WorldWideScience

Sample records for tokushima fatty rats

  1. UDP-induced relaxation is enhanced in aorta from female obese Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Kobayashi, Shota; Matsumoto, Takayuki; Ando, Makoto; Iguchi, Maika; Watanabe, Shun; Taguchi, Kumiko; Kobayashi, Tsuneo

    2018-03-01

    Uridine 5'-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats and control Long-Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) N G -nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y 6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y 6 receptor.

  2. Anti-obesity effects of granulocyte-colony stimulating factor in Otsuka-Long-Evans-Tokushima fatty rats.

    Directory of Open Access Journals (Sweden)

    Yonggu Lee

    Full Text Available Granulocyte-colony stimulating factor (G-CSF has molecular structures and intracellular signaling pathways that are similar to those of leptin and ciliary neurotropic factor (CNTF. It also has immune-modulatory properties. Given that leptin and CNTF play important roles in energy homeostasis and that obesity is an inflammatory condition in adipose tissue, we hypothesized that G-CSF could also play a role in energy homeostasis. We treated 12 38-week-old male Otsuka-Long-Evans-Tokushima fatty rats (OLETF, diabetic and 12 age-matched male Long-Evans-Tokushima rats (LETO, healthy with 200 µg/day G-CSF or saline for 5 consecutive days. Body weight reduction was greater in G-CSF-treated OLETF (G-CSF/OLETF than saline-treated OLETF (saline/OLETF following 8 weeks of treatment (-6.9±1.6% vs. -3.1±2.2%, p<0.05. G-CSF treatment had no effect on body weight in LETO or on food intake in either OLETF or LETO. Body fat in G-CSF/OLETF was more reduced than in saline/OLETF (-32.2±3.1% vs. -20.8±6.2%, p<0.05. Energy expenditure was higher in G-CSF/OLETF from 4 weeks after the treatments than in saline/OLETF. Serum levels of cholesterol, triglyceride, interleukin-6 and tumor necrosis factor-α were lower in G-CSF/OLETF than in saline/OLETF. Uncoupling protein-1 (UCP-1 expression in brown adipose tissue (BAT was higher in G-CSF/OLETF than in saline/OLETF, but was unaffected in LETO. Immunofluorescence staining and PCR results revealed that G-CSF receptors were expressed in BAT. In vitro experiments using brown adipocyte primary culture revealed that G-CSF enhanced UCP-1 expression from mature brown adipocytes via p38 mitogen-activated protein kinase pathway. In conclusion, G-CSF treatment reduced body weight and increased energy expenditure in a diabetic model, and enhanced UCP-1 expression and decreased inflammatory cytokine levels may be associated with the effects of G-CSF treatment.

  3. Enhancing effects of sericin on corneal wound healing in Otsuka Long-Evans Tokushima fatty rats as a model of human type 2 diabetes.

    Science.gov (United States)

    Nagai, Noriaki; Murao, Takatoshi; Ito, Yoshimasa; Okamoto, Norio; Sasaki, Masahiro

    2009-09-01

    The protein sericin is the main constituent of silk. We investigated the effects of sericin on corneal wound healing in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model for human type 2 diabetes. Corneal wounds were prepared by removal of the corneal epithelium, and documented using a TRC-50X equipped with a digital camera. Sericin solutions were instilled into the eyes of rats five times a day following corneal abrasion. Plasma glucose and triglycerides were determined using an Accutrend GCT. Cholesterol and insulin were measured using a Cholesterol E-Test Kit and ELISA Insulin Kit, respectively. The plasma levels of glucose, triglycerides, cholesterol and insulin in 38-week-old OLETF rats were significantly higher than in Long-Evans Tokushima Otsuka (LETO) rats used as normal controls, and the rate of corneal wound healing in OLETF rats was slower than in LETO rats. The corneal wounds of rats instilled with saline showed almost complete healing by 72 h after corneal epithelial abrasion. On the other hand, the corneal healing rate of OLETF rats instilled with 10% sericin solution was significantly higher than that of LETO rats instilled with saline, and the wounds showed almost complete healing at 48 h after abrasion. The corneal healing rate increased with increasing sericin concentration. The present study demonstrates that the corneal wound healing rate in OLETF rat is slower than in LETO rats, and the instillation of sericin solution has a potent effect in promoting wound healing and wound-size reduction in LETO and OLETF rats.

  4. Kinetic analysis of the rate of corneal wound healing in Otsuka long-evans Tokushima Fatty rats, a model of type 2 diabetes mellitus.

    Science.gov (United States)

    Nagai, Noriaki; Murao, Takatoshi; Okamoto, Norio; Ito, Yoshimasa

    2010-01-01

    Diabetic keratopathy is a well-known ocular complication secondary to type 2 diabetes mellitus. In this study, we performed a kinetic analysis of corneal wound healing in Long-Evans rats (normal rat) and Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. Corneal wound healing in 7-week-old normal rats was mostly complete 24 h after corneal epithelial abrasion, and the process of corneal wound healing took place according to an equation with a first-order rate constant. The rate of corneal wound healing in normal rats decreased with aging. The process of corneal wound healing in 38- and 60-week-old normal and OLETF rats occurred in two phases with rate constants for the first and second phases represented as alpha and beta, respectively. The alpha and beta values in 38- and 60-week-old OLETF rats were lower than those in normal rats of the corresponding age. Furthermore, a close relationship was observed between the corneal wound healing rate constant and plasma glucose levels in OLETF rats. The present studies suggest the sequence of events that occur following damage to the corneal surface in OLETF rats as a model animal for a human type 2 diabetes mellitus.

  5. Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats by oral administration of sucrose or maple syrup.

    Science.gov (United States)

    Nagai, Noriaki; Ito, Yoshimasa; Taga, Atsushi

    2013-01-01

    Maple syrup is used as a premium natural sweeter, and is known for being good for human health. In the present study, we investigate whether maple syrup is suitable as a sweetener in the management of type 2 diabetes using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. OLETF rats develop type 2 diabetes mellitus by 30 weeks of age, and 60-week-old OLETF rats show hyperglycemia and hypoinsulinemia via pancreatic β-cell dysfunction. The administration of sucrose or maple syrup following an OGT test increased plasma glucose (PG) levels in OLETF rats, but the enhancement in PG following the oral administration of maple syrup was lower than in the case of sucrose administration in both 30- and 60-week-old OLETF rats. Although, the insulin levels in 30-week-old OLETF rats also increased following the oral administration of sucrose or maple syrup, no increase in insulin levels was seen in 60-week-old OLETF rats following the oral administration of either sucrose or maple syrup. No significant differences were observed in insulin levels between sucrose- and maple syrup-administered OLETF rats at either 30 or 60 weeks of age. The present study strongly suggests that the maple syrup may have a lower glycemic index than sucrose, which may help in the prevention of type 2 diabetes.

  6. Attenuation of Diabetic Nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF Rats with a Combination of Chinese Herbs (Tangshen Formula

    Directory of Open Access Journals (Sweden)

    Haojun Zhang

    2011-01-01

    Full Text Available Diabetic nephropathy is one of the most significant microvascular complications in patients with type 2 diabetics. The concise mechanism of diabetic nephropathy is unknown and there is no successful treatment. The objective of study was to investigate effects of Chinese herbs (Tangshen Formula on diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF rats. OLETF rats and LETO rats were divided into four groups: LETO control, OLETF diabetics, OLETF diabetics treated with Tangshen Formula, and OLETF diabetics treated with Monopril. Body weight, blood glucose, and 24 h urinary proteins were measured once every four weeks. Blood samples and kidney tissues were obtained for analyses of total cholesterol, triglyceride, whole blood viscosity, plasma viscosity, and pathohistological examination at 36 and 56 weeksrespectively. Untreated OLETF rats displayed diabetic nephropathy over the study period. Treatment of OLETF rats with Tangshen Formula attenuated the increases in blood glucose, body weight, 24 h urinary protein content, serum total cholesterol, whole blood viscosity and plasma viscosity at certain time. Treatment with Tangshen Formula also reduced glomerulosclerotic index and interstitial fibrotic index seen in OLETF rats. In conclusion, Tangshen Formula could attenuate the development of diabetic nephropathy in OLETF rat diabetic model.

  7. Effect of magnesium ion supplementation on obesity and diabetes mellitus in Otsuka Long-Evans Tokushima Fatty (OLETF) rats under excessive food intake.

    Science.gov (United States)

    Nagai, Noriaki; Ito, Yoshimasa

    2013-01-01

    Several epidemiologic studies have found that magnesium ion (Mg²⁺) is related to obesity and type 2 diabetes mellitus. However, there have been almost no reports on the effects of a combination of excessive food intake and Mg²⁺ supplementation on metabolic syndrome and various blood tests values for diabetes mellitus. In this study, we investigated changes in body weight and blood test values for diabetes mellitus of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model for human type 2 diabetes mellitus via metabolic syndrome, under conditions of combined excessive food intake and Mg²⁺ supplementation. The rats received Mg²⁺ supplementation by drinking magnesium water (Mg²⁺; 200 mg/l). No significant differences were observed in the levels of food or water intake between OLETF rats drinking purified water (PW) or magnesium water (MW). Type 2 diabetes mellitus with metabolic syndrome developed at 30 weeks of age, and the body weights and plasma insulin levels of OLETF rats at 60 weeks of age were lower than those of normal rats. The plasma glucose (PG) levels in 38-week-old OLETF rats drinking MW were significantly lower than in those of rats drinking PW, while the body weights and the levels of triglycerides (TG) and insulin of 38-week-old MW-drinking OLETF rats were significantly higher than those of their PW-drinking counterparts. On the other hand, the decreases in body weight and insulin levels in 60-week-old OLETF rats were suppressed by MW supplementation. The present study demonstrates that Mg²⁺ supplementation delays the development of diabetes mellitus in OLETF rats under conditions of excessive food intake. In addition, obesity and high blood TG levels were observed in OLETF rats receiving Mg²⁺ supplementation in conjunction with excessive food intake.

  8. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes

    Science.gov (United States)

    Oh, Da Hee; Kim, Jung Yeon; Lee, Bong Gn; You, Jeong Soon; Chang, Kyung Ja; Chung, Hyunju; Yoo, Myung Chul; Yang, Hyung-In; Kang, Ja-Heon; Hwang, Yoo Chul; Ahn, Kue Jeong; Chung, Ho-Yeon

    2012-01-01

    This study aimed to determine whether taurine supplementation improves metabolic disturbances and diabetic complications in an animal model for type 2 diabetes. We investigated whether taurine has therapeutic effects on glucose metabolism, lipid metabolism, and diabetic complications in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term duration of diabetes. Fourteen 50-week-old OLETF rats with chronic diabetes were fed a diet supplemented with taurine (2%) or a non-supplemented control diet for 12 weeks. Taurine reduced blood glucose levels over 12 weeks, and improved OGTT outcomes at 6 weeks after taurine supplementation, in OLETF rats. Taurine significantly reduced insulin resistance but did not improve β-cell function or islet mass. After 12 weeks, taurine significantly decreased serum levels of lipids such as triglyceride, cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol. Taurine significantly reduced serum leptin, but not adiponectin levels. However, taurine had no therapeutic effect on damaged tissues. Taurine ameliorated hyperglycemia and dyslipidemia, at least in part, by improving insulin sensitivity and leptin modulation in OLETF rats with long-term diabetes. Additional study is needed to investigate whether taurine has the same beneficial effects in human diabetic patients. PMID:23114424

  9. Rare sugar d-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats

    Science.gov (United States)

    Hossain, Akram; Yamaguchi, Fuminori; Hirose, Kayoko; Matsunaga, Toru; Sui, Li; Hirata, Yuko; Noguchi, Chisato; Katagi, Ayako; Kamitori, Kazuyo; Dong, Youyi; Tsukamoto, Ikuko; Tokuda, Masaaki

    2015-01-01

    Background The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose (d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects. Aim Above mentioned efficacy of d-psicose (d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats. Methods Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests. Results d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic β-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue. Conclusion Our findings suggest that the rare sugar d-psicose could be beneficial for the

  10. Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Hossain, Akram; Yamaguchi, Fuminori; Hirose, Kayoko; Matsunaga, Toru; Sui, Li; Hirata, Yuko; Noguchi, Chisato; Katagi, Ayako; Kamitori, Kazuyo; Dong, Youyi; Tsukamoto, Ikuko; Tokuda, Masaaki

    2015-01-01

    The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose (d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects. Above mentioned efficacy of d-psicose (d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats. Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests. d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic β-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue. Our findings suggest that the rare sugar d-psicose could be beneficial for the prevention and control of obesity and

  11. The effects of herbal composition Gambigyeongsinhwan (4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty rats and HepG2 cells.

    Science.gov (United States)

    Yoon, Seolah; Kim, Jeongjun; Lee, Hyunghee; Lee, Haerim; Lim, Jonghoon; Yang, Heejeong; Shin, Soon Shik; Yoon, Michung

    2017-01-04

    Hepatic steatosis has risen rapidly in parallel with a dramatic increase in obesity. The aim of this study was to determine whether the herbal composition Gambigyeongsinhwan (4) (GGH(4)), composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata, regulates hepatic steatosis and inflammation. The effects of GGH(4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty (OLETF) rats and HepG2 cells were examined using Oil red O, hematoxylin and eosin, and toluidine blue staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. Administration of GGH(4) to OLETF rats improved hepatic steatosis and lowered serum levels of alanine transaminase, total cholesterol, triglycerides, and free fatty acids. GGH(4) increased mRNA levels of fatty acid oxidation enzymes (ACOX, HD, CPT-1, and MCAD) and decreased mRNA levels of lipogenesis genes (FAS, ACC1, C/EBPα, and SREBP-1c) in the liver of OLETF rats. In addition, infiltration of inflammatory cells and expression of inflammatory cytokines (CD68, TNFα, and MCP-1) in liver tissue were reduced by GGH(4). Treatment of HepG2 cells with a mixture of oleic acid and palmitoleic acid induced significant lipid accumulation, but GGH(4) inhibited lipid accumulation by regulating the expression of hepatic fatty acid oxidation and lipogenic genes. GGH(4) also increased PPARα reporter gene expression. These effects of GGH(4) were similar to those of the PPARα activator fenofibrate, whereas the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on lipid accumulation in HepG2 cells. These results suggest that GGH(4) inhibits obesity-induced hepatic steatosis and that this process may be mediated by regulation of the expression of PPARα target genes and lipogenic genes. GGH(4) also suppressed obesity

  12. Exercise training has a long-lasting effect on prevention of non-insulin-dependent diabetes mellitus in Otsuka-Long-Evans-Tokushima Fatty rats.

    Science.gov (United States)

    Shima, K; Shi, K; Mizuno, A; Sano, T; Ishida, K; Noma, Y

    1996-04-01

    Exercise training has been shown to be effective in preventing the development of non-insulin-dependent diabetes mellitus (NIDDM) in a model rat (Otsuka-Long-Evans-Tokushima Fatty [OLETF]). For determination of how long a preventive effect of exercise training against the development of NIDDM lasts in this model, six male OLETF rats each were assigned to training (1) for a whole experimental period, from 7 to 28 weeks of age (E-E); (2) for the first half of the period, from 7 to 15 weeks of age (E-S); and (3) for the second half of the period, from 16 to 28 weeks of age (S-E). In addition, eight male OLETF rats were given no exercise during the experimental period (S-S). At 28 weeks of age, E-E, E-S, S-E, and S-S rats, weighed averages of 514, 542, 557, and 669 g and had abdominal fat deposits of 13.9, 21.3, 38.2, and 76.0 g, respectively. At 28 weeks of age, the cumulative incidence of NIDDM in S-S was 100%, while none of the trained rats were diabetic. The glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp test, an index of insulin sensitivity, in the E-E group was significantly greater than that in the S-S group. The values in the E-S and S-E groups were slightly, but not significantly, less than that in the E-E group. Morphologic studies on the pancreas of E-E rats and S-E rats showed minimal changes of islets, whereas sections of islets from E-S rats appeared slightly enlarged and fibrotic, although significantly less than those of islets of S-S rats. These results demonstrate that the preventive effect of excercise training against the development of NIDDM lasts for at least 3 months after the cessation of exercise in this model.

  13. Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Hossain A

    2015-01-01

    Full Text Available Akram Hossain,1,2 Fuminori Yamaguchi,1 Kayoko Hirose,1 Toru Matsunaga,3 Li Sui,1 Yuko Hirata,1 Chisato Noguchi,1 Ayako Katagi,1 Kazuyo Kamitori,1 Youyi Dong,1 Ikuko Tsukamoto,4 Masaaki Tokuda11Department of Cell Physiology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan; 2Research and Development, Matsutani Chemical Industry Co., Ltd., Kitaitami, Itami-shi, Hyogo, Japan; 3Division of Hospital Pathology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan; 4Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, JapanBackground: The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, D-psicose (D-allulose, a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects.Aim: Above mentioned efficacy of D-psicose (D-allulose has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM model Otsuka Long-Evans Tokushima Fatty (OLETF rats with short-term treatment. In this study we investigated the long-term effect of D-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats.Methods: Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO, were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests.Results: D-Psicose prevented the commencement and progression of T2DM till 60 weeks through the

  14. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  16. Soy compared with milk protein in a western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats

    Science.gov (United States)

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy versus dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF ...

  17. Fluorescing fatty acids in rat fatty liver models.

    Science.gov (United States)

    Croce, Anna C; Ferrigno, Andrea; Di Pasqua, Laura G; Berardo, Clarissa; Mannucci, Barbara; Bottiroli, Giovanni; Vairetti, Mariapia

    2017-06-01

    The autofluorescence (AF) of NAD(P)H and flavins has been at the basis of many in-situ studies of liver energy metabolism and functionality. Conversely, few data have been so far reported on fluorescing lipids. In this work we investigated the AF of liver lipid extracts from two fatty liver models, Wistar rats fed with MCD diet for 12 days (Wi-MCD), and obese (fa/fa) Zucker rats. Among the most abundant fatty acids in the lipid extracts, indicated by mass spectrometry, arachidonic acid (AA) exhibited higher quantum yield than the other fluorescing fatty acids (FLFA), and red shifted AF spectrum. This allowed to estimate the AA contribution to the overall emission of lipid extracts by curve fitting analysis. AA prevailed in obese Zucker livers, accounting for the different AF spectral profiles between the two models. AF and mass spectrometry indicated also a different balance between the fluorescing fraction and the overall amount of AA in the two models. The ability of AF to detect directly AA and FLFA was demonstrated, suggesting its supportive role as tool in wide-ranging applications, from the control of animal origin food, to experimental investigations on liver fat accumulation, lipotoxicity and disease progression, with potential translation to the clinics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  19. Replacing white rice with pre-germinated brown rice mildly ameliorates hyperglycemia and imbalance of adipocytokine levels in type 2 diabetes model rats.

    Science.gov (United States)

    Torimitsu, Mariko; Nagase, Ryouhei; Yanagi, Megumi; Homma, Miyuki; Sasai, Yousuke; Ito, Yukihiko; Hayamizu, Kousuke; Nonaka, Shouta; Hosono, Takashi; Kise, Mitsuo; Seki, Taiichiro; Ariga, Toyohiko

    2010-01-01

    Pre-germinated brown rice (PR) has been developed industrially in order to enhance the nutritional functions of its source material, brown rice (BR). The present study was aimed at clarifying the effect of PR on the type 2 diabetes mellitus. We employed Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of type-2 diabetes mellitus. OLETF rats were fed on either PR or white rice (WR) from the age of 4 to 35 wk. Age-matched male Long-Evans Tokushima Otsuka (LETO) rats as a non-diabetic control were also fed on WR. The HbA(1c) level in OLETF rats was significantly higher than that in LETO rats. However, the level was lower in PR-fed OLETF rats than in WR-fed OLETF rats. The plasma concentrations of TNF-α and PAI-1 in OLETF rats were higher than those in LETO rats. However, both elevated levels were decreased by the PR-feeding, but not by the WR-feeding. On the other hand, the plasma adiponectin concentration in OLETF rats was lower than that in LETO rats. The decrease in adiponectin level of OLETF rats was ameliorated by PR-feeding. The size of adipocytes in PR-fed OLETF rats was smaller than that in WR-fed OLETF rats. In summary, intake of PR instead of WR ameliorates both insulin resistance and imbalance of the levels of plasma adipocytokines leading to diabetic complications.

  20. Aerobic exercise training in the treatment of non‐alcoholic fatty liver disease related fibrosis

    Science.gov (United States)

    Linden, Melissa A.; Sheldon, Ryan D.; Meers, Grace M.; Ortinau, Laura C.; Morris, E. Matthew; Booth, Frank W.; Kanaley, Jill A.; Vieira‐Potter, Victoria J.; Sowers, James R.; Ibdah, Jamal A.; Thyfault, John P.; Laughlin, M. Harold

    2016-01-01

    Key points Physiologically relevant rodent models of non‐alcoholic steatohepatitis (NASH) that resemble the human condition are limited.Exercise training and energy restriction are first‐line recommendations for the treatment of NASH.Hyperphagic Otsuka Long–Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype.Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling.The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. Abstract The incidence of non‐alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH‐related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long–Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight‐week‐old Long–Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD‐fed OLETFs were randomized to sedentary (O‐SED), food restriction (O‐FR; ∼25% kcal reduction vs. O‐SED) or exercise training (O‐EX; treadmill running 20 m min–1 with a 15% incline, 60 min day–1, 5 days week–1) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non‐alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α‐smooth muscle actin) compared to Long–Evans Tokushima Otsuka rats. FR and EX modestly

  1. Effects of Hyperbaric Oxygen on Metabolic Capacity of the Skeletal Muscle in Type 2 Diabetic Rats with Obesity

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    2012-01-01

    Full Text Available We investigated whether hyperbaric oxygen enhances the oxidative metabolic capacity of the skeletal muscle and attenuates adipocyte hypertrophy in type 2 diabetic rats with obesity. Five-week-old male Otsuka Long-Evans Tokushima fatty (OLETF and Long-Evans Tokushima Otsuka (LETO rats were used as diabetic animals and nondiabetic controls, respectively, and assigned to control and hyperbaric oxygen groups. Animals in the hyperbaric oxygen group were exposed to an atmospheric pressure of 1.25 with an oxygen concentration of 36% for 3 h daily. The glucose level at 27 weeks of age was significantly higher in OLETF rats than in LETO rats, but the elevation was inhibited in OLETF rats exposed to hyperbaric oxygen. The slow-to-fast fiber transition in the skeletal muscle was observed in OLETF rats, but the shift was inhibited in OLETF rats exposed to hyperbaric oxygen. Additionally, the oxidative enzyme activity of muscle fibers was increased by hyperbaric oxygen. The adipocyte size was larger in OLETF rats than in LETO rats, but hypertrophied adipocytes were not observed in OLETF rats exposed to hyperbaric oxygen. Hyperbaric oxygen enhances glucose and lipid metabolism in the skeletal muscle, indicating that hyperbaric oxygen can prevent elevation of glucose and adipocyte hypertrophy in diabetic rats with obesity.

  2. Metabolic variations of fatty acid in isolated rat heart reperfused after a transient global ischemia

    International Nuclear Information System (INIS)

    Huang Gang; Michel Comet; Zhao Huiyang; Zhu Cuiying; Yuan Jimin

    1998-01-01

    Purpose: The fatty acid metabolism and the effect of glucose on it were studied in isolated and reperfused rat heat. Methods: 32 isolated working rat hearts were perfused in Langengdorff device with modified Krebs and were divided into normal and ischemia-reperfused group. Each group was also classified into two subgroups, modified krebs with or without glucose subgroup. 131 I-HA was injected into aorta of isolated working rat heart and then the radio-residue curves were acquired. Results: When the isolated rat hearts were perfused with krebs plus glucose, the catabolism of fatty acid was significantly decreased in normal group, but a remarkable increase of fatty acid catabolism was found in ischemia-reperfused group. While the isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat heart was less than that in normal group. Conclusions: Transient ischemia damages the catabolism of myocardial fatty acid in mitochondria in some degree. In normal isolated working rat heart, the principal energy source is glucose. However, the major energy source is switched to catabolism of fatty acid in ischemia-reperfused isolated rat heart. This phenomenon may be related to compensative increase of fatty acid catabolism for replenishing the loss of energy during ischemia

  3. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05).

  4. The satiety effects of intragastric macronutrient infusions in fatty and lean Zucker rats.

    Science.gov (United States)

    Maggio, C A; Greenwood, M R; Vasselli, J R

    1983-09-01

    To evaluate satiety in the hyperphagic, genetically obese Zucker "fatty" (fafa) rat, food-deprived fatty and lean (FaFa) control rats were given equicaloric intragastric infusions consisting largely of fat, carbohydrate, or protein. Relative to distilled water infusion, these infusions resulted in immediate reductions of food intake in both fatty and lean rats allowed to feed 20 min post-infusion. Cumulative food intakes remained reduced throughout the 2 hr period of observation. Thus, despite its hyperphagia, the fatty rat is responsive to the satiating effect of infused nutrients. However, the relative satiating effectiveness of the macronutrient infusions differed for the two genotypes. In lean rats, the different macronutrient infusions resulted in equivalent reductions of feeding. In contrast, in fatty rats, fat was the least satiating and protein was the most satiating macronutrient. Moreover, compared to lean rats, fatty rats displayed less initial suppression of feeding after fat infusion and greater overall suppression after protein infusion. These effects are consistent with the long-term feeding behavior of the fatty rat for the different macronutrients and may be related to pre- and postabsorptive metabolic alterations that have been documented in this animal.

  5. Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa rats

    Directory of Open Access Journals (Sweden)

    Manase Kengo

    2010-06-01

    Full Text Available Abstract Background Zucker fatty (fa/fa rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance. Methods In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7. Results Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks and androstenedione (all weeks than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats. Conclusions Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats.

  6. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver

    NARCIS (Netherlands)

    Possmayer, F.; Scherphof, G.L.; Dubbelman, T.M.A.R.; Golde, L.M.G. van; Deenen, L.L.M. van

    1969-01-01

    1. 1. The relative incorporation of a number of radioactive fatty acids into the different glycerolipids of rat liver microsomes has been investigated. 2. 2. Studies on the distribution of the radioactivity incorporated into phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid

  7. Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats.

    Science.gov (United States)

    Harada, Nagakatsu; Ninomiya, Chika; Osako, Yoshie; Morishima, Masaki; Mawatari, Kazuaki; Takahashi, Akira; Nakaya, Yutaka

    2004-07-01

    To assess the effect of taurine supplementation on respiratory gas exchange, which might reflect the improved metabolism of glucose and/or lipid in the type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (16 weeks of age) were randomly divided into two groups: unsupplemented group and taurine-supplemented (3% in drinking water) group. After 9 weeks of treatment, indirect calorimetry and insulin tolerance tests were conducted. The amounts of visceral fat pads, tissue glycogen, the blood concentrations of glucose, triacylglycerol, taurine, and electrolytes, and the level of hematocrit were compared between groups. A nondiabetic rat strain (Long-Evans Tokushima Otsuka) was used as the age-matched normal control. The indirect calorimetry showed that the treatment of OLETF rats with taurine could reduce a part of postprandial glucose oxidation possibly responsible for the increase of triacylglycerol synthesis in the body. Taurine supplementation also improved hyperglycemia and insulin resistance and increased muscle glycogen content in the OLETF rats. Supplementation with taurine increased the blood concentration of taurine and electrolyte and fluid volume, all of which were considered to be related to the improvement of metabolic disturbance in OLETF rats. Taurine supplementation may be an effective treatment for glucose intolerance and fat/lipid accumulation observed in type 2 diabetes associated with obesity. These metabolic changes might be ascribed, in part, to the alteration of circulating blood profiles, where the improved hyperglycemia and/or the blood accumulation of taurine itself would play roles. Copyright 2004 NAASO

  8. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  9. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Science.gov (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  10. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... on the substrate concentrations used. At excess acetyl-CoA to malonyl-CoA, greater amounts of acetyl-CoA were incorporated than theoretically expected from the malonyl-CoA pathway. At excess malonyl-CoA, less acetyl-CoA was incorporated than theoretically expected. - 4. An increase in the chain-length of fatty...

  11. Oral administration of green algae, Euglena gracilis, inhibits hyperglycemia in OLETF rats, a model of spontaneous type 2 diabetes.

    Science.gov (United States)

    Shimada, Ryoko; Fujita, Miho; Yuasa, Masahiro; Sawamura, Hiromi; Watanabe, Toshiaki; Nakashima, Ayaka; Suzuki, Kengo

    2016-11-09

    In the present study, the effects of Euglena and paramylon on hyperglycemia were examined in Otsuka Long-Evans Tokushima fatty (OLETF; type 2 diabetes mellitus model) rats. OLETF rats were fed an AIN-93 M diet containing cellulose, Euglena, or paramylon for 10 weeks. Long-Evans Tokushima Otsuka (LETO) rats were used as nondiabetic controls. An oral glucose-tolerance test (OGTT) was performed at 0 and 10 weeks. OLETF control rats were obese because of bulimia and showed abdominal fat accumulation and hyperglycemia. Euglena supplementation improved hyperglycemia and decreased food intake, body weight gain, and abdominal fat. However, there were no changes in the paramylon-supplemented group compared to the OLETF control group. Triglyceride concentrations in the serum and liver were lower in Euglena-supplemented rats than in OLETF control rats. There was a correlation between hepatic triglyceride concentration and the area under the curve (AUC) of OGTT at 10 weeks. This suggests that the improvement in glycemic control in the Euglena-supplemented group may depend on substances other than paramylon present in Euglena.

  12. Inhibition of fatty acid synthesis in rat hepatocytes by exogenous polyunsaturated fatty acids is caused by lipid peroxidation

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1993-01-01

    Rat hepatocyte long-term cultures were utilized to investigate the impact of different polyunsaturated fatty acids (PUFA) on the insulin-induced de novo fatty acid synthesis in vitro. The addition of 0.5 mM albumin-complexed oleic, linoleic, columbinic, arachidonic, eicosapentaenoic...... by the peroxidized PUFA. Arachidonic acid and eicosapentaenoic acid showed a dose- and time-dependent cytotoxicity. Two other antioxidants: 50 µM a-tocopherol acid succinate and 1 µM N,N'-diphenyl-1,4-phenylenediamine, both proved more efficient than a-tocopherol phosphate. There was a significant correlation...... or docosahexaenoic acid resulted in a marked suppression of fatty acid synthesis. By evaluation of cell viability (determined as the leakage of lactate dehydrogenase (LDH)) it turned our, that the antioxidant used (50 µM a-tocopherol phosphate) had a low antioxidant activity, resulting in cytotoxic effects...

  13. Hematology and plasma biochemistry in rats fed with diets enriched with fatty fishes from Amazon region

    OpenAIRE

    Souza, Francisca das Chagas do Amaral; Duncan, Wallice Paxiúba; Carvalho, Roasany Piccolotto

    2014-01-01

    OBJECTIVE: Rats fed diets enriched with fatty fish from the Amazon region had Hematology and plasma biochemistry analyzed. METHODS: Forty Wistar rats were divided into four groups: control group fed a standard diet; mapará group fed a diet enriched with Hypophthalmus edentatus; matrinxã group fed a diet enriched with Brycon spp.; and tambaqui group fed a diet enriched with Colossoma macropomum. After thirty days the rats had an red blood count and plasma biochemistry. RESULTS: Hematocrit and ...

  14. Quantitative evaluation of 99mTc-GSA for fatty liver and ischemia-reperfusion injury in rats

    International Nuclear Information System (INIS)

    Kimoto, Mitsunori

    1996-01-01

    99m Tc-GSA (GSA) liver scintigraphy was performed in rats with fatty liver and ischemia-reperfusion injury to study the usefulness of GSA in evaluating these pathological processes. Fatty liver was produced by feeding rats a choline-deficient diet. The rats with fatty liver were divided into five groups according to the length of the diet (controls, two weeks, six weeks, 10 weeks, and 12 weeks). In the rats dieted for two weeks and six weeks, regional hepatic ischemia was also induced by clamping the left hepatic artery and the left portal vein for 10 minutes, then reperfusion was performed for 15 minutes. GSA was administered via the IVC. t 90 , or the time at which the liver time activity curve reached ninety percent of its peak value, was used as an index of GSA hepatic uptake, Ku and Kd, determined by two compartment analysis, were also used as indices. In rats of the fatty liver group, we confirmed microscopically that various degrees of fatty infiltration existed according to the diet period, and t 90 became significantly longer according to the severity of fatty infiltration. Ku and Kd also decreased according to the severity of fatty infiltration. In the rats with fatty infiltration and ischemia-reperfusion injury, t 90 also increased according to the severity of fatty infiltration, becoming longer than in the rats without ischemia-reperfusion injury. Quantitative analysis of GSA liver scintigraphy was useful for evaluating fatty liver and ischemia-reperfusion injury. (author)

  15. Periodontitis contributes to aberrant metabolism in type 2 diabetes mellitus rats by stimulating the expression of adipokines.

    Science.gov (United States)

    Luo, S; Yang, X; Wang, D; Ni, J; Wu, J; Xu, Z; Xuan, D; Zhang, J

    2016-08-01

    Periodontitis has been associated with type 2 diabetes mellitus. We investigated the effects of local aberrant secretion of adipokines in diabetic rats on systemic metabolism. Otsuka Long-Evans Tokushima Fatty (OLETF) and non-diabetic Long-Evans Tokushima Otsuka rats were used as a diabetic model and associated control, respectively. Periodontitis was induced using a silk ligature for 36 wk. Rats were grouped into OLETF with (OP+) or without (OP-) periodontitis and Long-Evans Tokushima Otsuka with (LP+) or without (LP-) periodontitis. Alveolar bone resorption and destruction were evaluated by micro-computed tomography and hematoxylin and eosin staining. After 20 wk of periodontitis induction, lipids, insulin, interleukin-1, leptin and plasminogen activator inhibitor-1 were analyzed, and mRNA expressions of NF-κB, Mark8, TLR2 and -4, IKBKB and Nampt were evaluated by quantitative polymerase chain reaction in adipose tissue. After ligation, OLETF rats exhibited typical periodontitis lesions with the clinical features of type 2 diabetes mellitus. When compared with the OP(-) group, the area under curve of the oral glucose tolerance test and homeostatic model assessment-insulin resistance values were significantly higher in the OP(+) group. Micro-computed tomography showed that the OP(+) group had more bone resorption than the OP(-) group. When compared with the OP(-) group, the OP(+) group also exhibited higher total cholesterol (p 0.05) and higher expression of Nampt (p periodontitis can alter lipid profiles in affected rats, elevate adipose tissue expression of Nampt and affect the metabolism of adipose tissue through the NF-κB pathway to inflame diabetes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  17. Effect of age on fatty infiltration of supraspinatus muscle after experimental tendon release in rats

    Directory of Open Access Journals (Sweden)

    Farshad Mazda

    2011-12-01

    Full Text Available Abstract Background Rotator cuff tendon tear is a leading cause for atrophy, fibrosis and fatty infiltration of the rotator cuff muscles. The pathophysiology of fatty muscle infiltration is not well understood. An animal model suited to study cellular and molecular mechanisms would therefore be desirable. While a rat model has been established for chronic rotator cuff tendon pathology, sufficient and easily identifiable fatty infiltration of the muscle has not yet been shown in rats. As younger animals regenerate better, we hypothesized that the absence of a sufficient amount of fatty infiltration in previous experiments was due to the selection of young animals and that older animals would exhibit higher amounts of fatty infiltration after tendon tear. Findings The supraspinatus tendon was released using tenotomy in 3 young (6 weeks old and in 3 aged (24 months old Sprague Dawley rats (group I and II. Another 3 aged (24 months old rats underwent sham surgery and served as a control group (group III. In group I and II retraction of the musculotendinous unit was allowed for 6 weeks. All animals were sacrificed 6 weeks after surgery and the supraspinatus muscles were harvested. Each sample was examined for fatty infiltration of the muscle by histological methods and micro-CT. In histology, fat cells were counted with a 10-fold magnification in 6 fields of view twice. An adjusted measurement setup was developed for the use of micro-CT to quantify the absorption coefficient of the muscle as a reciprocal indicator for fatty infiltration, based on the established procedure for quantification of fatty infiltration on CT in humans. Tenotomy resulted in an insignificant increase of fat cells in histological sections in both, aged and young rats. Micro-CT was able to quantify small differences in the absorption coefficients of muscle samples; the absorption coefficient was 8.1% ± 11.3% lower in retracted muscles (group I and II compared with the control

  18. Urinary excretion of arginine-vasopressin and prostaglandin E in essential fatty acid-deficient rats after oral supplementation with unsaturated fatty acid esters

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1986-01-01

    Essential fatty-acid-deficient rats were supplemented with 300 mg/d of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 d. The 24-h urine collections from each animal, collected 3 d before supplementations and again the last 3 d of the 10-d...... of columbinate supplementation on urinary AVP excretion. Urinary PGE excretion was increased ca. twofold by both linoleate and oleate supplements, increased ca. fivefold by arachidonate supplementation but was unaffected by columbinate supplementation. There was no effect of any of the supplemented fatty acids...... on urine output. Fatty acid analysis of total kidney lipids revealed a low percentage of 20:3(n-9) in the rats supplemented with (n-6) fatty acid. (L, A and C). The triene-tetraene ratio was 1.8 ± 0.6 (n = 6) in the kidneys of the oleate-supplemented rats. No relationship was found between urinary PGE...

  19. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  20. FREE FATTY ACIDS PROFILING IN RESPONSE TO CARNITINE SYNERGIZE WITH LUTEIN IN DIABETIC RATS.

    Science.gov (United States)

    Al-Malki, Abdulrahman L; Moselhy, Said S

    2016-01-01

    The objective of this study was to investigate the fatty acids profiling in diabetic rats induced by sterptozocine (STZ) and their response to administration of lutein and carnitine. Ninety male albino rats were divided into 6 groups as follows: Normal control. The remaining rats were injected i.p a single dose of STZ (65 mg /kg bw) for induction of diabetes. Diabetic rats were grouped as: GP II: (Untreated): GP III: Rats were given orally with L-lutein (100 mg/kg bw).GP IV: Rats were given carnitine (30 μg/kg) i.p . GP V: Rats were given carnitine and lutein GP VI were given metformin (100mg/kg bw/d) for 6 weeks. Treatment of diabetic rats with lutein, L-carnitine, combined decreased the levels of glucose, HA1C compared with untreated diabetic (plutein, carnitine, combined to normal rats significantly decreased the levels of myristic, palmitice, palmitoleic, stearic, linoleic, α-linolenic, arachidic and eicosadienoic when compared with control normal rats (plutein and carnitine could ameliorate deleterious effect induced by STZ and attenuate the changed fatty acid composition.

  1. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    Science.gov (United States)

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  2. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress.

    Directory of Open Access Journals (Sweden)

    Marie Hennebelle

    Full Text Available Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF activity, anxiety in the elevated-plus maze (EPM, the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test and entries into the open arms (EPM. Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.

  3. Influence of maternal diet during early pregnancy on the fatty acid profile in the fetus at late pregnancy in rats.

    Science.gov (United States)

    Fernandes, Flavia Spreafico; Tavares do Carmo, Maria das Graças; Herrera, Emilio

    2012-05-01

    The aim of the study was to determine the effects of different dietary fatty acids during the first half of pregnancy on the fatty acid composition of maternal adipose tissue and of maternal and fetal plasma at mid- and late-pregnancy. Pregnant rats received soybean-, olive-, fish-, linseed- or palm-oil diets from conception to day 12 of gestation. Virgin rats receiving the same treatments were studied in parallel. At day 12, some rats were sacrificed and others were returned to the standard diet and studied at day 20. At day 12, the concentrations of most fatty acids in plasma reflected the dietary composition and individual fatty acids in lumbar adipose tissue of pregnant rats correlated with those in the diet. At day 20, the plasma concentration of each fatty acid was higher in pregnant than in both virgin rats and day-12 pregnant rats. The composition in 20-day pregnant (but not in virgin) rats resembled the diet consumed during the first 12 days. Fatty acid concentration in fetal plasma was also influenced by the maternal diet during the first 12 days of pregnancy, and long-chain polyunsaturated fatty acid (LC-PUFA) concentrations correlated with those in the mothers. In conclusion, during the first half of pregnancy maternal adipose tissue stores dietary-derived fatty acids, which are released into blood during late pregnancy enabling LC-PUFA to become available to the fetus.

  4. Histopathologic Evaluation of Nonalcoholic Fatty Liver Disease in Hypothyroidism-Induced Rats

    OpenAIRE

    Demir, Şule; Ünübol, Mustafa; Aypak, Serap Ünübol; İpek, Emrah; Aktaş, Serdar; Ekren, Gamze Sevri; Yılmaz, Murat; Tunca, Recai; Güney, Engin

    2016-01-01

    It is speculated that thyroid hormones may be involved in nonalcoholic fatty liver disease (NAFLD) pathogenesis. A literature scan, however, demonstrated conflicting results from studies investigating the relationship between hypothyroidism and NAFLD. Therefore, our study aims to evaluate NAFLD, from the histopathologic perspective, in hypothyroidism-induced rats. Wistar rats were divided into 2 groups: the experimental group consumed water containing methimazole 0.025% (MMI, Sigma, USA) for ...

  5. Selective remodeling of cardiolipin fatty acids in the aged rat heart

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I

    2006-01-01

    Full Text Available Abstract Background The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. Results The concentration (nmol/g of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD vs 4 month old rats (5525 ± 656, while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively. Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. Conclusion These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids.

  6. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P acids) compared to the control leg (38.2 +/- 0...

  7. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats

    Directory of Open Access Journals (Sweden)

    Brockman David A

    2012-11-01

    Full Text Available Abstract Background Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC, on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Methods Three groups of Zucker Diabetic Fatty (ZDF rats were fed diets containing either 5% non-viscous cellulose (control, low viscosity HPMC (LV-HPMC or high viscosity HPMC (HV- HPMC for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. Results The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle

  8. Supplementation of cow milk naturally enriched in polyunsaturated fatty acids and polyphenols to growing rats.

    Science.gov (United States)

    Santos, Nadine W; Yoshimura, Emerson H; Mareze-Costa, Cecília E; Machado, Erica; Agustinho, Bruna C; Pereira, Lucelia M; Brito, Márcia N; Brito, Nilton A; Zeoula, Lucia M

    2017-01-01

    This study investigated whether intake of cow milk, naturally enriched with polyunsaturated fatty acids (PUFA, omega-3) and polyphenols (from propolis extract and vitamin E), from manipulation of cow's diet, would result in positive metabolic effects in rats from weaning until adulthood. Male Wistar rats were fed a standard chow diet or a hypercaloric diet (metabolically disturbed rats, obese) which was supplemented with either whole common milk, milk enriched with PUFA (PUFA-M) or milk enriched with PUFA and polyphenols (PUFA/P-M), at 5mL/kg body weight,having water as control. Whole milk supplementation increased initial weight gain and reduced gain in the adulthood of rats. Intake of common milk reduced cholesterol levels in non-obese rats and reduced insulin resistance in obese rats. PUFA-milk showed a decreasing effect on plasma triacylglycerol and VLDL concentrations, increasing plasma HDL concentration and reducing adipocyte size of non-obese rats, but no effect was observed in obese rats. PUFA/P-milk in obese rats resulted in greater deposition of muscle mass and mesenteric fat, with a tendency to lower LDL levels, and resulted a visceral fat accumulation in non-obese rats. Thus, whole common milk and PUFA-rich milk have shown to be beneficial in a normal metabolic condition, whereas common milk and milk enriched with PUFA and polyphenols improve metabolic effects of obesity.

