability to the diagnostic investigation and the localization process, especially when different testing methods are combined based on the clinical presentation and the electrophysiological findings. The diagnostic uniqueness of the trigeminal and facial nerves is their connectivity and their coparticipation in reflexes commonly used in clinical practice, namely the blink and corneal reflexes. The other reflexes used in the diagnostic process and lesion localization are very nerve specific and add more diagnostic yield to the workup of certain disorders of the nervous system. This article provides a review of commonly used electrodiagnostic studies and techniques in the evaluation and lesion localization of cranial nerves V and VII.

  20. Closed Loop Experiment Manager (CLEM—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    Directory of Open Access Journals (Sweden)

    Hananel Hazan

    2017-10-01

    Full Text Available There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM. CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs. We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  1. NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Hu

    Full Text Available Genetic and chemical biology screens of C. elegans have been of enormous benefit in providing fundamental insight into neural function and neuroactive drugs. Recently the exploitation of microfluidic devices has added greater power to this experimental approach providing more discrete and higher throughput phenotypic analysis of neural systems. Here we make a significant addition to this repertoire through the design of a semi-automated microfluidic device, NeuroChip, which has been optimised for selecting worms based on the electrophysiological features of the pharyngeal neural network. We demonstrate this device has the capability to sort mutant from wild-type worms based on high definition extracellular electrophysiological recordings. NeuroChip resolves discrete differences in excitatory, inhibitory and neuromodulatory components of the neural network from individual animals. Worms may be fed into the device consecutively from a reservoir and recovered unharmed. It combines microfluidics with integrated electrode recording for sequential trapping, restraining, recording, releasing and recovering of C. elegans. Thus mutant worms may be selected, recovered and propagated enabling mutagenesis screens based on an electrophysiological phenotype. Drugs may be rapidly applied during the recording thus permitting compound screening. For toxicology, this analysis can provide a precise description of sub-lethal effects on neural function. The chamber has been modified to accommodate L2 larval stages showing applicability for small size nematodes including parasitic species which otherwise are not tractable to this experimental approach. We also combine NeuroChip with optogenetics for targeted interrogation of the function of the neural circuit. NeuroChip thus adds a new tool for exploitation of C. elegans and has applications in neurogenetics, drug discovery and neurotoxicology.

  2. Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research.

    Science.gov (United States)

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.

  3. Clinical, neuropsychological, and pre-stimulus dorsomedial thalamic nucleus electrophysiological data in deep brain stimulation patients

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2016-09-01

    Full Text Available The data presented here comprise clinical, neuropsychological, and intrathalamic electrophysiological data from 7 patients with pharmacoresistant focal epilepsy and are related to the article “Pre-stimulus thalamic theta power predicts human memory formation” C.M. Sweeney-Reed, T. Zaehle, J. Voges, F.C. Schmitt, L. Buentjen, K. Kopitzki, et al. (2016 [1]. The patients participated in a memory paradigm after receiving electrodes implanted in the DMTN due to the surgical approach taken in electrode insertion for deep brain stimulation of the anterior thalamic nucleus. Epilepsy duration and pre-operative neuropsychological tests provide an indication of the profile of patients receiving intrathalamic electrode implantation and the memory capabilities in such a patient group. The electrophysiological data were recorded from the right DMTN preceding stimulus presentation during intentional memory encoding. The patients viewed a series of photographic scenes, which they judged as indoors or outdoors. The 900 ms epochs prior to stimulus presentation were labeled as preceding successful or unsuccessful subsequent memory formation according to a subsequent memory test for the items. The difference between theta power preceding successful versus unsuccessful subsequent memory formation is shown against time for each patient individually. Keywords: Memory encoding, Dorsomedial thalamic nucleus, Pre-stimulus theta

  4. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  5. Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Kristina Yancey, E-mail: kristina.yancey@gmail.com; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu

    2016-12-01

    Highlights: • This study compared four accident tolerant fuels against uranium dioxide. • Material property correlations were developed to evaluate fuel performance. • The fuels’ neutronic and thermal hydraulic behaviors were studied in the AP1000. • No fuel type performed better in all areas, but each has strengths and weaknesses. • More research is needed to build a complete model of the fuel performances. - Abstract: Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications.