  9. Supplementation of cow milk naturally enriched in polyunsaturated fatty acids and polyphenols to growing rats.

    Directory of Open Access Journals (Sweden)

    Nadine W Santos

    Full Text Available This study investigated whether intake of cow milk, naturally enriched with polyunsaturated fatty acids (PUFA, omega-3 and polyphenols (from propolis extract and vitamin E, from manipulation of cow's diet, would result in positive metabolic effects in rats from weaning until adulthood. Male Wistar rats were fed a standard chow diet or a hypercaloric diet (metabolically disturbed rats, obese which was supplemented with either whole common milk, milk enriched with PUFA (PUFA-M or milk enriched with PUFA and polyphenols (PUFA/P-M, at 5mL/kg body weight,having water as control. Whole milk supplementation increased initial weight gain and reduced gain in the adulthood of rats. Intake of common milk reduced cholesterol levels in non-obese rats and reduced insulin resistance in obese rats. PUFA-milk showed a decreasing effect on plasma triacylglycerol and VLDL concentrations, increasing plasma HDL concentration and reducing adipocyte size of non-obese rats, but no effect was observed in obese rats. PUFA/P-milk in obese rats resulted in greater deposition of muscle mass and mesenteric fat, with a tendency to lower LDL levels, and resulted a visceral fat accumulation in non-obese rats. Thus, whole common milk and PUFA-rich milk have shown to be beneficial in a normal metabolic condition, whereas common milk and milk enriched with PUFA and polyphenols improve metabolic effects of obesity.

  10. Dietary (n-6 : n-3) fatty acids alter plasma and tissue fatty acid composition in pregnant Sprague Dawley rats.

    Science.gov (United States)

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.

  11. Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Warberg, J.

    1985-01-01

    The effect of essential fatty acid deficiency (EFA-D) on the plasma concentration of arginine-vasopressin (AVP) and the urinary AVP excretion was investigated. Weanling rats were fed a fat-free diet (FF-rats). Control rats received the same diet in which 6% by wt. of sucrose was replaced by arachis...... oil. After 4-6 weeks of feeding, urine and plasma were analysed for AVP, osmolality, sodium and potassium. When compared to control rats FF-rats had decreased urine volume (6.0 ± 1.6 ml/24 hr versus 11.7 ± 3.2 ml/24 hr), increased urine osmolality (2409 ± 691 mOsm/kg versus 1260 ± 434 m...

  12. Incorporation of n-3 polyunsaturated fatty acids of marine or vegetable origin into rat enterocyte phospholipids

    DEFF Research Database (Denmark)

    Poulsen, Christian; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    We examined time related effects of an intake of n-3 polyunsaturated fatty acids (PUFA) on the fatty acid profiles of rat enterocyte phospholipids. Three diets containing 20 wt% fat with similar levels of linoleic acid (C18:2n-6), approximately 11 wt% of the fatty acids, were prepared. The diets...... were: Palm oil diet (PD), 0.6 wt% n-3 PUFA; fish oil diet (FD), 32 wt% n-3 PUFA (C20-C22); and linseed oil diet (LD), 32 wt% n-3 PUFA (C18:3n-3). Forty weanling male Wistar rats were fed PD for 34 days and then divided into three groups. Two groups of sixteen rats each were then fed FD or LD....... Desaturation and elongation products of C18:3n-3, such as C20:5n-3, C22:5n-3 and C22:6n-3, were observed following intake of LD. All three groups contained approximately 40 mol% of saturated fatty acids in the intestinal phospholipids. Copyright (C) 1996 Elsevier Science Inc....

  13. Changes in sphingosine and fatty acid components of the gangliosides in developing rat and human brain.

    Science.gov (United States)

    Rosenberg, A; Stern, N

    1966-01-01

    Rat brain increases in weight after birth in three stages: (I) rapidly for the first 2 weeks, (II) at a lower rate from 2 to 5 weeks, and (III) at a still lower rate from 5 weeks to 5 months. During the succeeding period, designated IV, it maintains constant weight up to 1 year of age. Brain ganglioside content increased linearly during I and II, more slowly during III, and diminished during IV. The appearance of measurable amounts of brain sphingomyelin and cerebroside succeeded that of ganglioside. Ceramide with C18-sphingosine and C18 fatty acid was found in a large proportion of all three sphingolipids upon their first appearance in measurable quantity. C18 fatty acid in cerebroside rapidly declined to a negligible level, while in gangliosides and sphingomyelin it declined slowly but remained the major fatty acid component. Cerebrosides and sphingomyelin contained C18-sphingosine almost exclusively at all stages of rat brain growth. Gangliosides contained C18-sphingosine almost exclusively at birth, but subsequently accumulated C20-sphingosine until they had nearly equal quantities of each base type. Changes in human brain gangliosides resemble those in rat. In Tay-Sachs disease, gangliosides have C18-sphingosine predominantly, and a high content of C18 fatty acid.

  14. Fresh garlic amelioration of high-fat-diet induced fatty liver in albino rats.

    Science.gov (United States)

    Qamar, Aisha; Siddiqui, Asma; Kumar, Hemant

    2015-10-01

    To observe the effect of fresh garlic on high-fat-diet-induced fatty liver changes. The experimental study was conducted at the Jinnah Postgraduate Medical Centre, Karachi, from October to November 2008, and comprised adult albino rats weighing 200-240g each. The rats were divided into 5 groups according to dietary regimen for eight weeks each. Group A received control diet; Group B received high saturated fat diet; Group C received high unsaturated fat diet; Group D received high saturated fat diet with fresh garlic; and Group E received high unsaturated fat diet with garlic for 8 weeks. Liver tissue slides were stained with Oil red-O and haematoxylin and Periodic acid-Schiff-haematoxylin. The 50 rats in the study were divided into five groups of 10(20%) each. There was marked deposition of fat in hepatocyte along with marked decrease in glycogen content in liver of rats in Groups B and C, with Group B showing more marked changes. The changes in fat and glycogen content were reversed and ameliorated close to Group A in rats belonging to Groups D and E. Fresh garlic minimised the high-fat-diet-induced fatty liver changes in rats.

  15. Effect of vanadium on insulin and leptin in Zucker diabetic fatty rats.

    Science.gov (United States)

    Wang, J; Yuen, V G; McNeill, J H

    2001-02-01

    Vanadium exhibits a variety of insulin-mimetic actions in vitro and in vivo. The mechanism(s) of the effect of vanadium on leptin in Zucker diabetic fatty (ZDF) rats, a model of Type 2 diabetes, is unclear. Since insulin is a stimulator of leptin production and secretion and vanadium is an insulin-mimetic or insulin-enhancing agent, we studied how vanadium affected plasma leptin levels in vivo and the relationship between plasma insulin, leptin and body fat in ZDF rats. Zucker lean and ZDF rats at 9-week old were chronically treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV), an organic vanadium compound, by oral gavage daily for 3 weeks. At termination, the total body fat was weighed and blood was collected for insulin, leptin and glucose assay. BEOV treatment (0.1 mmol/kg/day) significantly decreased plasma glucose levels in ZDF rats and did not change food intake and body fat content either in lean or ZDF rats. Following 3-week treatment, plasma insulin and leptin levels in BEOV treated ZDF rats were significantly higher, 1.5 and 0.5 fold than untreated rats, respectively. The correlation coefficients in ZDF rats showed that plasma leptin levels were correlated to plasma insulin levels, but not to body fat. These data indicate that plasma leptin levels parallel plasma insulin levels, and the effects of vanadium on leptin appear to be mediated by insulin in ZDF rats.

  16. [Efforts to achieve and effects of acquiring ISO 15189 in Tokushima University Hospital].

    Science.gov (United States)

    Shono, Kazuko; Kishi, Misako; Satou, Mituyo; Nagamine, Yasunori; Doi, Tosio

    2009-12-01

    The medical laboratory of Tokushima University Hospital acquired ISO 15189, an international standard for medical laboratories, on July 6th, 2007, resulting in it achieving the 24th place in Japan and 5th place among national university hospitals. The first surveillance was just performed on October 6th, 2008. Tokushima University Hospital, in which our medical laboratory is included as one section, already succeeded in acquiring ISO 9001, PrivacyMark System, and Quality Health Care ver. 5 before accomplishing ISO 15189. To achieve ISO 15189, we prepared documents based on ISO 9001 without any consultation, resulting in a review of the difference between ISO 9001 and ISO 15189 after the preliminary survey. Although achieving ISO 15189 resulted in an improvement in the reliability of laboratory results and accuracy, leading to the development of our technical skills and awareness, and sharing of knowledge, we consider that the considerable investment of time to prepare the requirements remains to be overcome.

  17. Coconut oil and sesame oil affect lymphatic absorption of cholesterol and fatty acids in rats.

    Science.gov (United States)

    Satchithanandam, S; Reicks, M; Calvert, R J; Cassidy, M M; Kritchevsky, D

    1993-11-01

    Five groups of male Wistar rats weighing approximately 200 g consumed 12 or 24% sesame oil or coconut oil diets or a control diet (14% corn oil) ad libitum for 4 wk. The thoracic ducts of these rats were cannulated, and a lipid emulsion containing [3H]cholesterol and [14C]oleic acid was given through a duodenal catheter. Lymph was collected for 24 h and the isotopic tracers for cholesterol and fatty acid were measured. Rats fed the 24% sesame oil diet had significantly lower lymphatic cholesterol and fatty acid compared with the control group. Absorption of oleic acid in rats fed 24% coconut oil was significantly greater than in controls during 0-8 h but was not significantly different during 0-24 h. There were no differences among groups in the distribution of cholesterol and oleic acid either in the lymph lipoproteins or in the lipid classes. The significant reduction in lymph cholesterol and fatty acids due to sesame oil feeding may be an important factor in reducing hypercholesterolemia.

  18. Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats.

    Science.gov (United States)

    Sánchez, David; Moulay, Leila; Muguerza, Begoña; Quiñones, Mar; Miguel, Marta; Aleixandre, Amaya

    2010-06-01

    The effects of a soluble cocoa fiber (SCF) were studied in Zucker fatty rats. Two groups of Zucker fatty rats were fed the following diets: standard diet and 5% SCF-enriched diet. A group of Zucker lean rats fed the standard diet was used for results comparison with obese Zucker animals. Solid and liquid intakes, body weight, plasma glucose, lipid profile, and systolic (SBP) and diastolic (DBP) blood pressure were recorded weekly. At the end of the experimental period insulin was determined, and fat apparent digestibility (FAD) and insulin resistance were calculated. The Zucker fatty rats fed 5% SCF-enriched diet showed less weight gain and food intake than those fed the standard diet. The group fed the fiber-enriched diet showed lower values of the total cholesterol/high-density lipoprotein cholesterol ratio and triglyceride levels than the standard group. FAD was also lower in the fiber group. Both SBP and DBP were decreased. In addition, SCF reduced plasma glucose and insulin, and as a consequence the insulin resistance was also decreased. Our data demonstrate that SCF resulted in an improvement of the studied risk factors associated with cardiometabolic disorders.

  19. Estimation of second-phase insulin secretion in the Zucker fatty rat.

    Science.gov (United States)

    Morettini, Micaela; Di Nardo, Francesco; Cogo, Carla E; Faelli, Emanuela; Fioretti, Sandro; Burattini, Laura; Ruggeri, Piero

    2016-08-01

    The purpose of the present study was to test the efficacy of the empiric index SPIR (Second-phase Insulin Release) in the quantification of second-phase insulin secretion in the Zucker Fatty Rat. SPIR index is defined as the area under the curve of insulin between 8 and 90 min after an Intravenous Glucose Tolerance Test (IVGTT). The validation of such index was performed against the second-phase β-cell responsiveness index (Φ 2 ) provided by C-peptide minimal model. To this aim, Φ 2 and SPIR were simultaneously computed from IVGTT data, measured in six Zucker fatty rats (ZFR), 7-to-9week-old, and seven age-matched Zucker lean rats (ZLR). SPIR index showed a significant linear correlation with Φ 2 (Pearson's correlation coefficient, r = 0.91, R-square = 0.82, Pinsulin secretion and of its alteration in Zucker Fatty Rats. Thus, the study proposes the SPIR, as a suitable index for a simple, reliable and low-cost quantification of the second-phase insulin secretion in ZFR.

  20. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    Science.gov (United States)

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats

    Directory of Open Access Journals (Sweden)

    Shanshan Zhan

    2016-12-01

    Full Text Available Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle.

  2. Hematology and plasma biochemistry in rats fed with diets enriched with fatty fishes from Amazon region

    Directory of Open Access Journals (Sweden)

    Francisca das Chagas do Amaral Souza

    2014-10-01

    Full Text Available OBJECTIVE: Rats fed diets enriched with fatty fish from the Amazon region had Hematology and plasma biochemistry analyzed. METHODS: Forty Wistar rats were divided into four groups: control group fed a standard diet; mapará group fed a diet enriched with Hypophthalmus edentatus; matrinxã group fed a diet enriched with Brycon spp.; and tambaqui group fed a diet enriched with Colossoma macropomum. After thirty days the rats had an red blood count and plasma biochemistry. RESULTS: Hematocrit and hemoglobin levels were higher in rats fed tambaqui and matrinxã than in those fed the standard diet of mapará. However, mapará increased cholesterol, especially low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. All fish-enriched diets reduced triacylglycerols. CONCLUSION: Diets enriched with fatty fish from the Amazon region reduce triacylglycerol and increase high-density lipoprotein cholesterol, especially the diet enriched with tambaqui. Tambaqui and matrinxã affected hematocrit and hemoglobin levels, but not mapará. Further research is needed to determine the benefits of diets enriched with fatty fish from the Amazon region.

  3. A review of the pathomechanism of forward slippage in pediatric spondylolysis: the Tokushima theory of growth plate slippage.

    Science.gov (United States)

    Sairyo, Koichi; Nagamachi, Akihiro; Matsuura, Tetsuya; Higashino, Kosaku; Sakai, Toshinori; Suzue, Naoto; Hamada, Daisuke; Takata, Yoichiro; Goto, Tomohiro; Nishisho, Toshihiko; Goda, Yuichiro; Tsutsui, Takahiko; Tonogai, Ichiro; Miyagi, Ryo; Abe, Mitsunobu; Morimoto, Masatoshi; Mineta, Kazuaki; Kimura, Tetsuya; Nitta, Akihiro; Higuchi, Tadahiro; Hama, Shingo; Jha, Subash C; Takahashi, Rui; Fukuta, Shoji

    2015-01-01

    Spondylolysis is a stress fracture of the pars interarticularis, which in some cases progresses to spondylolisthesis (forward slippage of the vertebral body). This slip progression is prevalent in children and occurs very rarely after spinal maturation. The pathomechanism and predilection for children remains controversial despite considerable clinical and basic research into the disorder over the last three decades. Here we review the pathomechanism of spondylolytic spondylolisthesis in children and adolescents, and specifically the Tokushima theory of growth plate slippage developed from our extensive research findings. Clinically, we have observed the slippage site near the growth plate on MRI; then, using fresh cadaveric spines, we found the weakest link against forward shear loading was the growth plate. We subsequently developed an immature rat model showing forward slippage after growth plate injury. Moreover, finite element analysis of the pediatric spine clearly showed increased mechanical stress at the growth plate in the spondylolytic pediatric spine model compared with the intact pediatric spine. Thus, spondylolysis progresses to spondylolisthesis (forward slippage) in children and adolescents with the growth plate as the site of the slippage. Repetitive mechanical loading on to the growth plate may serve to separate the growth plate and subsequently progress to spondylolisthesis.

  4. Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats

    Science.gov (United States)

    Roberts, Michael D.; Bayless, David S.; Company, Joseph M.; Jenkins, Nathan T.; Padilla, Jaume; Childs, Thomas E.; Martin, Jeffrey S.; Dalbo, Vincent J.; Booth, Frank W.; Rector, R. Scott; Laughlin, M. Harold

    2013-01-01

    OBJECTIVE There is debate as to whether fibronectin type III domain containing 5 (FNDC5) and its protein product irisin are therapeutic targets for obesity-associated maladies. Thus, we sought to examine FNDC5 mRNA within skeletal muscle of obese/diabetic-prone Otsuka Long-Evans Tokushima Fatty (OLETF) rats versus lean/healthy Long Evans Tokushima Otsuka (LETO) rats. We hypothesized that FNDC5 expression would be greater in obese (OLETF) versus lean (LETO) animals. MATERIALS/METHODS Triceps muscle of 30–32 week old OLETF and LETO rats were assayed for FNDC5 and PGC1α mRNA levels. Body composition and circulating biomarkers of the OLETF and LETO rats were also correlated with skeletal muscle FNDC5 mRNA expression patterns in order to examine potential relationships that may exist. RESULTS OLETF rats exhibited twice the amount of triceps FNDC5 mRNA compared to LETO rats (p culture experiments, low and high physiological doses of leptin had no effect on PGC1α mRNA or FNDC5 mRNA levels in C2C12 myotubes. Paradoxically, circulating irisin concentrations tended to be higher in a second cohort of LETO versus OLETF rats (p = 0.085). CONCLUSION These results reveal a positive association between total body adiposity and skeletal muscle FNDC5 gene expression. Of interest, circulating irisin levels tended to be lower in OLETF rats. Further research is needed to examine whether other adipose tissue-derived factors up-regulate FNDC5 transcription and/or inhibit irisin biosynthesis from FNDC5. PMID:23498898

  5. Effects of fenugreek, Nigella, and termis seeds in nonalcoholic fatty liver in obese diabetic albino rats.

    Science.gov (United States)

    Mohamed, Waleed S; Mostafa, Ashraf M; Mohamed, Khaled M; Serwah, Abdel Hamid

    2015-03-01

    Nonalcoholic fatty liver disease (NAFLD) occurs in approximately 80% of cases of type 2 diabetes mellitus (T2DM). This study investigated the effects of some plants used in Saudi Arabia as antidiabetic agents on T2DM and associated fatty liver. A total of 150 adult male albino rats were divided into six experimental groups, each consisting of 25 rats. Twenty-five rats were considered as the control group. Experimental diabetes was induced in the remaining rats by administering a subcutaneous injection of 120 mg/kg of freshly prepared alloxan solution; these rats were classified into five groups: one group did not receive any treatment; the second group was treated with an aqueous extract of a mixture containing fenugreek, Nigella, and termis seeds; the third group was treated with an aqueous extract of Nigella sativa seeds; the fourth group was treated with an aqueous extract of fenugreek seeds; and finally the fifth group was treated with an aqueous extract of termis seeds at a dose of 100 mg/kg body weight. After 4 weeks of treatment, biochemical parameters were calculated, including blood sugar and serum insulin levels. Pancreatic and liver samples were obtained and processed for microscopic evaluation. The usage of each plant alone or a mixture of the plants corrected the glucose and insulin levels. Microscopically, a definite improvement in the number and diameter of β-cells in the diabetic group was observed. Furthermore, considerable improvement in fatty changes occurring in the liver of experimental animals was observed. The activity of the mixture was the most effective. The aqueous extract of the seed mixture of the used plants appeared to be a useful agent in improving fatty changes in the liver texture associated with T2DM by reducing hyperglycaemia through an increase in insulin levels, regeneration of β-cells of the pancreas, and an amelioration of associated dyslipidemia. Copyright © 2014 Arab Journal of Gastroenterology. Published by Elsevier B

  6. Chronic quercetin exposure affects fatty acid catabolism in rat lung

    NARCIS (Netherlands)

    Boer, de V.C.J.; Schothorst, van E.M.; Dihal, A.A.; Woude, van der H.; Arts, I.C.W.; Rietjens, I.M.C.M.; Hollman, P.C.H.; Keijer, J.

    2006-01-01

    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in

  7. Dietary Egg Yolk Supplementation Improves Low-Protein-Diet-Induced Fatty Liver in Rats.

    Science.gov (United States)

    Erami, Kazuo; Tanaka, Yasutake; Kawamura, Sayaka; Miyago, Motonori; Sawazaki, Ai; Imaizumi, Katsumi; Sato, Masao

    2016-01-01

    Egg yolk is an important source of nutrients and contains different bioactive substances. In the present study, we studied the benefits of egg yolk in preventing low-protein-diet-induced fatty liver in rats. Rats were fed the following diets, which were based on the AIN-76 formula, for 2 wk: an adequate-protein diet containing 20% casein (C), a low-protein diet containing 5% casein (LP-C), a low-protein diet supplemented with 12.5% egg yolk (LP-EY), and a low-protein diet supplemented with 4.1% egg yolk oil (LP-EYO). The low-protein diets were adjusted to contain 4.13% protein and 4.7% lipids. The LP-C diet resulted in a greater increase in the liver trigriceride (TG) and the vacuolation and a greater decrease in the serum TG and free fatty acid (FFA) than did the C diet. These deviations in the serum and liver TG, serum FFA levels and the liver histopathology were corrected in rats fed the LP-EY diet but not in those fed the LP-EYO diet. Compared to rats fed the LP-C diet, although the activities of lipogenesis-related enzymes (fatty acid synthase, glucose-6-phosphate dehydrogenase, and malic enzyme) decreased in rats fed both of the LP-EY and LP-EYO diets, the level of the microsomal TG transfer protein (MTP) increased only in rats fed the LP-EY diet. Collectively, these results suggest that dietary egg yolk supplementation decreases the LP diet-induced accumulation of TG in the liver by increasing transport of TG in the liver, and egg yolk oil alone is not sufficient enough to bring about these benefits.

  8. Periodontitis is associated with aggravation of prediabetes in Zucker fatty rats

    DEFF Research Database (Denmark)

    Pontes Andersen, Carla C; Flyvbjerg, Allan; Buschard, Karsten

    2007-01-01

    BACKGROUND: Prediabetes is part of the natural history of type 2 diabetes. Few human studies have addressed the relationship between periodontitis and prediabetes. The Zucker fatty rat (ZFR) is a known model of prediabetes, characterized by hyperinsulinemia, dyslipidemia, and moderate hypertension....... The aim of the present study was to investigate whether periodontitis affects the prediabetic state of ZFRs. METHODS: Male adult ZFRs (fa/fa; N = 24) and their lean littermates (+/fa; N = 24) were studied. Periodontitis was induced with ligatures in half of the ZFRs and lean rats, whereas the other half...... served as controls. After 4 weeks, body weight, food intake, glucose tolerance, insulin resistance, free fatty acids, cytokines, and alveolar bone loss were recorded. RESULTS: ZFRs with periodontitis presented increased glucose intolerance (P = 0.03) and a slight increase in fasting glucose from initial...

  9. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... to three groups who received chow with added fish oil (n = 8), vitamin C (n = 8) or no supplement (n = 7). After 3 weeks of feeding, calf muscles on one side were stimulated electrically during anaesthesia causing eccentric contractions. Two days later the white gastrocnemius, a part of the stimulated calf...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0...

  10. Changes of α-glycerophosphate dehydrogenase activity in fatty liver of rats by amino acid imbalance

    International Nuclear Information System (INIS)

    Ogura, Masaji; Katsunuma, Eiichi; Akabane, Tomoko; Ogawa, Seiichi

    1976-01-01

    The previous study on the lipogenesis in the fatty livers of rats, which was induced by feeding the diet with imbalanced amino acid, revealed that the induction of this type of fatty livers was due mainly to the acceleration of triglyceride synthesis by the increase in both synthesis and esterification of fatty acid in the livers. Although many studies have been carried out on the dietary control of α-glycerophosphate dehydrogenase activity in rat livers, the enzyme change in amino acid imbalance has not been reported. In the present study, in order to elucidate the difference in the supply of glycerol moiety of triglyceride due to the imbalance, the change of the α-glycerophosphate dehydrogenase activity in livers was investigated. The experimental diets were 8% casein basal diet and basal + 0.3% DL-methionine imbalanced diet. 5 rats of each group were killed after 0.5 and 10 days on the diet, and the analysis of the lipid content in the livers and the determination of the α-glycerophosphate dehydrogenase activity were carried out. The linear response of the enzyme activity to time and protein concentration was obtained. The development of fatty livers was observed in the imbalanced diet group in the feeding period of 10 days. It was found that the specific activity of the imbalanced diet group increased significantly in 5 and 10 days as compared with that of the basal diet group. The elevation in the enzyme activity may suggest that the supply of α-glycerophosphate for triglyceride synthesis is also increased in this type of fatty livers. (Kako, I.)

  11. Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle

    Directory of Open Access Journals (Sweden)

    Lubberink Mark

    2010-06-01

    Full Text Available Abstract Background In patients with myocardial infarction or heart failure, right ventricular (RV dysfunction is associated with death, shock and arrhythmias. In patients with type 2 diabetes mellitus, structural and functional alterations of the left ventricle (LV are highly prevalent, however, little is known about the impact of diabetes on RV characteristics. The purpose of the present study was to investigate whether LV changes are paralleled by RV alterations in a rat model of diabetes. Methods Zucker diabetic fatty (ZDF and control (ZL rats underwent echocardiography and positron emission tomography (PET scanning using [18F]-2-fluoro-2-deoxy-D-glucose under hyperinsulinaemic euglycaemic clamp conditions. Glucose, insulin, triglycerides and fatty acids were assessed from trunk blood. Another group of rats received an insulin or saline injection to study RV insulin signaling. Results ZDF rats developed hyperglycaemia, hyperinsulinaemia and dyslipidaemia (all p M-value (r = 0.91, p M-value (r = 0.77, p Conclusions LV changes were paralleled by RV alterations in insulin-stimulated glucose utilisation and RV systolic function in a rat model of diabetes, which may be attributed to ventricular interdependence as well as to the uniform effect of diabetes. Since diabetic patients are prone to develop diabetic cardiomyopathy and myocardial ischaemia, it might be suggested that RV dysfunction plays a central role in cardiac abnormalities in this population.

  12. Formation of fatty acid esterified vitamin D3 in rat skin by exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Takada, K.

    1983-01-01

    The formation of fatty acid esters of vitamin D3 was demonstrated in rat skin exposed to artificial ultraviolet rays by using multi-dimensional high-performance liquid chromatography, ultraviolet spectrophotometry, and gas-liquid chromatography-mass spectrometry. This result indicated that the fatty acid esters of 7-dehydrocholesterol in rat skin (at least 80% of 7-dehydrocholesterol in rat skin is esterified) is also isomerized into vitamin D3 ester in vivo. The initial percentage of the esterified form was 84.3% and this did not significantly change up to the time when about half of the skin total vitamin D3 disappeared (2 days). Consequently, it was speculated that the vitamin D3 ester was delivered into the blood circulation from skin without having been hydrolyzed. This was supported by the presence of vitamin D3 ester in rat plasma exposed to ultraviolet radiation. In addition, in connection with the study of the restriction of vitamin D3 synthesis, distribution of total vitamin D3 in rat skin exposed to ultraviolet irradiation in vivo was compared with that in isolated skin exposed to ultraviolet radiation. The dermal layer of the isolated skin contained about 4 times more total vitamin D3 than that of in vivo skin. This finding suggests not only that ultraviolet rays could not penetrate deeply into the in vivo skin, but that the restriction of cutaneous synthesis of vitamin D3 observed in vivo may arise from this reduced penetration of ultraviolet rays

  13. Time-of-flight secondary ion mass spectrometry of fatty acids in rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Gong, H.; Amemiya, T.; Takaya, K.; Tozu, M.; Ohashi, Y

    2003-01-15

    The retina consists of many kinds of central nervous cells, and some cells contain fatty acids such as palmitic acid, stearic acid and oleic acid. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has a possibility to detect kinds and quantity of materials in relation to the cell or tissue. We applied TOF-SIMS to detect the palmitic acid, stearic acid and oleic acid in the visual cell of the rat retina. We used 4- and 18-month-old normal Wistar Kyoto rats. After pentobarbital anesthesia, the eyes were enucleated, and immediately put into liquid nitrogen without any fixation and then cut into semithin sections (10 {mu}m) with a cryo-ultramicrotome, and laid it on a silicon wafer plate and air-dried. Ion images were detected with TOF-SIMS. Positive ion images were examined with a Ga{sup +} source at an acceleration voltage of 15 keV. The secondary ion acceleration voltage was 4.5 keV. In the 4-month-old rat, palmitic and stearic acid were detected in the photoreceptor outer segment and nuclear parts, but not in the inner segment. In the 18-month-old rat, the oleic acid is significantly decreased compared to that in the 4-month-old rat. TOF-SIMS is a useful tool to detect the changes of fatty acids corresponding to changes of physiological conditions in relation to the histological features.

  14. Genetic profiling of two phenotypically distinct outbred rats derived from a colony of the Zucker fatty rats maintained at Tokyo Medical University.

    Science.gov (United States)

    Nakanishi, Satoshi; Kuramoto, Takashi; Kashiwazaki, Naomi; Yokoi, Norihide

    2017-05-03

    The Zucker fatty (ZF) rat is an outbred rat and a well-known model of obesity without diabetes, harboring a missense mutation (fatty, abbreviated as fa) in the leptin receptor gene (Lepr). Slc:Zucker (Slc:ZF) outbred rats exhibit obesity while Hos:ZFDM-Lepr fa (Hos:ZFDM) outbred rats exhibit obesity and type 2 diabetes. Both outbred rats have been derived from an outbred ZF rat colony maintained at Tokyo Medical University. So far, genetic profiles of these outbred rats remain unknown. Here, we applied a simple genotyping method using Ampdirect reagents and FTA cards (Amp-FTA) in combination with simple sequence length polymorphisms (SSLP) markers to determine genetic profiles of Slc:ZF and Hos:ZFDM rats. Among 27 SSLP marker loci, 24 loci (89%) were fixed for specific allele at each locus in Slc:ZF rats and 26 loci (96%) were fixed in Hos:ZFDM rats, respectively. This indicates the low genetic heterogeneity in both colonies of outbred rats. Nine loci (33%) showed different alleles between the two outbred rats, suggesting considerably different genetic profiles between the two outbred rats in spite of the same origin. Additional analysis using 72 SSLP markers further supported these results and clarified the profiles in detail. This study revealed that genetic profiles of the Slc:ZF and Hos:ZFDM outbred rats are different for about 30% of the SSLP marker loci, which is the underlying basis for the phenotypic difference between the two outbred rats.

  15. Fatty Acid Metabolism and Ketogenesis in the Rat Exposed to Streptococcus pneumoniae.

    Science.gov (United States)

    1980-04-30

    elevated carnitine concentration. Further studies demonstrated that ketogenesis in fasted-infected rats was not altered by the infusion of L - carnitine ...reenters the mitochondrial matrix for removal of the carnitine moiety (personal communication, L . L . Bieber). Thus, lower rates of acetyl-CoA oxidation...If necessary end Identify by block number) Fatty acid metabolism, ketogenesis, carnitine , coenzymeA Am~ AT ~en80 5 22 01S 20. 9SrA~r(Cerdlus 10 0~0

  16. Effects of pentobarbital on plasma glucose and free fatty acids in the rat.

    Science.gov (United States)

    Furner, R. L.; Neville, E. D.; Talarico, K. S.; Feller, D. D.

    1972-01-01

    Hyperglycemia and hypolipemia were observed in rats after the injection of sodium pentobarbital. The observed changes were independent of whether the blood was collected by decapitation or by needle puncture of the aorta. The hyperglycemic response was caused by two factors including the stress of the injection per se and the pharmacological action of the drug. Hyperlipemia was observed at 5 min postinjection. However, pentobarbital decreased plasma free fatty acids by 15 min postinjection. Both the hyperglycemia and hypolipemia responses were dose dependent.

  17. Cholesterol and triglyceride reduction in rats fed Matthiola incana seed oil rich in (n-3) fatty acids.

    Science.gov (United States)

    Yaniv, Z; Schafferman, D; Shamir, I; Madar, Z

    1999-02-01

    Seeds of Matthiola incana contain oil rich (55-65%) in (n-3) linolenic acid. Selected lines were developed and evaluated for their agronomic and chemical parameters. Extracted oil was fed for 6 weeks to rats, which were compared with rats fed a diet containing coconut oil or sunflower oil. Cholesterol levels were significantly lowest in rats fed diets rich in M. incana oil (27% reduction), and triglycerides were significantly lower in rats receiving either M. incana or sunflower oil (36% reduction). The contents of arachidonic acid and other (n-6) fatty acids were significantly the lowest in the liver and plasma of rats that had received M. incana oil. The levels of (n-3) fatty acids were significantly greater in both the liver and plasma of rats fed M. incana oil. The ratio of (n-3)/(n-6) long-chain fatty acids in the plasma was 7 times higher in rats fed with M. incana oil than in those fed with sunflower oil and 6 times higher than in those fed coconut oil. The results demonstrate for the first time a beneficial effect of dietary M. incana oil in reducing cholesterol levels and increasing (n-3) fatty acid levels in the plasma. This new, terrestrial plant source of (n-3) fatty acids could replace marine oils and thereby contribute beneficially to the human diet.

  18. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-11-01

    Full Text Available Xi Wang,1 Debra C DuBois,1,2 Siddharth Sukumaran,2 Vivaswath Ayyar,1 William J Jusko,2,3 Richard R Almon1–3 1Department of Biological Sciences, 2Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; 3New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA Abstract: Both obesity and chronic inflammation are often associated with insulin resistance and type 2 diabetes. The Zucker diabetic fatty (ZDF rat (fa/fa is an obese animal model frequently used in type 2 diabetes research. The current study determines whether chronic administration (from 5 weeks of age through 24 weeks of age of salsalate, a salicylate with anti-inflammatory properties, would be effective in mitigating diabetes disease progression in ZDF rats. Although a trend existed for lower blood glucose in the salsalate-treated group, significant differences were obscured by high animal-level variability. However, even in the non-drug-treated group, not all ZDF rats became diabetic as expected. Therefore, animals were parsed into two groups, regardless of drug treatment: normoglycemic ZDF rats, which maintained blood glucose profiles identical to nondiabetic Zucker lean rats (ZLRs, and hyperglycemic ZDF rats, which exhibited progressive elevation in blood glucose. To ascertain the differences between ZDF rats that became hyperglycemic and those that did not, relevant physiological indices and expression levels of adiponectin, tumor necrosis factor-α, interleukin-6, and glucocorticoid-induced leucine zipper messenger RNAs in adipose tissue were measured at sacrifice. Plasma C-reactive protein concentrations and expression levels of cytokine and glucocorticoid-induced leucine zipper messenger RNAs suggested more prevalent chronic inflammation in hyperglycemic animals. Early elevation of the insulin-sensitizing adipokine, adiponectin, was present in both ZDF groups, with the rate of its age-related decline

  19. Aortic superoxide production at the early hyperglycemic stage in a rat type 2 diabetes model and the effects of pravastatin.

    Science.gov (United States)

    Kikuchi, Chigusa; Kajikuri, Junko; Hori, Eisei; Nagami, Chie; Matsunaga, Tamihide; Kimura, Kazunori; Itoh, Takeo

    2014-01-01

    Endothelium-derived superoxide induces vascular dysfunctions. The aim of this study was to examine the activity of protein kinase C (PKC) isoforms and endothelial nitric oxide synthase (eNOS), which leads to vascular superoxide production in type 2 diabetes, in addition to the effects of pravastatin. We studied these mechanisms in Otsuka Long-Evans Tokushima Fatty (OLETF) rats (type 2 diabetes model) at the early hyperglycemic stage (vs. non-diabetic Long-Evans Tokushima Otsuka [LETO] rats). Superoxide production and catalase activity were measured in aortas, as were the protein expressions of PKCδ and phospho-Ser(1177) eNOS. Superoxide production was increased in OLETF rats, and this increase was inhibited by the selective conventional PKC (cPKC) inhibitor Gö6976 and by the non-selective cPKC and novel PKC inhibitor GF109203X. Phospho-Ser(1177) eNOS was significantly increased in OLETF rats, whereas the protein expressions of PKCδ and phosopho-Thr(505) PKCδ and catalase activity were all greatly reduced. Pravastatin administration to OLETF rats in vivo had normalizing effects on all of these variables. The increment in superoxide production seen in OLETF rats (but not the production in pravastatin-treated OLETF rats) was abolished by high concentration of N(ω)-nitro-L-arginine methyl ester (electron transport inhibitor of eNOS), by sepiapterin (precursor of tetrahydrobiopterin), and by LY294002 (phosphatidylinositol 3-kinase [PI3-kinase] inhibitor). In OLETF rats at the early hyperglycemic stage, aortic superoxide production is increased owing to activation of uncoupled eNOS through phosphorylation by PI3-kinase/Akt. This may be related to the observed reduction in PKCδ/catalase activities. Pravastatin inhibited endothelial superoxide production via normalization of PKCδ/catalase activities.

  20. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  1. Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke.

    Science.gov (United States)

    Park, Yongsoon; Nam, Somyoung; Yi, Hyeong-Joong; Hong, Hyun-Jong; Lee, Myoungsook

    2009-11-01

    Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition-93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.

  2. Neuroprotective effect of RYGB in Zucker fatty diabetic rats

    Science.gov (United States)

    Han, Xin-Sheng; Huang, Yong; Jing, Hong-Jian; Zhang, Ai-Wu; Jiang, Tao; Xu, Yu-Ming

    2014-01-01

    The aim of this study is to explore the therapeutic potential of RYGB, a common used bariatric surgery, on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic rats. In animal model experiments, rats were made diabetic by STZ administration, and after 12 weeks of diabetes, two groups were studied: RYGB and sham surgery control (PF). Change in oral glucose tolerance, insulin sensitivity, and the plasma concentrations of insulin, glucagon, glucagon-like peptide-1 (GLP-1) were measured. Peripheral nerve function was determined by the current perception threshold. Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated. The results indicated that glucose tolerance and insulin sensitivity were significantly improved in the RYGB group. Fasting total GLP-1 were increased in the RYGB group. The increase seen in current perception threshold vales in RYGB group was reduced. The decreased IENFDs in sole skins of RYGB group were ameliorated by RYGB. In conclusion, the findings indicate that RYGB ameliorates the severity of DPN, which may be associated with increased GLP-1 and improved insulin sensitivity/action. PMID:25419361

  3. Effect of a herbal medicine on fatty liver in rats fed ethanol chronically.

    Science.gov (United States)

    Horie, Yoshinori; Kikuchi, Masahiro; Yamagishi, Yoshiyuki; Umeda, Rumiko; Ebinuma, Hirotoshi; Saito, Hidetsugu; Kato, Shinzo; Ishii, Hiromasa; Hibi, Toshifumi; Han, Jing-Yan

    2009-12-01

    The objective of this study was to determine whether Cardiotopic Pills (CP) affects fatty liver in rats fed ethanol chronically. Male Wistar rats were treated with liquid diet that contained ethanol (36% of total calories) or an isocaloric carbohydrate instead of ethanol for 6 weeks. CP, an oral herbal medicine including Danshen (Salviae Miltiorrhiza), Panax notoginseny and Dyroblanops aromatica gaertn, have been clinically used for vascular diseases such as coronary diseases and cerebral infarction. CP was administered orally with the liquid diets for 2 weeks 0.4 mg/kg body weight/day with the liquid diet thereafter. Serum triglyceride and total cholesterol levels, total protein, albumin, and AST and ALT activities are measured. Histological examination was also carried out. In another set of experiments, autofluorescence of NAD(P)H, an indicator of mitochondrial O2 consumption and redox status, was measured by an intravital microscopy, and peroxisome proliferators-activated receptor-(PPAR)-alpha and gamma mRNA levels were evaluated by real time quantitative PCR methods. Chronic ethanol consumption elevated serum triglyceride level, and caused fatty degeneration of liver. After administration of CP, fatty degeneration was not observed in rats fed ethanol chronically. Elevation of serum triglyceride level was not noted after treatment with CP (Ethanol: 79.4 +/- 9.3 mg/dl, Ethanol+CP: 48.0 +/- 4.4, respectively, pconsumption did not affect PPAR-gamma mRNA levels, while it decreased PPAR-alpha mRNA levels in the liver. CP prevented the ethanol-induced decrease in PPAR-alpha mRNA levels. CP and its components could enhance expression of PPAR-alpha mRNA levels. These results suggest that CP may be useful to prevent alcoholic fatty liver via enhanced expression of PPAR-alpha.

  4. Oxidation of very-long-chain fatty acids in rat brain: cerotic acid is beta-oxidized exclusively in rat brain peroxisomes

    NARCIS (Netherlands)

    Lageweg, W.; Sykes, J. E.; Lopes-Cardozo, M.; Wanders, R. J.

    1991-01-01

    We studied the effect of sodium 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a potent inhibitor of mitochondrial carnitine palmitoyltransferase I, on fatty acid oxidation by rat brain cells. In cultured glial cells as well as in dissociated brain cells from adult rats palmitic acid

  5. Alterations in the molecular species of rat liver lecithin by corn-oil feeding to essential fatty acid-deficient rats as a function of time

    NARCIS (Netherlands)

    Golde, L.M.G. van; Pieterson, W.A.; Deenen, L.L.M. van

    1968-01-01

    The present paper describes, as a function of time, the qualitative and quantitative alterations in the molecular species pattern of rat liver lecithin which are observed when corn oil is fed to essential fatty acid-deficient rats. One of the most important changes observed was a very rapid

  6. Brown Norway chromosome 1 congenic reduces symptoms of renal disease in fatty Zucker rats.

    Directory of Open Access Journals (Sweden)

    Craig H Warden

    Full Text Available We previously reported that a congenic rat with Brown Norway (BN alleles on chromosome 1 reduces renal disease of 15-week old fatty Zucker rats (ZUC. Development of renal disease in fatty BN congenic and fatty ZUC rats from 9 through 28 weeks is now examined. Analysis of urine metabolites by (1H nuclear magnetic resonance (NMR spectroscopy revealed a significantly increased urinary loss of glucose, myo-inositol, urea, creatine, and valine in ZUC. Food intake was lower in the BN congenic rats at weeks 9-24, but they weighed significantly more at 28 weeks compared with the ZUC group. Fasting glucose was significantly higher in ZUC than congenic and adiponectin levels were significantly lower in ZUC, but there was no significant genotype effect on Insulin levels. Glucose tolerance tests exhibited no significant differences between ZUC and congenic when values were normalized to basal glucose levels. Quantitative PCR on livers revealed evidence for higher gluconeogenesis in congenics than ZUC at 9 weeks. Plasma urea nitrogen and creatinine were more than 2-fold higher in 28-week ZUC. Twelve urine protein markers of glomerular, proximal and distal tubule disease were assayed at three ages. Several proteins that indicate glomerular and proximal tubular disease increased with age in both congenic and ZUC. Epidermal growth factor (EGF level, a marker whose levels decrease with distal tubule disease, was significantly higher in congenics. Quantitative histology of 28 week old animals revealed the most significant genotype effect was for tubular dilation and intratubular protein. The congenic donor region is protective of kidney disease, and effects on Type 2 diabetes are likely limited to fasting glucose and adiponectin. The loss of urea together with a small increase of food intake in ZUC support the hypothesis that nitrogen balance is altered in ZUC from an early age.

  7. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  8. Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease

    Science.gov (United States)

    Ma, Hong; Cui, Fan; Dong, Jing-Jing; You, Guo-Ping; Yang, Xiang-Jiu; Lu, Hua-Dong; Huang, Yan-Ling

    2014-01-01

    AIM: To explore the therapeutic role of globular adiponectin (gAd) in high-fat diet/streptozotocin (STZ)-induced type 2 diabetic rats with nonalcoholic fatty liver disease (NAFLD). METHODS: Seven rats were fed a basic diet (normal control group; NC) during the experiment. Experimental rats (14 rats) were given a high-fat diet for 4 wk and were then injected with STZ to induce type 2 diabetes mellitus (T2DM) and NAFLD. Half of the T2DM/NAFLD rats were randomly injected intraperitoneally with gAd for 7 d (gAd-treated group), while the other 7 rats (T2DM/NAFLD group) received 0.9% saline. Plasma biochemical parameters and insulin concentrations were measured. Liver histopathology was examined by hematoxylin-eosin staining. Insulin receptor expression in the liver was analyzed by immunohistochemical staining, Western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. RESULTS: Compared to the control group, the T2DM/NAFLD group had increased levels of glucolipid and decreased levels of insulin. Plasma glucose and lipid levels were decreased in the gAd-treated group, while serum insulin levels increased. The expression of insulin receptor in the T2DM/NAFLD group increased compared with the NC group, and gAd downregulated insulin receptor expression in the livers of T2DM/NAFLD rats. Steatosis of the liver was alleviated in the gAd-treated group compared to the T2DM/NAFLD group (NAS 1.39 ± 0.51 vs 1.92 ± 0.51, P T2DM rats with NAFLD by promoting insulin secretion, mediating glucolipid metabolism, regulating insulin receptor expression and alleviating hepatic steatosis. PMID:25356056

  9. Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Ma, Hong; Cui, Fan; Dong, Jing-Jing; You, Guo-Ping; Yang, Xiang-Jiu; Lu, Hua-Dong; Huang, Yan-Ling

    2014-10-28

    To explore the therapeutic role of globular adiponectin (gAd) in high-fat diet/streptozotocin (STZ)-induced type 2 diabetic rats with nonalcoholic fatty liver disease (NAFLD). Seven rats were fed a basic diet (normal control group; NC) during the experiment. Experimental rats (14 rats) were given a high-fat diet for 4 wk and were then injected with STZ to induce type 2 diabetes mellitus (T2DM) and NAFLD. Half of the T2DM/NAFLD rats were randomly injected intraperitoneally with gAd for 7 d (gAd-treated group), while the other 7 rats (T2DM/NAFLD group) received 0.9% saline. Plasma biochemical parameters and insulin concentrations were measured. Liver histopathology was examined by hematoxylin-eosin staining. Insulin receptor expression in the liver was analyzed by immunohistochemical staining, Western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. Compared to the control group, the T2DM/NAFLD group had increased levels of glucolipid and decreased levels of insulin. Plasma glucose and lipid levels were decreased in the gAd-treated group, while serum insulin levels increased. The expression of insulin receptor in the T2DM/NAFLD group increased compared with the NC group, and gAd downregulated insulin receptor expression in the livers of T2DM/NAFLD rats. Steatosis of the liver was alleviated in the gAd-treated group compared to the T2DM/NAFLD group (NAS 1.39 ± 0.51 vs 1.92 ± 0.51, P Globular adiponectin exerts beneficial effects in T2DM rats with NAFLD by promoting insulin secretion, mediating glucolipid metabolism, regulating insulin receptor expression and alleviating hepatic steatosis.

  10. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    Science.gov (United States)

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  11. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    Science.gov (United States)

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  12. Utilization of the Zucker Diabetic Fatty (ZDF) Rat Model for Investigating Hypoglycemia-related Toxicities.

    Science.gov (United States)

    Tirmenstein, Mark; Horvath, Joseph; Graziano, Michael; Mangipudy, Raja; Dorr, Thomas; Colman, Karyn; Zinker, Bradley; Kirby, Mark; Cheng, Peter T W; Patrone, Laura; Kozlosky, John; Reilly, Timothy P; Wang, Victor; Janovitz, Evan

    2015-08-01

    Glucokinase (GK) catalyzes the initial step in glycolysis and is a key regulator of glucose homeostasis. Therefore, glucokinase activators (GKa) have potential benefit in treating type 2 diabetes. Administration of a Bristol-Myers Squibb GKa (BMS-820132) to healthy euglycemic Sprague-Dawley (SD) rats and beagle dogs in 1 mo toxicology studies resulted in marked and extended hypoglycemia with associated clinical signs of toxicity and degenerative histopathological changes in the stomach, sciatic nerve, myocardium, and skeletal muscles at exposures comparable to those expected at therapeutic clinical exposures. To investigate whether these adverse effects were secondary to exaggerated pharmacology (prolonged hypoglycemia), BMS-820132 was administered daily to male Zucker diabetic fatty (ZDF) rats for 1 mo. ZDF rats are markedly hyperglycemic and insulin resistant. BMS-820132 did not induce hypoglycemia, clinical signs of hypoglycemia, or any of the histopathologic adverse effects observed in the 1 mo toxicology studies at exposures that exceeded those observed in SD rats and dogs. This indicates that the toxicity observed in euglycemic animals was secondary to the exaggerated pharmacology of potent GK activation. This study indicates that ZDF rats, with conventional toxicity studies, are a useful disease model for testing antidiabetic agents and determining toxicities that are independent of prolonged hypoglycemia. © 2015 by The Author(s).

  13. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.

    Science.gov (United States)

    Tan, Yi; Kim, Jane; Cheng, Jing; Ong, Madeleine; Lao, Wei-Guo; Jin, Xing-Liang; Lin, Yi-Guang; Xiao, Linda; Zhu, Xue-Qiong; Qu, Xian-Qin

    2017-06-07

    To investigate protective effects and molecular mechanisms of green tea polyphenols (GTP) on non-alcoholic fatty liver disease (NAFLD) in Zucker fatty (ZF) rats. Male ZF rats were fed a high-fat diet (HFD) for 2 wk then treated with GTP (200 mg/kg) or saline (5 mL/kg) for 8 wk, with Zucker lean rat as their control. At the end of experiment, serum and liver tissue were collected for measurement of metabolic parameters, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), inflammatory cytokines and hepatic triglyceride and liver histology. Immunoblotting was used to detect phosphorylation of AMP-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c). Genetically obese ZF rats on a HFD presented with metabolic features of hepatic pathological changes comparable to human with NAFLD. GTP intervention decreased weight gain (10.1%, P = 0.052) and significantly lowered visceral fat (31.0%, P liver in GTP treated rats. The protective effects of GTP against HFD-induced NAFLD in genetically obese ZF rats are positively correlated to reduction in hepatic lipogenesis through upregulating the AMPK pathway.

  14. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  15. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  16. Maternal high-fat-diet programs rat offspring liver fatty acid metabolism.

    Science.gov (United States)

    Seet, Emily L; Yee, Jennifer K; Jellyman, Juanita K; Han, Guang; Ross, Michael G; Desai, Mina

    2015-06-01

    In offspring exposed in utero to a maternal diet high in fat (HF), we have previously demonstrated that despite similar birth weights, HF adult offspring at 6 months of age had significantly higher body weights, greater adiposity, and increased triacylglycerol (TAG) levels as compared to controls. We hypothesized that a maternal HF diet predisposes to offspring adiposity via a programmed increase in the synthesis of monounsaturated fatty acids in the liver and hence increased substrate availability for liver TAG synthesis. We further hypothesized that programmed changes in offspring liver fatty acid metabolism are associated with increased liver expression of the lipogenic enzyme stearoyl-CoA desaturase-1 (SCD-1). Female rats were maintained on a HF diet rich in monounsaturated fatty acids (MUFA) prior to and throughout pregnancy and lactation. After birth, newborns were nursed by the same dam, and all offspring were weaned to control diet. Plasma and liver fatty acid compositions were determined using gas chromatography/mass spectrometry. Fatty acid C16 desaturation indices of palmitoleic/palmitic and (vaccenic + palmitoleic)/palmitic and the C18 desaturation index of oleic/stearic were calculated. Liver protein abundance of SCD-1 was analyzed in newborns and adult offspring. Plasma and liver C16 desaturation indices were decreased in HF newborns, but increased in the adult offspring. Liver SCD-1 expression was increased in the HF adult offspring. These data show that the maternal HF diet during pregnancy and lactation increases offspring liver SCD-1 protein abundance and alters the liver C16 desaturase pathway.

  17. Effect of Treadmill Exercise on Interleukin-15 Expression and Glucose Tolerance in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Hee-Jae Kim

    2013-10-01

    Full Text Available BackgroundInterleukin-15 (IL-15, a well-known myokine, is highly expressed in skeletal muscle and is involved in muscle-fat crosstalk. Recently, a role of skeletal muscle-derived IL-15 in the improvement of glucose homeostasis and insulin sensitivity has been proposed. However, little is known regarding the influence of endurance training on IL-15 expression in type 2 diabetic skeletal muscles. We investigated the effect of endurance exercise training on glucose tolerance and IL-15 expression in skeletal muscles using type 2 diabetic animal models.MethodsMale Zucker diabetic fatty (ZDF and ZDF lean control (ZLC rats were randomly divided into three groups: sedentary ZLC, sedentary ZDF (ZDF-Con, and exercised ZDF (ZDF-Ex. The ZDF-Ex rats were forced to run a motor-driven treadmill for 60 minutes once a day 5 times per week for 12 weeks. Intraperitoneal glucose tolerance test (IPGTT was performed after 12 weeks. Expression of IL-15 was measured using ELISA in extracted soleus (SOL and gastrocnemius medial muscles.ResultsAfter 12 weeks of treadmill training, reduction of body weight was observed in ZDF-Ex compared to ZDF-Con rats. Glucose tolerance using IPGTT in diabetic rats was significantly improved in ZDF-Ex rats. Furthermore, the expression of IL-15 was significantly increased (P<0.01 only in the SOL of ZDF-Ex rats compared to ZDF-Con. Additionally, IL-15 expression in SOL muscles was negatively correlated with change of body weight (R=-0.424, P=0.04.ConclusionThe present study results suggest that 12 weeks of progressive endurance training significantly improved glucose tolerance with concomitant increase of IL-15 expression in SOL muscles of type 2 diabetic rats.

  18. Fuel selection in Wistar rats exposed to cold: shivering thermogenesis diverts fatty acids from re-esterification to oxidation.

    Science.gov (United States)

    Vaillancourt, Eric; Haman, François; Weber, Jean-Michel

    2009-09-01

    This study characterizes the effects of shivering thermogenesis on metabolic fuel selection in Wistar rats. Because lipids account for most of the heat produced, we have investigated: (1) whether the rate of appearance of non-esterified fatty acids (R(a) NEFAs) is stimulated by shivering, (2) whether mono-unsaturated (oleate) and saturated fatty acids (palmitate) are affected similarly, and (3) whether the partitioning between fatty acid oxidation and re-esterification is altered by cold exposure. Fuel oxidation was measured by indirect calorimetry and fatty acid mobilization by continuous infusion of 9,10-[(3)H]oleate and 1-[(14)C]palmitate. During steady-state cold exposure, results show that total heat production is unequally shared by the oxidation of lipids (52% of metabolic rate), carbohydrates (35%) and proteins (13%), and that the same fuel selection pattern is observed at all shivering intensities. All previous research shows that mammals stimulate R(a) NEFA to support exercise or shivering. In contrast, results reveal that the R(a) NEFA of the rat remains constant during cold exposure (55 micromol kg(1) min(1)). No preferential use of mono-unsaturated over saturated fatty acids could be demonstrated. The rat decreases its rate of fatty acid re-esterification from 48.4 +/- 6.4 to 19.6 +/- 6.3 micromol kg(1) min(1) to provide energy to shivering muscles. This study is the first to show that mammals do not only increase fatty acid availability for oxidation by stimulating R(a) NEFA. Reallocation of fatty acids from re-esterification to oxidation is a novel, alternative strategy used by the rat to support shivering.

  19. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...... mimics IPC. 2. Rat hearts were studied in a Langendorff preparation perfused with Krebs'-Henseleit solution and subjected to 40 min global no-flow ischaemia, followed by 120 min reperfusion. L-Glutamate (0, 15 and 30 mmol/L) was added to the perfusate during reperfusion of hearts from non-diabetic...

  20. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids.

    OpenAIRE

    Vamecq, J

    1987-01-01

    The enzyme targets for chlorpromazine inhibition of rat liver peroxisomal and mitochondrial oxidations of fatty acids were studied. Effects of chlorpromazine on total fatty acyl-CoA synthetase activity, on both the first and the third steps of peroxisomal beta-oxidation, on the entry of fatty acyl-CoA esters into the peroxisome and on catalase activity, which allows breakdown of the H2O2 generated during the acyl-CoA oxidase step, were analysed. On all these metabolic processes, chlorpromazin...

  1. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  2. Histopathologic Evaluation of Nonalcoholic Fatty Liver Disease in Hypothyroidism-Induced Rats

    Science.gov (United States)

    Demir, Şule; Ünübol, Mustafa; Aypak, Serap Ünübol; İpek, Emrah; Aktaş, Serdar; Ekren, Gamze Sevri; Yılmaz, Murat; Tunca, Recai; Güney, Engin

    2016-01-01

    It is speculated that thyroid hormones may be involved in nonalcoholic fatty liver disease (NAFLD) pathogenesis. A literature scan, however, demonstrated conflicting results from studies investigating the relationship between hypothyroidism and NAFLD. Therefore, our study aims to evaluate NAFLD, from the histopathologic perspective, in hypothyroidism-induced rats. Wistar rats were divided into 2 groups: the experimental group consumed water containing methimazole 0.025% (MMI, Sigma, USA) for 12 weeks and the control group consumed tap water. At the end of week 12, serum glucose, ALT, AST, triglyceride, HDL, LDL, TSH, fT4, fT3, visfatin, and insulin assays were performed. Sections were stained with hematoxylin-eosin and “Oil Red-O” for histopathologic examination of the livers. In our study, we detected mild hepatosteatosis in all hypothyroidism-induced rats. There was statistically significant difference with respect to obesity between the two groups (p hypothyroidism-induced group and 102.63 ± 15.51 mg/dL in the control group, with a statistically significant difference between the groups (p = 0.032). The two groups did not differ statistically significantly with respect to visfatin levels (p > 0.05). In conclusion, we found that hypothyroidism-induced rats had mild hepatosteatosis as opposed to the control group histopathologically. Our study indicates that hypothyroidism can cause NAFLD. PMID:27143968

  3. Histopathologic Evaluation of Nonalcoholic Fatty Liver Disease in Hypothyroidism-Induced Rats

    Directory of Open Access Journals (Sweden)

    Şule Demir

    2016-01-01

    Full Text Available It is speculated that thyroid hormones may be involved in nonalcoholic fatty liver disease (NAFLD pathogenesis. A literature scan, however, demonstrated conflicting results from studies investigating the relationship between hypothyroidism and NAFLD. Therefore, our study aims to evaluate NAFLD, from the histopathologic perspective, in hypothyroidism-induced rats. Wistar rats were divided into 2 groups: the experimental group consumed water containing methimazole 0.025% (MMI, Sigma, USA for 12 weeks and the control group consumed tap water. At the end of week 12, serum glucose, ALT, AST, triglyceride, HDL, LDL, TSH, fT4, fT3, visfatin, and insulin assays were performed. Sections were stained with hematoxylin-eosin and “Oil Red-O” for histopathologic examination of the livers. In our study, we detected mild hepatosteatosis in all hypothyroidism-induced rats. There was statistically significant difference with respect to obesity between the two groups (p0.05. In conclusion, we found that hypothyroidism-induced rats had mild hepatosteatosis as opposed to the control group histopathologically. Our study indicates that hypothyroidism can cause NAFLD.

  4. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  5. Short-Term Caloric Restriction Does Not Reduce Bone Mineral Density in Rats with Early Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yun Kyung Jeon

    2014-03-01

    Full Text Available BackgroundThe effect of caloric restriction (CR in the setting of diabetes on bone metabolism has not yet been fully studied. The aim of this study is to determine if short-term CR alters bone mass and metabolism in Otsuka Long-Evans Tokushima fatty (OLETF rats, an animal model of type 2 diabetes.MethodsFour groups (n=5 were created: OLETF rats with food ad libitum (AL, OLETF rats with CR, Long-Evans Tokusima Otsuka (LETO rats with food AL, and LETO rats with CR. The CR condition was imposed on 24-week-old male rats using a 40% calorie reduction for 4 weeks. The effect of CR on femoral bone mineral density (BMD was assessed by dual-energy X-ray absorptiometry. Serum markers were measured by immunoassay.ResultsAfter 4 weeks of CR, body weight decreased in both strains. The BMD decreased in LETO rats and was maintained in OLETF rats. After adjustment for body weight, BMD remained lower in LETO rats (P=0.017 but not OLETF rats (P=0.410. Bone-specific alkaline phosphatase levels decreased in LETO rats (P=0.025 but not in OLEFT rats (P=0.347. Serum leptin levels were reduced after CR in both strains, but hyperleptinemia remained in OLETF rats (P=0.009. CR increased 25-hydroxyvitamin D levels in OLETF rats (P=0.009 but not in LETO rats (P=0.117. Additionally, interleukin-6 and tumor necrosis factor-α levels decreased only in OLETF rats (P=0.009.ConclusionShort-term CR and related weight loss were associated with decreases of femoral BMD in LETO rats while BMD was maintained in OLETF rats. Short-term CR may not alter bone mass and metabolism in type 2 diabetic rats.

  6. Short-term caloric restriction does not reduce bone mineral density in rats with early type 2 diabetes.

    Science.gov (United States)

    Jeon, Yun Kyung; Kim, Won Jin; Shin, Myung Jun; Chung, Hae-Young; Kim, Sang Soo; Kim, Bo Hyun; Kim, Seong-Jang; Kim, Yong Ki; Kim, In Joo

    2014-03-01

    The effect of caloric restriction (CR) in the setting of diabetes on bone metabolism has not yet been fully studied. The aim of this study is to determine if short-term CR alters bone mass and metabolism in Otsuka Long-Evans Tokushima fatty (OLETF) rats, an animal model of type 2 diabetes. Four groups (n=5) were created: OLETF rats with food ad libitum (AL), OLETF rats with CR, Long-Evans Tokusima Otsuka (LETO) rats with food AL, and LETO rats with CR. The CR condition was imposed on 24-week-old male rats using a 40% calorie reduction for 4 weeks. The effect of CR on femoral bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry. Serum markers were measured by immunoassay. After 4 weeks of CR, body weight decreased in both strains. The BMD decreased in LETO rats and was maintained in OLETF rats. After adjustment for body weight, BMD remained lower in LETO rats (P=0.017) but not OLETF rats (P=0.410). Bone-specific alkaline phosphatase levels decreased in LETO rats (P=0.025) but not in OLEFT rats (P=0.347). Serum leptin levels were reduced after CR in both strains, but hyperleptinemia remained in OLETF rats (P=0.009). CR increased 25-hydroxyvitamin D levels in OLETF rats (P=0.009) but not in LETO rats (P=0.117). Additionally, interleukin-6 and tumor necrosis factor-α levels decreased only in OLETF rats (P=0.009). Short-term CR and related weight loss were associated with decreases of femoral BMD in LETO rats while BMD was maintained in OLETF rats. Short-term CR may not alter bone mass and metabolism in type 2 diabetic rats.

  7. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  8. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    Directory of Open Access Journals (Sweden)

    Rodrigo Polimeni Constantin

    2013-01-01

    Full Text Available Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD+ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD+ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide.

  9. Omega-3 Fatty Acid Enriched Chevon (Goat Meat Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi

    2014-01-01

    Full Text Available In this study, control chevon (goat meat and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n=10 in each group for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P<0.05 in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.

  10. Anti-Obesity Effects of Onion Extract in Zucker Diabetic Fatty Rats

    Science.gov (United States)

    Yoshinari, Orie; Shiojima, Yoshiaki; Igarashi, Kiharu

    2012-01-01

    Anti-obesity effects of onion extract were determined in obesity and diabetes-prone Zucker diabetic fatty rats by measuring the efficacy of markers concerned with diabetes and obesity. Body and adipose tissue weights in 5% of onion extract-fed group were found to be significantly lower than the control group without onion extract. Fasting blood glucose and HOMA-IR levels were also improved, although the serum insulin and leptin levels did not show any remarkable difference. Serum triglyceride and free fatty acid levels in both the 3% and 5%-fed group were found to be reduced compared to the control group. Additionally the feeding of the onion extract increased the glucose tolerance. These results suggest that dietary onion extract is beneficial for improving diabetes by decreasing lipid levels. We also examined differentiation ability of rat white preadipocyte cells using the onion extract and its sulfur-containing components. Cycloalliin, S-methyl-L-cysteine, S-propyl-L-cysteine sulfoxide, dimethyl trisulfide, especially S-methyl-L-cysteine sulfoxide were reported to be effective in inhibiting formation of oil drop in the cells, suggesting that these compounds may be involved in the anti-obesity effect of the onion extract. PMID:23201769

  11. Nonalcoholic Fatty Liver Disease: Correlation of the Liver Parenchyma Fatty Acid with Intravoxel Incoherent Motion MR Imaging-An Experimental Study in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Seung-Man Yu

    Full Text Available To prospectively evaluate the changes in fatty acid concentration after administrating a 60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation analysis between fatty acid with molecular diffusion (Dtrue, perfusion-related diffusion (Dfast, and perfusion fraction (Pfraction.This prospective study was approved by the appropriate ethics committee. Ten male Sprague-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved spectroscopy sequence 1H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and 8×8×8 mm3 voxel was used to acquire magnetic resonance spectroscopy (MRS data. Diffusion-weighted imaging was performed on a two-dimensional multi-b value spin echo planar image with the following parameters: repetition time msec/echo time msec, 4500 /63; field of view, 120×120 msec2; matrix, 128×128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm2. Baseline magnetic resonance imaging and magnetic resonance spectroscopy data (control were acquired. 1H proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The individual contributions of the true molecular diffusion and the incoherent motions of water molecules in the capillary network to the apparent diffusion changes were estimated using a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-Wallis test was used to compare each week's fatty acid mean quantification. Spearman's correlation coefficient was used to evaluate the correlation between each fatty acid (e.g., total lipid (TL, total saturated fatty acid (TSFA, total unsaturated fatty acid (TUSFA, total unsaturated bond (TUSB, and polyunsaturated bond (PUSB and intravoxel incoherent motion (IVIM mapping images (e.g., Dtrue, Dfast, and Pfraction.The highest mean TL value was at week 8 (0.278 ± 0.10 after the administration of the 60% high-fat diet

  12. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    Science.gov (United States)

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  13. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  14. Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis

    OpenAIRE

    Cehreli, Ruksan; Akpinar, Hale; Artmann, Aysegul Temiz; Sagol, Ozgul

    2015-01-01

    Background The aim of the study was to investigate preventive effects of glutamine (Gln), omega-3 fatty acids (FA) on erythrocyte deformability (EDEF) in rat model of indomethacin-induced enterocolitis. Methods Nineteen Wistar albino male rats were divided into three groups: control group, colitis induced by indomethacin and were fed with a standard laboratory diet (group 1), and colitis induced by indomethacin and were also fed with Gln, omega-3 FA (group 2). An investigation was performed i...

  15. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Penghao [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Xie, Qihai [Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai (China); Wei, Tong [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Yichen [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Hong, E-mail: hchen100@shsmu.edu.cn [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Shen, Weili, E-mail: wlshen@sibs.ac.cn [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2015-12-04

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  16. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    International Nuclear Information System (INIS)

    Liu, Penghao; Xie, Qihai; Wei, Tong; Chen, Yichen; Chen, Hong; Shen, Weili

    2015-01-01

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  17. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Voltarelli Fabrício A

    2010-10-01

    Full Text Available Abstract Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD, insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G and a fructose-rich diet group (60% fructose. The animals were tested for maximal lactate-steady state (MLSS in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol. Another third were submitted to the training from 90 to 120 days (late protocol, and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.

  18. High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies.

    Science.gov (United States)

    Liu, Tzu-Wen; Heden, Timothy D; Matthew Morris, E; Fritsche, Kevin L; Vieira-Potter, Victoria J; Thyfault, John P

    2015-10-01

    High-fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids and induce lipotoxicity in various organs. In vitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in vivo; however, these approaches are not physiological as tissues are exposed to multiple fatty acids in vivo. Here we characterize circulating lipids in obesity-prone rats fed an HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in vitro studies. Rats were fed an HFD (60% kcal fat) or a control diet (10% kcal fat) for 3 weeks; liver tissue and both portal and systemic blood were collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG) and phospholipids in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40% lower in HFD-fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n-6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in vitro studies attempting to model lipid exposures that occur during in vivo HFD conditions.

  19. Ultrasound imaging in an experimental model of fatty liver disease and cirrhosis in rats

    Directory of Open Access Journals (Sweden)

    Campos de Carvalho Antonio

    2010-01-01

    Full Text Available Abstract Background Domestic dogs and cats are very well known to develop chronic hepatic diseases, including hepatic lipidosis and cirrhosis. Ultrasonographic examination is extensively used to detect them. However, there are still few reports on the use of the ultrasound B-mode scan in correlation with histological findings to evaluate diffuse hepatic changes in rodents, which represent the most important animal group used in experimental models of liver diseases. The purpose of this study was to determine the reliability of ultrasound findings in the assessment of fatty liver disease and cirrhosis when compared to histological results in Wistar rats by following up a murine model of chronic hepatic disease. Results Forty Wistar rats (30 treated, 10 controls were included. Liver injury was induced by dual exposure to CCl4 and ethanol for 4, 8 and 15 weeks. Liver echogenicity, its correlation to the right renal cortex echogenicity, measurement of portal vein diameter (PVD and the presence of ascites were evaluated and compared to histological findings of hepatic steatosis and cirrhosis. Liver echogenicity correlated to hepatic steatosis when it was greater or equal to the right renal cortex echogenicity, with a sensitivity of 90%, specificity of 100%, positive and negative predictive values of 100% and 76.9% respectively, and accuracy of 92.5%. Findings of heterogeneous liver echogenicity and irregular surface correlated to liver cirrhosis with a sensitivity of 70.6%, specificity of 100%, positive and negative predictive values of 100% and 82.1% respectively, and accuracy of 87.5%. PVD was significantly increased in both steatotic and cirrhotic rats; however, the later had greater diameters. PVD cut-off point separating steatosis from cirrhosis was 2.1 mm (sensitivity of 100% and specificity of 90.5%. One third of cirrhotic rats presented with ascites. Conclusion The use of ultrasound imaging in the follow-up of murine diffuse liver disease

  20. Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring.

    NARCIS (Netherlands)

    Siemelink, M.; Verhoef, A.; Dormans, J.A.M.A.; Span, P.N.; Piersma, A.H.

    2002-01-01

    AIMS/HYPOTHESIS. We investigated of the effects of fatty acid composition of the maternal diet on fetal and postnatal growth, morphology of the pancreas and glucose metabolism and muscle hexosamine concentrations in the adult offspring of rats. METHODS. High-fat diets enriched with either saturated

  1. Prevention of diabetic nephropathy by compound 21, selective agonist of angiotensin type 2 receptors, in Zucker diabetic fatty rats

    DEFF Research Database (Denmark)

    Castoldi, Giovanna; di Gioia, Cira Rt; Bombardi, Camila

    2014-01-01

    Aim of the study was to evaluate the effect of compound 21 (C21), selective AT2 receptor agonist, in diabetic nephropathy and the potential additive effect of C21, when associated to losartan treatment, on the development of albuminuria and renal fibrosis in Zucker diabetic fatty (ZDF) rats. The ...

  2. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver.

    Science.gov (United States)

    H V, Sudeep; K, Venkatakrishna; Patel, Dipak; K, Shyamprasad

    2016-08-05

    Plasma free fatty acids (FFA) are involved in blood lipid metabolism as well as many health complications. The present study was conducted to evaluate the potential role of chlorogenic acid complex from green coffee bean (CGA7) on FFA metabolism in high fat diet fed rats. Hyperlipidemia was induced in Wistar rats using high-fat diet. The animals were given CGA7/orlistat concurrently for 42 days. The parameters analysed during the study include plasma and liver total cholesterol (TC), Triglycerides (TG) and FFA. AMPK activation in the liver was analysed through ELISA. The multiple factors involved in AMPK mediated FFA metabolism were analysed using western blotting. CGA7 (50, 100, 150 mg/kg BW) decreased triglycerides (TG) and FFA levels in plasma and liver. CGA7 administration led to the activation of AMP-activated protein kinase (AMPK) and a subsequent increase in the levels of carnitine palmitoyltransferase 1 (CPT-1). There was a decrease in acetyl-CoA carboxylase (ACC) activity as evident by the increase in its phosphorylation level. Chlorogenic acids improved the blood lipid metabolism in rats by alleviating the levels of FFA and TG, modulating the multiple factors in liver through AMPK pathway. The study concludes that CGA7 complex can be promoted as an active ingredient in nutrition for obesity management.

  3. [Effects-of combined calories restriction and polyunsaturated fatty acids on colitis in rats].

    Science.gov (United States)

    Qian, Yan; Zhang, Ying; Liu, Hui; Wang, Lei; Li, Xiuhua; Qiu, Fubin

    2014-09-01

    To explore the effect of n-6 and n-3 polyunsaturated fatty acids combined with calorie restriction( CR) in DSS induced ulcerative colitis rats. Forty female rats were randomly divided into five groups, control group, model group, CR group, 5:1 PUFA ad libitum group, 5: 1 PUFA CR group. CR groups provided with a limited daily food allotment of 60% of that eaten by the ad libitum animals for 14 weeks. Ulcerative colitis model in rats were given 5. 0% dextran sulfate sodium in their drinking water for 7 days. 5:1 PUFA CR group significantly decreased body weight, disease activity index, macroscopic and histological score compared to model group. In addition, administration of 5: 1 PUFA CR effectively inhibited MPO activity. The levels of TNF-α and IL-6 in the serum with colitis were decreased by 5: 1 PUFA CR (P calories restriction and n-6/n-3 =5:1 PUFA may be more beneficial in attenuating the progression of DSS induced ulcerative colitis.

  4. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.

    Science.gov (United States)

    Yeh, Y Y; Streuli, V L; Zee, P

    1977-04-01

    The regulation of hepatic ketogenesis, as related to the metabolism of fatty acids through oxidative and synthetic pathways, was studied in developing rats. [1-14C] palmitate was used as a substrate to determine the proportions of free fatty acids utilized for the production of ketone bodies, CO2 and complex lipids. Similar developmental patterns of hepatic ketogenesis were obtained by measuring the production of either [14C] acetoacetate from exogenous [1-14C] palmitate or the sum of unlabeled acetoacetate and beta-hydroxybutyrate from endogenous fatty acids. The production of total ketone bodies was low during the late fetal stage and at birth, but increased rapidly to a miximum value within 24 hr after brith. The maximal ketogenic capacity appeared to be maintained for the first 10 days of life. 14CO2 production from [1-14C] palmitate increased by two- to fourfold during the suckling period, from its initial low rate seen at birth. The capacity for synthesis of total complex lipids was low at birth and had increased by day 3 to a maximal value, which was comparable to that of adult fed rats. The high lipogenic capacity lasted throughout the remaining suckling period. When ketogenesis was inhibited by 4-pentenoic acid, the rate of synthesis of complex lipids did not increase despite an increase in unutilized fatty acids. During the mid-suckling period, approximately equal amounts of [1-14C] palmitate were utilized for the synthesis of ketone plus CO2 and for complex lipid synthesis. By contrast, in adult fed rats, the incorporation of fatty acids into complex lipids was four times higher than that of ketone plus CO2. These observations suggest that stimulated hepatic ketogenesis in suckling rats results from the rapid oxidation of fatty acids and consequent increased production of acetyl CoA, but not from impaired capacity for synthesis of complex lipids.

  5. Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    Directory of Open Access Journals (Sweden)

    Brunner Sabine

    2011-10-01

    Full Text Available Abstract Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF. Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28% or a high-salt diet (5.5% starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food (ZDF+S+E, hydralazine (25 mg/kg per day (ZDF+S+H, or no treatment (ZDF+S. Rats on normal salt-diet were assigned to eplerenone (ZDF+E or no treatment (ZDF. Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL or high-salt diet (ZL+S serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio and vascular stiffness (strain and stress were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition

  6. Effects of a normolipidic diet containing trans fatty acids during perinatal period on the growth, hippocampus fatty acid profile, and memory of young rats according to sex.

    Science.gov (United States)

    de Souza, Amanda Santos; Rocha, Mônica Santos; Tavares do Carmo, Maria das Graças

    2012-04-01

    To investigate whether dietary trans fatty acids (TFAs) are incorporated in the hippocampus and its effects on the growth and aversive and spatial memories of young rats. Wistar rat offspring whose mothers were fed with normolipidic diets containing soybean oil (soy group) or hydrogenated vegetable oil (trans group) during gestation and lactation were used. Male and female pups received the same diets as their mothers until the end of behavioral testing. The composition of fatty acids in the total lipids of the diets and hippocampus was quantified by gas chromatography. The results were evaluated by Student's t test or analysis of variance followed by the Bonferroni correction. The trans male and female body weights were higher during lactation and after weaning, with trans males having the lower body weight of the two. There was incorporation of 0.11% and 0.17% of TFAs in the hippocampi of male and female rats, respectively. During passive avoidance test, there was no significant difference. In the water maze test, there was no significant difference between male groups in the training and retention phases, except on day 4, when there was a significant decrease in latency in trans males. Trans females were worse on day 2 only and showed an improvement in spatial memory during the probe trial. The TFAs were incorporated in small amounts in the hippocampus and did not affect aversive memory. However, spatial memory was modified in young rats fed with a diet rich in TFAs. These findings suggested that, in addition to the TFA content of the diet provided, it is important to consider the provision of essential fatty acids and the ω-6/ω-3 ratio. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Protective role of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Naresh Kumar, Rajendran; Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2013-01-05

    Hyperlipidemia is an associated complication of diabetes mellitus. The association of hyperglycemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. The present study was designed to examine the antihyperlipidemic effect of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats. The levels of blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, high density lipoprotein, lipoprotein lipase, lecithin cholesterol acyl transferase, 3-hydroxy 3-methylglutaryl coenzyme A reductase and fatty acid composition were estimated in plasma, liver and kidneys of control and experimental groups of rats. Oral administration of 20-OH ecdysone at a dose of 5mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 30 days resulted in a significant reduction in fasting blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, 3-hydroxy 3-methylglutaryl coenzyme A reductase and elevation of high density lipoprotein, lipoprotein lipase and lecithin cholesterol acyl transferasein comparison with diabetic untreated rats. Moreover, administration of 20-OH ecdysone to diabetic rats also decreased the concentrations of fatty acids, viz., palmitic, stearic (16:1) and oleic acid (18:1), whereas linolenic (18:3) and arachidonic acid (20:4) were elevated. The antihyperlipidemic effect of 20-OH ecdysone was compared with glibenclamide a well-known antihyperglycemic drug. The result of the present study indicates that 20-OH ecdysone showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Maternal and neonatal dietary intake of balanced n-6/n-3 fatty acids modulates experimental colitis in young adult rats.

    Science.gov (United States)

    Reddy, K Vijay Kumar; Naidu, K Akhilender

    2016-08-01

    The imbalance of n-6 and n-3 polyunsaturated fatty acids in the maternal diet impairs intestinal barrier development and sensitizes the colon response to inflammatory insults in the young rats. With a view to overcoming this issue, we designed this study to investigate the effect of maternal and neonatal intake of different proportions of n-6/n-3 fatty acids on colon inflammation in the young adult rats. Female Wistar rats were assigned into four groups, and each group fed one of four semisynthetic diets, namely n-6, low n-3, n-6/n-3 and n-3 fatty acids for 8 weeks prior to mating, during gestation and lactation periods. At weaning, the pups were separated from the dams and fed diet similar to the mothers. Colitis was induced on postnatal day 35, by administering 2 % dextran sulfate sodium in drinking water for 10 days. Colitis was assessed based on the clinical and inflammatory markers in the colon. Fatty acid analysis was done in liver, RBC, colon and spleen. A balanced n-6/n-3 PUFA diet significantly improved the body weight loss, rectal bleeding and mortality in rats. This was associated with lower myeloperoxidase activity, nitric oxide, prostaglandin E2, TNF-α and IL-6, IL-8, COX-2 and iNOS levels in the colon tissues. Fatty acid analysis has shown that the arachidonic acid/docosahexaenoic acid ratio was significantly lower in liver, RBC, colon and spleen in n-6/n-3 and n-3 diet groups. We demonstrate that balanced n-6/n-3 PUFA supplementation in maternal and neonatal diet alters systemic AA/DHA ratio and attenuates colon inflammation in the young adult rats.

  9. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition

    Directory of Open Access Journals (Sweden)

    Lim Sun-Young

    2007-04-01

    Full Text Available Abstract Background Docosahexaenoic acid (22:6n-3, DHA and n-6 docosapentaenoic acid (22:5n-6, DPAn-6 are highly unsaturated fatty acids (HUFA, ≥ 20 carbons, ≥ 3 double bonds that differ by a single carbon-carbon double bond at the Δ19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. Results In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 ± 2.8 wt. % did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 ± 2.3 wt. % suggesting a specific preference/requirement for 22:6n-3 in red

  10. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition.

    Science.gov (United States)

    Stark, Ken D; Lim, Sun-Young; Salem, Norman

    2007-04-25

    Docosahexaenoic acid (22:6n-3, DHA) and n-6 docosapentaenoic acid (22:5n-6, DPAn-6) are highly unsaturated fatty acids (HUFA, > or = 20 carbons, > or = 3 double bonds) that differ by a single carbon-carbon double bond at the Delta19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA) as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR) dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM) was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 +/- 2.8 wt. %) did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 +/- 2.3 wt. %) suggesting a specific preference/requirement for 22:6n-3 in red gastrocnemius. Dietary 22:5n-6 is

  11. Melatonin administration in diabetes: regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats.

    Science.gov (United States)

    Navarro-Alarcon, Miguel; Ruiz-Ojeda, Francisco J; Blanca-Herrera, Rosa M; Kaki, Abdullah; Adem, Abdu; Agil, Ahmad

    2014-03-01

    The use of melatonin, a neurohormone present in plants, represents an exciting approach for the maintenance of optimum health conditions. Melatonin administration ameliorates glucose homeostasis in Zucker diabetic fatty (ZDF) rats. The objective of this study was to investigate the effects of melatonin in diabetes in relation to the levels and regulation of plasma chromium (Cr), vanadium (V), and magnesium (Mg) in Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. At the age of 6 weeks, ZDF (n = 30) and ZL (n = 30) groups were each subdivided into three groups: control (C) (n = 10), vehicle-treated (V') (n = 10) and melatonin-treated (M) (10 mg kg(-1) per day; n = 10) groups for a 6 week period. After treatment, plasma mineral concentrations were measured by flame (Mg) and electrothermal (Cr and V) atomic absorption spectrometry. No significant differences were found between the C and V' groups (p > 0.05). Plasma Mg levels were significantly lower in C-ZDF vs. C-ZL rats, demonstrating the presence of hypomagnesemia in this diabetes mellitus model. Plasma V and Cr levels were significantly higher in M-ZDF vs. C-ZDF rats. Plasma Mg levels in ZDF rats were not affected by melatonin treatment (p > 0.05). Melatonin administration ameliorates the diabetic status of ZDF rats by enhancing plasma Cr and V concentrations. This appears to be the first report of a beneficial effect of melatonin treatment on plasma Cr and V regulation in ZDF rats.

  12. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Science.gov (United States)

    Garcés-Rimón, M; González, C; Uranga, J A; López-Miranda, V; López-Fandiño, R; Miguel, M

    2016-01-01

    The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  13. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  14. Effect of dietary fat to produce non-alcoholic fatty liver in the rat.

    Science.gov (United States)

    Ahmed, Umbreen; Redgrave, Trevor G; Oates, Phillip S

    2009-08-01

    Non-alcoholic steatohepatitis (NASH) belongs to a spectrum of non-alcoholic fatty liver disease (NAFLD). Oxidative stress is hypothesized to play an important role in the progression of the disease. We used the Lieber/DeCarli model for NASH to investigate the mechanisms involved in its progression. Male Sprague-Dawley rats were fed standard (35% of energy from fat) or high fat (71% of energy from fat) liquid diets, ad libitum or two-thirds of the amount consumed ad libitum initially for 3 weeks and then extended to 5 weeks. Steatosis was absent in rats at 3 weeks feeding, but by 5 weeks, the high fat/ad lib group showed microvesicular steatosis and foci of macrovesicular steatosis without inflammation. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were not different. By 5 weeks feeding, hepatic triglycerides were highest in the high fat ad lib group and the ad lib groups were higher compared with their restricted groups. The oxidative stress marker, hydroxyalkenal (HAE) was decreased in the standard ad lib compared with the high fat ad lib group. Liver mRNA of interleukin-6, haem oxygenase-1, and markers of endoplasmic stress: C/EBP homologous protein (CHOP), glucose responsive protein-78 (GRP78) and spliced X-box DNA binding protein (spliced XBP1) were similar in the ad lib groups. Extending the feeding period of the high fat/ad lib diet for 5 weeks placed our rats with Type I to II NAFLD compared to the more progressed Type III state previously obtained after 3 weeks feeding. The milder condition obtained raised the prospect of genetic modifiers present in our rats that resist disease progression.

  15. Long-term adaptation to high-fat diets modifies the nature and output of postprandial intestinal lymph fatty acid in rats.

    Science.gov (United States)

    Degrace, P; Caselli, C; Bernard, A

    1998-02-01

    These studies were designed to investigate the lymph absorption of a lipid emulsion in rats prefed different long-term high-fat diets. Particular emphasis was placed on the consequences of endogenous fatty acid alteration on the lymph recovery of two labeled fatty acids. Male Wistar rats were fed a standard diet (LF) containing 3.5 g/100 g fat or high-fat diets containing 15 g/100 g sunflower oil (HSFO), menhaden oil (HMO) or medium-chain triglyceride oil (HMCT) for 4 wk. The lymph was collected for 3 h before and after the intraduodenal infusion of a 90 micromol lipid emulsion (30 micromol monopalmitin, 30 micromol oleic acid, 25 micromol linoleic acid, 5 micromol arachidonic acid) labeled with [3H] oleic (OA) and [14C] arachidonic (AA) acids. The [3H] OA and [14C] AA lymph recoveries were measured and the lymph samples were tested for fatty acid, phospholipid and triglyceride content. Prefeeding an HSFO or HMO diet led to a 65 or 32% greater total lymph fatty acid output, respectively, compared with rats prefed the LF diet. In rats prefed both the HSFO and HMO diets, lymph fatty acid characteristics provided evidence of a dilution of exogenous fatty acids coming from the emulsion by endogenous fatty acids. In rats prefed the HMCT diet, the total lymph fatty acid output after the infusion of the lipid emulsion was not greater than that of starved rats. Nevertheless, 27% [3H] OA and 21% [14C] AA were recovered in the lymph, suggesting a limited dilution of exogenous fatty acids by endogenous fatty acids. In rats prefed the HMCT diet, some exogenous long-chain fatty acids must have been transported by the portal vein in response to low biliary phopholipid production, as indicated by the proportions of [3H] OA and [14C] AA taken up by the mucosa and not recovered in the lymph. Thus we demonstrated that during absorption of a single long-chain fatty acid meal a dilution of exogenous fatty acids by endogenous fatty acids occurred. The nature and the quantity of these

  16. Effects of exercise training on myocardial fatty acid metabolism in rats with depressed cardiac function induced by transient ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liguang; Nohara, Ryuji; Hirai, Taku [Kyoto Univ. (Japan). Graduate School of Medicine] (and others)

    2001-06-01

    The effects of exercise training on metabolic and functional recovery after myocardial transient ischemia were investigated in a rat model. Male Wistar Kyoto rats were subjected either to a 30-min left coronary artery occlusion followed by reperfusion or to a sham operation. At 4 weeks after operation, the rats were randomly assigned either to sedentary conditions or to exercise training for 6 weeks. In the ischemic rats, pinhole SPECT (single photon emission computed tomography) imaging with thallium-201 ({sup 201}Tl) and {sup 123}I-({rho}-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) showed a reduction of both myocardial perfusion and fatty acid metabolism in the risk zone of the left ventricle (LV). The LV was dilated and the ejection fraction was decreased after ischemic injury. The severity score showed a significant decrease on both {sup 201}Tl and BMIPP ({sup 201}Tl, from 19.9{+-}2.7 to 17.0{+-}2.2, p<0.05; BMIPP, from 21.5{+-}2.4 to 18.6{+-}1.9, p<0.05) after exercise training in the ischemic trained rats, but did not change significantly in their sedentary counterparts. Plasma levels of free fatty acids normalized in the ischemic trained rats, but elevated in the ischemic sedentary rats (0.53{+-}0.05 vs 0.73{+-}0.06 mmol/L, p<0.05). Furthermore, the trained rats had a significant increase in LV stroke volume (0.25{+-}0.02 vs 0.21{+-}0.01 ml/beat, p<0.05) and adaptive cardiac hypertrophy. These findings demonstrate that adaptive improvements in myocardial perfusion, fatty-acid metabolism and LV function were induced by exercise training after transient ischemia. (author)

  17. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    Directory of Open Access Journals (Sweden)

    K Yaragudri Vinod

    Full Text Available BACKGROUND: While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. METHODOLOGY/PRINCIPAL FINDINGS: The role of the endocannabinoid (eCB system in depressive behavior was examined in Wistar Kyoto (WKY rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD. Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. CONCLUSIONS/SIGNIFICANCE: These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  18. Bio-availability and metabolism of n-3 fatty acid rich garden cress (Lepidium sativum) seed oil in albino rats.