  6. Wolff-Parkinson-White syndrome in young people, from childhood to young adulthood: relationships between age and clinical and electrophysiological findings

    Science.gov (United States)

    Jung, Hae Jung; Ju, Hwang Young; Hyun, Myung Chul; Lee, Sang Bum

    2011-01-01

    Purpose The aim of the present study was to evaluate the characteristics of electrophysiologic studies (EPS) and radiofrequency ablation (RFA) performed in subjects aged less than 30 years with Wolff-Parkinson-White (WPW) syndrome, particularly pediatric patients under 18 years of age, based on our experience. Methods Two hundred and one consecutive patients with WPW syndrome were recruited and divided to 3 groups according to age: group 1, 6 to 17 years; group 2, 18 to 29 years; and group 3, 30 to 60 years. The clinical, electrophysiological, and therapeutic data for these patients were evaluated by a retrospective medical record review. Results A total of 73 (36%) of these patients were syndrome. Therefore, when EPS and RFA are performed in children and adolescence with WPW syndrome, we recommend that these characteristics be considered. PMID:22323907

  7. 75 FR 29908 - Prothioconazole; Pesticide Tolerances

    Science.gov (United States)

    2010-05-28

    .... The straw numerical value (5 ppm) is matched between the U.S. and Codex. The tolerance definition for... lower (0.07 ppm) than the recommended U.S. group tolerance. The 0.07 ppm value is the current U.S. tolerance value for wheat, but will be replaced by the cereal grain group tolerance. Canada does not...

  8. Distribution of extracellular potassium and electrophysiologic changes during two-stage coronary ligation in the isolated, perfused canine heart

    NARCIS (Netherlands)

    Coronel, R.; Fiolet, J. W.; Wilms-Schopman, J. G.; Opthof, T.; Schaapherder, A. F.; Janse, M. J.

    1989-01-01

    We studied the relation between [K+]o and the electrophysiologic changes during a "Harris two-stage ligation," which is an occlusion of a coronary artery, preceded by a 30-minute period of 50% reduction of flow through the artery. This two-stage ligation has been reported to be antiarrhythmic. Local

  9. Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech.

    Science.gov (United States)

    Broderick, Michael P; Anderson, Andrew J; Di Liberto, Giovanni M; Crosse, Michael J; Lalor, Edmund C

    2018-03-05

    People routinely hear and understand speech at rates of 120-200 words per minute [1, 2]. Thus, speech comprehension must involve rapid, online neural mechanisms that process words' meanings in an approximately time-locked fashion. However, electrophysiological evidence for such time-locked processing has been lacking for continuous speech. Although valuable insights into semantic processing have been provided by the "N400 component" of the event-related potential [3-6], this literature has been dominated by paradigms using incongruous words within specially constructed sentences, with less emphasis on natural, narrative speech comprehension. Building on the discovery that cortical activity "tracks" the dynamics of running speech [7-9] and psycholinguistic work demonstrating [10-12] and modeling [13-15] how context impacts on word processing, we describe a new approach for deriving an electrophysiological correlate of natural speech comprehension. We used a computational model [16] to quantify the meaning carried by words based on how semantically dissimilar they were to their preceding context and then regressed this measure against electroencephalographic (EEG) data recorded from subjects as they listened to narrative speech. This produced a prominent negativity at a time lag of 200-600 ms on centro-parietal EEG channels, characteristics common to the N400. Applying this approach to EEG datasets involving time-reversed speech, cocktail party attention, and audiovisual speech-in-noise demonstrated that this response was very sensitive to whether or not subjects understood the speech they heard. These findings demonstrate that, when successfully comprehending natural speech, the human brain responds to the contextual semantic content of each word in a relatively time-locked fashion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Attitude of socio-harmony and Local Wisdom: an Indicator of the Development of Social Tolerance of High School Students

    Directory of Open Access Journals (Sweden)

    Adi Wijaya Deni

    2018-01-01

    Full Text Available This article discusses the dilematis aspect about the shift in traditional values-based local wisdom about the ecological aspects. Close to the learning in school emphasized the sides of cognitive ability and do not offset the granting of traditional values education. The purpose of this article is to promote tolerance of students to be more sensitive to the surroundings so as not to become individualists. Research results at the high school level, students are not given the attitude of socio-harmony in the form of tolerance. The purpose of this article is to enhance social tolerance that can deliver value to prevent the behavior concept asocial.

  11. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?

    Science.gov (United States)

    Monneveux, Philippe; Ramírez, David A; Pino, María-Teresa

    2013-05-01

    Drought tolerance is a complex trait of increasing importance in potato. Our knowledge is summarized concerning drought tolerance and water use efficiency in this crop. We describe the effects of water restriction on physiological characteristics, examine the main traits involved, report the attempts to improve drought tolerance through in vitro screening and marker assisted selection, list the main genes involved and analyze the potential interest of native and wild potatoes to improve drought tolerance. Drought tolerance has received more attention in cereals than in potato. The review compares these crops for indirect selection methods available for assessment of drought tolerance related traits, use of genetic resources, progress in genomics, application of water saving techniques and availability of models to anticipate the effects of climate change on yield. It is concluded that drought tolerance improvement in potato could greatly benefit from the transfer of research achievements in cereals. Several promising research directions are presented, such as the use of fluorescence, reflectance, color and thermal imaging and stable isotope techniques to assess drought tolerance related traits, the application of the partial root-zone drying technique to improve efficiency of water supply and the exploitation of stressful memory to enhance hardiness. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Clinical neurological examination vs electrophysiological studies: Reflections from experiences in occupational medicine