    Science.gov (United States)

    Diwakar, B T; Dutta, P K; Lokesh, B R; Naidu, K A

    2008-02-01

    The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that

  19. Protective Effects of Korean Red Ginseng against Alcohol-Induced Fatty Liver in Rats

    Directory of Open Access Journals (Sweden)

    Hyo Jin Lee

    2015-06-01

    Full Text Available The present study tested the hypothesis that Korean red ginseng (KRG provides a protective effect against alcoholic fatty liver. Male Sprague-Dawley rats were divided into four groups and fed a modified Lieber-DeCarli diet containing 5% (w/v alcohol or an isocaloric amount of dextrin-maltose for the controls for 6 weeks: normal control (CON, alcohol control (ET, and ET treated with 125 or 250 mg/kg body weight/day of KRG (RGL or RGH, respectively. Compared with the CON group, the ET group exhibited a significant increase in triglycerides, total cholesterol and the presence of lipid droplets in the liver, and a decrease in fat mass, which were all attenuated by KRG supplementation in adose-dependent manner. The mitigation was accompanied by AMP-activated protein kinase (AMPK signaling pathways in the liver and adipose tissue. In addition, suppression in the alcohol-induced changes of adipose adipokine mRNA expression was also observed in KRG supplementation group. These findings suggest that KRG may have the potential to ameliorate alcoholic fatty liver by suppressing inappropriate lysis of adipose tissue and preventing unnecessary de novo lipogenesis in the liver, which are mediated by AMPK signaling pathways. A mechanism for an interplay between the two organs is still needed to be examined with further assays.

  20. Genotyping analysis of protein S-Tokushima (K196E) and the involvement of protein S antigen and activity in patients with recurrent pregnancy loss.

    Science.gov (United States)

    Matsukawa, Yasushi; Asano, Eriko; Tsuda, Tomohide; Kuma, Hiroyuki; Kitaori, Tamao; Katano, Kinue; Ozaki, Yasuhiko; Sugiura-Ogasawara, Mayumi

    2017-04-01

    Preston et al. indicated that Protein S (PS) deficiency was associated with stillbirths but not miscarriages. The PS-Tokushima missense variant was reported to serve as a genetic risk factor for deep vein thrombosis in the Japanese population. A previous cross-sectional study showed no increase in the prevalence of PS-Tokushima in patients with recurrent early pregnancy loss or in patients with intra uterine fetal death and/or fetal growth restriction. There has been limited number of prospective studies examining the pregnancy outcome in patients with both a PS deficiency and recurrent pregnancy loss (RPL). We examined the association between PS deficiency, PS-Tokushima and RPL. The study group consisted of 355 Japanese women with two or more consecutive pregnancy losses and 101 parous women. The frequency of PS-Tokushima and the subsequent live birth rate in relation to a PS deficiency defined as low PS-specific activity (total PS activity/total PS antigen) and the carriage of PS-Tokushima were examined. There was no significant difference in the frequency of PS-Tokushima between patients and controls. The 8 patients carriers of PS-Tokushima variant were capable of a subsequent live birth without the use of heparin. There was no significant difference in subsequent live birth rates between patients with low or normal PS-specific activity/PS activity without heparin prophylaxis after excluding miscarriages caused by an abnormal embryonic karyotype using multivariate logistic regression analysis. There was no association between PS-Tokushima and RPL and a PS deficiency or low PS activity was shown not to serve as a reliable clinical predictor of subsequent miscarriage. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  2. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p blood pressure, and lowered the levels of plasma/liver DHA (p lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  3. Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Cristina de Mello-Sampayo

    2017-07-01

    Full Text Available Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order to evaluate the microalgae-biomass assimilation and its health-benefits, single-dose (CD1-mice studies were followed by 66-days repeated-dose study in Wistar rats with the highest tested single-dose of microalgae equivalent to 101 mg/kg eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA. Microalgae-supplementation modulated EPA and docosapentaenoic acid enrichment at arachidonic acid content expenditure in erythrocytes and liver, while increasing EPA content of heart and adipose tissues of rats. Those fatty acid (FA changes confirmed the D. vlkianum-biomass FA assimilation. The principal component analyses discriminated brain from other tissues, which formed two other groups (erythrocytes, liver, and heart separated from kidney and adipose tissues, pointing to a distinct signature of FA deposition for the brain and for the other organs. The improved serum lipid profile, omega-3 index and erythrocyte plasticity support the cardiovascular benefits of D. vlkianum. These results bolster the potential of D. vlkianum-biomass to become a “heart-healthy” food supplement providing a safe and renewable source of bioavailable omega-3 FA.

  4. Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats.

    Science.gov (United States)

    Holota, Yu V; Holubenko, O O; Ostapchuk, A M; Serhiychuk, T M; Zakordonets, L V; Tolstanova, G M

    2017-01-01

    Short-chain fatty acids (SCFAs) are major products of the microbial fermentation of dietary fiber in the colon. Recent studies suggest that these products of microbial metabolism in the gut act as signaling molecules, influence host energy homeostasis and play major immunological roles. In the present study, defined the long-term effects of ceftriaxone administration on the fecal SCFAs concentration in Wistar rats. Ceftriaxone (300 mg/kg, i.m.) was administered daily for 14 days. Rats were euthanized in 1, 15 and 56 days after ceftriaxone withdrawal. Caecal weight and fecal concentration of SCFAs by gas chromatography were measured. Ceftriaxone administration induced time-dependent rats’ caecal enlargement through accumulation of undigestable substances. In 1 day after ceftriaxone withdrawal, the concentrations of acetic, propionic, butyric acids and total SCFAs were decreased 2.9-, 13.8-, 8.5-, 4.8-fold (P < 0.05), respectively. Concentration of valeric, isovaleric and caproic acids was below the detectable level. That was accompanied by decreased 4.3-fold anaerobic index and increased the relative amount of acetic acid (P < 0.05). In 56 days, concentration of SCFAs was still below control value but higher than in 1 day (except propionic acid). Anaerobic index was lower 1.3-fold (P < 0.05) vs. control. Conclusion: antibiotic therapy induced long-term disturbance in colonic microbiota metabolic activity.

  5. Changes in the Fatty Acid Composition of Brain and Liver Phospholipids from Rats Fed Fat-Free Diet

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2008-01-01

    Full Text Available This study has been undertaken with the aim of elucidating the effect of a fat-free diet (FFD, which is known to be deficient in essential fatty acids (EFA, on the composition of fatty acids in the brain and liver glycerophospholipids of rats. Changes in the stereochemical distribution of fatty acids linked to the sn-1 or sn-2 position were of special interest. Two groups of animals were fed either the control diet (CD or the FFD for two weeks. From the total lipid extracts of the brain and liver tissues, phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylinositol+phosphatidylserine (PI+PS fractions were separated by column and thin layer chromatography (TLC. After digestion with phospholipase A2 (PLA2, fatty acids from the sn-1 and sn-2 positions were separately converted into methyl esters and analyzed by gas chromatography. In animals fed FFD, the relative levels of unsaturated fatty acids increased in the sn-1 position of the PI+PS fraction in both liver and brain tissues, as well as in the PE fraction from the brain tissue. In other fractions no statistically significant differences were found. When the levels of particular fatty acids were evaluated, significant decreases in the amounts of palmitic (PA, 16:0, stearic (SA, 18:0, and nervonic (NA, 24:1n-9 acids, and/or significant increases of eicosenoic (ENA, 20:1n-9, arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-3 acids were detected in some fractions. It can be concluded that in the brain and liver glycerophospholipids of rats fed FFD, the EFAs lacking in the diet were moderately substituted by endogenously synthesized unsaturated fatty acids.

  6. Dietary Changes with Omega-3 Fatty Acids Improves the Blood Lipid Profile of Wistar Albino Rats with Hypercholesterolaemia

    Directory of Open Access Journals (Sweden)

    Shahida A Khan

    2017-03-01

    Full Text Available Background: Lipid profile is a reasonably reliable parameter for the assessment of cardiovascular risk, besides the anthropometric measurements. Serum lipid dysfunctions in the HDL and LDL components are commonly observed in cardiac patients. Omega-3 fatty acids exhibit a hypolipidemic potential which could be exploited in preventing the onset of this alarmingly increasing problem globally. Aims: To evaluate and compare the effects of different sources of omega-3 fatty acids, on the lipid profile parameters in rats induced with hyperlipidaemia. Methods and material: In our present study, we supplemented omega-3 oils from the plant source as well as the fish source to hypocholesteraemia induced Wistar albino rats for a period of three months. Wistar albino rats were fed normal chow along with 1% cholesterol for a period of three months to induce hypocholesteraemia. To this 1% flax oil and 0.1% fish oil were mixed separately and fed to two groups of rats for another period of three months to check for hypolipidemic effects if any. Results and conclusions: A significant reduction in total cholesterol, LDL, and glucose levels with increases in HDL levels in the flax oil as well as fish oil groups is observed. Also, a noticeable change though not significant was observed in the plasma triglyceride concentrations after the supplementation period. This significant hypolipemic effect by omega-3 fatty acids from both the sources, demonstrates their possible therapeutic use in patients with cardiac risk.

  7. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  8. Time-related fatty acid profiles of plasma and lymph after gastric administration of fats to rats fed high-fat diets

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Straarup, E. M.; Brand, C. L.

    2000-01-01

    artery were divided into 4 groups after a 24 h fast and fed intragastrically with a fat load. Blood samples were collected regularly and fatty acid compositions as well as insulin and glucagon concentrations were determined (experiment 1). In 2 other groups of rats the mesenteric lymph duct......We examined in rats the intestinal absorption of 4 different dietary fats (rapeseed oil (RO), rapeseed oil interesterified with decanoic acid (R/C10), olive oil (OO), and butter) after feeding a high-fat (30 wt-%) diet rich in trans-fatty acids (mainly trans-C18:1) for 3 weeks. The trans......-fatty acids were used as markers for the contribution from the endogenous stores to the circulating pool of fatty acids during the absorption, thereby enabling us to measure differences in release of endogenous fatty acids caused by differences in the administered fats. Rats with cannulated left carotid...

  9. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2013-04-01

    Full Text Available Background The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. Methods A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. Results After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p=0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. Conclusion TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells.

  10. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2015-12-01

    Full Text Available BACKGROUND The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. METHODS A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. RESULTS After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p= 0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. CONCLUSION TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells

  11. Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats.

    Science.gov (United States)

    Liu, Zhonghao; Zhou, Wenjuan; Tangl, Stefan; Liu, Shutai; Xu, Xin; Rausch-Fan, Xiaohui

    2015-10-01

    Our aim was to investigate the impact of diabetes mellitus and different durations of glycaemic control on early osseointegration of dental implants, and to explore possible mechanisms by measuring the expression of integrin α5β1 and fibronectin in bone around the implant. We divided 33 male Zucker diabetic fatty (ZDF) rats aged 3 months into 3 groups. The first group comprised diabetic rats with dental implants (controls); the second group was treated with insulin and implants were placed simultaneously (exenatide alone group); and the third group was treated with insulin until the serum glucose was at a constant concentration (implants were then inserted (exenatide+normal glucose group). Rats were killed 7, 14, 30, and 60 days after implants had been inserted. The expression of integrin α5β1 and fibronectin in bone around the implants was detected by immunohistochemical analysis in each group. The expression in the exenatide+normal glucose group was stronger than in the other 2 groups. Fourteen days after implantation, expression of integrin α5β1 in the exenatide alone group was significantly stronger than that in the control group (p=0.027), and 60 days after implantation the expression of fibronectin in the exenatide alone group was also significantly stronger than that among the controls (p=0.001). Both fibronectin and integrin α5β1 participate in the adhesion of osteoblasts and act as signals at the bone/implant interface. Diabetes interferes with the osseointegration of implants by deferring expression of fibronectin and integrin α5β1. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Identification of cysteinylated transthyretin, a predictive biomarker of treatment response to partially hydrolyzed guar gum in type 2 diabetes rats, by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Naito, Yuji; Ichikawa, Hiroshi; Akagiri, Satomi; Uchiyama, Kazuhiko; Takagi, Tomohisa; Handa, Osamu; Yasukawa, Zenta; Tokunaga, Makoto; Ishihara, Noriyuki; Okubo, Tsutomu; Mukai, Jun; Ohki, Makoto; Uchida, Kagehiro; Yoshikawa, Toshikazu

    2016-01-01

    Recent evidence has indicated that total fiber intake is inversely related to type 2 diabetes risk. The present study aimed to investigate the effects of chronic administration of partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, on the occurrence of diabetes and its complications, fatty liver and nephropathy. We also identified predictive serum biomarkers of treatment response to PHGG by mass spectroscopy-based proteomic analysis using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a good model of human non-insulin-dependent diabetes mellitus. In this study, at 5 weeks of age, OLETF rats and control strain Long-Evans Tokushima Otsuka (LETO) rats were fed a control diet or a high-fiber diet (5% PHGG) for 57 weeks. Body weight, food intake, oral glucose tolerance test, plasma insulin levels, and urine glucose and protein levels were regularly measured. Oral glucose tolerance tests (OGTT) and storage of serum in a deep freezer were conducted at the beginning of the experiment and every 4 weeks after overnight fasting during the experiments. PHGG treatment affected neither meal patterns nor the body weight of OLETF and LETO rats. Repeated measure analysis of variance revealed significant differences in fasting plasma glucose and plasma glucose at 2 h after OGTT between control OLETF (OLETF-C) rats and OLETF rats treated with PHGG (OLETF-F). The glucose response determined by the area under the curve of OGTT was significantly greater in OLETF-C rats than that in OLETF-F rats at 25 weeks of age. HOMA-IR, an index of insulin resistance, increased at 25 weeks of age in OLETF-C rats, while this increase was significantly inhibited in OLETF-F rats. At 62 weeks of age, PHGG treatment significantly improved hepatic steatosis as well as renal mesangial matrix accumulation in OLETF rats. To identify the risk marker for diabetes mellitus by SELDI-TOF MS, we collected sera from 21-week-old individuals. Among the 12 specific peaks that were risk marker

  13. Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats.

    Science.gov (United States)

    Kim, Soo-Jeong; Ju, Anes; Lim, Seul-Gi; Kim, Dai-Jin

    2013-11-13

    Alcohol has deleterious influences on glucose metabolism which may contribute to the development of type 2 diabetes mellitus (T2DM). Insulin-like growth factor I (IGF-I) and growth hormone (GH), which interact with insulin to modulate metabolic control, have been shown to be related to impaired glucose tolerance. This study was conducted to assess the possibility that altered circulating IGF-I and GH levels contribute to the exacerbation of T2DM by alcohol use in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats. OLETF rats were pair-fed a Lieber-DeCarli Regular Ethanol diet and LETO rats were pair-fed a control diet for 6 weeks. At 6 weeks, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and IGF-I and GH levels were evaluated. Prior to an IP-GTT, OLETF-Ethanol (O-E) group had significantly a decrease in the mean glucose levels compared to OLETF-Control (O-C) group. At 120 min post IP-GTT, the O-E group had significantly an increase in the mean glucose levels compared to O-C group. The serum IGF-I levels were significantly lower and the serum GH levels were significantly higher in the O-E group than in L-C group. These results suggest that IGF-I and GH are prominent in defining the risk and development of T2DM, and may be adversely affected by heavy alcohol use, possibly mediating its diabetogenic effects. Thus, the overall glucose intolerance in the setting of alcoholism may be attributable to inappropriate alteration of IGF-I and GH levels. © 2013. Published by Elsevier Inc. All rights reserved.

  14. Simple and rapid determination of unsaturated fatty acids in 1 µl of rat plasma by LC-MS/MS.

    Science.gov (United States)

    Zheng, Shirui; Ma, Zhiyuan; Song, Feifeng; Ye, Jianfeng; Wang, Ruwei; Tu, Meijuan; Li, Liping; Zhou, Hui; Zeng, Su; Jiang, Huidi

    2015-01-01

    Deficiency or imbalance of unsaturated fatty acids will promote the pathogenesis of many diseases. In order to monitor the exposure of unsaturated fatty acids, the method based on LC-MS/MS was developed. Standard calibration curves for α-linolenic acid, linoleic acid, palmitoleic acid and oleic acid were linear (r ≥0.99). The intra-and interbatch accuracy (RE%) ranged from -4.5 to 8.6%, while the intra- and interbatch precisions (RSD%) were ≤8.7%. The extraction recovery varied from 85.4 to 99.6%, and no obvious matrix effect was observed. The method offers a simple approach for measuring 4 unsaturated fatty acids in 1 μl rat plasma within 3.95 min.

  15. Fatty acid composition in fractions of structural and storage lipids in liver and skeletal muscle of hereditary hypertriglyceridemic rats.

    Science.gov (United States)

    Bohov, P; Seböková, E; Gasperíková, D; Langer, P; Klimes, I

    1997-09-20

    The fatty acid (FA) compositions of liver and skeletal muscle structural lipids, overall phospholipids and phosphatidylcholine, and triglycerides (TG) were determined in the hereditary hypertriglyceridemic (HTG) rat, a nonobese animal model of the insulin resistance syndrome. Four groups of HTG rats and four groups of control animals were fed equal-energy diets for two weeks: basal (B), high-sucrose (HS), or fish oil-supplemented basal (BFO) or high-sucrose (HSFO) diets. In the liver of HTG rats, a decrease of n-6 long-chain polyunsaturated FA (PUFA), especially in 20:4n-6, in comparison with controls was found. Moreover, a concomitant accumulation of 18:2n-6 in structural lipids was observed. These differences were more pronounced in liver than in skeletal muscle. HS feeding raised the proportion of 18:1n-9 and decreased 18:2n-6 in lipid fractions. In both tissues and in both strains, the amounts of long-chain n-3 PUFA, as well as the level of total C20-22 PUFA, went up after fish oil feeding. However, the effects were somewhat less pronounced in the HTG rats. The increase in n-3 PUFA occurred mainly at the expense of reduced levels of 18:2n-6 in structural lipids and of 18:1n-9 in triglycerides. These changes were associated, in companion studies reported in this volume, with improved insulin action in HTG rats. In conclusion, the FA composition in lipid subclasses of HTG rats differs significantly from the controls mainly in liver structural lipids, suggesting the impairment of PUFA desaturation. Dietary change effected a similar modulation of FA profile across both strains, with fish oil increasing the levels of long-chain PUFA toward control values in the NTG rats. The HTG rat thus provides an interesting animal model for the study of impaired fatty acid metabolism.

  16. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats.

    Science.gov (United States)

    Li, Yong; Seifert, Mark F; Lim, Sun-Young; Salem, Norman; Watkins, Bruce A

    2010-09-01

    The present study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace DHA for normal long bone growth as assessed by dual-energy X-ray absorptiometry for mineral content (BMC). A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Except the dam-reared (DR; 3.1 % alpha-linolenic acid) group, newborn pups were separated from their mothers at age 2 d and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1 % DHA (22 : 6n-3; DHA), 1 % DPAn-6 (DPA), or 1 % DHA plus 0.4 % DPAn-6 (DHA/DPA). The rats were later weaned onto similar pelleted diets. At adulthood, the rats were euthanised and bones (femur, tibia, and lumbar vertebrae) collected for tissue fatty acid analysis and bone mineral density (BMD) determination. The analyses showed that long bones such as femur and tibia in DPAn-6-treated rats contained higher DPAn-6 content and generally had the lowest BMC and BMD values. Hence, DPAn-6 did not replace DHA for normal bone growth and maximal BMC in femur, indicating an indispensible role of DHA in bone health. In conclusion, DHA accumulates in the osteoblast-rich and nerve-abundant periosteum of femur; DHA but not EPA appears to be a vital constituent of marrow and periosteum of healthy modelling bone; and both DHA and total n-3 PUFA strongly correlate to BMC.

  17. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    International Nuclear Information System (INIS)

    Chang, Soo-Ik; Hammes, G.G.

    1989-01-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the β-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution

  18. Resistant starch but not enzymatic treated waxy maize delays development of diabetes in Zucker Diabetic Fatty rats

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven

    2017-01-01

    of diabetes in male Zucker diabetic fatty (ZDF) rats. Methods: Forty-eight male ZDF rats, aged 5 wk, were divided into 4 groups and fed experimental diets for 9 wk that contained 52.95% starch: gelatinized corn starch (S), glucidex (GLU), resistant starch (RS), or enzymatically modified starch (EMS). Blood......Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset...

  19. Reproductive stage associated changes in plasma fatty acid profile and proinflammatory cytokine expression in rat mammary glands

    Directory of Open Access Journals (Sweden)

    Sen Lin

    2016-06-01

    Full Text Available Mastitis is a common disease for mammals all around the world. Figuring out why mastitis mainly occurs around parturition may be helpful for dealing with the disease. Lipolytic activity and oxidative stress take place around parturition, which may leads to alteration in fatty acids profile and proinflammatory cytokine expression. Thus, the aim of the present study was to further our understanding about the high incidence of mastitis around parturition by comparison of plasma fatty acid profile and mammary inflammation indicators at different reproductive stages. A total of 47 female rats were included in the present study. After mating, all the pregnant and non-pregnant rats began to receive the same experimental diet. Blood samples were collected at day 1 and 14 of gestation as well as day 3 postpartum. Mammary samples were collected at day 14 of gestation and day 3 postpartum from pregnant and non-pregnant rats. The results showed that rats at d 3 postpartum had greater (P < 0.05 plasma concentrations of non-esterified fatty acids (NEFA, arachidonic acid (ARA and docosahexaenoic acid (DHA as well as ARA: eicosapentaenoic acid (EPA ratio than those at d 14 of gestation. The mRNA abundances of interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, IL-8 and xanthine oxidoreductase (XOR in mammary of the pregnant rats were greater (P < 0.05 than those in age-matched non-pregnant rats. Rats at d 3 postpartum had higher (P < 0.05 protein expression levels of IL-1β and TNF-α as well as meloperoxidase (MPO activity and polymorphonuclear neutrophils (PMN prevalence than those at d 1 of gestation. The rats at d 3 postpartum also had greater (P < 0.05 IL-1β and MPO activity than those at d 14 of gestation. The results indicated that elevated mammary expression of proinflammatory cytokines and XOR as well as altered fatty acid profile around parturition might facilitate the recruitment of neutrophils into mammary glands.

  20. Evidence for a high fatty acid synthesis activity in interscapular brown adipose tissue of genetically obese Zucker rats.

    OpenAIRE

    Lavau, M; Bazin, R; Karaoghlanian, Z; Guichard, C

    1982-01-01

    Obese (fa/fa) rats (30 days old) exhibited a 50% increase in the weight of interscapular brown adipose tissue compared with their lean (Fa/fa) littermates. The tissue weight increase was accounted for by an increased fat content. Lipogenesis in vivo, as assessed by the incorporation of 3H from 3H2O into lipid, was increased 5-fold in brown adipose tissue of obese as compared with lean rats. Accordingly, acetyl-CoA carboxylase, fatty acid synthetase, citrate-cleavage enzyme and malic enzyme in...

  1. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats.

    Science.gov (United States)

    Qiu, Xiang; Gao, Dan-Hong; Xiang, Xiao; Xiong, Yu-Fang; Zhu, Teng-Shi; Liu, Lie-Gang; Sun, Xiu-Fa; Hao, Li-Ping

    2015-07-14

    To investigate the therapeutic effects of lutein against non-alcoholic fatty liver disease (NAFLD) and the related underlying mechanism. After 9 d of acclimation to a constant temperature-controlled room (20 °C-22 °C) under 12 h light/dark cycles, male Sprague-Darley rats were randomly divided into two groups and fed a standard commercial diet (n = 8) or a high-fat diet (HFD) (n = 32) for 10 d. Animals receiving HFD were then randomly divided into 4 groups and administered with 0, 12.5, 25, or 50 mg/kg (body weight) per day of lutein for the next 45 d. At the end of the experiment, the perinephric and abdominal adipose tissues of the rats were isolated and weighed. Additionally, serum and liver lipid metabolic condition parameters were measured, and liver function and insulin resistance state indexes were assessed. Liver samples were collected and stained with hematoxylin eosin and Oil Red O, and the expression of the key factors related to insulin signaling and lipid metabolism in the liver were detected using Western blot and real-time polymerase chain reaction analyses. Our data showed that after being fed a high-fat diet for 10 d, the rats showed a significant gain in body weight, energy efficiency, and serum total cholesterol (TC) and triglyceride (TG) levels. Lutein supplementation induced fat loss in rats fed a high-fat diet, without influencing body weight or energy efficiency, and decreased serum TC and hepatic TC and TG levels. Moreover, lutein supplementation decreased hepatic levels of lipid accumulation and glutamic pyruvic transaminase content, and also improved insulin sensitivity. Lutein administration also increased the expression of key factors in hepatic insulin signaling, such as insulin receptor substrate-2, phosphatidylinositol 3-kinase, and glucose transporter-2 at the gene and protein levels. Furthermore, high-dose lutein increased the expression of peroxisome proliferators activated receptor-α and sirtuin 1, which are associated with

  2. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats

    OpenAIRE

    Cerf, Marlon E.; Louw, Johan; Herrera, Emilio

    2015-01-01

    Pregnant rats were fed a high fat diet (HFD) for the first (HF1), second (HF2), third (HF3) or all three weeks (HFG) of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA) profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Mo...

  3. Fat-specific transgenic expression of resistin in the spontaneously hypertensive rat impairs fatty acid re-esterification

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kazdová, L.; Cahová, M.; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Wang, J.; Qi, N.; Kurtz, T. W.

    2006-01-01

    Roč. 30, č. 7 (2006), s. 1157-1159 ISSN 0307-0565 R&D Projects: GA ČR(CZ) GA301/03/0751; GA MZd(CZ) NB7403; GA MŠk(CZ) 1M0520 Grant - others:HHMI(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : spontaneously hypertensive rat * transgenic resistin * fatty acid reesterification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.055, year: 2006

  4. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved

  5. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L leaves in high fatty diet rats

    Directory of Open Access Journals (Sweden)

    Sachin V. Tembhurne

    2012-05-01

    Full Text Available Objective: To evaluate the hypoglycemic and anti-obesity activities of of Murraya koenigii leaves. Method: The study was performed in high fatty diet induced obesity rats. After 15 days baseline period the treatments animals were received ethanolic extract of Murraya koenigii leaves (300 and 500 mg/kg in high fatty diet rats. All the treatments were given for one month. On 30th day all the fasted animals received an intraperitoneal injection of glucose (1 g/kg for glucose tolerance test. At the end of study body weight, total cholesterol, triglycerides, and blood glucose level were measured. Results: The results demonstrate clearly that repeated oral administration of Murraya koenigii leaves evoked a potent anti-hyperglycaemic activity in high fat diet obese rats. Postprandial hyperglycaemic peaks were significantly lower in plant-treated experimental groups. In other hand, high fatty diet group increased the both total cholesterol and triglycerides levels as compared to control group. While administration of Murraya koenigii leaves significantly decreased in both cholesterol as well as triglycerides. Conclusions: We can conclude that Murraya koenigii leaves evokes potent anti-hyperglycaemic and anti-obesity effects. This fact could support their use by the diabetes patient for controlling body weight as well as maintains the glycemic level.

  6. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    Science.gov (United States)

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  7. Effect of rosella extract on development of fatty streaks lesions in female rats

    Directory of Open Access Journals (Sweden)

    E. R. Al-Kennany

    2010-01-01

    Full Text Available This research was conducted to explore the effect of rosella (Hibiscus sabdariffa on female rats on oxidative stress which induced by 0.5% H2O2. Oxidative stress has been investigated via tissue (aorta and heart malonadyaldehyde (MDA as indirect lipid peroxidation index. For atherosclerotic lesions follow up light microscopical technique has been applied. The result elucidate significant reduction in lipid profit parameters namely: low density lipoprotein (LDL-c, triglycerides, very low density lipoprotein (vLDL-c, atherogenic index and significant elevation in high density lipoprotein (HDL-c in few animals treated with H2O2 and rosella extract, parallely, this research illustrate reduction in aorta and heart MDA concentration, concomitant with significant rising in glutathione (GSH level. Histopathologically, this study revealed fatty streaks associated with infiltration of mononuclear inflammatory cells have been detected after 60 days, in animal treated with rosella revealed reduction in lipid vacuoles and proliferation in vascular smooth muscle cells (VSMcs in media toward intimal layers after 40 days from treatment.

  8. Serial assessment of myocardial thallium perfusion and fatty acid utilization in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sago, Masayoshi; Nishimura, Tsunehiko

    1989-01-01

    To evaluate the advantage of free fatty acid imaging on the detection of hypertrophied myocardium, we compared sequentially myocardial thallium and BMIPP (15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid) distribution in spontaneously hypertensive rat (SHR) using dual tracer autoradiography and in vivo pin-hole imaging. Autoradiography and pin-hole imaging showed uniform myocardial distribution of BMIPP and thallium within less than 27 weeks age SHR. In 40 weeks age SHR, thallium myocardial distribution showed uniform, however, BMIPP had focal decrease. Quantitative analysis of pin-hole images showed that myocardial BMIPP and thallium uptake ratio decreased according to the ages of SHR. Our data suggest that hypertension is associated with uniform myocardial perfusion and focal alternation in the substrate used for the performance of myocardial work. Based on the above autoradiographic and in vivo pin-hole imagings, I-123 BMIPP imaging may have a potential for early detection on hypertrophic myocardium compared to thallium perfusion in clinically hypertensive patients. (author)

  9. Saturated and Unsaturated Fatty Acids Differently Modulate Colonic Goblet Cells In Vitro and in Rat Pups.

    Science.gov (United States)

    Benoit, Bérengère; Bruno, Jérémie; Kayal, Fanny; Estienne, Monique; Debard, Cyrille; Ducroc, Robert; Plaisancié, Pascale

    2015-08-01

    High-fat diets induce intestinal barrier alterations and promote intestinal diseases. Little is known about the effects of long-chain fatty acids (LCFAs) on mucin 2 (MUC2) production by goblet cells, which are crucial for intestinal protection. We investigated the effects of LCFAs on the differentiation of colonic goblet cells, MUC2 expression, and colonic barrier function. Upon reaching confluence, human colonic mucus-secreting HT29-MTX cells were stimulated (21 d) with a saturated LCFA (palmitic or stearic acid), a monounsaturated LCFA (oleic acid), or a polyunsaturated LCFA (linoleic, γ-linolenic, α-linolenic, or eicosapentaenoic acid). In addition, rat pups underwent oral administration of oil (palm, rapeseed, or sunflower oil) or water (10 μL/g body weight, postnatal days 10-15). Subsequently, colon goblet cells were studied by Western blotting, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry and colonic transmucosal electrical resistance was measured by using Ussing chambers. In vitro, palmitic acid enhanced MUC2 production (140% of control) and hepatocyte nuclear factor 4α expression, whereas oleic, linoleic, γ-linolenic, α-linolenic, and eicosapentaenoic acids reduced MUC2 expression (at least -50% of control). All unsaturated LCFAs decreased the expression of human atonal homolog 1, a transcription factor controlling goblet cell differentiation (at least -31% vs. control). In vivo, rats fed palm oil had higher palmitic acid concentrations (3-fold) in their colonic contents and increased mucus granule surfaces in their goblet cells (>2-fold) than did all other groups. Palm oil also increased colonic transmucosal electrical resistance (245% of control), yet had no effect on occludin and zonula occludens-1 expression. In contrast, sunflower and rapeseed oils decreased goblet cell number when compared with control (at least -10%) and palm oil (at least -14%) groups. Palm oil in rat pups and palmitic acid in HT29-MTX

  10. Essential fatty acid supplemented diet increases renal excretion of prostaglandin E and water in essential fatty acid deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1981-01-01

    housed in metabolic cages once a week for a 24-hr period. Urinary excretion of prostaglandin E (PGE) was estimated by radioimmunoassay. Throughout a period of 12 weeks (weeks 13-24) water consumption increased ca. 60%, and urine output and PGE excretion decreased ca. 45% and 70%, respectively, in the EFA......-deficient rats. Feeding EFA-supplemented diet to the EFA-deficient rats for 3 weeks decreased the water consumption and raised the urine output to that observed in the controls. However, the urine output was corrected within 1 day whereas the water consumption was not corrected until the second measurement 8...

  11. Effect of Omega-3 Fatty Acids on Neurotransmitters Level in the Brain of Male Albino Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Saada, H.N.; Said, U.Z.; Shedid, S.M.; Mahdy, E.M.E.; Elmezayen, H.E.

    2014-01-01

    The omega-3 fatty acids are essential dietary nutrients, and one of their important roles is providing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for growth and function of nervous tissue. Reduced level of DHA in the brain induce dramatic changes in brain function including changes in size of neurons as well as changes in learning and memory. The objective of this study was to evaluate the role of fish oil rich in omega-3 fatty acids on γ-radiation-induced physiological changes in the brain cerebral hemispheres. Omega-3 fatty acids was supplemented daily by gavages to rats at a dose of 400 mg/ kg body wt for 7 days pre- and 21 days post-exposure to whole body fractionated gamma rays at doses of 2 Gy/week up to a total dose of 8 Gy. The results demonstrated that whole body γ-irradiation induced oxidative stress, de - creased the main polyunsaturated fatty acids; DHA and EPA, and induced neurotransmitters alteration in brain tissues. Oxidative stress was manifested by a significant increase in lipid peroxidation product malondialdehyde (MDA) and decrease in the activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Oxidative stress was accompanied by alterations in the level of the neurotransmitters manifested by a significant increase of glutamic and aspartic and a significant decrease of serotonin (5-HT) levels in brain cerebral hemispheres. Rats receiving fish oil 7 days before and 21 days after exposure to γ-radiation showed significant improvement in the levels of EPA and DHA associated with significant amelioration of oxidative stress and neurotransmitters alteration. It is concluded that fish oil protect the brain from radiation-induced physiological changes by protecting brain cellular membranes through counteracting the decrease of omega-3 fatty acids and minimizing oxidative stress

  12. Requirements of glycerol and fatty acid for triglyceride synthesis and ketogenesis by hepatocytes from normal and triiodothyronine-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Olubadewo, J.O.; Heimberg, M.

    1985-11-15

    Hepatocytes from T3-treated rats synthesized less triglyceride and more ketone bodies from (1-/sup 14/C)oleate at all concentrations from 0-2 mM, than did hepatocytes from euthyroid animals; addition of 1.0 mM glycerol increased triglyceride synthesis and reduced ketogenesis in hepatocytes from T3-treated rats to the rates observed in euthyroid hepatocytes in the absence of added glycerol. Glycerol did not alter triglyceride synthesis, but reduced ketogenesis genesis by euthyroid hepatocytes. It is probable from these and other data that, in the hyperthyroid rat, glycero-3-P, and not fatty acid, is rate limiting for synthesis of triglyceride, and, secondarily for reducing rates of ketogenesis in the hepatocyte.

  13. Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging

    Directory of Open Access Journals (Sweden)

    Jérémy Lagrange

    2017-11-01

    Full Text Available Background: The metabolic syndrome (MetS and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis.Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs and its interplay with adipokines, free fatty acids (FFA, and metalloproteinases (MMPs in obese Zucker rats that share features of the human MetS.Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT.Results: Endogenous thrombin potential (ETP was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL-1β and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats.Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1 increased fibrinogen and impaired fibrinolysis and (2 increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

  14. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  15. Evaluation of the Zucker diabetic fatty (ZDF rat as a model for human disease based on urinary peptidomic profiles.

    Directory of Open Access Journals (Sweden)

    Justyna Siwy

    Full Text Available Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD and cardiovascular disease (CVD biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin or related to disease development (collagen. Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level.

  16. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa.

    Directory of Open Access Journals (Sweden)

    Abdelali Agouni

    Full Text Available BACKGROUND: Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF rats. METHODOLOGY/PRINCIPAL FINDINGS: ZF rats or their lean littermates received normal diet or supplemented with Provinols for 8 weeks. Provinols improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach. Provinols enhanced NO bioavailability resulting from increased nitric oxide (NO production through enhanced endothelial NO-synthase (eNOS activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response. CONCLUSIONS/SIGNIFICANCE: Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.

  17. Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats.

    Science.gov (United States)

    Ounnas, Fayçal; Privé, Florence; Salen, Patricia; Gaci, Nadia; Tottey, William; Calani, Luca; Bresciani, Letizia; López-Gutiérrez, Noelia; Hazane-Puch, Florence; Laporte, François; Brugère, Jean-François; Del Rio, Daniele; Demeilliers, Christine; de Lorgeril, Michel

    2016-01-01

    Whole rye (WR) consumption seems to be associated with beneficial health effects. Although rye fiber and polyphenols are thought to be bioactive, the mechanisms behind the health effects of WR have yet to be fully identified. This study in rats was designed to investigate whether WR can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). The WR diet provided more fiber (+21%) and polyphenols (+29%) than the RR diet. Fat intake was the same in both diets and particularly involved similar amounts of essential (18-carbon) n-3 and n-6 LCFAs. The WR diet significantly increased the 24-hour urinary excretion of polyphenol metabolites-including enterolactone-compared with the RR diet. The WR rats had significantly more n-3 LCFA-in particular, eicosapentanoic (EPA) and docosahexanoic (DHA) acids-in their plasma and liver. Compared with the RR diet, the WR diet brought significant changes in gut microbiota composition, with increased diversity in the feces (Shannon and Simpson indices), decreased Firmicutes/Bacteroidetes ratio and decreased proportions of uncultured Clostridiales cluster IA and Clostridium cluster IV in the feces. In contrast, no difference was found between groups with regards to cecum microbiota. The WR rats had lower concentrations of total short-chain fatty acids (SCFA) in cecum and feces (pconsumption results in major biological modifications-increased plasma and liver n-3 EPA and DHA levels and improved gut microbiota profile, notably with increased diversity-known to provide health benefits. Unexpectedly, WR decreased SCFA levels in both cecum and feces. More studies are needed to understand the interactions between whole rye (fiber and polyphenols) and gut microbiota and also the mechanisms of action responsible for stimulating n-3 fatty acid metabolism.

  18. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-α

    International Nuclear Information System (INIS)

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-α, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-α mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-α luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-α antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-α activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity

  19. Impaired ketogenesis is a major mechanism for disturbed hepatic fatty acid metabolism in rats with long-term cholestasis and after relief of biliary obstruction.

    Science.gov (United States)

    Lang, Corinne; Berardi, Simona; Schäfer, Markus; Serra, Dolors; Hegardt, Fausto G; Krähenbühl, Lukas; Krähenbühl, Stephan

    2002-11-01

    Rats with long-term cholestasis have reduced ketosis of unknown origin. Fatty acid metabolism was studied in starved rats with biliary obstruction for 4 weeks (bile duct ligated rats = BDL rats), and 3, 7, 14, 28 and 84 days after reversal of biliary obstruction by Roux-en-Y anastomosis (RY rats), and in sham-operated control rats. BDL rats had reduced beta-hydroxybutyrate concentrations in plasma (0.25 +/- 0.10 vs. 0.75 +/- 0.20 mmol/l) and liver (2.57 +/- 0.20 vs. 4.63 +/- 0.61 micromol/g) which increased after restoring bile flow. Hepatic expression and activity of carnitine palmitoyltransferase I (CPT I) or CPT II were unaffected or decreased in BDL rats, respectively, and increased after restoring bile flow. Oxidative metabolism of different substrates by isolated liver mitochondria and activation of palmitate were reduced in BDL rats and recovered 7-14 days after restoring bile flow. Ketogenesis was decreased in mitochondria from BDL rats and recovered 3 months after restoring bile flow. Both mRNA and protein expression of hydroxymethylglutaryl-coenzyme A synthase (HMG-CoA synthase), the rate-limiting enzyme of ketogenesis, was reduced in livers of BDL rats and increased after reversing biliary obstruction. In BDL rats, impairment of hepatic fatty acid metabolism is multifactorial. After reversing biliary obstruction, reduced activity of HMG-CoA synthase is the major factor. Copyright 2002 European Association for the Study of the Liver

  20. Omega3 Fatty Acids Intake Versus Diclofenac in Osteoarthritis Induced in Experimental rats

    Directory of Open Access Journals (Sweden)

    Mohammed M. El-Seweidy

    2017-04-01

    Full Text Available Background:Osteoarthritis(OAis a degenerative joint disease, characterized by abnormal remodeling pattern of joints driven by inflammatory mediators within the affected joints. Its symptoms are many like pain, stiffness,and decreased function. Objective:The present study mainly focused on the anti-inflammatory effect of omega 3 fatty acids (F.As versus diclofenac, non-steroidal anti-inflammatory drug in OA induced in rats Design: Intraarticular injection of monosodiumiodoacetate(MIA 24.6 mg/kg in 0.6 ml saline was used to induce OA. Diclofenac and omega-3 F. These were administered orally, daily for 21 days and after 24 hours of OA induction.Results:Osteoarthritis induction resulted in an increase in serum levels of IL-6(479.5%,TNF-α(545.5%, and CRP(754.2% along with IL-10 level decrease(70.3% as compared to normal group. Diclofenac intake demonstrated significant increase of IL-6 (24.9%,CRP (88.6%,and TNF-α(25.2% compared to the OA control group. Omega 3 FAs intake showed significant reduction in inflammatory markers along with IL-10 increase, in comparison toOA group.Both treatment demonstrated a significant increase in TIMP2 along with decreased MMP2 and MPO in comparison with OA control.Positive correlation of IL-6 with MPO(r = 0.7,P=0.002, and negative one with IL-10(r = 0.9,p<0.0001 and TIMP2 (r = -0.5,p<0.008 was observed.Interleukin-10 was negatively correlated with MMP2(r = -0.5, p<0.007 and MPO (r=-0.8,p<0.0001.Conclusion:Data derived from biochemical and histopathological results, indicated that omega3 FAs may be expressed as a natural anti-inflammatory agent of a significant potential in OA with evident remarkable effect.

  1. Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats

    Science.gov (United States)

    Swithers, Susan E.; McCurley, Melissa; Hamilton, Erica; Doerflinger, Alicia

    2008-01-01

    Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake in was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25 – 28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-β-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization. PMID:18586247

  2. Trans fatty acids: chemical synthesis of eicosapentaenoic acid isomers and detection in rats fed a deodorized fish oil diet.

    Science.gov (United States)

    Ferreri, Carla; Grabovskiy, Stanislav A; Aoun, Manar; Melchiorre, Michele; Kabal'nova, Natalia; Feillet-Coudray, Christine; Fouret, Gilles; Coudray, Charles; Chatgilialoglu, Chryssostomos

    2012-03-19

    Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid present in fish oils used for omega-3 enriched diets. The natural cis double bond geometry can be transformed to the trans configuration during the deodorization process utilized in the food industry. The analytical discrimination of the possible five monotrans regioisomers represents a limiting step for the recognition and structure-activity relationship in connection with the harmful effects of trans fatty acids in health. We carried out a dual synthetic strategy, providing new access to monotrans EPA isomers and valuable information on GC and NMR characteristics for further applications in metabolomics and lipidomics. This small library was used as an analytical reference for isomer determination in deodorized fish oils and the follow-up of rats fed fish oil diets, evidencing for the first time that monotrans EPA isomers are incorporated in liver mitochondrial membranes after dietary intake. © 2012 American Chemical Society

  3. The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon

    DEFF Research Database (Denmark)

    Christiansen, Charlotte Bayer; Gabe, Maria Buur Nordskov; Svendsen, Berit

    2018-01-01

    chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L-cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects...... of the predominant SCFAs formed: acetate, propionate and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP......, the KATP-channel opener diazoxide and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate and butyrate, compared to CFMB which is a full agonist with around 750-fold higher potency than...

  4. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    Science.gov (United States)

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  5. Kinetics of different 123-I and 14-C fatty acids in normal and diabetic rat myocardium in vivo

    International Nuclear Information System (INIS)

    Beckurts, T.E.; Shreeve, W.W.; Machulla, H.-J.; Feinendegen, L.E.

    1984-01-01

    For measuring myocardial metabolism by single photon scintigraphy various iodinated substrate analogues have been proposed. The present study compares in normal and diabetic rats the metabolic pathways of 14-C-palmitic acid (PA), 123-I-para-phenylpentadecanoic acid (I-pPPDA), 123-I-ortho-phenylpentadecanoic acid (I-oPPDA), 14-C-stearic acid (SA) and 123-I-w-heptadecanoic acid (I-ωHDA). In normal and diabetic rats free fatty acids showed a rapid tracer accumulation and an initial rapid, then a slow rate component of release. PA and I-pPPDA were preferentially esterified into triglycerides, whereas SA and I-ωHDA equally distributed between triglycerides and phospholipids. I-oPPDA nearly exclusively labelled the free fatty acid pool. - Turnover of SA and I-ωHDA was similar in triglycerides and phospholipids; yet PA and I-pPPDA continued to increase in triglycerides for 3-5 minutes after injection but decreased in phospholipids. - Following induction of diabetes by Streptocotocin, the primary effect was an inhibition of incorporation of all substrates tested into triglycerides and phospholipids with an initial rapid turnover in the total lipid fraction. - Of the total myocardial activities a considerable fraction was water soluble and another bound to solid tissue residue, with an early maximum and subsequent decline; the values for 14-C-labelled substrates remained below those of radioiodine. Thus different labelled fatty acids behave metabolically differently and promise to be useful for differentiating various intracellular metabolic pathways. External analysis of myocardial fatty acids metabolism requires correction for labelled catabolites. (Author)

  6. Long-term ω-3 fatty acid supplementation induces anti-stress effects and improves learning in rats.

    Science.gov (United States)

    Pérez, Miguel Á; Terreros, Gonzalo; Dagnino-Subiabre, Alexies

    2013-06-14

    Chronic stress leads to secretion of the adrenal steroid hormone corticosterone, inducing hippocampal atrophy and dendritic hypertrophy in the rat amygdala. Both alterations have been correlated with memory impairment and increased anxiety. Supplementation with ω-3 fatty acids improves memory and learning in rats. The aim of this study was to evaluate the effects of ω-3 supplementation on learning and major biological and behavioral stress markers. Male Sprague-Dawley rats were randomly assigned to three experimental groups: 1) Control, 2) Vehicle, animals supplemented with water, and 3) ω-3, rats supplemented with ω-3 (100 mg of DHA+25 mg of EPA). Each experimental group was divided into two subgroups: one of which was not subjected to stress while the other was subjected to a restraint stress paradigm. Afterwards, learning was analyzed by avoidance conditioning. As well, plasma corticosterone levels and anxiety were evaluated as stress markers, respectively by ELISA and the plus-maze test. Restraint stress impaired learning and increased both corticosterone levels and the number of entries into the open-arm (elevated plus-maze). These alterations were prevented by ω-3 supplementation. Thus, our results demonstrate that ω-3 supplementation had two beneficial effects on the stressed rats, a strong anti-stress effect and improved learning.

  7. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  8. Effects of Okinawan sugar cane wax and fatty alcohol on serum and liver lipids in the rat.

    Science.gov (United States)

    Sho, H; Chinen, I; Fukuda, N

    1984-12-01

    Partially purified Okinawan sugar cane wax and fatty alcohol were fed to Wistar strain rats to examine the effects on serum and liver cholesterol (Chol), triglyceride (TG) and phospholipid (PL). The fecal excretion of neutral sterols in the rats was also determined. There were no significant differences found in the body weight gain, food intake and liver weight among the animals of experimental diet groups. An addition of 0.5% sugar cane wax to the diet significantly lowered the concentrations of serum and liver Chol in the rats. There were no significant differences observed in PL and TG levels either in serum or liver among the experimental groups. These results indicate that cane wax, one of the elements contained in sugar cane rind as well as in black sugar, may have a cholesterol-lowering effect on the serum and liver of the rats. The amount of feces excreted by the three experimental diet groups of rats were exactly the same and also no significant differences were found in the excretion of Chol.

  9. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats.

    Science.gov (United States)

    DeMar, James C; Ma, Kiazong; Bell, Jane M; Igarashi, Miki; Greenstein, Deanna; Rapoport, Stanley I

    2006-01-01

    Male rat pups at weaning (21 days of age) were subjected to a diet deficient or adequate in n-3 polyunsaturated fatty acids (n-3 PUFAs) for 15 weeks. Performance on tests of locomotor activity, depression, and aggression was measured in that order during the ensuing 3 weeks, after which brain lipid composition was determined. In the n-3 PUFA-deprived rats, compared with n-3 PUFA-adequate rats, docosahexaenoic acid (22:6n-3) in brain phospholipid was reduced by 36% and docosapentaenoic acid (22:5n-6) was elevated by 90%, whereas brain phospholipid concentrations were unchanged. N-3 PUFA-deprived rats had a significantly increased (P = 0.03) score on the Porsolt forced-swim test for depression, and increased blocking time (P = 0.03) and blocking number (P = 0.04) scores (uncorrected for multiple comparisons) on the isolation-induced resident-intruder test for aggression. Large effect sizes (d > 0.8) were found on the depression score and on the blocking time score of the aggression test. Scores on the open-field test for locomotor activity did not differ significantly between groups, and had only small to medium effect sizes. This single-generational n-3 PUFA-deprived rat model, which demonstrated significant changes in brain lipid composition and in test scores for depression and aggression, may be useful for elucidating the contribution of disturbed brain PUFA metabolism to human depression, aggression, and bipolar disorder.

  10. Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats.

    Directory of Open Access Journals (Sweden)

    Fayçal Ounnas

    Full Text Available Whole rye (WR consumption seems to be associated with beneficial health effects. Although rye fiber and polyphenols are thought to be bioactive, the mechanisms behind the health effects of WR have yet to be fully identified. This study in rats was designed to investigate whether WR can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA and gut microbiota composition.For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR. The WR diet provided more fiber (+21% and polyphenols (+29% than the RR diet. Fat intake was the same in both diets and particularly involved similar amounts of essential (18-carbon n-3 and n-6 LCFAs.The WR diet significantly increased the 24-hour urinary excretion of polyphenol metabolites-including enterolactone-compared with the RR diet. The WR rats had significantly more n-3 LCFA-in particular, eicosapentanoic (EPA and docosahexanoic (DHA acids-in their plasma and liver. Compared with the RR diet, the WR diet brought significant changes in gut microbiota composition, with increased diversity in the feces (Shannon and Simpson indices, decreased Firmicutes/Bacteroidetes ratio and decreased proportions of uncultured Clostridiales cluster IA and Clostridium cluster IV in the feces. In contrast, no difference was found between groups with regards to cecum microbiota. The WR rats had lower concentrations of total short-chain fatty acids (SCFA in cecum and feces (p<0.05. Finally, acetate was lower (p<0.001 in the cecum of WR rats while butyrate was lower (p<0.05 in the feces of WR rats.This study shows for the first time that WR consumption results in major biological modifications-increased plasma and liver n-3 EPA and DHA levels and improved gut microbiota profile, notably with increased diversity-known to provide health benefits. Unexpectedly, WR decreased SCFA levels in both cecum and feces. More studies are needed to understand the interactions between whole rye (fiber and

  11. Fatty Acid Oxidation and Calcium Homeostasis are Involved in the Rescue of Bupivacaine Induced Cardiotoxicity by Lipid Emulsion in Rats

    Science.gov (United States)

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-01-01

    OBJECTIVES Lipid Emulsion (LE) has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty acid oxidation is required for rescue of bupivacaine induced cardiotoxicity by LE in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore (mPTP) opening in bupivacaine-induced cardiac arrest before and after resuscitation with LE. DESIGN Prospective, randomized, animal study. SETTING University Research Laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS Asystole was achieved with a single dose of bupivacaine (10mg/kg over 20seconds, i.v.) and 20% LE infusion (5ml/kg bolus, and 0.5ml/kg/min maintenance) with cardiac massage started immediately. The rats in CVT group were pretreated with a single dose of fatty acid oxidation inhibitor CVT (0.5, 0.25, 0.125 or 0.0625mg/kg bolus i.v.) 5min prior to inducing asystole by bupivacaine overdose. Heart rate (HR), ejection fraction (EF), fractional shortening (FS), the threshold for opening of mPTP, oxygen consumption and membrane potential were measured. The values are Mean±SEM. MEASUREMENTS AND MAIN RESULTS Administration of bupivacaine resulted in asystole. ILP infusion improved the cardiac function gradually as the EF was fully recovered within 5min (EF=64±4% and FS=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10min. LE was only able to rescue rats pretreated with low dose of CVT (0.0625mg/kg) (HR=~181±11 beats/min at 10 min, recovery of 56%; EF=50±1%; FS=26±0.6% at 5min, n=3) but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25 or 0.125mg/kg). The calcium retention capacity in response to Ca2+ overload was significantly higher in cardiac mitochondria isolated from rats resuscitated with 20% LE compared to the group that did not receive ILP after bupivacaine

  12. Antagonism Between Saturated and Unsaturated Fatty Acids in ROS Mediated Lipotoxicity in Rat Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Wiebke Gehrmann

    2015-05-01

    Full Text Available Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.

  13. Maternal testosterone and reproductive outcome in a rat model of obesity.

    Science.gov (United States)

    Arnon, Liat; Hazut, Noa; Tabachnik, Tzlil; Weller, Aron; Koren, Lee

    2016-09-01

    Global sex differences in obesity rates are persistent, suggesting the involvement of sex steroids. In addition, adipose tissue is a metabolic site for steroidogenesis. Here, we compared female reproductive parameters in a rat model of obesity, with the same parameters in its lean control strain, and tested for an association with integrated measures of corticosterone and testosterone. Steroids were extracted and quantified from 17 Otsuka Long Evans Tokushima Fatty (OLETF; an animal model for obesity) and 13 Long Evans Tokushima Otsuka (LETO; the lean control strain) hair samples that were collected after weaning offspring. The obese OLETF mothers had higher hair testosterone levels than the control LETO strain. Overall, testosterone, but not corticosterone, predicted litter sex ratios. Younger mothers with large litters and older mothers with small litters tended to have the highest sex ratios (i.e., male-biased litters). In the lean LETO strain, but not in the obese OLETF, maternal testosterone was positively associated with litter size and number of male pups. Corticosterone did not differ between the two strains and was not associated with testosterone or with reproductive parameters. This study suggests that long-term circulating testosterone is associated with female reproduction in multiple ways. The possible trade-off between litter size and sex ratio may be mediated by testosterone and influenced by body fat and composition, which influence the individual's well-being. Exploring the multiple roles of testosterone in females may also help explain the complex relationship between obesity and reproduction. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In male rats with concurrent iron and (n-3) fatty acid deficiency, provision of either iron or (n-3) fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency

    NARCIS (Netherlands)

    Baumgartner, J.; Smuts, C.M.; Malan, L.; Arnold, M.; Yee, B.K.; Bianco, L.E.; Boekschoten, M.V.; Muller, M.R.; Langhans, W.; Hurrell, R.F.; Zimmermann, M.B.

    2012-01-01

    Concurrent deficiencies of iron (Fe) (ID) and (n-3) fatty acids [(n-3)FAD)] in rats can alter brain monoamine pathways and impair learning and memory. We examined whether repletion with Fe and DHA/EPA, alone and in combination, corrects the deficits in brain monoamine activity (by measuring

  15. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-11-01

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  16. [原著]The Effects of Ethanol or Toluene on Plasma Lipids, Essential Amino Acids and Fatty Infiltration of the Liver in Wistar Male Rats

    OpenAIRE

    Dominicus, Dalmas A. R.; Department of Preventive Medicine, School of Medicine. University of the Ryukyus

    1991-01-01

    To investigate the differenoe between the effect of alcohol (ethanol) and toluene on the plasma lipids, essential amino acids and fatty infiltration of the liver, a study was done for two months involving male wistar rats. Ethanol, 20 rats, divided into L1 (ethanol 2.5g/kg body wt), L2 (ethanol 1.25g/kg body wt) and PF, control, received isocaloric glucose and food equal to the amount taken by LI. Toluene, 20 rats, divided into 10 toluene exposed rats (Te) , 900 ppm of toluene vapour in the c...

  17. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...

  18. The effect of dietary menhaden, olive, and coconut oil fed with three levels of vitamin E on plasma and liver lipids and plasma fatty acid composition in rats.

    Science.gov (United States)

    Mohamed, Ali I.; Hussein, Ahmed S.; Bhathena, Sam J.; Hafez, Y S.

    2002-07-01

    The effect of dietary fats with varying degrees of unsaturation in the presence of different concentrations of vitamin E on tissue lipid levels was studied in rats. Rats were fed either menhaden oil, olive oil or coconut oil at 15% levels with either 0.1, 0.3 or 0.6 mg/g of vitamin E as alpha-tocopherol for four weeks. Rat serum and liver were analyzed for total cholesterol, HDL-cholesterol, triacylglycerol and phospholipids. In addition, fatty acid composition of serum lipids was also analyzed. Serum total cholesterol and triacylglycerol were significantly lower in rats fed menhaden oil than in those fed olive or coconut oil, while the HDL-cholesterol was significantly higher in serum of rats fed menhaden and olive oil than in those fed coconut oil. Levels of vitamin E in the diet had only a significant effect on serum cholesterol and liver phospholipids. The Pearson correlation coefficient showed a significant positive relationship between serum triacylglycerol and total cholesterol, and a negative correlation between triacylglycerol and HDL-cholesterol, and between total and HDL-cholesterol.In the liver, total cholesterol was significantly higher in rats fed coconut oil than in rats fed menhaden oil. Total liver phospholipids were lower in rats fed either coconut oil or olive oil compared to those fed menhaden oil, especially with higher levels of vitamin E intake. Higher levels of vitamin E in the diet appear to increase triacylglycerol and phospholipids in livers of rats fed menhaden oil. In the liver a significant negative correlation was observed between phospholipids and cholesterol. The type and degree of unsaturation (polyunsaturated fatty acids in menhaden oil, monounsaturated fatty acids in olive oil and saturated fatty acids in coconut oil) significantly affected plasma and tissue lipids.

  19. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...... and the fatty acid synthesis in the mammary gland are the major determinants of the fatty acid profile of breast milk, whereas the liver does not significantly add to this. The 20:4n-6 was decreased in breast milk lipids and liver PL of dams and offspring when 18:3n-3 was increased in the diet. When the diet...

  20. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA, total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL and fatty (ZF rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA. We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.

  1. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  2. Maternal high fat diet deficient in vitamin B12influences long chain polyunsaturated fatty acid composition in rats.

    Science.gov (United States)

    Jawale, Shruti; Pulwale, Anubha; Joshi, Sadhana; Kale, Anvita

    2017-10-01

    In India, there is a rise in non-communicable diseases due to diets deficient in vitamin B 12 , low in docosahexaenoic acid (DHA) and increased consumption of westernized diet. The present study aims to examine the effect of maternal high fat diet (HFD) in absence of vitamin B 12 on pregnancy outcome and tissue fatty acid composition in dams. Pregnant Wistar rats were assigned to following diets: Control (C), HFD, High fat diet supplemented with omega-3 fatty acids (HFDO), 4) High fat diet deficient in vitamin B 12 (HFBD), High fat deficient in vitamin B 12 supplemented with omega-3 fatty acids (HFBDO). There was no effect on pregnancy outcome as a consequence of different dietary treatments. The levels of DHA in HFBD group were lower (p acid supplementation. This data suggests that maternal HFD (using dairy fat) did not adversely affect pregnancy outcome. However, maternal HFBD reduced levels of placental DHA. This may have implications for reduced fetal brain growth and development.

  3. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.

    Science.gov (United States)

    Merrill, G F; Kurth, E J; Hardie, D G; Winder, W W

    1997-12-01

    5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) has previously been reported to be taken up into cells and phosphorylated to form ZMP, an analog of 5'-AMP. This study was designed to determine whether AICAR can activate AMP-activated protein kinase (AMPK) in skeletal muscle with consequent phosphorylation of acetyl-CoA carboxylase (ACC), decrease in malonyl-CoA, and increase in fatty acid oxidation. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red blood cells, 200 microU/ml insulin, and 10 mM glucose with or without AICAR (0.5-2.0 mM). Perfusion with medium containing AICAR was found to activate AMPK in skeletal muscle, inactivate ACC, and decrease malonyl-CoA. Hindlimbs perfused with 2 mM AICAR for 45 min exhibited a 2.8-fold increase in fatty acid oxidation and a significant increase in glucose uptake. No difference was observed in oxygen uptake in AICAR vs. control hindlimb. These results provide evidence that decreases in muscle content of malonyl-CoA can increase the rate of fatty acid oxidation.

  4. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    International Nuclear Information System (INIS)

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-01-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function

  5. High-fat diet offsets the long-lasting effects of running-wheel access on food intake and body weight in OLETF rats.

    Science.gov (United States)

    Chao, Pei-Ting; Terrillion, Chantelle E; Moran, Timothy H; Bi, Sheng

    2011-06-01

    We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.

  6. Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma.

    Science.gov (United States)

    Ayerza, Ricardo; Coates, Wayne

    2007-01-01

    Coronary heart disease (CHD) is the most common cause of death in the Western world. In both the USA and the EU it accounts for over 600,000 deaths yearly. Early data showing the benefits n-3 fatty acids provide in preventing CHD disease were obtained using 20:5n-3 and 22:6n-3 fatty acids derived from fish. Recently, however, it has been shown that reduced risks of CHD and other cardiovascular diseases are found with 18:3n-3 fatty acid as well. To determine if 18:3n-3 fatty acids positively influence plasma composition, 32 male Wistar rats were fed ad libitum four isocaloric diets with the energy derived from corn oil (T(1)), whole chia seed (T(2)), ground chia seed (T(3)), or chia oil (T(4)) for 30 days. At the end of the feeding period the rats were sacrificed, and blood samples were analyzed to determine serum CHOL, HDL, LDL, TG content, hemogram, and fatty acid composition. Chia decreased serum TG content and increased HDL content. Only with the T(2) diet was TG significantly (p Chia significantly (p chia diets detected. Significant (p chia diets when compared to the control. Copyright 2007 S. Karger AG, Basel.

  7. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2010-03-01

    Full Text Available Abstract Background Nonalcoholic fatty liver disease is the most common chronic liver disease in the world, and is becoming increasingly prevalent. Saponins of sea cucumber (SSC are proven to exhibit various biological activities. Therefore, the present study was undertaken to examine the effect of saponins extracted from sea cucumber (Pearsonothuria graeffei on the preventive activity of fatty liver in rats. Methods Male Wistar rats were randomly divided into five groups, including normal control group, fatty liver model group, SSC-treated group with SSC at levels of 0.01%, 0.03% and 0.05%. Model rats were established by administration with 1% orotic acid (OA. After the experiment period, serum total cholesterol (TC, triglyceride (TG, and hepatic lipid concentrations were determined. To search for a possible mechanism, we examined the changes of key enzymes and transcriptional factors involved in hepatic lipids biosynthesis, fatty acid β-oxidation. Results Both 0.03% and 0.05% SSC treatment alleviated hepatic steatosis and reduced serum TG and TC concentration significantly in OA fed rats. Hepatic lipogenic enzymes, such as fatty acid synthase (FAS, malic enzyme (ME, and glucose-6-phosphate dehydrogenase (G6PDH activities were inhibited by SSC treatment. SSC also decreased the gene expression of FAS, ME, G6PDH and sterol-regulatory element binding protein (SREBP-1c. Otherwise, the rats feeding with SSC showed increased carnitine palmitoyl transferase (CPT activity in the liver. Hepatic peroxisome proliferator-activated receptor (PPARα, together with its target gene CPT and acyl-CoA oxidase (ACO mRNA expression were also upregulated by SSC. Conclusions According to our study, the lipids-lowering effect of dietary SSC may be partly associated with the enhancement of β-oxidation via PPARα activation. In addition, the inhibited SREBP-1c- mediated lipogenesis caused by SSC may also contribute to alleviating fatty liver.

  8. Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker Diabetic Fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV

    DEFF Research Database (Denmark)

    Gram, Dorte X; Hansen, Anker J; Deacon, Carolyn F

    2005-01-01

    Sensory nerve desensitization by capsaicin has been shown to improve the diabetic condition in Zucker Diabetic Fatty rats. However, administration of capsaicin to adult rats is associated with an increased mortality. Therefore, in this experiment, we examined the influence of resiniferatoxin, a t...... as a reduction in the plasma levels of dipeptidyl peptidase IV. Therefore, resiniferatoxin is a safe alternative to capsaicin for further investigations of the role of the sensory nerves in experimental diabetes....

  9. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  10. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats

    Directory of Open Access Journals (Sweden)

    Max Thorwald

    2018-04-01

    Full Text Available Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2, induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1 blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point of adult male rats: 1 Long Evans Tokushima Otsuka (LETO; lean strain-control, 2 insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF, and 3 OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks. Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD and catalase (CAT activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. Keywords: Angiotensin II, Mitochondria, Cardiac, Antioxidant enzymes, TCA cycle

  11. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...... was based on 10 mol% 18:3n-3 from structured lipid trace levels of 22:6n-3 occurred in breast milk. The 22:6n-3 in liver PL of 1 week old offspring was significantly higher when the diet was based on the specific structured oil (2 mol%) compared to linseed oil. The metabolism of fatty acids may therefore......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...

  12. Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations.

    Science.gov (United States)

    Monsma, D J; Marlett, J A

    1995-10-01

    The effects of bacterial collection site, bacterial adaption to substrate and duration of fermentation on short-chain fatty acid (SCFA) production were studied using an in vitro fermentation system. Cecal and fecal inocula from rats fed purified diets containing 100 g/kg dietary fiber from canned peas or psyllium seed husk, or a nonpurified diet containing 170 g/kg dietary fiber fermented ileal excreta from colectomized rats fed a purified diet containing 100 g/kg dietary fiber from canned peas. The SCFA concentration, measured by gas chromatography, in anaerobic fermentations of 0, 3, 6, 12, 24, 48, 72 and 96 h, increased (P pea or nonpurified diets produced SCFA at greater (P < 0.05) molar proportions as acetate and less (P < 0.05) as propionate than inocula from rats fed psyllium seed husk at most time points. We conclude that collection site, adaptation of bacteria to the substrate to be fermented and duration of fermentation significantly influence the results of in vitro fermentation studies.

  13. Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid.

    Science.gov (United States)

    Kerr, Daniel M; Gilmartin, Aoife; Roche, Michelle

    2016-11-01

    Autism spectrum disorders are a group of neurodevelopmental disorders characterised by impaired social interaction, deficits in communication and repetitive stereotyped behaviours. The endocannabinoid system plays an important role in modulating emotionality and social responding, however there have been a paucity of studies investigating this system in autistic animal models. This study investigated the effect of inhibiting fatty acid amide hydrolyase (FAAH), the anandamide catabolic enzyme, on behavioural responding in the valproic acid (VPA) rat model of autism. Male rats prenatally exposed to VPA exhibit an autistic-like behavioural phenotype exemplified as thermal hypoalgesia, reduced social and exploratory behaviour, and enhanced repetitive behaviour. Systemic administration of the FAAH inhibitor PF3845 (10mg/kg) attenuated the deficit in social behaviour observed in VPA exposed male animals without altering nociceptive, repetitive or exploratory behaviour. In comparison, female VPA exposed rats displayed enhanced repetitive and reduced exploratory behaviour, but no change in social behaviour or thermal nociceptive responding. PF3845 did not alter social, repetitive or thermal nociceptive responding, but reduced exploratory behaviour in a social context in VPA-, but not saline-, exposed females. These data indicate that FAAH inhibition elicits sexual dimorphic effects on behavioural responding in VPA exposed rodents, and support an important role for FAAH in the regulation of social behavioural deficits in autistic males. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Omega-3 Fatty Acids Supplementation Differentially Modulates the SDF-1/CXCR-4 Cell Homing Axis in Hypertensive and Normotensive Rats.

    Science.gov (United States)

    Halmenschlager, Luiza; Lehnen, Alexandre Machado; Marcadenti, Aline; Markoski, Melissa Medeiros

    2017-08-01

    We assessed the effect of acute and chronic dietary supplementation of ω-3 on lipid metabolism and cardiac regeneration, through its influence on the Stromal Derived Factor-1 (SDF-1) and its receptor (CXCR4) axis in normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were allocated in eight groups (of eight animals each), which received daily orogastric administration of ω-3 (1 g) for 24 h, 72 h or 2 weeks. Blood samples were collected for the analysis of the lipid profile and SDF-1 systemic levels (ELISA). At the end of the treatment period, cardiac tissue was collected for CXCR4 expression analysis (Western blot). The use of ω-3 caused a reduction in total cholesterol levels ( p = 0.044), and acutely activated the SDF-1/CXCR4 axis in normotensive animals ( p = 0.037). In the presence of the ω-3, after 72 h, SDF-1 levels decreased in WKY and increased in SHR ( p = 0.017), and tissue expression of the receptor CXCR4 was higher in WKY than in SHR ( p = 0.001). The ω-3 fatty acid supplementation differentially modulates cell homing mediators in normotensive and hypertensive animals. While WKY rats respond acutely to omega-3 supplementation, showing increased release of SDF-1 and CXCR4, SHR exhibit a weaker, delayed response.

  15. A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet

    Directory of Open Access Journals (Sweden)

    Maria Luíza R. P. Lima

    2016-01-01

    Full Text Available The pathogenesis of nonalcoholic fatty liver disease (NAFLD is not fully understood, and experimental models are an alternative to study this issue. We investigated the effects of a simple carbohydrate-rich diet on the development of obesity-related NAFLD and the impact of physical training on the metabolic abnormalities associated with this disorder. Sixty Wistar rats were randomly separated into experimental and control groups, which were fed with sucrose-enriched (18% simple carbohydrates and standard diet, respectively. At the end of each experimental period (5, 10, 20, and 30 weeks, 6 animals from each group were sacrificed for blood tests and liver histology and immunohistochemistry. From weeks 25 to 30, 6 animals from each group underwent physical training. The experimental group animals developed obesity and NAFLD, characterized histopathologically by steatosis and hepatocellular ballooning, clinically by increased thoracic circumference and body mass index associated with hyperleptinemia, and metabolically by hyperglycemia, hyperinsulinemia, hypertriglyceridemia, increased levels of very low-density lipoprotein- (VLDL- cholesterol, depletion of the antioxidants liver enzymes superoxide dismutase and catalase, and increased hepatic levels of malondialdehyde, an oxidative stress marker. Rats that underwent physical training showed increased high-density lipoprotein- (HDL- cholesterol levels. In conclusion, a sucrose-rich diet induced obesity, insulin resistance, oxidative stress, and NAFLD in rats.

  16. Impaired contractility of the circular striated urethral sphincter muscle may contribute to stress urinary incontinence in female zucker fatty rats.

    Science.gov (United States)

    Lee, Yung-Chin; Lin, Guiting; Wang, Guifang; Reed-Maldonado, Amanda; Lu, Zhihua; Wang, Lin; Banie, Lia; Lue, Tom F

    2017-08-01

    Obesity has been an independent risk factor for female stress urinary incontinence (SUI), the mechanism of this association remains unknown. The aim of this study is to validate the hypothesis that urethral dysfunction is a possible contributor to SUI in obese women. Ten Zucker Fatty (ZF) (ZUC-Lepr fa 185) and 10 Zucker Lean (ZL) (ZUC-Lepr fa 186) female rats at 12-week-old were used in this experiment. The urethral sphincter rings were harvested from the bladder neck through to the most proximal 2/3 regions. In the organ bath study, single pulses of electrical field stimulation (EFS) were applied. For the fatiguing stimulation, repeated multi-pulse EFS with 70 mA were applied at frequency of 5 Hz for 5 min. Caffeine-containing Krebs' solution was administrated to contract the urethra until the contraction began to reach a plateau for 10 min. We performed immunofluorescence staining of the urethra after the experiment was finished. Compared to ZL controls, ZF rats had significantly impaired muscle contractile activity (MCA) (P female rats had significantly impaired contractile properties of striated urethral sphincter, suggesting urethral dysfunction could be an important contributor to SUI in obesity. © 2016 Wiley Periodicals, Inc.

  17. Hormonal and metabolic effects of polyunsaturated fatty acid (omega-3 on polycystic ovary syndrome induced rats under diet

    Directory of Open Access Journals (Sweden)

    Elaheh Ouladsahebmadarek

    2014-02-01

    Full Text Available Objective(s: PCOS (polycystic ovary syndrome produces symptoms in approximately 5% to 10% of women of reproductive age (12–45 years old. It is thought to be one of the leading causes of female subfertility. This study aimed to confirm the role of nutrition containing omega-3 (polyunsaturated fatty acid on control of experimental PCO induced by estradiol-valerat in rats. Materials and Methods: Wistar female rats (n=40 were allocated into control (n=10 and test groups (n= 30, test group was subdivided into 3 groups: G1, received omega-3 (240 mg/kg/orally/daily; G2 and G3 groups were induced PCO by single injection of estradiol-valerate (16 mg/kg/IM. Group 3 received omega-3 (240 mg/kg/orally/daily and low carbohydrate feeding for 60 subsequent days; on sixtieth day 5 ml blood samples and ovarian tissues of all rats in the group were removed and prepared for biochemical and hormonal analysis. Results: Catalase, GPX (Glutathione peroxidase, SOD (Superoxide dismutase in groups that received omega-3showed higher levels, but MDA (malondialdehyde level was significantly decreased (P

  18. The Effect of Phytosterol-Rich Fraction from Palm Fatty Acid Distillate on Blood Serum Lipid Profile of Dyslipidemia Rats.

    Science.gov (United States)

    Ahmadi, Kgs; Oktafa, Huda; Estiasih, Teti

    2018-01-16

    Phytosterol-rich fraction (PRF) obtained from palm fatty acid distillate (PFAD) was investigated for its effect on blood serum lipid profile of dyslipidemia rats. Dyslipidemia was induced by force feeding cholesterol to five groups of rats; one group was a control or normal group. Cholesterol force-fed groups were treated with 0, 10, 20, 30, and 40 mg PRF/kg/day for 4 weeks. All groups of rats were fed standard diet. A normal group was fed standard diet without PRF treatment and cholesterol force feeding. Lipid profile was measured every week (0, 1, 2, 3, and 4). Four-week treatment resulted in significant blood serum lipid profile improvement. PRF improved blood serum lipid profile by decreasing total cholesterol, triglyceride, and low density lipoprotein (LDL) cholesterol level and increasing high density lipoprotein (HDL) cholesterol level. The doses of PRF significantly affected blood serum lipid profile as well as duration of PRF treatment. PRF inhibited cholesterol absorption, which delayed blood serum total cholesterol rise. Cholesterol absorption inhibition was also indicated by higher fecal cholesterol concentration after PRF feeding. These results indicate the beneficial effect of PRF in the treatment of dyslipidemia.

  19. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  20. Effect of PPAR-α and -γ agonist on the expression of visfatin, adiponectin, and TNF-α in visceral fat of OLETF rats

    International Nuclear Information System (INIS)

    Choi, K.C.; Ryu, O.H.; Lee, K.W.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, D.S.; Baik, S.H.; Choi, K.M.

    2005-01-01

    A variety of adipocytokines and peptides secreted from adipocytes have been considered to play a crucial role in obesity, insulin resistance, and type 2 diabetes. Recently, visfatin, a new adipocytokine, known as a pre-B cell colony-enhancing factor, has been isolated from visceral fat deposits. It has been shown to activate insulin receptors in a manner different from insulin. To understand the role of adipocytokines in improving insulin sensitivity via activation of the nuclear receptor peroxisome proliferator-activated receptor-α (PPAR-α) and -γ (PPAR-γ), we examined the expression of visfatin, adiponectin, and TNF-α in visceral fat depots of Otsuka Long-Evans Tokushima fatty (OLETF) rats from early to advanced diabetic stage (from 28 to 40 weeks of age). Serum glucose and insulin concentrations significantly (P < 0.05) decreased in rosiglitazone or fenofibrate-treated OLETF rats compared to untreated OLETF rats. Rosiglitazone significantly increased serum adiponectin concentration from 20 to 40 weeks of age (P < 0.05), whereas fenofibrate reduced TNF-α concentration. The expression of visfatin and adiponectin mRNA in visceral fat deposits was elevated by rosiglitazone or fenofibrate treatments when compared to untreated OLETF rats (P < 0.05), whereas, TNF-α mRNA was down-regulated by these drugs (P < 0.05). These results suggest that rosiglitazone and fenofibrate may prevent type 2 diabetes by regulating adipocytokines including visfatin, adiponectin, and TNF-α

  1. Investigation of pharmacological responses to anti-diabetic drugs in female Spontaneously Diabetic Torii (SDT) fatty rats, a new nonalcoholic steatohepatitis (NASH) model.

    Science.gov (United States)

    Toriniwa, Yasufumi; Saito, Tomoyuki; Miyajima, Katsuhiro; Ishii, Yukihito; Uno, Kinuko; Maekawa, Tatsuya; Matsui, Tohru; Kume, Shinichi; Yamada, Takahisa; Ohta, Takeshi

    2018-04-10

    Nonalcoholic steatohepatitis (NASH) is a progressive liver disease, and some patients develop hepatic cirrhosis/carcinoma. Animal models play key roles in the development of new therapies for NASH. In this study, the pharmacological effects of metformin and pioglitazone were investigated in female Spontaneously Diabetic Torii (SDT) fatty rats to verify the utility of this model. The anti-diabetic drugs were administered to SDT fatty rats fed a cholesterol-enriched diet from 4 to 25 weeks, and changes in food intake, body weight, and blood chemistry parameters were evaluated every 4 weeks. The hepatic lipid content, mRNA expression in relation to lipid synthesis, inflammation, and fibrosis, and histopathological analyses were performed at 25 weeks. Pioglitazone improved hyperglycemia, hyperlipidemia, and abnormalities in hepatic parameters. The insulin levels were lower than those in the control rats before 16 weeks. Plasma glucose levels in the metformin-treated rats were lower than those in the control rats, and plasma triglyceride and alanine aminotransferase levels temporarily decreased. The lipid content and some mRNA expression in relation to fibrosis in the liver decreased with pioglitazone treatment, and the mRNA expression of microsomal triglyceride transfer protein increased. Hepatic fibrosis observed in the SDT fatty rats improved with pioglitazone treatment; however, the effect with metformin treatment was partial. These results in both drugs are in line with results in the human study, suggesting that the SDT fatty rat is useful for developing new anti-NASH drugs that show potential to regulate glucose/lipid metabolism.

  2. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    Science.gov (United States)

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease.

  3. Lymphatic Fatty Acid Absorption Profile During 24 Hours After Administration of Triglycerides to Rats

    DEFF Research Database (Denmark)

    Porsgaard, Trine Charlotte; Straarup, Ellen Marie; Høy, Carl-Erik

    1999-01-01

    :0), and linoleic acid (18:2n-6) together witholeic acid (18:1 n-9) after RO had not returned to the transport at baseline. In contrast, the transport of decanoic acid(10:0) and alpha-linolenic acid (18:3n-3) returned to baseline values between 12 and 15 h. This indicated that theabsorption of purely exogenous...... fatty acids (illustrated by 10:0 and 18:3n-3) was complete at 15 h and that the fatty acidstransported between 15 and 24 h were derived mostly from endogenous stores....

  4. Dietary thylakoids reduce visceral fat mass and increase expression of genes involved in intestinal fatty acid oxidation in high-fat fed rats.

    Science.gov (United States)

    Stenblom, Eva-Lena; Egecioglu, Emil; Montelius, Caroline; Ramachandran, Deepti; Bonn, Britta; Weström, Björn; Mansouri, Abdelhak; Langhans, Wolfgang; Erlanson-Albertsson, Charlotte

    2016-09-01

    Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals. Copyright © 2016 the American Physiological Society.

  5. Houttuynia cordata Facilitates Metformin on Ameliorating Insulin Resistance Associated with Gut Microbiota Alteration in OLETF Rats.

    Science.gov (United States)

    Wang, Jing-Hua; Bose, Shambhunath; Lim, Soo-Kyoung; Ansari, AbuZar; Chin, Young-Won; Choi, Han Seok; Kim, Hojun

    2017-09-22

    Metformin and Houttuynia cordata are representative anti-diabetic therapeutics in western and oriental medicine, respectively. The current study examined the synergistic anti-diabetic effect of Houttuynia cordata extraction (HCE) and metformin combination in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Fecal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Combining HCE + metformin resulted in significantly ameliorated glucose tolerance (oral glucose tolerance test (OGTT))-the same as metformin alone. Particularly, results of the insulin tolerance test (ITT) showed that combining HCE + metformin dramatically improved insulin sensitivity as compared to metformin treatment alone. Both fecal and serum endotoxin, as well as cytokines (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)) were significantly ameliorated by HCE + metformin compared to metformin alone. Meanwhile, the activation of AMPK (adenosine monophosphate-activated protein kinase) by metformin was distinctly enhanced by HCE. Both of HCE and metformin evidently changed the gut microbiota composition, causing the alteration of bacterial metabolite, like short-chain fatty acids. H. cordata , together with metformin, exerts intensive sensibilization to insulin; the corresponding mechanisms are associated with alleviation of endotoxemia via regulation of gut microbiota, particularly Roseburia , Akkermansia , and Gram-negative bacterium.

  6. Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats.

    Science.gov (United States)

    Panasevich, Matthew R; Schuster, Colin M; Phillips, Kathryn E; Meers, Grace M; Chintapalli, Sree V; Wankhade, Umesh D; Shankar, Kartik; Butteiger, Dustie N; Krul, Elaine S; Thyfault, John P; Rector, R Scott

    2017-08-01

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (Pcontent, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (Pbacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Comparative study of ultrasonography, computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy for the diagnosis for fatty liver in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hoon; Song, Xiao Li; Heo, Suk Hee; Kim, Jin Woong; Jeong, Yong Yeon; Kang, Heoung Keun [Dept. of Radiology, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Shin, Sang Soo [Dept. of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Ahn, Kyu Youn [Dept. of Anatomy, Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2017-01-15

    To compare the accuracy of ultrasonography (US), single-energy CT (SECT), dual-energy CT (DECT), MR imaging (MRI), and MR spectroscopy (MRS) for detecting fatty liver in a rat model. Fatty liver was induced by 60% high-fat diet for 1, 2, 3, 4, or 5 weeks (3 rats per group, a total of 15 rats). The control group comprised of five rats fed 10% high-fat diet. US, SECT, DECT, MRI, and MRS of the liver were performed weekly. Histologic steatosis grade and intrahepatocelluar triglyceride level were determined histologically for the livers of sacrificed rats. Pearson correlation test was used to assess the correlation between examinations and standard reference levels. Receiver operating characteristic curves were constructed. Area under the curve (AUC), sensitivity, and specificity were calculated. US, SECT, DECT, MRI, and MRS were significantly correlated with histologic steatosis grade. The diagnostic performance of AUC, sensitivity, and specificity were 0.893, 80%, and 80% for US, 0.960, 80%, and 80% for SECT, 0.947, 100%, and 60% for DECT, 0.933, 93.3%, and 100% for MRI, and 0.960, 93.3%, and 100% for MRS. MRS showed the strongest correlation with histologic steatosis grade with the highest sensitivity and specificity for diagnosis of fatty liver compared to other modalities.

  8. Comparative study of ultrasonography, computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy for the diagnosis for fatty liver in a rat model

    International Nuclear Information System (INIS)

    Noh, Hoon; Song, Xiao Li; Heo, Suk Hee; Kim, Jin Woong; Jeong, Yong Yeon; Kang, Heoung Keun; Shin, Sang Soo; Ahn, Kyu Youn

    2017-01-01

    To compare the accuracy of ultrasonography (US), single-energy CT (SECT), dual-energy CT (DECT), MR imaging (MRI), and MR spectroscopy (MRS) for detecting fatty liver in a rat model. Fatty liver was induced by 60% high-fat diet for 1, 2, 3, 4, or 5 weeks (3 rats per group, a total of 15 rats). The control group comprised of five rats fed 10% high-fat diet. US, SECT, DECT, MRI, and MRS of the liver were performed weekly. Histologic steatosis grade and intrahepatocelluar triglyceride level were determined histologically for the livers of sacrificed rats. Pearson correlation test was used to assess the correlation between examinations and standard reference levels. Receiver operating characteristic curves were constructed. Area under the curve (AUC), sensitivity, and specificity were calculated. US, SECT, DECT, MRI, and MRS were significantly correlated with histologic steatosis grade. The diagnostic performance of AUC, sensitivity, and specificity were 0.893, 80%, and 80% for US, 0.960, 80%, and 80% for SECT, 0.947, 100%, and 60% for DECT, 0.933, 93.3%, and 100% for MRI, and 0.960, 93.3%, and 100% for MRS. MRS showed the strongest correlation with histologic steatosis grade with the highest sensitivity and specificity for diagnosis of fatty liver compared to other modalities

  9. Effect of vitamin B12 and omega-3 fatty acid supplementation on brain neurotrophins and cognition in rats: A multigeneration study.