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis

    2015-01-01

    a diagnosis requires the identification of the responsible pathology and the involved tissues and structures. Consequently, improved diagnostic approaches are needed. This editorial discusses the potentials of using the clinical neurologic examination in patients with upper limb complaints related to work....... It is argued that a simple but systematic physical approach permits the examiner to frequently identify patterns of neurological findings that suggest nerve afflictions and their locations, and that electrophysiological studies are less likely to identify pathology. A diagnostic algorithm for the physical...... assessment is provided to assist the clinician. Failure to include representative neurological items in the physical examination may result in patients being misinterpreted, misdiagnosed and mistreated....

  13. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  14. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  15. Functional Na(V)1.8 Channels in Intracardiac Neurons The Link Between SCN10A and Cardiac Electrophysiology

    NARCIS (Netherlands)

    Verkerk, Arie O.; Remme, Carol Ann; Schumacher, Cees A.; Scicluna, Brendon P.; Wolswinkel, Rianne; de Jonge, Berend; Bezzina, Connie R.; Veldkamp, Marieke W.

    2012-01-01

    Rationale: The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. Objective: To demonstrate the

  16. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  17. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography.

    Science.gov (United States)

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-07-05

    The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  18. Electrophysiological correlates of social information processing for detecting agents in social interaction scenes: P200 and N250 components

    Directory of Open Access Journals (Sweden)

    Crivelli Davide

    2016-04-01

    Full Text Available According to interaction theories, the detection of situated agents and the understanding of their intentions and mental states are mediated by smart perceptual and embodied mechanisms. While the network supporting agency-attribution, action understanding, and grasping of others’ mental state is quite known, the actual mental chronometry of such social perception processes is still not clear. We then designed an exploratory study to investigate electrophysiological correlates (ERPs and source localization of information-processing for the detection of potential agents in realistic interaction scenes. Morphological and statistical analyses of electrophysiological data highlighted that the manipulation the nature of a potential agent, the gesture it executed and the relative position of an interagent was differently associated to the modulation of specific relevant middle-latency ERP components, labelled as P200 and N250, and of their relative intra-cortical current density distribution within the first 300 ms from the appearance of the stimulus.

  19. The effect of age on word-stem cued recall: a behavioral and electrophysiological study.

    Science.gov (United States)

    Osorio, Alexandra; Ballesteros, Soledad; Fay, Séverine; Pouthas, Viviane

    2009-09-15

    The present study investigated the effects of aging on behavioral cued-recall performance and on the neural correlates of explicit memory using event-related potentials (ERPs) under shallow and deep encoding conditions. At test, participants were required to complete old and new three-letter word stems using the letters as retrieval cues. The main results were as follows: (1) older participants exhibited the same level of explicit memory as young adults with the same high level of education. Moreover older adults benefited as much as young ones from deep processing at encoding; (2) brain activity at frontal sites showed that the shallow old/new effect developed and ended earlier for older than young adults. In contrast, the deep old/new effect started later for older than for young adults and was sustained up to 1000 ms in both age groups. Moreover, the results suggest that the frontal old/new effect was bilateral but greater over the right than the left electrode sites from 600 ms onward; (3) there were no differences at parietal sites between age groups: the old/new effect developed from 400 ms under both encoding conditions and was sustained up to 1000 ms under the deep condition but ended earlier (800 ms) under the shallow condition. These ERP results indicate significant age-related changes in brain activity associated with the voluntary retrieval of previously encoded information, in spite of similar behavioral performance of young and older adults.

  20. Electrophysiological correlates of error processing in borderline personality disorder.

    Science.gov (United States)

    Ruchsow, Martin; Walter, Henrik; Buchheim, Anna; Martius, Philipp; Spitzer, Manfred; Kächele, Horst; Grön, Georg; Kiefer, Markus

    2006-05-01

    The electrophysiological correlates of error processing were investigated in patients with borderline personality disorder (BPD) using event-related potentials (ERP). Twelve patients with BPD and 12 healthy controls were additionally rated with the Barratt impulsiveness scale (BIS-10). Participants performed a Go/Nogo task while a 64 channel EEG was recorded. Three ERP components were of special interest: error-related negativity (ERN)/error negativity (Ne), early error positivity (early Pe) reflecting automatic error processing, and the late Pe component which is thought to mirror the awareness of erroneous responses. We found smaller amplitudes of the ERN/Ne in patients with BPD compared to controls. Moreover, significant correlations with the BIS-10 non-planning sub-score could be demonstrated for both the entire group and the patient group. No between-group differences were observed for the early and late Pe components. ERP measures appear to be a suitable tool to study clinical time courses in BPD.