    Science.gov (United States)

    Rathod, Richa S; Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2016-01-01

    Vitamin B12 and omega-3 fatty acids are important nutrients required for neuronal functioning. We have demonstrated the beneficial effects of vitamin B12 and omega-3 fatty acid supplementation on brain neurotrophins and cognition in the first and second generation offspring. However, there is a need to examine if the effects are sustained in the third generation offspring. This study reports the effects of vitamin B12 and omega-3 fatty acid supplementation across three consecutive generations on brain neurotrophins like brain derived neurotrophic factor (BDNF); nerve growth factor (NGF) and cognitive performance in the third generation male offspring. Three successive generations of Wistar rats were assigned the following groups throughout pregnancy, lactation and adulthood: i) Control, ii) vitamin B12 deficient (BD), iii) vitamin B12 deficient + omega-3 fatty acid (BDO), iv) vitamin B12 supplemented (BS) and v) vitamin B12 supplemented + omega-3 fatty acid (BSO). The BD group demonstrated lower (p Vitamin B12 supplementation showed comparable BDNF levels in the hippocampus while their levels were lower in the cortex as compared to the control (p vitamin B12 and omega-3 fatty acid showed higher (p vitamin B12 and omega-3 fatty acids in improving brain development. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Effects of long-term thyroid hormone level alterations, n-3 polyunsaturated fatty acid supplementation and statin administration in rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš

    2014-01-01

    Roč. 63, Suppl.1 (2014), S119-S131 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) LH12058; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) 7AMB14SK123 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : thyroid hormones * n-3 polyunsaturated fatty acids (n-3 PUFA) * statins * rat muscle proteins * cardiac remodeling Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  11. Effect of dietary polyunsaturated/saturated fatty acid ratio and dietary vitamin E on lipid peroxidation in the rat.

    Science.gov (United States)

    Buckingham, K W

    1985-11-01

    The effects of the dietary ratio of polyunsaturated/saturated fatty acids (P/S) and dietary vitamin E on lipid peroxidation (LP) were examined to determine whether the vitamin E requirement is elevated by increased P/S in ratios comparable to those found in human diets. Twelve groups of male weanling rats (six/group) were fed purified diets containing 20% fat with P/S ratios of 0.38, 0.82 or 2.30. At each P/S level, groups of rats received either 0, 10, 40 or 100 IU vitamin E/kg diet supplied as all-rac-alpha-tocopherol. After the diets were fed for 16 wk, in vivo LP was assessed by measuring pentane in expired breath. Pentane levels were significantly elevated in rats fed 0 IU vitamin E at all P/S levels. Both 40 and 100 IU vitamin E decreased pentane production to minimal levels for all P/S groups. Liver malondialdehyde levels and in vitro spontaneous red blood cell hemolysis results also indicated a significant effect of vitamin E in reducing in vitro LP, but no overall effect of P/S. Testicular and epididymal histology showed no effect of dietary P/S on the vitamin E requirement. These data demonstrated 40 IU vitamin E to be adequate for maximal inhibition of LP at the P/S levels tested and indicated that these levels of dietary P/S had no significant impact on the vitamin E requirement for the growing rat.

  12. Higher protein kinase C ζ in fatty rat liver and its effect on insulin actions in primary hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available We previously showed the impairment of insulin-regulated gene expression in the primary hepatocytes from Zucker fatty (ZF rats, and its association with alterations of hepatic glucose and lipid metabolism. However, the molecular mechanism is unknown. A preliminary experiment shows that the expression level of protein kinase C ζ (PKCζ, a member of atypical PKC family, is higher in the liver and hepatocytes of ZF rats than that of Zucker lean (ZL rats. Herein, we intend to investigate the roles of atypical protein kinase C in the regulation of hepatic gene expression. The insulin-regulated hepatic gene expression was evaluated in ZL primary hepatocytes treated with atypical PKC recombinant adenoviruses. Recombinant adenovirus-mediated overexpression of PKCζ, or the other atypical PKC member PKCι/λ, alters the basal and impairs the insulin-regulated expressions of glucokinase, sterol regulatory element-binding protein 1c, the cytosolic form of phosphoenolpyruvate carboxykinase, the catalytic subunit of glucose 6-phosphatase, and insulin like growth factor-binding protein 1 in ZL primary hepatocytes. PKCζ or PKCι/λ overexpression also reduces the protein level of insulin receptor substrate 1, and the insulin-induced phosphorylation of AKT at Ser473 and Thr308. Additionally, PKCι/λ overexpression impairs the insulin-induced Prckz expression, indicating the crosstalk between PKCζ and PKCι/λ. We conclude that the PKCζ expression is elevated in hepatocytes of insulin resistant ZF rats. Overexpressions of aPKCs in primary hepatocytes impair insulin signal transduction, and in turn, the down-stream insulin-regulated gene expression. These data suggest that elevation of aPKC expression may contribute to the hepatic insulin resistance at gene expression level.

  13. Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone1-3

    OpenAIRE

    Baumgartner, Jeannine; Smuts, Cornelius M.; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K.

    2012-01-01

    Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed...

  14. TNF-alpha and IL-6 synergistically inhibit ketogenesis from fatty acids and alpha-ketoisocaproate in isolated rat hepatocytes.

    Science.gov (United States)

    Pailla, K; Lim, S K; De Bandt, J P; Aussel, C; Giboudeau, J; Troupel, S; Cynober, L; Blonde-Cynober, F

    1998-01-01

    During sepsis, lipid metabolism is shunted toward triacylglycerol synthesis and hepatic lipogenesis. A decrease in ketogenesis from free fatty acids also is observed, probably mediated by cytokines involved in host response to infection. Whether such an inhibition of ketogenesis occurs with other ketone body precursors such as ketoacids is not known. The aim of this study was to determine the effects of tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) on hepatic ketone body production from octanoic acid, a medium-chain fatty acid, and from alpha-ketoisocaproate (KIC), the ketoanalogue of leucine. The experiments were conducted in cultured hepatocytes isolated from 24-hour-fasted Sprague-Dawley rats. Hepatocyte monolayers were incubated for 6 hours, with either KIC or octanoic acid (1 mmol/L), in the presence of glucagon and TNF-alpha (25 micro/L) IL-6 (15 microg/L) and/or IL-6. Acetoacetate, beta-hydroxybutyrate, and free fatty acids were determined in culture medium by enzymatic methods and KIC was measured by high-performance liquid chromatography. KIC and octanoic acid uptake by hepatocytes was 79% and 92%, respectively, over 6 hours, and cytokines had no influence. However, TNF-alpha and IL-6 caused inhibition of ketogenesis from alpha-ketoisocaproate (5.6% +/- 2.3% and 4.4% +/- 3.0%, respectively), and from octanoic acid (7.9% +/- 2.9%, 5.7% +/- 3.2%, respectively). In addition, when the two cytokines were present together in the culture medium, the inhibition was enhanced (inhibition of ketogenesis from KIC: 14.0% +/- 4.8%; from octanoic acid: 11.6% +/- 3.4%). In our experimental conditions, cytokines mediate an inhibition of ketogenesis; this process could be explained by a direct effect of cytokines on metabolic pathways of octanoic acid and KIC oran indirect effect by modification of the mitochondrial redox state.

  15. Inflammatory responses to neutral fat and fatty acids in multiple organs in a rat model of fat embolism syndrome.

    Science.gov (United States)

    Takada, Meri; Chiba, Shoetsu; Nagai, Tomonori; Takeshita, Hiroshi; Kanno, Sanae; Ikawa, Toru; Sakamoto, Kana; Sagi, Morihisa; Ichiba, Kazue; Mukai, Toshiji

    2015-09-01

    Fat embolism syndrome (FES) is a common complication of long bone fractures. FES is rare but with significant morbidity and occasional fatalities. Studies of animal models of FES are numerous; however, few studies compare inflammatory reactions in multiple organs. The present study investigated the effect of neutral fat and fatty acids, which cause changes in multiple organs and induce FES. Using rats we evaluated the ratio of lung-to-body weight and conducted histological analyses and quantitative analysis of inflammatory cytokine mRNAs in the lungs following intravenous administration of neutral fat or fatty acids. Neutral fat increased the ratio of lung-to-body weight, and neutral fat formed emboli in lung capillaries. The levels of interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α) in the lungs increased after injection of neutral fat and oleic acid. Analysis of the histologic changes revealed that the highest numbers of fat droplets, occluding the capillaries of the lungs, kidney, heart, and brain formed 12h after the injection of neutral fat and fat droplets gradually diminished 48h later. Fat droplets were not detected in any organs after the injection of oleic acid. IL-1β and TNF-α levels in the lungs were elevated 9-24h after the injection of neutral fat, although IL-6 levels peaked at 6h. After injection of oleic acid, peak levels of IL-1β, IL-6, and TNF-α were detected at 6h, and IL-6 again increased in all organs and plasma at 15h. Neutral fat, but not fatty acids, formed emboli in the capillaries of multiple organs. These findings suggest that neutral fat increased inflammatory cytokine levels by forming emboli in organ capillaries, particularly in the lungs, while oleic acid augmented inflammatory cytokine levels by stimulating endothelial cells of multiple organs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001 and increases in RER values (p<0.001, which were further exacerbated by high fat diet (45% kcals from fat consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012 and mitochondrial protein content (p = 0.002, electron transport chain complexes (II, III, and ATPase, and fasting PGC-1α mRNA expression (p<0.001. Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001 but was also hyperacetylated in offspring of obese dams (p<0.005 suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD.

  17. A Maternal “Junk Food” Diet in Pregnancy and Lactation Promotes Nonalcoholic Fatty Liver Disease in Rat Offspring

    Science.gov (United States)

    Bayol, Stéphanie A.; Simbi, Bigboy H.; Fowkes, Robert C.; Stickland, Neil C.

    2010-01-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring. PMID:20207831

  18. A maternal "junk food" diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Simbi, Bigboy H; Fowkes, Robert C; Stickland, Neil C

    2010-04-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring.

  19. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  20. Chylomicron Remnants and Nonesterified Fatty Acids Differ in Their Ability to Inhibit Genes Involved in Lipogenesis in Rats123

    Science.gov (United States)

    Kohan, Alison B.; Qing, Yang; Cyphert, Holly A.; Tso, Patrick; Salati, Lisa M.

    2011-01-01

    Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated from the lymph of rats intubated with either safflower oil or lard. The remnants were added to the medium of primary rat hepatocytes in culture and the accumulation of mRNA for genes involved in carbohydrate and lipid metabolism was measured. Both PUFA-enriched remnants and nonesterified PUFA inhibited the expression and maturation of sterol response element binding protein-1c (SREBP-1c) and the expression of lipogenic genes regulated by this transcription factor. These remnants also inhibited the expression of glucose-6-phosphate dehydrogenase (G6PD), a gene regulated at post-transcriptional steps. In contrast, PUFA-enriched remnants did not inhibit the accumulation of mRNA for malic enzyme, glucokinase, and l-pyruvate kinase, whereas nonesterified fatty acids caused a decrease in these mRNA. These genes are regulated independently of SREBP-1c. SFA-enriched remnants did not inhibit lipogenic gene expression, which is consistent with a lack of inhibition of lipogenesis by dietary saturated fats. Thus, the inhibitory action of dietary polyunsaturated fats on lipogenesis involves a direct action of chylomicron remnants on the liver. PMID:21169224

  1. Chylomicron remnants and nonesterified fatty acids differ in their ability to inhibit genes involved in lipogenesis in rats.

    Science.gov (United States)

    Kohan, Alison B; Qing, Yang; Cyphert, Holly A; Tso, Patrick; Salati, Lisa M

    2011-02-01

    Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated from the lymph of rats intubated with either safflower oil or lard. The remnants were added to the medium of primary rat hepatocytes in culture and the accumulation of mRNA for genes involved in carbohydrate and lipid metabolism was measured. Both PUFA-enriched remnants and nonesterified PUFA inhibited the expression and maturation of sterol response element binding protein-1c (SREBP-1c) and the expression of lipogenic genes regulated by this transcription factor. These remnants also inhibited the expression of glucose-6-phosphate dehydrogenase (G6PD), a gene regulated at post-transcriptional steps. In contrast, PUFA-enriched remnants did not inhibit the accumulation of mRNA for malic enzyme, glucokinase, and L-pyruvate kinase, whereas nonesterified fatty acids caused a decrease in these mRNA. These genes are regulated independently of SREBP-1c. SFA-enriched remnants did not inhibit lipogenic gene expression, which is consistent with a lack of inhibition of lipogenesis by dietary saturated fats. Thus, the inhibitory action of dietary polyunsaturated fats on lipogenesis involves a direct action of chylomicron remnants on the liver.

  2. Incorporation of n-3 polyunsaturated fatty acids of marine or vegetable origin into rat enterocyte phospholipids

    DEFF Research Database (Denmark)

    Poulsen, Christian; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    were: Palm oil diet (PD), 0.6 wt% n-3 PUFA; fish oil diet (FD), 32 wt% n-3 PUFA (C20-C22); and linseed oil diet (LD), 32 wt% n-3 PUFA (C18:3n-3). Forty weanling male Wistar rats were fed PD for 34 days and then divided into three groups. Two groups of sixteen rats each were then fed FD or LD...

  3. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)

  4. Maternal resveratrol intake during lactation attenuates hepatic triglyceride and fatty acid synthesis in adult male rat offspring

    Directory of Open Access Journals (Sweden)

    Masato Tanaka

    2017-03-01

    Full Text Available Resveratrol (3,5,4-trihydroxystilbene is a natural polyphenolic compound found in grapes and red wine and has been shown to exert protective effects on the liver preventing lipid accumulation induced by a high-fat diet. However, no studies have shown that the nutritional resveratrol intake by the parental generation has modified lipogenesis in an adult offspring. The aim of this study was to investigate whether maternal resveratrol intake during lactation affects lipogenesis in adult male rat offspring, and if it does, what is the molecular mechanistic basis. Six male pups born from mothers given a control diets during lactation (CC group and six male pups born from mothers given a control diet as well as resveratrol during lactation (CR group were fed a standard diet until sacrifice at 36 weeks. Adult male offspring from mothers given resveratrol during lactation (CR group had lower body weight from the fourth week of lactation until adulthood, but no significant change was observed in the relative food intake. Low levels of plasma triacylglycerol were found in the CR group compared to the CC group. Histopathological analysis of the livers of adult male rat offspring revealed lipid accumulation in hepatocytes in the CC group, whereas lipid droplets were rare in the CR group. Hepatic protein levels of AMPK-phosphorylated at ser403, Sirt1, and Nampt in the CR group were upregulated significantly compared to the CC group. These results indicated the maternal resveratrol intake during lactation-induced activation of AMPK through Sirt1 upregulation. In this study, significant upregulation of the levels of precursor of sterol regulatory element binding protein-1c (SREBP-1c and downregulation of the ratio of active-SREBP-1c/precusor-SREBP-1c were observed in the CR group compared to the CC group. These results suggested that proteolytic processing of SREBP-1c was suppressed by AMPK in the livers of the CR group. It is well known that SREBP-1c

  5. EFFECT OF OMEGA-3 FATTY ACID IN THE HEALING PROCESS OF COLONIC ANASTOMOSIS IN RATS

    OpenAIRE

    CASTILHO, Tiago Jacometo Coelho de; CAMPOS, Antônio Carlos Ligocki; MELLO, Eneri Vieira de Souza Leite

    2015-01-01

    Background: The use of long-chain polyunsaturated fatty acids has been studied in the context of healing and tissue regeneration mainly due to its anti-inflammatory, immunoregulatory and antioncogenic properties. Previous studies have demonstrated beneficial effects with the use of enteral immunonutrition containing various farmaconutrients such as L-arginine, omega-3, trace elements, but the individual action of each component in the healing of colonic anastomosis remains unclear. Aim: To e...

  6. Maternal High-Fat-Diet Programs Rat Offspring Liver Fatty Acid Metabolism

    OpenAIRE

    Seet, Emily L.; Yee, Jennifer K.; Jellyman, Juanita K.; Han, Guang; Ross, Michael G.; Desai, Mina

    2015-01-01

    In offspring exposed in utero to a maternal diet high in fat (HF), we have previously demonstrated that despite similar birth weights, HF adult offspring at 6 months of age had significantly higher body weights, greater adiposity, and increased triacylglycerol (TAG) levels as compared to controls. We hypothesized that a maternal HF diet predisposes to offspring adiposity via a programmed increase in the synthesis of monounsaturated fatty acids in the liver and hence increased substrate availa...

  7. Lack of developmental toxicity of D-003: a mixture of long-chain fatty acids in rats.

    Science.gov (United States)

    Rodríguez, M D; Gámez, R; González, J E; García, H; Acosta, C P; Goicochea, E

    2003-01-01

    D-003 is a mixture of long-chain fatty acids isolated and purified from sugar cane wax, the major component of which is 1-octacosanoic acid and which possesses effective antiplatelet, antithrombotic and cholesterol-lowering effects. D-003 was suspended in 1% acacia gum solution, and given daily by gavage to rats at dose levels of 5, 100 and 1000 mg/kg/day on days 6 through 15 of gestation. Cyclophosphamide, serving as a positive control, was given at the dose of 50 mg/kg/day on day 15 of gestation. Evidence of maternal or developmental toxicity was not observed in the groups treated with D-003. Maternal clinical signs of toxicity were not observed and the analysis of initial body weight and the body weight gain during the treatment period was comparable among the groups treated with D-003 and control. As expected, cyclophosphamide caused both embryotoxic and teratogenic effects in rats. Meanwhile, no adverse effects on reproductive performance, or on embryonic or fetal development, including visceral and skeletal examination, were seen in any of the groups administered D-003. It is concluded that D-003 administered up to 1000 mg/kg/day did not induce any evidence of developmental toxicity.

  8. A high n-6 polyunsaturated fatty acid diet reduces muscarinic M2/M4 receptor binding in the rat brain.

    Science.gov (United States)

    du Bois, Teresa Marie; Bell, Warren; Deng, Chao; Huang, Xu-Feng

    2005-06-01

    The aim of this study was to examine the influence of different fat diets on muscarinic acetylcholine receptor binding. Nineteen male Sprague-Dawley rats were divided into four groups and fed a diet of either high saturated fat, n-6 polyunsaturated fatty acid (PUFA), n-3 PUFA or low fat (control) for 8 weeks. Using quantitative autoradiography, [(3)H]pirenzepine binding to muscarinic M1/M4 receptors and [(3)H]AF-DX384 binding to M2/M4 receptors were measured throughout the brain in all four groups. The main findings were that compared to the low fat control group, M2/M4 receptor binding was significantly reduced in the dorsolateral, dorsomedial and ventromedial parts of the caudate putamen (61-64%, p cortex (59%, p M4 receptor binding densities between the four groups were observed. These results suggest that a diet high in n-6 PUFA, but not of n-3 PUFAs or saturated fat, may selectively alter M2/M4 receptor-mediated signal transduction in the rat brain.

  9. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  10. The influence of Omega3 fatty acids supplementation against aluminum-induced toxicity in male albino rats.

    Science.gov (United States)

    Oda, Samah S

    2016-07-01

    This study evaluated the protective and antioxidant potential of Omega3 fatty acids (FAs) against aluminum intoxicated male albino rats. Twenty-four male albino rats were divided into four equal groups: group I served as control; group II (Omega3-treated) received Omega3 FAs 1000 mg/kg bwt/day orally; group III (aluminum-treated) received aluminum chloride 100 mg/kg bwt/day orally and group IV (aluminum + Omega3-treated) received aluminum chloride 100 mg/kg bwt/day and Omega3 FAs 1000 mg/kg bwt/day orally. Treatments lasted for 4 weeks. Results indicate that administration of aluminum chloride showed non-significant changes in serum alanine aminotransferase, urea, and creatinine levels, a significant increase in serum aspartate aminotransferase and malondialdehyde as well as a significant reduction in serum-reduced glutathione levels. Aluminum treatment induced histopathological alterations in the liver, kidney, brain, testes, and epididymis. Omega3 FAs supplementation improved the serum parameters, enhanced endogenous antioxidant status, reduced lipid peroxidation, and ameliorated the intensity of the histopathological lesions. These findings reveal that Omega3 FAs supplementation can lighten the toxic effects of aluminum through their antioxidant and free radical-scavenging effects.

  11. Influence of dietary triacylglycerol structure and level of n-3 fatty acids administered during development on brain phospholipids and memory and learning ability of rats

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Hougaard, K.S.

    2004-01-01

    The objective of this study was to examine the effects of triacylglycerol (TAG) structure and level of n-3 fatty acids on fatty acid profile of brain phospholipids (PL) of dams and offspring, and the memory and learning ability of the offspring, when administered during initial development....... No considerable differences between groups were found when memory or learning was tested in the Morris water maze. Conclusion: The results suggest that extreme diet modifications are needed in order to observe significant effects on the memory and learning ability in rats....

  12. Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids.

    OpenAIRE

    Garg, M L; Sebokova, E; Thomson, A B; Clandinin, M T

    1988-01-01

    The effect of feeding semipurified diets enriched in linseed (rich in C18:3, omega 3 fatty acid) or fish (rich in C20:5, omega 3 and C22:6, omega 3 fatty acid) oil with and without cholesterol supplementation on the desaturation of linoleic acid (C18:2, omega 6) by rat liver microsomal fractions was investigated. Animals fed diets supplemented with beef tallow were used as equal-energy controls. Both linseed-oil and fish-oil diets, without added cholesterol, decrease conversion of C18:2, omeg...

  13. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Denis Delic

    2016-05-01

    Full Text Available The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D in Zucker diabetic fatty rats (ZDF rats. T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age, hyperinsulinemia (eight weeks, β cell failure (11 weeks and late-stage diabetes (17 weeks using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications.

  14. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Qiuxian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Zou, Yukai [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Li, Xin [Cancer Research Institute of Southern Medical University, Guangzhou (China); Xu, Wenxue; Mo, Zhixian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Cai, Hongbing, E-mail: chbing2008@163.com [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China)

    2014-07-18

    Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which

  15. EGb761, a Ginkgo biloba extract, is effective against atherosclerosis in vitro, and in a rat model of type 2 diabetes.

    Science.gov (United States)

    Lim, Soo; Yoon, Ji Won; Kang, Seon Mee; Choi, Sung Hee; Cho, Bong Jun; Kim, Min; Park, Ho Seon; Cho, Hyun Ju; Shin, Hayley; Kim, Young-Bum; Kim, Hyo Soo; Jang, Hak Chul; Park, Kyong Soo

    2011-01-01

    EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin) on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes. EGb761 (100 and 200 mg/kg) or normal saline (control) were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury). Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs) and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity. EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis.

  16. Dioscorea esculenta-induced increase in muscle sex steroid hormones is associated with enhanced insulin sensitivity in a type 2 diabetes rat model.

    Science.gov (United States)

    Sato, Koji; Fujita, Satoshi; Iemitsu, Motoyuki

    2017-02-01

    The effects of chronic Dioscorea esculenta administration and exercise training on muscle sex steroid hormone levels and insulin resistance in type 2 diabetes rats was assessed. Twenty-week-old male Otsuka Long Evans Tokushima Fatty (OLETF) rats were assigned randomly to the control, D. esculenta treatment, D. esculenta with 5α-reductase inhibitor treatment, or the exercise training groups (running at 25 m/min for 1 h, 5 d/wk; n = 10 each group). Eight weeks of D. esculenta treatment or exercise training significantly attenuated the increase in plasma insulin and fasting glucose levels. Plasma and muscle concentrations of dehydroepiandrosterone and 5α-dihydrotestosterone (DHT) and the expression of 5α-reductase increased significantly in the D. esculenta-treated and exercise training groups, and both treatments led to the upregulation of glucose transporter-4 translocation with concomitant increases in PKB and PKC-ζ/λ phosphorylation. Furthermore, the glucose metabolic clearance rate, which represents insulin sensitivity, increased significantly in both the D. esculenta-treated and exercise training groups. These effects were suppressed by administration of the DHT synthetic inhibitor. Together, these findings suggest that the D. esculenta-induced increase in muscle sex steroid hormone levels helps decrease insulin resistance in type 2 diabetes.-Sato, K., Fujita, S., Iemitsu, M. Dioscorea esculenta-induced increase in muscle sex steroid hormones is associated with enhanced insulin sensitivity in a type 2 diabetes rat model. © FASEB.

  17. Research report for fiscal 1998 on regional new energy vision drawn up for Tokushima Prefecture; 1998 nendo Tokushimaken shin energy vision sakutei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The amount of energy in existence is theoretically the amount of energy that exists in a given region while the available amount is an amount of energy worked out with technological, economic, and social conditions taken into consideration. The total of the amount in existence and that of the available amount are mentioned in a table, and the available amount is further shown in terms of calorie. It totals 11,120Tcal per year, which is equivalent to approximately 55% of the whole amount of energy that Tokushima Prefecture demands. The availability of each type of new energy and the state of development of related technologies are studied to determine what priority is to be given to what energy. The group that is given the highest priority consists of photovoltaic power generation, passive solar systems, refuse fueled power generation, and heat from wastes (this group occupying more than 80% of the available amount in Tokushima Prefecture). The second group consists of wind power generation, clean energy vehicles, cogeneration, and small and medium scale hydroelectric power generation. The third group consists of fuel cells, ocean energy, biomass, and temperature difference energy. Natural conditions surrounding new energy in existence in Tokushima Prefecture are rather favorable, but social conditions are not. (NEDO)

  18. Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone.

    Science.gov (United States)

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21-56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70-76% and Fe by 20-32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P FAD rats (fold-change = -1.33; P FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P FAD alone.

  19. Rescue of glucocorticoid-programmed adipocyte inflammation by omega-3 fatty acid supplementation in the rat.

    Science.gov (United States)

    Mark, Peter J; Wyrwoll, Caitlin S; Zulkafli, Intan S; Mori, Trevor A; Waddell, Brendan J

    2014-05-13

    Adverse fetal environments predispose offspring to pathologies associated with the metabolic syndrome. Previously we demonstrated that adult offspring of dexamethasone-treated mothers had elevated plasma insulin and pro-inflammatory cytokines, effects prevented by a postnatal diet enriched with omega (n)-3 fatty acids. Here we tested whether prenatal glucocorticoid excess also programmed the adipose tissue phenotype, and whether this outcome is rescued by dietary n-3 fatty acids. Offspring of control and dexamethasone-treated mothers (0.75 μg/ml in drinking water, day 13 to term) were cross-fostered to mothers on a standard (Std) or high n-3 (Hn3) diet at birth. Offspring remained on these diets post-weaning, and serum and retroperitoneal fat were obtained at 6 months of age (n = 5-8 per group). Serum was analysed for blood lipids and fatty acid profiles, adipocyte cross sectional area was measured by unbiased stereological analysis and adipose expression of markers of inflammation, glucocorticoid sensitivity and lipid metabolism were determined by RT-qPCR analysis. Serum total fatty acid levels were elevated (P < 0.01) in male offspring of dexamethasone-treated mothers, an effect prevented by Hn3 consumption. Prenatal dexamethasone also programmed increased adipose expression of Il6, Il1b (both P < 0.05) and Tnfa (P < 0.001) mRNAs regardless of fetal sex, but again this effect was prevented (for Il6 and Il1b) by Hn3 consumption. Offspring of dexamethasone-treated mothers had increased adipose expression of Gr (P = 0.008) and Ppara (P < 0.05) regardless of sex or postnatal diet, while 11bHsd1 was upregulated in males only. The Hn3 diet increased Ppard expression and reduced adipocyte size in all offspring (both P < 0.05) irrespective of prenatal treatment. Prenatal glucocorticoid exposure programmed increased expression of inflammatory markers and enhanced glucocorticoid sensitivity of adipose tissue. Partial prevention of this

  20. Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes

    NARCIS (Netherlands)

    Gustafson, L. A.; Neeft, M.; Reijngoud, D. J.; Kuipers, F.; Sauerwein, H. P.; Romijn, J. A.; Herling, A. W.; Burger, H. J.; Meijer, A. J.

    2001-01-01

    We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also

  1. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  2. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans

    Directory of Open Access Journals (Sweden)

    Amanda Natália Lucchesi

    2015-01-01

    Full Text Available Purpose. This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. Methods. Thirty nondiabetic control rats (NC and 30 untreated diabetic (UD rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. Results. UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. Conclusion. Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.

  3. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2016-01-01

    Full Text Available Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs. We therefore determined the maternal fatty acid (FA profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1, second (HF2, or third (HF3 week, or for all three weeks (HFG of gestation. Total maternal plasma non-esterified fatty acid (NEFA concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

  4. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat.

    Science.gov (United States)

    Cerf, Marlon E; Herrera, Emilio

    2016-01-04

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

  5. Influence of low cholesterol eggs enriched with vitamin-E and omega-3 fatty acid on blood lipid profile of Wistar rats.

    Science.gov (United States)

    Taneja, S K; Rakha, Aruna

    2005-07-01

    In the recent past, low cholesterol eggs enriched with vitamin-E and omega-3 fatty acid have been developed and are marketed under different brands claiming them as heart friendly. The influence of these eggs (smart eggs) on lipid profile of rats was evaluated in comparison to that of the standard eggs. Data of 4 week dietary treatment revealed that total plasma cholesterol, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol increased only 22% in rats fed on diet containing 4 smart eggs per kg of semi-synthetic diet in contrast to the increase of more than 100 % when fed on diet containing standard eggs. The results suggest that it is not the low cholesterol content alone but also vitamin E and omega-3 fatty acids present in smart eggs that act synergically to prevent a substantial change in blood lipid profile and impose no serious risk to the health of the consumers.

  6. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    Science.gov (United States)

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline. Copyright © 2014. Published by Elsevier B.V.

  7. Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Li Cao

    2012-01-01

    Full Text Available Introduction. Metabolically obese but normal-weight (MONW individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  8. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    Science.gov (United States)

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  9. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    Science.gov (United States)

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  10. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    International Nuclear Information System (INIS)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-01-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a λ gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source

  11. Managing the Combination of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome with Chinese Herbal Extracts in High-Fat-Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the hepatic manifestation of metabolic syndrome (MetS. The aim of the study was to evaluate the effects of Chinese herbal extracts from Salvia miltiorrhiza and Gardenia jasminoides (SGE on the combination of NAFLD and MetS induced by a high-fat diet (HFD in rats. After 6 weeks of HFD feeding, rats (n=10 each group were treated with saline, rosiglitazone (RSG, and SGE for 4 weeks. HFD rats were obese, hyperinsulinemic, hyperlipidemic and increased hepatic enzymes with the histological images of NAFLD. Treatment with SGE significantly reduced serum triglycerides (TG, nonesterified fatty acids and enhanced insulin sensitivity, and ameliorated the elevated serum hepatic enzymes compared with HFD-saline group. SGE treatment also attenuated hepatic TG by 18.5% (P<0.05. Histological stains showed SGE decreased lipids droplets in hepatocytes (P<0.05 and normalized macrovesicular steatosis in HFD rats. Significant reduction of TNF-α and IL6 in adipose tissue was detected in SGE treated rats. The anti-inflammatory action may be, at least in part, the mechanism of SGE on MetS associated with NAFLD. This study discovered that SGE is capable of managing metabolic and histological abnormalities of NAFLD and MetS. SGE may be an optimal treatment for the combination of NAFLD and MetS.

  12. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.

  13. Relative abundance of short chain and polyunsaturated fatty acids in propionic acid-induced autistic features in rat pups as potential markers in autism.

    Science.gov (United States)

    El-Ansary, Afaf; Al-Ayadhi, Laila

    2014-08-31

    Fatty acids are essential dietary nutrients, and one of their important roles is providing polyunsaturated fatty acids (PUFAs) for the growth and function of nervous tissue. Short chain fatty acids (SCFAs) are a group of compounds derived from the host microbiome that were recently linked to effects on the gut, the brain, and behavior. They are therefore linked to neurodevelopmental disorders such as autism. Reduced levels of PUFAs are associated with impairments in cognitive and behavioral performance, which are particularly important during brain development. Recent studies suggest that omega -3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are involved in neurogenesis, neurotransmission, and protection from oxidative stress. Omega-3 PUFAs mediate some of these effects by antagonizing Omega-6 PUFA (arachidonic acid, AA)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. In this work, the absolute and relative concentrations of propionic (PPA), butyric and acetic acids, as well as PUFAs and their precursors (α-Linolenic and linoleic), were measured in the brain tissue of PPA-neurointoxicated rat pups (receiving 250 mg PPA/Kg body weight for 3 consecutive days) as a rodent model with persistent autistic features compared with healthy controls. The data revealed remarkably lower levels of omega6/omega3, α-Linolenic/Linoleic, α-Linolenic/EPA, α-Linolenic/DHA, EPA/DHA, and AA/Linoleic acid ratios in PPA-intoxicated rats. The role of these impaired ratios is discussed in relation to the activity of desaturases and elongases, which are the two enzymatic groups involved in the synthesis of PUFAs from their precursors. The relationship between the abnormal relative concentrations of the studied fatty acids and oxidative stress, neurotransmission, and neuroinflammation is also discussed in detail. This study demonstrates that fatty acid ratios are useful for understanding the mechanism of PPA neurotoxicity in a rodent model

  14. Changes in the content of fatty acids in CA1 and CA3 areas of the hippocampus of Krushinsky-Molodkina rats after single and fivefold audiogenic seizures.

    Science.gov (United States)

    Savina, Tatyana; Aripovsky, Alexander; Kulagina, Tatyana

    2017-09-01

    Audiogenic seizures (AS) are generalized seizures evoked by high frequency sounds. Since the hippocampus is involved in the generation and maintenance of seizures, the effect of AS on the composition and content of fatty acids in the CA1 and CA3 hippocampal areas of AS-susceptible Krushinsky-Molodkina (KM) rats on days 1, 3, and 14 after single and fivefold seizures were examined. The total content of all fatty acids in field СА1 was found to be lower compared with the control at all times of observation after both a single seizure or fivefold seizures. The total content of fatty acids in field СА3 decreased at all times of examination after a single seizure, whereas it remained unchanged on days 3 and 14 following five AS. The content of omega-3 fatty acids in both fields at all times of observation after a single seizure and fivefold AS did not significantly differ from that in intact animals. The absence of significant changes in the content of stearic and α-linolenic acids and a considerable decrease in the levels of palmitic, oleic, and eicosapentaenoic acids were common to both fields at all times after both a single seizure or fivefold AS. The changes in the content of fatty acids in the СА3 and СА1 fields of the brain of AS-susceptible rats indicate that fatty acids are involved in both the development of seizure activity and neuroprotective anticonvulsive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of a dipeptidyl peptidase-IV inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats.

    Directory of Open Access Journals (Sweden)

    Soo Lim

    Full Text Available BACKGROUND: Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. METHODS AND FINDINGS: Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group. Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. CONCLUSIONS: Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes.

  16. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Hajri, T.; Ibrahimi, A.; Coburn, C. T.; Knapp jr., F. F.; Kurtz, T.; Pravenec, Michal; Abumrad, N. A.

    2001-01-01

    Roč. 276, č. 26 (2001), s. 23661-23666 ISSN 0021-9258 Grant - others:NIH-OER(US) RO1-DK33301; AHA(US) AHA0020639T; AHA(US) AHA0030345T Institutional research plan: CEZ:AV0Z5011922 Keywords : fatty acid transperter * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.258, year: 2001

  17. Treatment with Ginger Ameliorates Fructose-Induced Fatty Liver and Hypertriglyceridemia in Rats: Modulation of the Hepatic Carbohydrate Response Element-Binding Protein-Mediated Pathway

    Directory of Open Access Journals (Sweden)

    Huanqing Gao

    2012-01-01

    Full Text Available Ginger has been demonstrated to improve lipid derangements. However, its underlying triglyceride-lowering mechanisms remain unclear. Fructose overconsumption is associated with increase in hepatic de novo lipogenesis, thereby resulting in lipid derangements. Here we found that coadministration of the alcoholic extract of ginger (50 mg/kg/day, oral gavage, once daily over 5 weeks reversed liquid fructose-induced increase in plasma triglyceride and glucose concentrations and hepatic triglyceride content in rats. Plasma nonesterified fatty acid concentration was also decreased. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in ginger-treated rats. However, ginger treatment did not affect chow intake and body weight. Further, ginger treatment suppressed fructose-stimulated overexpression of carbohydrate response element-binding protein (ChREBP at the mRNA and protein levels in the liver. Consequently, hepatic expression of the ChREBP-targeted lipogenic genes responsible for fatty acid biosynthesis was also downregulated. In contrast, expression of neither peroxisome proliferator-activated receptor- (PPAR- alpha and its downstream genes, nor PPAR-gamma and sterol regulatory element-binding protein 1c was altered. Thus the present findings suggest that in rats, amelioration of fructose-induced fatty liver and hypertriglyceridemia by ginger treatment involves modulation of the hepatic ChREBP-mediated pathway.

  18. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet.

    Science.gov (United States)

    Sekita, Ayaka; Okazaki, Yukako; Katayama, Tetsuyuki

    2016-06-01

    The aim of this study was to investigate the effect of phytic acid (PA) on fatty liver and gut microflora in rats fed a high-sucrose (HSC) diet. Three groups of rats were fed a high-starch (HSR) diet or an HSC diet with or without 1.02% sodium PA for 12 d. We evaluated hepatic weight, total lipids, and triacylglycerol (TG) levels, the activities and expression of hepatic lipogenic enzymes (glucose-6-phosphate dehydrogenase, malic enzyme 1, and fatty acid synthetase), and fecal microflora. The HSC diet significantly increased hepatic total lipids and TG levels, and the activities and expression of the hepatic lipogenic enzymes compared with the HSR diet. These upregulations were clearly suppressed by dietary PA. Consumption of PA elevated the fecal ratio of Lactobacillus spp. and depressed the ratio of Clostridium cocoides, and suppressed the elevation in the ratio of C. leptum induced by the HSC diet. This work showed that dietary PA ameliorates sucrose-induced fatty liver through reducing the expression of hepatic lipogenesis genes and modulates gut microflora in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Consultation clinics for complementary and alternative medicine at Japanese university hospitals: An analysis at Tokushima University Hospital

    Science.gov (United States)

    YANAGAWA, HIROAKI; TERAO, JUNJI; TAKEDA, EIJI; TAKAISHI, YOSHIHISA; KASHIWADA, YOSHIKI; KAWAZOE, KAZUYOSHI; FUSHITANI, SHUJI; TSUCHIYA, KOICHIRO; YAMAUCHI, AIKO; SATO, CHIHO; IRAHARA, MINORU

    2010-01-01

    Here, we report on a Consultation Clinic for Complementary and Alternative Medicine (CAM) which we established at Tokushima University Hospital in July of 2007 with the aim of providing person-to-person information on CAM, though not CAM therapy itself. In December of 2008, we received 55 applications for consultation, 37% concerning health foods, 37% Japanese herbal medicine (Kampo), and 26% various other topics. The consultants (nutritionists and pharmacists) communicated individually with 38 applicants; malignancies (26%) and cardiovascular disease (24%) were the main underlying concerns. To promote the quality of consultation, data was collected by means of focus group interviews concerning the perspective of the consultants. Safe and effective use of CAM requires a network of communication linking individuals, consultation teams, physicians, primary care institutions and university hospitals. To advance this goal, we plan to broaden the efforts described herein. Our findings indicate that the specific role of the consultation clinic in promoting the scientific use of CAM merits further study. PMID:22993564

  20. A low-protein diet concomitant with high calorie intake preserves renal function and structure in diabetic OLETF rats.

    Science.gov (United States)

    Matsuda, Sanae; Iwata, Kazuko; Takahashi, Kazushi; Homma, Hitoshi; Tamura, Yoshifuru; Kanda, Yoshiko; Inokami, Taketoshi; Nosaka, Hitonari; Nagase, Mitsumasa; Uchida, Shunya

    2004-12-01

    Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a spontaneous type 2 diabetes model, were used to clarify whether and how a low-protein diet prevents progressive diabetic nephropathy, in terms of functional and structural parameters. A low-protein diet (LPD) with 11% protein content, was compared to the normal 24% protein diet (NPD) without keeping isocaloric conditions. Daily food intake, body weight, and blood and urine chemistry were serially measured in rats from 10 through 60 weeks of age, and renal clearance studies and histological evaluations were performed at 40 and 60 weeks of age. Daily calorie intake was higher in the OLETF rats fed on the LPD than in those fed on the NPD throughout the experiment. Due to this hyperphagia, fasting blood glucose and hemoglobin (Hb)A1c were dramatically increased in the LPD-fed OLETF rats at 30 weeks and thereafter, whereas urinary protein excretion was decreased by more than half after 26 weeks in the LPD group. Plasma concentrations of total cholesterol and triglyceride were decreased in the LPD-fed OLETF rats at 40 and 60 weeks. Inulin clearance in the LPD group was higher only at 60 weeks of age. The glomerular sclerosis index (GSI) and tubulointerstitial index (TII) were preserved in the LPD group. The LPD induced a decrease in tubulointerstitial macrophage infiltration as compared with the NPD at both 40 and 60 weeks of age, but glomerular macrophage infiltration was not alleviated. A low-protein diet, despite the worsening hyperglycemia caused by hyperphagia, not only reduced proteinuria but also ameliorated hyperlipidemia in OLETF rats, thereby preserving renal function and structure in diabetic nephropathy, probably via a macrophage-mediated mechanism.

  1. Ibipinabant attenuates β-cell loss in male Zucker diabetic fatty rats independently of its effects on body weight.

    Science.gov (United States)

    Rohrbach, K; Thomas, M A; Glick, S; Fung, E N; Wang, V; Watson, L; Gregory, P; Antel, J; Pelleymounter, M A

    2012-06-01

    To test the antidiabetic efficacy of ibipinabant, this new cannabinoid receptor 1 (CB1) antagonist was compared with food-restriction-induced weight loss, rosiglitazone (4 mg/kg) and rimonabant (3 and 10 mg/kg), using parameters of glycaemic control in male Zucker diabetic fatty (ZDF) rats. Body weight, food and water intake, fasted and non-fasted glucose and insulin, glucose tolerance and glycosylated haemoglobin (HbA1c) were all assessed over the course of the 9-week study. Pancreatic insulin content and islet area were also evaluated. At the end of the study, vehicle-treated ZDF rats were severely hyperglycaemic and showed signs of β-cell decline, including dramatic reductions in unfasted insulin levels. Ibipinanbant (10 mg/kg) reduced the following relative to vehicle controls: fasting glucose (-61%), glucose excursion area under the curve (AUC) in an oral glucose tolerance test (OGTT, -44%) and HbA1c (-50%). Furthermore, non-fasting insulin, islet area and islet insulin content were all increased (71, 40 and 76%, respectively) relative to vehicle controls by the end of the study. All of these effects were similar to those of rimonabant and rosiglitazone, where ibipinabant was slightly more effective than rimonabant at the lowest dose and somewhat less effective than rosiglitazone at all doses. These antidiabetic effects appear independent of weight loss because none of the parameters above were consistently improved by the comparable weight loss induced by food restriction. Ibipinabant may have weight loss-independent antidiabetic effects and may have the potential to attenuate β-cell loss in a model of progressive β-cell dysfunction. © 2012 Blackwell Publishing Ltd.

  2. Swimming, but not vitamin E, ameliorates prothrombotic state and hypofibrinolysis in a rat model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sakr, Hussein F; Abbas, Amr M; Haidara, Mohamed A

    2018-01-26

    Nonalcoholic fatty liver disease (NAFLD) is associated with a systemic procoagulant hypofibrinolysis state that is considered as a risk factor for microangiopathy and peripheral vascular diseases. Swimming exercise ameliorates the metabolic dysfunction in type 2 diabetes. Vitamin E is a natural antioxidant that reduces the risk of endothelial dysfunction in metabolic syndrome. The aim of the present study is to investigate the effect of combined swimming exercise with vitamin E on coagulation as well as blood fibrinolysis markers in rats with NAFLD. Eighty male rats were divided into control, control+vitamin E, control+exercise, high-fat diet (HFD), HFD+vitamin E, HFD+exercise, and HFD+vitamin E+exercise groups. Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), triglycerides, cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL), alanine transaminase (ALT) and aspartate transaminase (AST), intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelin-1, von Willebrand factor (vWF), fibrinogen, plasminogen activator inhibitor (PAI-1), fibrin degradation products (FDP), platelet count and aggregation, bleeding and clotting times, activated partial thromboplastin time (aPTT), and prothrombin time (PT) were determined. HFD increased lipid profile, insulin, glucose, HOMA-IR, liver enzymes, adhesion molecules, endothelin-1, vWF, platelet aggregation, fibrinogen, FDP, and PAI-1, and decreased clotting and bleeding times and HDL. Although exercise reduced lipid profile, glucose, insulin, HOMA-IR, vWF, platelet aggregation, fibrinogen, FDP, and PAI-1 and increased PT, aPTT, bleeding and clotting times, and HDL, vitamin E had no effect. Exercise, but not vitamin E, ameliorated the HFD-induced prothrombotic state and enhanced fibrinolytic activity.

  3. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    International Nuclear Information System (INIS)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-01

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  4. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  5. Paradoxical Effect of Nonalcoholic Red Wine Polyphenol Extract, Provinols™, in the Regulation of Cyclooxygenases in Vessels from Zucker Fatty Rats (fa/fa).

    Science.gov (United States)

    Agouni, Abdelali; Mostefai, Hadj Ahmed; Lagrue, Anne-Hélène; Sladkova, Martina; Rouet, Philippe; Desmoulin, Franck; Pechanova, Olga; Martínez, Maria Carmen; Andriantsitohaina, Ramaroson

    2017-01-01

    The aim of this work was to study the vascular effects of dietary supplementation of a nonalcoholic red wine polyphenol extract, Provinols, in Zucker fatty (ZF) obese rats. ZF or lean rats received diet supplemented or not with Provinols for 8 weeks. Vasoconstriction in response to phenylephrine (Phe) was then assessed in small mesenteric arteries (SMA) and the aorta with emphasis on the contribution of cyclooxygenases (COX). Although no difference in vasoconstriction was observed between ZF and lean rats both in SMA and the aorta, Provinols affected the contribution of COX-derived vasoconstrictor agents. The nonselective COX inhibitor, indomethacin, reduced vasoconstriction in vessels from both groups; however, lower efficacy was observed in Provinols-treated rats. This was associated with a reduction in thromboxane-A2 and 8-isoprostane release. The selective COX-2 inhibitor, NS398, reduced to the same extent vasoconstriction in aortas from ZF and Provinols-treated ZF rats. However, NS398 reduced response to Phe only in SMA from ZF rats. This was associated with a reduction in 8-isoprostane and prostaglandin-E release. Paradoxically, Provinols decreased COX-2 expression in the aorta, while it increased its expression in SMA. We provide here evidence of a subtle and paradoxical regulation of COX pathway by Provinols vessels from obese rats to maintain vascular tone within a physiological range.

  6. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens.

    Science.gov (United States)

    André, A; Juanéda, P; Sébédio, J L; Chardigny, J M

    2005-08-01

    The aging brain undergoes modifications in the lipid composition of cell membranes and especially in plasmalogens. These phospholipids represent between one-half and two-thirds of the ethanolamine phospholipids in the brain. They are known to facilitate membrane fusion and act as endogenous antioxidants. During normal aging and in some pathological conditions, plasmalogen and DHA levels fall. In this context, we aimed to evaluate the influence of n-3 FA intake on plasmalogens in the brain during aging. Littermates from two generations of n-3-deficient rats were fed an n-3-deficient diet or an equilibrated diet containing either alpha-linolenic acid alone (alpha-LNA) or with two doses of DHA (0.3 or 0.6% w/w). After weaning, 9 mon of diet, or 21 mon of diet, plasmalogen levels were assessed, and the sn-2 substitutions of plasmenylethanolamines were analyzed in the cortex, striatum, and hippocampus. Our results showed that plasmalogen contents were not influenced by the diet. Plasmalogen levels were significantly decreased in aged rats compared with adults, whereas DHA levels increased in the hippocampus and remained stable in the cortex and striatum. DHA levels were significantly and similarly increased in total phospholipids and especially in plasmenylethanolamines after 9 mon of diet containing alpha-LNA alone or combined with DHA. This study showed that each structure sustained specific age-induced modifications. Dietary n-3 FA may not oppose the physiological decrease in brain plasmalogen levels during aging. Moreover, alpha-LNA appears to be equally as potent as preformed DHA at replacing DHA in the brain of our rat model.

  8. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2015-08-01

    Full Text Available Pregnant rats were fed a high fat diet (HFD for the first (HF1, second (HF2, third (HF3 or all three weeks (HFG of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05. HFG fetuses had elevated plasma linoleic (18:2 n-6 and arachidonic (20:4 n-6 acid proportions (p < 0.05. In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6 and arachidonic acid proportions (p < 0.05. HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3 proportions (p < 0.05. High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.

  9. Perinatal/postnatal study of D-003, a mixture of long-chain fatty acids, in rats.

    Science.gov (United States)

    Rodríguez, M D; González, J E; León, E F; Gutiérrez, A; Marrero, G; Gámez, R; García, H; Goicochea, E; Rodríguez, Y; Gómez, A

    2006-01-01

    D-003 is a mixture of long-chain fatty acids isolated and purified from sugar cane wax with cholesterol-lowering and antiplatelet effects. In order to further characterize the developmental toxicity during the treatment period from late gestation up to weaning of the offspring, pregnant females received 0 (control), 500, and 1,000 mg/kg/day D-003 daily by oral gavage beginning at day 15 of pregnancy and through gestation until day 21 postpartum. Maternal clinical signs, body weight, and food intake were measured at regular intervals during gestation and lactation. Live pups were weighed, sexed, and examined for developmental signs. One female and male of each litter were randomly selected to evaluate the reproductive potential. There were no spontaneous or dose-related maternal deaths during the course of this study. The general health and behavioral condition of offspring was good in all groups. No significant differences among groups were found in comparisons of litter size, survival through the weaning period, sex ratio, and male and female weights. This peri- and postnatal study conducted with D-003 in rats indicated that treatment of the dam during late gestation and lactation did not show adversely effects on reproductive performance or fetal development over two generations.

  10. Okadaic Acid, a Bioactive Fatty Acid from Halichondria okadai, Stimulates Lipolysis in Rat Adipocytes: The Pivotal Role of Perilipin Translocation

    Directory of Open Access Journals (Sweden)

    Nen-Chung Chang

    2013-01-01

    Full Text Available Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black sponge Halichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor, calphostin C (PKC inhibitor, or KT-5823 (PKG inhibitor did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.

  11. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Freese, Kim; Waligora-Dupriet, Anne-Judith; Nubret, Esther; Butel, Marie-Jo; Bergheim, Ina; De Bandt, Jean-Pascal

    2016-07-01

    A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague-Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (PWestern diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level.

  12. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    Science.gov (United States)

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  13. Beneficial effects of enrichment of chicken meat with n-3 polyunsaturated fatty acids, vitamin E and selenium on health parameters: a study on male rats.

    Science.gov (United States)

    Konieczka, P; Rozbicka-Wieczorek, A J; Czauderna, M; Smulikowska, S

    2017-08-01

    Consumption of chicken meat enriched with bioactive compounds such as n-3 polyunsaturated fatty acids (PUFAn-3), vitamin E (vE) and selenium (Se) can help prevent many diseases and can be used to deliver those substances to humans. This might be of importance as chicken meat consumption is increasing worldwide. The effects of enriching chicken meat with PUFAn-3, vE and Se through dietary interventions were studied in rats. Four groups of Ross 308 female broilers from day 22 to day 35 of age were fed control diet (L) that contained lard and 80 mg vE and 0.3 mg Se/kg, or diets that contained rape seeds and fish oil with the same level of Se and vE as in the control diet, the same level of Se as in the control and 150 mg vE/kg, or 150 mg of vE and 0.7 mg Se/kg. Broiler carcasses were boiled, deboned, lyophilized and pooled by group. Boiled edible components of chicken carcass (BECC) were included (240 g/kg) in the diets fed to four groups of ten 10-week-old Wistar male rats for 8 weeks. Inclusion of BECCs modulated dietary fatty acid profile in the rat diets. Feeding these diets did not influence parameters related to growth or relative weights of internal organs in the rats. Feeding BECCs with lower PUFAn-6/n-3 decreased the n-6/n-3 ratio in the rat brain and liver, and increased the proportion of docosahexaenoic acid in the brain lipids. Liver cholesterol level was similar among the experimental groups, whereas the concentration of vE in the liver of rats fed BECC with increased vE levels was higher than that in the rats fed BECC with the basal vE level. Haematological and biochemical parameters in blood were within the normal range for rats, but a few rats showed a tendency towards increased levels because of the higher vE and Se level. The health-promoting effect of feeding rats PUFAn-3 enriched BECC was more pronounced when an increased dietary level of vE was used, but the increased level of Se did not provide the rats with additional benefits. Thus, the

  14. Offspring from rat mothers fed a high-fat/high-sucrose diet during gestation and lactation accumulate free fatty acids in the liver when exposed to high fat diet as adults

    DEFF Research Database (Denmark)

    Hellgren, Lars; Ingvorsen, Camilla

    Introduction: Maternal diet during gestation and lactation has been implicated as a factor that modifies the risk of developing metabolic diseases later in life. Hepatic lipid accumulation is strongly linked to development of metabolic diseases. Free fatty acids induce ER stress, mitochondrial...... increased levels of hepatic free fatty acids (FFA) in rats both born and lactated by HFHS-dams. Principal component analysis of the FFA fatty acid composition showed that there were in particular dietary PUFA that accumulated, indicating that it is the ability to metabolize these fatty acids...

  15. Biochemical Studies on the Effect of Monosodium Glutamate and Omega 3 Fatty Acids in Gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    Shedid, S.M.E.

    2014-01-01

    The consumption of foods and beverages containing additives has intensely increased over the past decades. Monosodium glutamate (MSG) is one of the main flavor enhancer that can be consumed in high concentrations. Also, human exposure to ionizing radiation (RAD) has become inevitable with its vast application in diagnosis and industry. Although the use of additives and exposure to RAD in therapeutic treatments are believed to be relatively safe their combined effect remain unclear. The objective of this work was to evaluate the role of fish oil (FO); rich in the omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA), on some biochemical alterations induced by exposure to MSG, RAD and MSG+RAD. Male albino rats were divided into 8 groups and treated in parallel: 1-Control, 2-FO: received FO (400 mg/Kg/day), 3-MSG: received MSG (450 mg/Kg/day), 4- FO+MSG: received FO with MSG, 5-RAD: whole body irradiated with 2Gy/week up to 8Gy, 6-FO+RAD: received FO daily during RAD exposure, 7- MSG+RAD: received MSG daily during RAD exposure. 8- FO+MSG+RAD: received FO daily during MSG+RAD exposure. Exposure to RAD and/or MSG induced oxidative stress evidenced by increased malondialdehyde (marker of lipid peroxidation), and protein carbonyl (marker of protein oxidation) associated to decreased superoxide dismutase, catalase and glutathione peroxidase activities and glutathione content (antioxidant biomarkers). Alteration in neurotransmitters was noted by a decrease in the level of serotonin (inhibitory neurotransmitter) and increased aspartic and glutamic acids (excitatory amino acids) though this increase was not recorded after exposure to MSG alone. The level of omega-3 fatty acids EPA and DHA was decreased. Furthermore, exposure to RAD and/or MSG elevate serum glucose, insulin, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol though this decrease was not observed after MSG exposure alone

  16. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat.

    Science.gov (United States)

    Neff, Karl J; Elliott, Jessie A; Corteville, Caroline; Abegg, Kathrin; Boza, Camilo; Lutz, Thomas A; Docherty, Neil G; le Roux, Carel W

    2017-01-01

    Reductions in urinary protein excretion after Roux-en-Y gastric bypass (RYGB) surgery in patients with diabetic kidney disease have been reported in multiple studies. To determine the weight loss dependence of the effect of RYGB on urinary protein excretion by comparing renal outcomes in Zucker diabetic fatty rats undergoing either gastric bypass surgery or a sham operation with or without weight matching. University laboratories. Zucker diabetic fatty rats underwent surgery at 18 weeks of age. A subgroup of sham operated rats were weight matched to RYGB operated rats by restricting food intake. Urinary protein excretion was assessed at baseline and at postoperative weeks 4 and 12. Renal histology and macrophage-associated inflammation were assessed at postoperative week 12. Progressive urinary protein excretion was attenuated by both RYGB and diet-induced weight loss, albeit to a lesser extent by the latter. Both weight loss interventions produced equivalent reductions in glomerulomegaly, glomerulosclerosis, and evidence of renal macrophage infiltration. Weight loss per se improves renal structure and attenuates renal inflammatory responses in an experimental animal model of diabetic kidney disease. Better glycemic control post-RYGB may in part explain the greater reductions in urinary protein excretion after gastric bypass surgery. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  17. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  18. A search for synbiotics: effects of enzymatically modified arabinoxylan and Butyrivibrio fibrisolvens on short-chain fatty acids in the cecum content and plasma of rats

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Jensen, Bent Borg; Purup, Stig

    2016-01-01

    Identification of dietary strategies to increase large intestinal production and absorption of short-chain fatty acids (SCFAs), especially butyrate, is of great interest due to the possible health promoting effects. We explored the effect of an enzymatically modified arabinoxylan-rich diet (EAXD......) versus a Western-style control diet (WSD) low in dietary fiber with or without orally administrated Butyrivibrio fibrisolvens, a butyrate producer, on the SCFA pool in the cecal content and feces and the SCFA concentration in the blood of rats. The pool of acetate, butyrate and total SCFA was more than...... double in the cecal content from EAXD-fed rats compared with WSD-fed rats, and this was also reflected as an increase in portal plasma SCFA concentrations. Acetate, propionate and total SCFA concentrations were higher in mixed venous plasma following the EAXD. The number of B. fibrisolvens did...

  19. The potential of the essential fatty acid-deficient hairless rat as a psoriasis screening model for topical anti-proliferative drugs

    DEFF Research Database (Denmark)

    Jensen, Mette; Groth, L.; Holmer, G.

    2002-01-01

    The objective of this study was to establish essential fatty acid deficiency (EFAD) in hairless rats and investigate the potential of this model as a psoriasis screening model by testing the effects of calcipotriol and dithranol on differentiation and proliferation in the epidermis. Hairless rats...... were fed with a fat-free diet lacking linoleic acid. The EFAD condition was established within 8 weeks. In order to ensure that this condition had been established, several parameters were measured and observed, i.e. animal weight, water consumption, transepidermal water loss, clinical skin symptoms...... with calcipotriol. Dithranol and its coal tar-containing vehicle also showed a reductive effect on epidermal thickness. EFAD hairless rats possess various histological changes resembling psoriasis. These histological changes normalise during treatment with anti-psoriatic drugs as calcipotriol, dithranol and coal...

  20. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats.

    Science.gov (United States)

    Winter, Carol L; Lange, Jana S; Davis, Michael G; Gerwe, Gina S; Downs, Thomas R; Peters, Kevin G; Kasibhatla, Bhavani

    2005-03-01

    The molecular basis of insulin resistance, a major risk factor for development of Type II diabetes, involves defective insulin signaling. Insulin-mediated signal transduction is negatively regulated by the phosphotyrosine phosphatase, PTP1B, and numerous studies have demonstrated that organo-vanadium compounds, which are nonselective phosphotyrosine phosphatase inhibitors, have insulin-mimetic properties. However, whether or not vanadium compounds can prevent the transition from insulin resistance to overt diabetes is unknown. We compared the ability of bis(maltolato)oxovanadium(IV) (BMOV), an orally bioavailable organo-vanadium compound, and rosiglitazone maleate (RSG), a known insulin sensitizer, to prevent development of diabetes in Zucker diabetic fatty (ZDF) rats. Treatment began at 6 weeks of age when animals are insulin resistant and hyperinsulinemic, but not yet hyperglycemic, and ended at 12 weeks of age, which is 4 weeks after ZDF rats typically develop overt diabetes. BMOV-treated ZDF rats did not develop hyperglycemia, showed significant improvement in insulin sensitivity, and retained normal pancreatic islet morphology and endocrine cell distribution, similar to RSG-treated animals. BMOV and RSG treatment also prevented the hyper-phagia and polydipsia present in untreated ZDF rats; however, BMOV-treated ZDF rats gained much less weight than did RSG-treated animals. Circulating levels of adiponectin decreased in untreated ZDF rats compared to lean controls, but these levels remained normal in BMOV-treated ZDF rats. In contrast, in RSG-treated ZDF rats, plasma adiponectin levels were nearly 4-fold higher than in lean control rats, primarily as a result of a large increase in the amount of low-molecular weight forms of adiponectin in circulation. These data demonstrate that phosphatase inhibition offers a new approach to diabetes prevention, one that may have advantages over current approaches.

  1. Effects of n-3 polyunsaturated fatty acids high fat diet intervention on the synthesis of hepatic high-density lipoprotein cholesterol in obesity-insulin resistance rats.

    Science.gov (United States)

    Xie, Xianxing; Zhang, Tao; Zhao, Shuang; Li, Wei; Ma, Lanzhi; Ding, Ming; Liu, Yuan

    2016-04-22

    n-3 polyunsaturated fatty acids (PUFA) have previously been demonstrated in association with a reduced risk of chronic diseases, including insulin resistance, cancer and cardiovascular disease. In the present study, we analyzed the effects of n-3 PUFA-rich perilla oil (PO) and fish oil (FO) high fat diet intervention against the synthesis of hepatic high-density lipoprotein cholesterol (HDL-c) in obesity-insulin resistance model rats. In the modeling period, the male SD rats were randomly divided into 2 groups. The rats in the high fat (HF) group were given a high fat pure diet containing 20.62% lard. In the intervention period, the model rats were intervened with purified high-fat diets rich in PO or FO, containing same energy content with high fat pure diet in HF. After the intervention, the protein and mRNA expressions status of the key genes involved in synthesis of hepatic HDL-c were measured for further analytic comparison. The obesity-insulin resistance model rats were characterized by surprisingly high levels of serum triglyceride (TG) and increased body weight (P intervention, there were no apparent changes in the serum HDL-c and total cholesterol (TCH). In addition, the FO could up-regulate the hepatic adenosine triphosphate (ATP) binding cassette transporter A1 (ABCA1) mRNA (P obesity-insulin resistance rats.

  2. Effect of thermally oxidized oil and fasting status on the short-term digestibility of ketolinoleic acids and total oxidized fatty acids in rats.

    Science.gov (United States)

    Olivero-David, Raul; Paduano, Antonello; Fogliano, Vincenzo; Vitaglione, Paola; Bastida, Sara; González-Muñoz, María José; Benedí, Juana; Sacchi, Raffaele; Sánchez-Muniz, Francisco José

    2011-05-11

    Western diets contain substantial amounts of lipid oxidation products. The effects of fasting status and oil oxidation on short-term digestibility of oxidized fatty acids (ox-FA) and ketolinoleic acids (keto-LA) of sunflower oils were evaluated. Twelve rats were fasted overnight for 3 days, whereas another 12 rats had free access to diet. From day 4, and for 4 days, two groups of rats, nonfasted (NFT) and fasted (FT), received 1 g/100 g body weight of sunflower oil reused from 40 deep-frying processes, and two control groups of rats, nonfasted (NFC) and fasted (FC), received the same amount of fresh oil. Ox-FA and keto-LA were determined 5 h after the last administration in the various gastrointestinal compartments together with the intraintestinal MDA. Oil digestibility was highest in NFC and lowest in FT rats. NFT and FT rats had higher (at least P fasting, although the digestibility of oxidized oil was significantly affected by fasting.

  3. Differential Changes of Aorta and Carotid Vasodilation in Type 2 Diabetic GK and OLETF Rats: Paradoxical Roles of Hyperglycemia and Insulin

    Directory of Open Access Journals (Sweden)

    Mei-Fang Zhong

    2012-01-01

    Full Text Available We investigated large vessel function in lean Goto-Kakizaki diabetic rats (GK and Otsuka Long-Evans Tokushima Fatty diabetic rats (OLETF with possible roles of hyperglycemia/hyperosmolarity and insulin. Both young and old GK showed marked hyperglycemia with normal insulin level and well-preserved endothelium-dependent and endothelium-independent vasodilation in aorta and carotid artery. There were significant elevations in endothelial/inducible nitric oxide synthase (eNOS/iNOS and inducible/constitutive heme oxygenase (HO-1/HO-2 in GK. The endothelium-dependent vasodilation in GK was inhibited partly by NOS blockade and completely by simultaneous blocking of HO and NOS. In contrast, OLETF showed hyperinsulinemia and mild hyperglycemia but significant endothelium dysfunction beginning at early ages with concomitantly reduced eNOS. Insulin injection corrected hyperglycemia in GK but induced endothelium dysfunction and intima hyperplasia. Hyperglycemia/hyperosmolarity in vitro enhanced vessel eNOS/HO. We suggest that hyperinsulinemia plays a role in endothelium dysfunction in obese diabetic OLETF, while hyperglycemia/hyperosmolarity-induced eNOS/HO upregulation participates in the adaptation of endothelium function in lean diabetic GK.

  4. Effect of sleep deprivation on the epithelial height of the prostatic acini in rats and the protective effects of omega 3 fatty acids

    International Nuclear Information System (INIS)

    Mahmood, N.; Butt, S.A.; Hamid, S.

    2017-01-01

    Objective: To study the protective role of omega 3 fatty acids (omg 3 FAs) on the histomorphological changes in the height of the prostatic epithelium in rats induced by sleep deprivation. Study Design: Lab based randomized control trial. Place and Duration of Study: The study was conducted at Anatomy Department, Army Medical College, Rawalpindi, in collaboration with National Institute of Health (NIH), Rawalpindi for duration of one year, from Nov 2014 to Nov 2015. Material and Methods: Thirty male Sprague Dawley rats, 3-4 months of age with average weights of 200-300 grams (gm) were divided in three groups each having 10 rats. Group A served as control with standard lab diet and regular sleep -wake cycle. Group B was subjected to sleep deprivation of 16 hours followed by a sleep window of 8 hrs daily for 2 months and group C was administrated with omg 3 fatty acids (FAs) and was sleep deprived as group B for 2 months. At the end of the experimental period rats were anesthetized and their blood sample was drawn for hormonal assay. They were dissected and the prostate gland was removed and fixed in 10 percent formalin. Five micrometer (mu m) sections were obtained after tissue processing and stained with haematoxylin and eosin (H and E) for histological study. Results: Microscopic examination revealed that the epithelium of glandular acini was columnar in group A. Marked decrease in the height of cells was observed in group B whereas the epithelium was nearly cuboidal in group C. Conclusion: It was concluded that sleep deprivation had deleterious effects on the epithelium of the prostatic acini and that Omega 3 fatty acids had a protective effect on the epithelium of the prostatic acini. (author)

  5. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver.

    Science.gov (United States)

    Gnoni, Antonio; Giudetti, Anna M

    2016-09-01

    The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

  6. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy induced hypertension.

    Science.gov (United States)

    Kemse, Nisha G; Kale, Anvita A; Joshi, Sadhana R

    2014-01-01

    Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid) is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH). Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids). L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day) was used to induce hypertension during pregnancy. Blood Pressure (BP) was recorded during pregnancy and dams were dissected at d20 of gestation. Animals from the PIH group demonstrated higher (pvitamin B12 and DHA) may play a role in reducing oxidative stress and inflammation in preeclampsia.

  7. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  8. Long chain polyunsaturated fatty acids (LCPUFAs) and nordihydroguaiaretic acid (NDGA) modulate metabolic and inflammatory markers in a spontaneous type 2 diabetes mellitus model (Stillman Salgado rats).

    Science.gov (United States)

    Dain, Alejandro; Repossi, Gaston; Diaz-Gerevini, Gustavo T; Vanamala, Jairam; Das, Undurti N; Eynard, Aldo R

    2016-11-25

    Diabetes mellitus (DM) is a complex disease with alterations in metabolic and inflammatory markers. Stillman Salgado rats (eSS) spontaneously develop type 2 DM by middle age showing progressive impairment of glucose tolerance with hyperglycemia, hypertriglyceridemia and hyperinsulinemia. We analyzed the effects of supplementation of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) with or without nordihydroguaiaretic acid (NDGA) added, an antioxidant and lipoxygenase inhibitor, on metabolic and inflammatory parameters in eSS rats to evaluate whether they can delay development and/or prevent progression of DM. After weaning, eSS rats received, intraperitoneally, once a month ω-3 (EPA 35% and DHA 40%-6.25 mg/Kg) or ω-6 (90% arachidonic acid- 6. 25 mg/Kg) for twelve months. Two additional groups of rats received 1.9 mg/kg NDGA added to ω-3 and ω-6 fatty acids. Blood samples were collected at day 40, and at the end of the 6th month and 12th month of age to determine plasma triglycerides (TGs), total plasma fatty acids (FA), A1C hemoglobin (HbA1C), C-reactive protein (CRP), gamma glutamyl transpeptidase (GGT), lipo and hydro peroxides, nitrites and IL-6 (in plasma and liver, kidney, and pancreas) and underwent oral glucose tolerance test (OGTT) as well. Wistar and eSS rats that received saline solution were used as controls. Plasma lipids profile, TG, fasting and post-prandial blood glucose levels, and glycosylated HbA1C showed significant improvements in ω-3 and ω-3 + NDGA treated animals compared to eSS control group. ω-3 and ω-3 + NDGA groups showed an inverse correlation with fasting blood glucose and showed lower plasma levels of GGT, TG, and CRP. eSS rats treated with ω-3 LCPUFAs showed reduced level of inflammatory and oxidative indices in plasma and liver, kidney and pancreas tissues in comparison with eSS control (non-treated) and ω-6 treated groups. eSS rats are a useful model to study type 2 DM pathophysiology and related inflammatory

  9. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 China (China); Chonan, Ritsu [Koei Kogyo Co., Ltd., Tokyo, 101-0063 Japan (Japan); Yamahara, Johji [Pharmafood Institute, Kyoto, 602-8136 Japan (Japan); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 China (China); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000 Australia (Australia)

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in

  10. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    International Nuclear Information System (INIS)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-01-01

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in

  11. GPR expression in the rat taste bud relating to fatty acid sensing.

    Science.gov (United States)

    Matsumura, Shigenobu; Mizushige, Takafumi; Yoneda, Takeshi; Iwanaga, Toshihiko; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2007-02-01

    We investigated the expression of G protein-coupled receptor GPR40 and GPR120 in the rat tongue. Using reverse transcription polymerase chain reaction, we detected a significant expression of GPR120 mRNA in the epithelium of the circumvallate papillae but not in the nonsensory epithelium, while the expression of GPR40 mRNA was undetectable in the sensory papillae. Western blotting analysis of colon and circumvallate papillae for GPR120 showed a protein band with a molecular weight that corresponds to that of GPR120, indicating that this antibody could recognize a native form of GPR120. Immunohistochemistry using anti-GPR120 antibody revealed GPR120 immunoreactivity in the enteroendocrine cells of the colon. Furthermore, some cells in each taste bud were stained positively with more intense labeling in the apical part of the cells. These results suggested that GPR120 is expressed in the taste cells of the circumvallate papillae to sense dietary fat, like the receptor expressed in the enteroendocrine cells.

  12. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats.

    Science.gov (United States)

    Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna

    2016-11-01

    Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Pomegranate juice prevents development of non-alcoholic fatty liver disease in rats by attenuating oxidative stress and inflammation.

    Science.gov (United States)

    Noori, Maryam; Jafari, Bahar; Hekmatdoost, Azita

    2017-06-01

    The effects of pomegranate juice (PJ) on the risk factors of non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) have been reported previously; however, the effects on NAFLD and its prevention have not yet been clarified. The present study aimed to evaluate the effects of PJ consumption with respect to the prevention of NAFLD/NASH development. Sprague-Dawley rats were fed either a high-fat, high sugar diet (model group); a high-fat, high sugar diet plus PJ (model+PJ); or a chow diet ad libitum for 7 weeks. Serum levels of fasting glucose, triglyceride, cholesterol, liver enzymes, insulin and hepatic tumor necrosis factor-α and tissue growth factor-β gene expression were determined. Hepatic histology was examined by hemotoxylin and eosin staining. The model+PJ group had significantly lower hepatic steatosis, ballooning, lobular inflammation and portal inflammation (P hepatic pro-inflammatory and pro-fibrotic gene expression (P < 0.001); and lower plasma levels of alanine aminotransferase (P = 0.026), aspartate aminotransferase (P = 0.041), insulin (P < 0.001), triglycerides (P = 0.041) and glucose (P = 0.009) compared to the model group; however, weight gain, food intake and plasma high-density lipoprotein levels were not significantly different between these two groups. The data obtained in the present study indicate that the regular consumption of PJ can prevent NAFLD even in the presence of the other risk factors such as obesity, hypercholesterolemia, and high energy, fat and sugar intakes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Regression of Nonalcoholic Fatty Liver Disease with Zinc and Selenium Co-supplementation after Disease Progression in Rats

    Directory of Open Access Journals (Sweden)

    Farzad Shidfar

    2018-01-01

    Full Text Available Background: Studies have shown that zinc and selenium deficiency is common in nonalcoholic fatty liver disease (NAFLD. However, the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD are not clear enough. The aim of this study was to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD prognosis. Methods: Forty male Sprague–Dawley rats (197±4 g were randomly assigned to 4 dietary groups: normal-fat diet (NFD; receiving 9% of calories as fat, high-fat diet (HFD; receiving 82% of calories as fat, supplementation before disease progression (S+HFD, and supplementation after disease progression (HFD+S. The diets were implemented over a 20-week period in all the groups. Biochemical and histologic parameters were compared between the 4 groups, and between-group comparisons were also carried out. Results: There were significant differences in the average food dietary intake (P<0.001, weight (P<0.001, fasting blood sugar (P=0.005, triglyceride (P<0.001, total cholesterol (P<0.001, low-density lipoprotein cholesterol (P=0.002, high-density lipoprotein cholesterol (P=0.001, alanine aminotransferase (P<0.001, and aspartate aminotransferase (P<0.001 between the 4 dietary groups. Serum triglyceride and total cholesterol were significantly lower in the HFD+S Group than in the S+HFD Group (P<0.001 and P=0.003, respectively. Fat accumulation was significantly reduced in the HFD+S Group (P<0.001. Conclusion: Zinc and selenium co-supplementation after disease progression improved biochemical and histologic parameters in an experimental model of NAFLD.

  15. Effect of dietary omega-3 fatty acids and chronic ethanol consumption on reverse cholesterol transport in rats.

    Science.gov (United States)

    Marmillot, P; Rao, M N; Liu, Q H; Chirtel, S J; Lakshman, M R

    2000-04-01

    We previously showed that chronic ethanol feeding leads to a decrease of apolipoprotein E (apoE) in high-density lipoprotein (HDL), whereas supplementing this diet with 2.8% of total dietary calories as omega3-fatty acids (omega3FAs) restores HDL-apoE to the control values. Since HDL containing apoE plays a major role in reverse cholesterol transport (RCT), we measured the effects chronic ethanol intake and omega3-FAs on RCT in the present study. Four groups of rats, control normal fat (CN), alcohol-normal fat (AN), control omega3FA fat (CF), and alcohol-omega3FA fat (AF), were fed their respective diets for 8 weeks, after which hepatocytes and HDLs from each group were evaluated for RCT capacity (cholesterol efflux from macrophages and uptake by liver cells). Compared with the control diet (CN), chronic ethanol (AN) feeding inhibited the cholesterol efflux capacity of HDL by 21% (P cholesterol uptake by the liver, there were no significant 3-way or 4-way interactions between the 4 factors, HDL-alcohol, HDL-fish oil, hepatocyte-alcohol, and hepatocyte-fish oil. The main effects for HDL-alcohol, HDL-fish oil, and hepatocyte-alcohol were all highly significant (P = .0001, .0001, and .007, respectively). There was a significant HDL-alcohol and HDL-fish oil interaction (P = .0001). Hepatocyte-alcohol was not a factor in any 2-way interactions. Our study indicates no evidence of an interaction between the effects of omega3FAs and the effects of alcohol on hepatocytes in terms of RCT function. Thus, feeding as little as 2.8% of the total dietary calories as omega3FA not only restored the impaired RCT function of HDL caused by chronic ethanol intake, but also enhanced by severalfold the ability of HDL to promote RCT even in normal animals.

  16. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2012-11-01

    Full Text Available The Zucker diabetic fatty (ZDF rat is a genetic model in which the homozygous (FA/FA male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old rat heart compared to age matched Zucker lean (ZL controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats. An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention.

  17. Unsaturated fatty acids suppress interleukin-2 production and transferrin receptor expression by concanavalin A-stimulated rat Iymphocytes

    OpenAIRE

    Calder, Philip C.; Newsholme, Eric A.

    1992-01-01

    The proliferation of T-lymphocytes is dependent upon their ability to synthesize and secrete the cytokine, interleukin-2, and to express cell surface receptors for interleukin-2 and transferrin. We have previously reported that certain fatty acids inhibit mitogen-stimulated T-lymphocyte proliferation. We now report that unsaturated fatty acids decrease the concentration of interleukin-2 in the culture medium of such cells by up to 45%. This suggests that unsaturated fatty acids inhibit lympho...

  18. Omega-3 Fatty Acids Protect Renal Functions by Increasing Docosahexaenoic Acid-Derived Metabolite Levels in SHR.Cg-Leprcp/NDmcr Rats, a Metabolic Syndrome Model

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2014-03-01

    Full Text Available The omega-3 polyunsaturated fatty acids (ω-3 PUFAs docosahexaenoic acid (DHA and/or eicosapentaenoic acid (EPA protect against diabetic nephropathy by inhibiting inflammation. The aim of this study was to assess the effects of highly purified DHA and EPA or EPA only administration on renal function and renal eicosanoid and docosanoid levels in an animal model of metabolic syndrome, SHR.Cg-Leprcp/NDmcr (SHRcp rats. Male SHRcp rats were divided into 3 groups. Control (5% arabic gum, TAK-085 (300 mg/kg/day, containing 467 mg/g EPA and 365 mg/g DHA, or EPA (300 mg/kg/day was orally administered for 20 weeks. The urinary albumin to creatinine ratio in the TAK-085-administered group was significantly lower than that in other groups. The glomerular sclerosis score in the TAK-085-administered group was significantly lower than that in the other groups. Although DHA levels were increased in total kidney fatty acids, the levels of nonesterified DHA were not significantly different among the 3 groups, whereas the levels of protectin D1, resolvin D1, and resolvin D2 were significantly increased in the TAK-085-administered group. The results show that the use of combination therapy with DHA and EPA in SHRcp rats improved or prevented renal failure associate with metabolic syndrome with decreasing triglyceride levels and increasing ω-3 PUFA lipid mediators.

  19. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway

    Directory of Open Access Journals (Sweden)

    Napolitano Mariarosaria

    2011-04-01

    Full Text Available Abstract Background Hyperhomocysteinemia (HHcy causes increased oxidative stress and is an independent risk factor for cardiovascular disease. Oxidative stress is now believed to be a major contributory factor in the development of non alcoholic fatty liver disease, the most common liver disorder worldwide. In this study, the changes which occur in homocysteine (Hcy metabolism in high fat-diet induced non alcoholic fatty liver disease (NAFLD in rats were investigated. Methods and results After feeding rats a standard low fat diet (control or a high fat diet (57% metabolisable energy as fat for 18 weeks, the concentration of homocysteine in the plasma was significantly raised while that of cysteine was lowered in the high fat as compared to the control diet fed animals. The hepatic activities of cystathionine β-synthase (CBS and cystathionine γ-lyase (CGS, the enzymes responsible for the breakdown of homocysteine to cysteine via the transsulphuration pathway in the liver, were also significantly reduced in the high fat-fed group. Conclusions These results indicate that high fat diet-induced NAFLD in rats is associated with increased plasma Hcy levels caused by down-regulation of hepatic CBS and CGL activity. Thus, HHcy occurs at an early stage in high fat diet-induced NAFLD and is likely to contribute to the increased risk of cardiovascular disease associated with the condition.

  20. Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats

    Directory of Open Access Journals (Sweden)

    Ellouz Meriem

    2010-10-01

    Full Text Available Abstract Background Olive oil's beneficial effects are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. In this study, we assess the effects of virgin olive oil and its fractions on 2,4-D- induced oxidative damage in the liver of rats. Methods Male Wistar rats were randomly divided into eight groups of ten each: (C a control group, (D group that received 2,4-D (5 mg/kg b.w., (D/EVOO group treated with 2,4-D plus extra virgin olive oil, (D/OOHF group that received 2,4-D plus hydrophilic fraction, (D/OOLF group treated with 2,4-D plus lipophilic fraction, (EVOO group that received only extra virgin olive oil, (OOHF group given hydrophilic fraction and (OOLF group treated with lipophilic fraction. These components were daily administered by gavage for 4 weeks. Results A significant liver damage was observed in rats treated with 2,4-D via increased serum levels of transaminases and alkaline phosphatase, hepatic lipid peroxidation and decreased hepatic antioxidant enzyme activities, namely, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The liver's fatty acid composition was also significantly modified with 2,4-D exposure. However, extra virgin olive oil and hydrophilic fraction intake during 2,4-D treatment induced a significant increase in the antioxidant enzyme activities and a decrease in the conjugated dienes (CD and thiobarbituric acid-reactive substances (TBARs levels in the liver. The lipophilic fraction supplemented to 2,4-D- treated rats did not show any improvement in the liver oxidative status while a marked improvement was detected in the hepatic fatty acid composition of rats supplemented with olive oil and the two fractions. Conclusion We concluded that the protective effect of olive oil against oxidative damage induced by 2,4-D is mainly related to the antioxidant potential of its hydrophilic fraction.

  1. Diets Rich in Polyunsaturated Fatty Acids With Different Omega-6/Omega-3 Ratio Decrease Liver Content of Saturated Fatty Acids Across Generations of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Simone Halfen

    Full Text Available Our study evaluated how the consumption of diets with low (LOW group - 0.4/1 or high (CON group - 13.6/1 omega-6/omega-3 ratio across generations (F1 and F2 can modulate liver fatty acid (FA profile and blood biomarkers. Liver content of α-linolenic acid was higher in animals always fed with LOW diet than animals that changed from CON to LOW diet, which by your time was higher than animals always fed with CON diet. Liver saturated FA concentration decreased in both groups from F1 to F2. In conclusion, both diets were efficient in decreasing the saturated FA liver content across generations, the LOW ratio diet was more effective in reducing blood triglycerides and non-esterified fatty acids, and there was a multigenerational effect of the LOW ratio diet, improving the FA profile even when the offspring start receiving the CON diet.

  2. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    Science.gov (United States)

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate-induced autism model.

    Science.gov (United States)

    Zhao, Gang; Gao, Jingquan; Liang, Shuang; Wang, Xuelai; Sun, Caihong; Xia, Wei; Hao, Yanqiu; Li, Xiang; Cao, Yonggang; Wu, Lijie

    2015-08-01

    To investigate whether the decreased level of serum polyunsaturated fatty acids (PUFAs) in patients with autism is associated with the expression of related liver metabolic enzymes, we selected rats that were exposed to valproic acid (VPA) on embryonic day 12.5 (E12.5) as a model of autism. We observed the serum levels of PUFAs and the expression of related liver metabolic enzymes, including Δ5-desaturase, Δ6-desaturase and elongase (Elovl2), in VPA-exposed and control rats on postnatal day 35 (PND35) and conducted sex dimorphic analysis. We found that the levels of serum PUFAs and related liver metabolic enzymes in the VPA rats were significantly reduced, in association with autism-like behavioral changes, the abnormal expression of apoptosis-related proteins and hippocampal neuronal injury, compared to the control rats and showed sex difference in VPA group. This finding indicated that rats exposed to VPA at the embryonic stage may exhibit reduced synthesis of serum PUFAs due to the down-regulation of liver metabolic enzymes, thereby inducing nervous system injury and behavioral changes, which is affected by sex in the meantime. Copyright © 2015 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders.

    Science.gov (United States)

    MacFabe, Derrick F; Cain, Donald P; Rodriguez-Capote, Karina; Franklin, Andrew E; Hoffman, Jennifer E; Boon, Francis; Taylor, A Roy; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2007-01-10

    Clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism spectrum disorders (ASD), epilepsy and some inheritable metabolic disorders. Propionic acid (PPA) is a short chain fatty acid and an important intermediate of cellular metabolism. PPA is also a by-product of a subpopulation of human gut enterobacteria and is a common food preservative. We examined the behavioural, electrophysiological, neuropathological, and biochemical effects of treatment with PPA and related compounds in adult rats. Intraventricular infusions of PPA produced reversible repetitive dystonic behaviours, hyperactivity, turning behaviour, retropulsion, caudate spiking, and the progressive development of limbic kindled seizures, suggesting that this compound has central effects. Biochemical analyses of brain homogenates from PPA treated rats showed an increase in oxidative stress markers (e.g., lipid peroxidation and protein carbonylation) and glutathione S-transferase activity coupled with a decrease in glutathione and glutathione peroxidase activity. Neurohistological examinations of hippocampus and adjacent white matter (external capsule) of PPA treated rats revealed increased reactive astrogliosis (GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) suggestive of a neuroinflammatory process. This was coupled with a lack of cytotoxicity (cell counts, cleaved caspase 3' immunoreactivity), and an increase in phosphorylated CREB immunoreactivity. We propose that some types of autism may be partial forms of genetically inherited or acquired disorders involving altered PPA metabolism. Thus, intraventricular administration of PPA in rats may provide a means to model some aspects of human ASD in rats.

  5. Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee

    2016-07-01

    We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.

  6. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.N. [Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Bueno, P.G. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Avó, L.R.S. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Nonaka, K.O.; Selistre-Araújo, H.S. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Leal, A.M.O. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-07-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  7. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Directory of Open Access Journals (Sweden)

    R.N. Silva

    2014-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C and high-fat (HF diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim or a sedentary group (C-Sed and HF-Sed. Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  8. Influence of cafeteria diet and fish oil in pregnancy and lactation on pups' body weight and fatty acid profiles in rats.

    Science.gov (United States)

    Sánchez-Blanco, Clara; Amusquivar, Encarnación; Bispo, Kenia; Herrera, Emilio

    2016-06-01

    The aim was to determine the effects of cafeteria diet (CD) and fish oil supplements given to pregnant and lactating rats on the birth weight and fatty acid profiles of their offspring. Female rats were given standard diet (STD) or CD for 22 days before pregnancy. After mating, some animals remained on STD or CD; for some CD rats, the diet was supplemented with 8.78 % fish oil (CD-FO). After 12 days, half the CD-FO group returned to CD (CD-FO12) and the others remained on CD-FO. At birth, body weights of pups of the three CD groups were lower than STD, maintained until 21 days in the CD-FO group only. At the end of lactation, dams of the CD groups had increased plasma triacylglycerols (TAG), non-esterified fatty acids, and glycerol concentrations, whereas most n-6 long-chain polyunsaturated fatty acids (LCPUFA) were decreased, the effect being greatest in the CD-FO group, where most n-3 LCPUFA were increased and indices of Δ(5) and Δ(6) desaturase activities decreased. The 21-day-old pups of the CD group had increased plasma TAG, not present in the CD-FO group, which had increased 3-hydroxybutyrate concentrations. In both 2- and 21-day-old CD pups, plasma concentrations of ARA were lower than STD, and even lower in the two CD-FO groups. The effect of CD and CD-FO decreasing pups body weight could be related to decreased concentrations of ARA, caused by the inhibition of the Δ(5) and Δ(6) desaturases in the pathway of n-6 LCPUFA biosynthesis.

  9. Effects of Fish Oil Supplementation during the Suckling Period on Auditory Neural Conduction in n-3 Fatty Acid-Deficient Rat Pups

    Directory of Open Access Journals (Sweden)

    vida rahimi

    2014-07-01

    Full Text Available Abstract Introduction: Omega 3 fatty acid especially in the form of fish oil, has structural and biological role in the body's various systems especially nervous system. Numerous studies have tried to research about it. Auditory is one of the affected systems. Omega 3 deficiency can have devastating effects on the nervous system and auditory. This study aimed to evaluate neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil consumption during the suckling period Materials and Methods: In this interventional and experimental study, one sources of omega3 fatty acid (fish oil were fed to rat pups of n-3 PUFA-deficient dams to compare changes in their auditory neural conduction with that of control and n-3 PUFA-deficient groups, using Auditory Brainstem Response (ABR. The parameters of interest were P1, P3, P4 absolute latency, P1-P3, P1-P4 and P3-P4 IPL , P4/P1 amplitude ratio . The rat pups were given oral fish oil, 5 Ml /g weight for 17 days, between the age of 5 and 21 days. Results There were no significant group differences in P1 and P3 absolute latency (p > 0.05. but the result in P4 was significant(P ≤ 0.05 . The n-3 PUFA deficient +vehicle had the most prolonged (the worst P1-P4 IPL and P3-P4 IPL compared with control and n-3 PUFA deficient + FO groups. There was no significant difference in P1-P4 IPL and P3-P4 IPL between n-3 PUFA deficient + FO and control groups (p > 0.05.There was a significant effect of diet on P1-P4 IPL and P3-P4 IPL between groups (P ≤ 0.05. Conclusion: The results of present study showed the effect of omega3 deficiency on auditory neural structure during pregnancy and lactation period. Additionally, we observed the reduced devastating effects on neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil during the suckling period

  10. In male rats with concurrent iron and (n-3) fatty acid deficiency, provision of either iron or (n-3) fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency.

    Science.gov (United States)

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Concurrent deficiencies of iron (Fe) (ID) and (n-3) fatty acids [(n-3)FAD)] in rats can alter brain monoamine pathways and impair learning and memory. We examined whether repletion with Fe and DHA/EPA, alone and in combination, corrects the deficits in brain monoamine activity (by measuring monoamines and related gene expression) and spatial working and reference memory [by Morris water maze (MWM) testing] associated with deficiency. Using a 2 × 2 design, male rats with concurrent ID and (n-3)FAD [ID+(n-3)FAD] were fed an Fe+DHA/EPA, Fe+(n-3)FAD, ID+DHA/EPA, or ID+(n-3)FAD diet for 5 wk [postnatal d 56-91]. Biochemical measures and MWM performance after repletion were compared to age-matched control rats. The provision of Fe in combination with DHA/EPA synergistically increased Fe concentrations in the olfactory bulb (OB) (Fe x DHA/EPA interaction). Similarly, provision of DHA/EPA in combination with Fe resulted in higher brain DHA concentrations than provision of DHA alone in the frontal cortex (FC) and OB (P FAD affects the DA and 5-HT pathways differently than combined repletion and exacerbates the cognitive deficits associated with combined deficiency.

  11. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    Science.gov (United States)

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis

    DEFF Research Database (Denmark)

    Colombo, Michele; Gregersen, Soeren; Kruhoeffer, Mogens

    2005-01-01

    , and pancreatic islets after ET in male Zucker diabetic fatty (ZDF) rats. Eighteen ZDF rats (7 weeks old) were divided in a control and ET group. Exercise was performed using a motorized treadmill (20 m/min 1 hour daily for 6 days a week). Blood glucose, weight, and food intake were measured weekly. After 5 weeks......Exercise training (ET) causes metabolic improvement in the prediabetic and diabetic states. However, only little information exists on the changes to ET at the transcriptional level in insulin-sensitive tissues. We have investigated the gene expression changes in skeletal muscle, liver, fat...... and liver tissue. Training did not markedly influence the gene expression in islets. In conclusion, ET changes the expression of multiple genes in the soleus muscle and liver tissue and counteracts the development of diabetes, indicating that ET-induced changes in gene transcription may play an important...

  13. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    Science.gov (United States)

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (PMaillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells.

    Science.gov (United States)

    Plötz, Thomas; Hartmann, Magnus; Lenzen, Sigurd; Elsner, Matthias

    2016-01-01

    Type 2 diabetes is associated with increased plasma concentrations of non-esterified fatty acids (NEFAs), which trigger pancreatic β-cell dysfunction and apoptosis. Only long-chain saturated NEFAs induced lipotoxicity in rat insulin-producing cells in in vitro experiments, whereas unsaturated NEFAs were not toxic. Some unsaturated NEFAs even protected against lipotoxicity. In former studies it was suggested that long-chain unsaturated NEFAs, which induce the formation of lipid droplets, can cause sequestration of palmitic acid into lipid droplets. In the present structure-activity-relationship study the correlation between lipid droplet formation and the protection against palmitic acid induced lipotoxicity by unsaturated NEFAs in rat insulin-producing cells was examined. Rat insulin-producing RINm5F and INS-1E tissue culture cells were incubated in the presence of palmitic acid and unsaturated NEFAs with different chain lengths and different numbers of double bonds. The expression of the lipid droplet associated proteins perilipin 1 and 2 was repressed by the shRNA technique and the expression analyzed by qRT-PCR and Western blotting. Viability was measured by MTT assay and the accumulation of lipid droplets was quantified by fluorescence microscopy after Oil Red O staining. Long-chain unsaturated NEFAs strongly induce the formation of lipid droplets in rat insulin-producing RINm5F and INS-1E cells. In RINm5F cells incubated with 11-eicosenoic acid (C20:1) 27 % of the cell area was covered by lipid droplets corresponding to a 25-fold increase in comparison with control cells. On the other hand the saturated NEFA palmitic acid only induced minor lipid droplet formation. Viability analyses revealed only a minor toxicity of unsaturated NEFAs, whereas the cells were markedly sensitive to palmitic acid. Long-chain unsaturated NEFAs antagonized palmitic acid induced lipotoxicity during co-incubation, whereby no correlation existed between protection and the ability

  15. Effects of Spironolactone and Losartan on Diabetic Nephropathy in a Type 2 Diabetic Rat Model

    Directory of Open Access Journals (Sweden)

    Mi Young Lee

    2011-04-01

    Full Text Available BackgroundWhile there is an evidence that the anti-inflammatory properties of spironolactone can attenuate proteinuria in type 2 diabetes, its effects on vascular endothelial growth factor (VEGF expression in diabetic nephropathy have not been clearly defined. In this study, we examined the effects of spironolactone, losartan, and a combination of these two drugs on albuminuria, renal VEGF expression, and inflammatory and oxidative stress markers in a type 2 diabetic rat model.MethodsThirty-three Otsuka-Long-Evans-Tokushima-Fatty (OLETF rats were divided into four groups and treated with different medication regimens from weeks 25 to 50; OLETF diabetic controls (n=5, spironolactone-treated (n=10, losartan-treated (n=9, and combination of spironolactone- and losartan-treated (n=9.ResultsAt week 50, the albumin-to-creatinine ratio was significantly decreased in the losartan and combination groups compared to the control OLETF group. No decrease was detected in the spironolactone group. There was a significant reduction in renal VEGF, transforming growth factor (TGF-β, and type IV collagen mRNA levels in the spironolactone- and combination regimen-treated groups. Twenty-four hour urine monocyte chemotactic protein-1 levels were comparable in all four groups but did show a decreasing trend in the losartan and combination regimen groups. Twenty-four hour urine malondialdehyde levels were significantly decreased in the spironolactone- and combination regimen-treated groups.ConclusionThese results suggest that losartan alone and a combined regimen of spironolactone and losartan could ameliorate albuninuria by reducing renal VEGF expression. Also, simultaneous treatment with spironolactone and losartan may have protective effects against diabetic nephropathy by decreasing TGF-β and type IV collagen expression and by reducing oxidative stress in a type 2 diabetic rat model.

  16. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats.

    Science.gov (United States)

    Ndisang, Joseph Fomusi; Jadhav, Ashok; Mishra, Manish

    2014-01-01

    The growing incidence of chronic kidney disease remains a global health problem. Obesity is a major risk factor for type-2 diabetes and renal impairment. Perirenal adiposity, by virtue of its anatomical proximity to the kidneys may cause kidney disease through paracrine mechanisms that include increased production of inflammatory cytokines. Although heme-oxygenase (HO) is cytoprotective, its effects on perirenal adiposity and diabetic nephropathy in Zucker-diabetic fatty rats (ZDFs) remains largely unclear. Upregulating the HO-system with hemin normalised glycemia, reduced perirenal adiposity and suppressed several pro-inflammatory/oxidative mediators in perirenal fat including macrophage-inflammatory-protein-1α (MIP-1α), endothelin (ET-1), 8-isoprostane, TNF-α, IL-6 and IL-1β. Furthermore, hemin reduced ED1, a marker of pro-inflammatory macrophage-M1-phenotype, but interestingly, enhanced markers associated with anti-inflammatory M2-phenotype such as ED2, CD206 and IL-10, suggesting that hemin selectively modulates macrophage polarization towards the anti-inflammatory M2-phenotype. These effects were accompanied by increased adiponectin, HO-1, HO-activity, atrial-natriuretic peptide (ANP), and its surrogate marker, urinary-cGMP. Furthermore, hemin reduced renal histological lesions and abated pro-fibrotic/extracellular-matrix proteins like collagen and fibronectin that deplete nephrin, an important transmembrane protein which forms the scaffolding of the podocyte slit-diaphragm allowing ions to filter but not massive excretion of proteins, hence proteinuria. Correspondingly, hemin increased nephrin expression in ZDFs, reduced markers of renal damage including, albuminuria/proteinuria, but increased creatinine-clearance, suggesting improved renal function. Conversely, the HO-blocker, stannous-mesoporphyrin nullified the hemin effects, aggravating glucose metabolism, and exacerbating renal injury and function. The hemin effects were less-pronounced in Zucker

  17. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats.

    Directory of Open Access Journals (Sweden)

    Joseph Fomusi Ndisang

    Full Text Available The growing incidence of chronic kidney disease remains a global health problem. Obesity is a major risk factor for type-2 diabetes and renal impairment. Perirenal adiposity, by virtue of its anatomical proximity to the kidneys may cause kidney disease through paracrine mechanisms that include increased production of inflammatory cytokines. Although heme-oxygenase (HO is cytoprotective, its effects on perirenal adiposity and diabetic nephropathy in Zucker-diabetic fatty rats (ZDFs remains largely unclear. Upregulating the HO-system with hemin normalised glycemia, reduced perirenal adiposity and suppressed several pro-inflammatory/oxidative mediators in perirenal fat including macrophage-inflammatory-protein-1α (MIP-1α, endothelin (ET-1, 8-isoprostane, TNF-α, IL-6 and IL-1β. Furthermore, hemin reduced ED1, a marker of pro-inflammatory macrophage-M1-phenotype, but interestingly, enhanced markers associated with anti-inflammatory M2-phenotype such as ED2, CD206 and IL-10, suggesting that hemin selectively modulates macrophage polarization towards the anti-inflammatory M2-phenotype. These effects were accompanied by increased adiponectin, HO-1, HO-activity, atrial-natriuretic peptide (ANP, and its surrogate marker, urinary-cGMP. Furthermore, hemin reduced renal histological lesions and abated pro-fibrotic/extracellular-matrix proteins like collagen and fibronectin that deplete nephrin, an important transmembrane protein which forms the scaffolding of the podocyte slit-diaphragm allowing ions to filter but not massive excretion of proteins, hence proteinuria. Correspondingly, hemin increased nephrin expression in ZDFs, reduced markers of renal damage including, albuminuria/proteinuria, but increased creatinine-clearance, suggesting improved renal function. Conversely, the HO-blocker, stannous-mesoporphyrin nullified the hemin effects, aggravating glucose metabolism, and exacerbating renal injury and function. The hemin effects were less

  18. A Polysaccharide from Ganoderma atrum Improves Liver Function in Type 2 Diabetic Rats via Antioxidant Action and Short-Chain Fatty Acids Excretion.

    Science.gov (United States)

    Zhu, Ke-Xue; Nie, Shao-Ping; Tan, Le-He; Li, Chuan; Gong, De-Ming; Xie, Ming-Yong

    2016-03-09

    The present study was to evaluate the beneficial effect of polysaccharide isolated from Ganoderma atrum (PSG-1) on liver function in type 2 diabetic rats. Results showed that PSG-1 decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while increasing hepatic glycogen levels. PSG-1 also exerted strong antioxidant activities, together with upregulated mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), glucose transporter-4 (GLUT4), phosphoinositide 3-kinase (PI3K), and phosphorylated-Akt (p-Akt) in the liver of diabetic rats. Moreover, the concentrations of short-chain fatty acids (SCFA) were significantly higher in the liver, serum, and faeces of diabetic rats after treating with PSG-1 for 4 weeks. These results suggest that the improvement of PSG-1 on liver function in type 2 diabetic rats may be due to its antioxidant effects, SCFA excretion in the colon from PSG-1, and regulation of hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt signaling pathways.

  19. Omega-3 polyunsaturated fatty acids in large doses attenuate seizures, cognitive impairment, and hippocampal oxidative DNA damage in young kindled rats.

    Science.gov (United States)

    Abdel-Wahab, Basel A; Al-Qahtani, Jobran M; El-Safty, Samy A

    2015-01-01

    Omega-3 (OM3) dietary polyunsaturated fatty acids have promising seizure-protective effects, as well as enhancing effects of cognitive development and memory-related learning. This study aimed to explore the effect of large doses of OM3 on cognitive impairment and hippocampal oxidative DNA damage produced by seizures in epileptic children using a PTZ-kindled young rat model. Cognitive functions, biomarkers of oxidative stress, and DNA damage were assessed in PTZ-kindled young rats (30 mg/kg, i.p. once every other day for 13 injections) pretreated with OM3 (200-500 mg/kg, p.o.). Pretreatment with OM3 at the tested doses significantly attenuated PTZ-induced seizures and decreased cognitive impairment in both passive avoidance and elevated plus maze tests in the PTZ-kindled rats. Moreover, OM3 significantly attenuated the increase in hippocampal malondialdehyde and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as the decrease in reduced glutathione (GSH) levels and GSH-peroxidase activity induced by PTZ kindling, in a dose-related manner. Relatively large dose levels of OM3 (200-500 mg/kg) effectively attenuated seizures and their associated cognitive deficits, and reduced oxidative stress and hippocampal DNA damage in PTZ-kindled young rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Involvement of Proteasome and Macrophages M2 in the Protection Afforded by Telmisartan against the Acute Myocardial Infarction in Zucker Diabetic Fatty Rats with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    C. Di Filippo

    2014-01-01

    Full Text Available This study investigated the involvement of proteasome and macrophages M2 in the protection afforded by telmisartan against the acute myocardial infarction in Zucker diabetic fatty (ZDF rats with metabolic syndrome. ZDF rats were treated for three weeks with telmisartan at doses of 7 and 12 mg/kg/day. After treatment, rats were subjected to a 25 min occlusion of the left descending coronary artery followed by 2 h reperfusion (I/R. At the end of the I/R period, biochemical, immunohistochemical, and echocardiographic evaluations were done. Telmisartan treatment (7 mg/kg and 12 mg/kg reduced the myocardial infarct size, the expression of proteasome subunits 20S and 26S, and the protein ubiquitin within the heart. The compound has led to an increased M2 macrophage phenotype within the cardiac specimens and a modification of the cardiac cytokine and chemokine profile. This was functionally translated in improved cardiac performance as evidenced by echography after 2 h reperfusion. 7 mg/kg/day telmisartan was sufficient to improve the left ventricular ejection fraction LVEF of the rat heart recorded after I/R (e.g., vehicle 38 ± 2.2%; telmisartan 54 ± 2.7% and was sufficient to improve the diastolic function and the myocardial performance index up to values of 0.6 ± 0.01 measured after I/R.

  1. Sex-Differences in Renal Expression of Selected Transporters and Transcription Factors in Lean and Obese Zucker Spontaneously Hypertensive Fatty Rats

    Directory of Open Access Journals (Sweden)

    Andrea Babelova

    2015-01-01

    Full Text Available The aim of this study was to identify sex-dependent expression of renal transporter mRNA in lean and obese Zucker spontaneously hypertensive fatty (ZSF1 rats and to investigate the interaction of the most altered transporter, organic anion transporter 2 (Oat2, with diabetes-relevant metabolites and drugs. Higher incidence of glomerulosclerosis, tubulointerstitial fibrosis, and protein casts in Bowman’s space and tubular lumen was detected by PAS staining in obese male compared to female ZSF1 rats. Real-time PCR on RNA isolated from kidney cortex revealed that Sglt1-2, Oat1-3, and Oct1 were higher expressed in kidneys of lean females. Oct2 and Mrp2 were higher expressed in obese males. Renal mRNA levels of transporters were reduced with diabetic nephropathy in females and the expression of transcription factors Hnf1β and Hnf4α in both sexes. The highest difference between lean and obese ZSF1 rats was found for Oat2. Therefore, we have tested the interaction of human OAT2 with various substances using tritium-labeled cGMP. Human OAT2 showed no interaction with diabetes-related metabolites, diabetic drugs, and ACE-inhibitors. However, OAT2-dependent uptake of cGMP was inhibited by furosemide. The strongly decreased expression of Oat2 and other transporters in female diabetic ZSF1 rats could possibly impair renal drug excretion, for example, of furosemide.

  2. Influence of omega-3 fatty acids from the flaxseed (Linum usitatissimum) on the brain development of newborn rats Influencia de los ácidos grasos omega-3 de la linaza (Linum usitatissimum) en el desarrollo del cerebro de ratas recién nacidas

    OpenAIRE

    K. C. Lenzi Almeida; G. Teles Boaventura; Mª A. Guzmán Silva

    2011-01-01

    Objectives: The importance of essential fatty acids, in particular the omega-3 family, in the central nervous system development of newborns is well documented. The flaxseed (Linum usitatissimum) is considered one of the best vegetable sources of omega-3 fatty acids. The influence of omega-3 fatty acids from flaxseed on the brain development of newborn rats was evaluated. Material and methods: Pups of the F1 generation were obtained from 18 female Wistar rats divided in 3 groups (n = 6), FG: ...

  3. Pancreatic islet function in omega-3 fatty acid-depleted rats: alteration of calcium fluxes and calcium-dependent insulin release.

    Science.gov (United States)

    Zhang, Y; Oguzhan, B; Louchami, K; Chardigny, J-M; Portois, L; Carpentier, Y A; Malaisse, W J; Herchuelz, A; Sener, A

    2006-09-01

    Considering the insufficient supply of long-chain polyunsaturated omega-3 fatty acids often prevailing in Western populations, this report deals mainly with alterations of Ca(2+) fluxes and Ca(2+)-dependent insulin secretory events in isolated pancreatic islets from omega-3-depleted rats. In terms of (45)Ca(2+) handling, the islets from omega-3-depleted rats, compared with those from normal animals, displayed an unaltered responsiveness to an increase in extracellular K(+) concentration, a lower inflow rate and lower fractional outflow rate of the divalent cation, and higher (45)Ca(2+)-labeled cellular pool(s) at isotopic equilibrium. The latter anomaly was corrected 120 min after intravenous injection of a novel medium-chain triglyceride-fish oil (MCT:FO) emulsion, distinct from a control omega-3-poor MCT-olive oil (MCT:OO) emulsion. At 8.3 mM D-glucose, insulin release was higher in islets from omega-3-depleted rats vs. control animals, coinciding with a higher cytosolic Ca(2+) concentration. The relative magnitude of the increase in insulin output attributable to a rise in D-glucose as well as extracellular Ca(2+) or K(+) concentration, to the absence vs. presence of verapamil and to the presence vs. absence of extracellular Ca(2+), theophylline, phorbol 12-myristate 13-acetate, or Ba(2+), was always more pronounced in islets from omega-3-depleted rats injected with the MCT:OO compared with the MCT:FO emulsion. A comparable situation prevailed when comparing islets from noninjected omega-3-depleted and normal rats. In light of these and previous findings, we propose that an impairment of Na(+),K(+)-ATPase activity plays a major, although not an exclusive, role in the perturbation of Ca(2+) fluxes and Ca(2+)-dependent secretory events in the islets from omega-3-depleted rats.

  4. n-3 Polyunsaturated Fatty Acids Improve Inflammation via Inhibiting Sphingosine Kinase 1 in a Rat Model of Parenteral Nutrition and CLP-Induced Sepsis.

    Science.gov (United States)

    Tian, Tao; Zhao, Yunzhao; Huang, Qian; Li, Jieshou

    2016-03-01

    The sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) pathway plays a key role in inflammation. Parenteral nutrition containing n-3 polyunsaturated fatty acids (n-3 PUFA) may regulate inflammatory reactions. The aim of this study is to determine whether n-3 PUFA may improve inflammatory responses by neutralizing SphK1 signaling. Rat models of parenteral nutrition, cecal ligation and puncture (CLP)-induced sepsis were generated. Male Sprague-Dawley rats were operated for CLP on day 2 after venous catheterization. The rats were randomized to receive normal saline (NS; n = 20), parenteral nutrition (PN; n = 20), or PN + fish oil (FO; n = 20) for 5 days. The daily intake of fish oil (1.25-2.82 g EPA and 1.44-3.09 g DHA per 100 ml) in the FO group was approximately 1.8 g/kg body weight/day. Rats in the control group (n = 10) were subjected to sham operation and received a chow diet. Spleen tissues were collected for SphK1 and S1P receptor expression analysis. Our data showed that n-3 PUFA ameliorated the survival rate. SphK1 expression and its enzymatic activity were significantly upregulated in sepsis rats. Furthermore, mRNA and protein levels of S1PR3, but not S1PR1, were also facilitated after CLP. However, PN + FO dramatically decreased SphK1 mRNA level and its enzymatic activity. S1PR3 expression was also attenuated by FO addition. In conclusion, the anti-inflammatory effect of n-3 PUFA may be linked to the inhibition of the SphK1/S1P pathway in a rat model of parenteral nutrition and CLP-induced sepsis.

  5. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Vecera, R; Skottová, N; Vána, P; Kazdová, L; Chmela, Z; Svagera, Z; Walterá, D; Ulrichová, J; Simánek, V

    2003-01-01

    Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.

  6. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  7. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  8. Safety and Health Benefits of Novel Dietary Supplements Consisting Multiple Phytochemicals, Vitamins, Minerals and Essential Fatty Acids in High Fat Diet Fed Rats.

    Science.gov (United States)

    Ramprasath, Vanu Ramkumar; Jones, Peter J H

    2016-01-01

    The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p supplementation reduced WAT (p supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.

  9. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12 reduces oxidative stress markers in a rat model of pregnancy induced hypertension.

    Directory of Open Access Journals (Sweden)

    Nisha G Kemse

    Full Text Available OBJECTIVES: Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH. MATERIALS AND METHODS: Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids. L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day was used to induce hypertension during pregnancy. Blood Pressure (BP was recorded during pregnancy and dams were dissected at d20 of gestation. RESULTS: Animals from the PIH group demonstrated higher (p<0.01 for both systolic and diastolic BP; lower (p<0.01 pup weight; higher dam plasma homocysteine (p<0.05 and dam and offspring malondialdehyde (MDA (p<0.01, lower (p<0.05 placental and offspring liver DHA and higher (p<0.01 tumor necrosis factor-alpha (TNF-ά levels as compared to control. Individual micronutrient supplementation did not offer much benefit. In contrast, combined supplementation lowered systolic BP, homocysteine, MDA and placental TNF-ά levels in dams and liver MDA and protein carbonyl in the offspring as compared to PIH group. CONCLUSION: Key constituents of one carbon cycle (folic acid, vitamin B12 and DHA may play a role in reducing oxidative stress and inflammation in preeclampsia.

  10. Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

    Science.gov (United States)

    Li, Linyi; Yoshitomi, Hisae; Wei, Ying; Qin, Lingling; Zhou, Jingxin; Xu, Tunhai; Wu, Xinli; Zhou, Tian; Sun, Wen; Guo, Xiangyu; Wu, Lili; Wang, Haiyan; Zhang, Yan; Li, Chunna; Liu, Tonghua; Gao, Ming

    2015-01-01

    Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat

  11. Dietary Changes with Omega-3 Fatty Acids Improves the Blood Lipid Profile of Wistar Albino Rats with Hypercholesterolaemia

    OpenAIRE

    Shahida A Khan; Ahmad Makki

    2017-01-01

    Background: Lipid profile is a reasonably reliable parameter for the assessment of cardiovascular risk, besides the anthropometric measurements. Serum lipid dysfunctions in the HDL and LDL components are commonly observed in cardiac patients. Omega-3 fatty acids exhibit a hypolipidemic potential which could be exploited in preventing the onset of this alarmingly increasing problem globally. Aims: To evaluate and compare the effects of different sources of omega-3 fatty acids, on t...

  12. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  13. Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat

    Directory of Open Access Journals (Sweden)

    Kawaratani Hideto

    2009-05-01

    Full Text Available Abstract Background Apart from simple steatosis, the non-alcoholic steatohepatitis (NASH can progress into liver fibrosis and cirrhosis. To date, however, no widely accepted therapeutic modalities have been established against NASH in the clinical practice. To find out promising new therapeutic agents, it is important to employ an appropriate experimental model of NASH, such as association with insulin resistance. Findings In the current study, we found that losartan, a clinically used angiotensin-II type 1 receptor blocker, significantly attenuated a choline-deficient L-amino acid-defined (CDAA diet-induced steatohepatitis in obese diabetic- and insulin resistance-associated Otsuka Long-Evans Tokushima Fatty (OLETF rats. The transforming growth factor-beta, a well-known major fibrogenic cytokine, was also suppressed in a similar magnitude to that of the fibrosis area. Noteworthy was the finding that these inhibitory effects were achieved even at a clinically comparable low dose. Conclusion Since losartan is widely used without serious side effects in the clinical practice, this agent may be an effective new therapeutic strategy against NASH.

  14. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  15. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure.

    Science.gov (United States)

    Zaitone, Sawsan A; Barakat, Bassant M; Bilasy, Shymaa E; Fawzy, Manal S; Abdelaziz, Eman Z; Farag, Noha E

    2015-06-01

    Non-alcoholic fatty liver disease (NAFLD) is closely linked to insulin resistance, oxidative stress, and cytokine imbalance. Boswellic acids, a series of pentacyclic triterpene molecules that are produced by plants in the genus Boswellia, has been traditionally used for the treatment of a variety of diseases. This study aimed at evaluating the protective effect of boswellic acids in a model of diet-induced NAFLD in rats in comparison to the standard insulin sensitizer, pioglitazone. Rats were fed with a high-fat diet (HFD) for 12 weeks to induce NAFLD. Starting from week 5, rats received boswellic acids (125 or 250 mg/kg) or pioglitazone parallel to the HFD. Feeding with HFD induced hepatic steatosis and inflammation in rats. In addition, liver index, insulin resistance index, activities of liver enzymes, and serum lipids deviated from normal. Further, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cyclooxygenase 2 were elevated; this was associated with an increase in hepatic expression of inducible nitric oxide synthase (iNOS) and formation of 4-hydroxy-2-nonenal (HNE). Rats treated with boswellic acids (125 or 250 mg/kg) or pioglitazone showed improved insulin sensitivity and a reduction in liver index, activities of liver enzymes, serum TNF-α and IL-6 as well as hepatic iNOS expression and HNE formation compared to HFD group. Furthermore, at the cellular level, boswellic acids (250 mg/kg) ameliorated the expression of thermogenesis-related mitochondrial uncoupling protein-1 and carnitine palmitoyl transferase-1 in white adipose tissues. Data from this study indicated that boswellic acids might be a promising therapy in the clinical management of NAFLD if appropriate safety and efficacy data are available.

  16. [Effect of Electroacupunctrue Stimulation at "Fenglong"(ST 40) on Expression of SREBP-1 c in Non-alcoholic Fatty Liver Disease Rats].

    Science.gov (United States)

    Yu, Min; Li, Gang; Tang, Cheng-Lin; Gao, Rui-Qi; Feng, Qi-Ting; Cao, Jing

    2017-08-25

    To observe the effect of electroacupuncture(EA) stimulation at "Fenglong"(ST 40) on expression of sterol regulatory element binding protein-1 c(SREBP-1 c) in non-alcoholic fatty liver disease(NAFLD) rats, so as to reveal its mechanism underlying improving NAFLD. Male SD rats were randomly divided into normal diet group, high-fat diet group, ST 40 manual acupuncture (MA) group, ST 40 EA group and "Zusanli"(ST 36) EA group( n =12 in each group). Apart from the normal diet group, rats in other groups were fed with high-fat diet to replicate NAFLD model. ST 40 MA group was treated with filiform needling for 20 min, EA (4 Hz/20 Hz, 5 mA) was applied to bilateral acupoints of ST 40 and ST 36 respectively for 20 min in the ST 40 EA group and ST 36 EA group, once a day for 4 weeks. The pathological changes of hepatic tissue were observed by HE staining. The contents of serum free fatty acid (FFA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by colorimetry. The expression of SREBP-1 c mRNA and protein in the hepatic tissue were detected by reverse transcription-polymerase chain reaction(RT-PCR) and Western blot, respectively. HE staining showed that hepatocytes disorganized with diffuse bullous fat vacuolar changes in rats of the high-fat diet group, and small vesicle steatosis appeared in the ST 40 MA group. The liver cells arranged orderly and the steatosis decreased in the ST 40 EA group and ST 36 EA group. The contents of FFA, ALT, AST in serum and the expression levels of SREBP-1 c mRNA and protein in the hepatic tissue were significantly higher in the high-fat diet group than in the normal diet group( P 40 EA group were better than those in the ST 40 MA group( P 40 EA group in comparison with the ST 36 EA group( P 40 and ST 36 have a positive regulating effect on NAFLD rats, which may be related to down-regulating the expression of SREBP-1 c mRNA and protein in hepatic tissue, improving the endoplasmic reticulum stress and

  17. Similar changes in clinical and pathological parameters in Wistar Kyoto rats after a 13-week dietary intake of canola oil or a fatty acid composition-based interesterified canola oil mimic.

    Science.gov (United States)

    Ohara, Naoki; Naito, Yukiko; Kasama, Kikuko; Shindo, Tomoko; Yoshida, Hiromichi; Nagata, Tomoko; Okuyama, Harumi

    2009-01-01

    Canola oil (CO) given as a dietary fat deteriorates hypertension-related condition and shortens the life of stroke-prone spontaneously hypertensive rats (SHRSP). Although substances other than fatty acids have been presumed as causatives, CO mimics consisting of oils other than CO also shorten the life. In this study we intended to examine whether or not fatty acid composition unique to CO participates in the adverse effect. CO or an interesterified CO mimic (ICOM) consisting of safflower oil, flaxseed oil and erucic acid was fed as a dietary fat for 13 weeks to Wistar Kyoto (WKY) rats, and clinical and pathological signs were compared. WKY rats were used to avoid the difficulty in evaluating the results in SHRSP due to irregular deterioration in conditions by stroke. Compared to a standard diet, both diets containing CO or ICOM similarly elevated blood pressure, increased plasma lipids, activated hepatic glucose-6-phosphate dehydrogenase, decreased platelets, shortened blood coagulation times and induced abnormalities in the kidney. Thus, CO-specific fatty acid composition appeared to affect the pathophysiology of the rat and produce consequent aggravation of pathological status, especially in SHRSP. However, the existence of causative factors other than fatty acids was suggested by increased neutrophil count exclusively induced by CO.

  18. Effects of n-3 and n-6 polyunsaturated fatty acid-enriched diets on lipid metabolism in periportal and pericentral compartments of female rat liver lobules and the consequences for cell proliferation after partial hepatectomy

    NARCIS (Netherlands)

    van Noorden, C. J.

    1995-01-01

    The effects of a low fat diet or diets enriched with either n-6 or n-3 polyunsaturated fatty acids (safflower or fish oil, respectively) on lipid metabolism in periportal and pericentral zones of female rat liver lobules were investigated in relation with cell proliferation after partial

  19. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    Science.gov (United States)

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  20. The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

    Science.gov (United States)

    Cullingford, Tim E; Dolphin, Colin T; Sato, Hitoshi

    2002-04-01

    Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

  1. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    International Nuclear Information System (INIS)

    Yao, Jiayin; Zhi, Min; Gao, Xiang; Hu, Pinjin; Li, Chujun; Yang, Xiaobo

    2013-01-01

    Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg -1 ·day -1 silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms

  2. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    Directory of Open Access Journals (Sweden)

    Jiayin Yao

    Full Text Available Our previous study has shown that reduced insulin resistance (IR was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol. Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR, intraperitoneal glucose tolerance test and insulin tolerance test (ITT were performed. The expression of adipose triglyceride lipase (ATGL and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

  3. Correcting Postprandial Hyperglycemia in Zucker Diabetic Fatty Rats With an SGLT2 Inhibitor Restores Glucose Effectiveness in the Liver and Reduces Insulin Resistance in Skeletal Muscle.

    Science.gov (United States)

    O'Brien, Tracy P; Jenkins, Erin C; Estes, Shanea K; Castaneda, Antonio V; Ueta, Kiichiro; Farmer, Tiffany D; Puglisi, Allison E; Swift, Larry L; Printz, Richard L; Shiota, Masakazu

    2017-05-01

    Ten-week-old Zucker diabetic fatty (ZDF) rats at an early stage of diabetes embody metabolic characteristics of obese human patients with type 2 diabetes, such as severe insulin and glucose intolerance in muscle and the liver, excessive postprandial excursion of plasma glucose and insulin, and a loss of metabolic flexibility with decreased lipid oxidation. Metabolic flexibility and glucose flux were examined in ZDF rats during fasting and near-normal postprandial insulinemia and glycemia after correcting excessive postprandial hyperglycemia using treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2-I) for 7 days. Preprandial lipid oxidation was normalized, and with fasting, endogenous glucose production (EGP) increased by 30% and endogenous glucose disposal (E-Rd) decreased by 40%. During a postprandial hyperglycemic-hyperinsulinemic clamp after SGLT2-I treatment, E-Rd increased by normalizing glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake; activation of glucokinase was restored and insulin action was improved, stimulating muscle glucose uptake in association with decreased intracellular triglyceride content. In conclusion, SGLT2-I treatment improves impaired glucose effectiveness in the liver and insulin sensitivity in muscle by eliminating glucotoxicity, which reinstates metabolic flexibility with restored preprandial lipid oxidation and postprandial glucose flux in ZDF rats. © 2017 by the American Diabetes Association.

  4. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jiayin; Zhi, Min; Gao, Xiang; Hu, Pinjin; Li, Chujun; Yang, Xiaobo [Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province (China)

    2013-03-15

    Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg{sup -1}·day{sup -1} silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

  5. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine

    DEFF Research Database (Denmark)

    Artmann, Andreas; Petersen, Gitte; Hellgren, Lars

    2008-01-01

    acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum...... (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic...... without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide...

  6. Soy protein diet alters expression of hepatic genes regulating fatty acid and thyroid hormone metabolism in the male rat

    Science.gov (United States)

    We determined effects of soy protein (SPI) and the isoflavone genistein (GEN) on mRNA expression of key lipid metabolism and thyroid hormone system genes in young adult, male Sprague-Dawley rats. SPI-fed rats had less retroperitoneal fat and less hepato-steatosis than casein (CAS, control protein)-...

  7. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    International Nuclear Information System (INIS)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of [ 3 H]-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound [ 3 H]oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 μg/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10 4 adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

  8. Modulation of cardiac connexin-43 by omega-3 fatty acid ethyl-ester supplementation demonstrated in spontaneously diabetic rats

    Czech Academy of Sciences Publication Activity Database

    Radošinská, J.; Kurahara, L. H.; Hiraishi, K.; Viczenczová, C.; Egan Beňová, T.; Szeiffová Bačová, B.; Dosenko, V.; Navarová, J.; Obšitník, B.; Imanaga, I.; Soukup, Tomáš; Tribulová, N.

    2015-01-01

    Roč. 64, č. 6 (2015), s. 795-806 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 7AMB14SK123 Institutional support: RVO:67985823 Keywords : diabetes * omega-3 fatty acids * cardiac connexin-43 * PKC * ultrastructure Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  9. Changes in the composition of fatty acids and lipofuscin-like pigments during development of rat heart

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, Jiří; Ivica, Josko; Veselská, Zdeňka; Uhlík, Jiří; Vajner, Luděk

    2015-01-01

    Roč. 64, č. 5 (2015), s. 643-651 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0298 Institutional support: RVO:67985823 Keywords : development * fatty acids * free radicals * heart * lipofuscin-like pigments Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  10. Prescription n-3 fatty acids, but not eicosapentaenoic acid alone, improve reference memory-related learning ability by increasing brain-derived neurotrophic factor levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    Science.gov (United States)

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Tanabe, Yoko; Hossain, Shahdat; Tsuchikura, Satoru; Shido, Osamu

    2013-10-01

    Metabolic syndrome is implicated in the decline of cognitive ability. We investigated whether the prescription n-3 fatty acid administration improves cognitive learning ability in SHR.Cg-Lepr(cp)/NDmcr (SHR-cp) rats, a metabolic syndrome model, in comparison with administration of eicosapentaenoic acid (EPA, C20:5, n-3) alone. Administration of TAK-085 [highly purified and concentrated n-3 fatty acid formulation containing EPA ethyl ester and docosahexaenoic acid (DHA, C22:6, n-3) ethyl ester] at 300 mg/kg body weight per day for 13 weeks reduced the number of reference memory-related errors in SHR-cp rats, but EPA alone had no effect, suggesting that long-term TAK-085 administration improves cognitive learning ability in a rat model of metabolic syndrome. However, the working memory-related errors were not affected in either of the rat groups. TAK-085 and EPA administration increased plasma EPA and DHA levels of SHR-cp rats, associating with an increase in EPA and DHA in the cerebral cortex. The TAK-085 administration decreased the lipid peroxide levels and reactive oxygen species in the cerebral cortex and hippocampus of SHR-cp rats, suggesting that TAK-085 increases antioxidative defenses. Its administration also increased the brain-derived neurotrophic factor levels in the cortical and hippocampal tissues of TAK-085-administered rats. The present study suggests that long-term TAK-085 administration is a possible therapeutic strategy for protecting against metabolic syndrome-induced learning decline.

  11. Evaluation of cellular viability by quantitative autoradiographic study of myocardial uptake of a fatty acid analogue in isoproterenol-induced focal rat heart necrosis

    International Nuclear Information System (INIS)

    Humbert, T.; Luu-Duc, C.; Comet, M.; Demenge, P.

    1991-01-01

    Previous studies led us to hypothesize that a fatty acid analogue, 15-p-iodophenyl-β-methyl pentadecanoic acid (IMPPA or BMIPP), which is taken up but not quickly metabolized by heart cells, would be a more suitable tracer of cellular viability that 201 Tl. Biodistribution studies of 1- 14 C-IMPPA in conscious, freely moving rats showed that the concentration ratio of radioactivity in the heart with respect to the blood was about 8 for at least 60 min after intravenous administration, permitting its use as a putative tracer in these conscious, freely moving rats. Thereafter, the myocardial uptake of 14 C-IMPPA was studied in isoproterenol-treated rats (daily treatment for 10 days in order to induce cardiac hypertrophy and necrotic foci) with respect to control ones. Comparison of myocardial localizations by quantitative autoradiography of the uptake of 201 Tl and 14 C-IMPPA with that of triphenyltetrazolium chloride (TTC) staining enabled comparative evaluation of nutritional blood flow, localization and uptake of 14 C-IMPPA and necrotic foci size. Distributions of 14 C-IMPPA and 201 Tl in control rats' hearts were homogenous, like TTC staining. In infarcted hearts, areas of decreased 14 C-IMPPA uptake were nearly the same (100%±5%) as those unstained by TTC. These areas were larger than those showing a decrease in thallium uptake (about 70%±5% of the total scar size). Therefore, IMPPA seems to be a more accurate and sensitive indicator of necrosis localization compared with thallium. It may be a useful agent for assessment of myocardial viability by single photon emission tomography (SPET) imaging. (orig.)

  12. Prediction of Methionine and Homocysteine levels in Zucker diabetic fatty (ZDF) rats as a T2DM animal model after consumption of a Methionine-rich diet.

    Science.gov (United States)

    Han, Nayoung; Chae, Jung-Woo; Jeon, Jihyun; Lee, Jaeyeon; Back, Hyun-Moon; Song, Byungjeong; Kwon, Kwang-Il; Kim, Sang Kyum; Yun, Hwi-Yeol

    2018-01-01

    Although alterations in the methionine metabolism cycle (MMC) have been associated with vascular complications of diabetes, there have not been consistent results about the levels of methionine and homocysteine in type 2 diabetes mellitus (T2DM). The aim of the current study was to predict changes in plasma methionine and homocysteine concentrations after simulated consumption of methionine-rich foods, following the development of a mathematical model for MMC in Zucker Diabetic Fatty (ZDF) rats, as a representative T2DM animal model. The model building and simulation were performed using NONMEM® (ver. 7.3.0) assisted by Perl-Speaks-NONMEM (PsN, ver. 4.3.0). Model parameters were derived using first-order conditional estimation method with interactions permitted among the parameters (FOCE-INTER). NCA was conducted using Phoenix (ver. 6.4.0). For all tests, we considered a P -value < 0.05 to reflect statistical significance. Our model featured seven compartments that considered all parts of the cycle by applying non-linear mixed effects model. Conversion of S-adenosyl-L-homocysteine (SAH) to homocysteine increased and the metabolism of homocysteine was reduced under diabetic conditions, and consequently homocysteine accumulated in the elimination phase.Using our model, we performed simulations to compare the changes in plasma methionine and homocysteine concentrations between ZDF and normal rats, by multiple administrations of the methionine-rich diet of 1 mmol/kg, daily for 60 days. The levels of methionine and homocysteine were elevated approximately two- and three-fold, respectively, in ZDF rats, while there were no changes observed in the normal control rats. These results can be interpreted to mean that both methionine and homocysteine will accumulate in patients with T2DM, who regularly consume high-methionine foods.

  13. Effect of bariatric surgery combined with medical therapy versus intensive medical therapy or calorie restriction and weight loss on glycemic control in Zucker diabetic fatty rats.

    Science.gov (United States)

    Abegg, Kathrin; Corteville, Caroline; Docherty, Neil G; Boza, Camilo; Lutz, Thomas A; Muñoz, Rodrigo; le Roux, Carel W

    2015-02-15

    Bariatric surgery rapidly improves Type 2 diabetes mellitus (T2DM). Our objective was to profile and compare the extent and duration of improved glycemic control following Roux-en-Y gastric (RYGB) bypass surgery and vertical sleeve gastrectomy (SG) and compare against calorie restriction/weight loss and medical combination therapy-based approaches using the Zucker diabetic fatty rat (ZDF) rodent model of advanced T2DM. Male ZDF rats underwent RYGB (n = 15) or SG surgery (n = 10) at 18 wk of age and received postsurgical insulin treatment, as required to maintain mid-light-phase glycemia within a predefined range (10-15 mmol/l). In parallel, other groups of animals underwent sham surgery with ad libitum feeding (n = 6), with body weight (n = 8), or glycemic matching (n = 8) to the RYGB group, using food restriction or a combination of insulin, metformin, and liraglutide, respectively. Both bariatric procedures decreased the daily insulin dose required to maintain mid-light-phase blood glucose levels below 15 mmol/l, compared with those required by body weight or glycemia-matched rats (P weight regain, and higher insulin requirements vs. RYGB at study end (P < 0.05). Severe hypoglycemia occurred in several rats after RYGB. RYGB and SG significantly improved glycemic control in a rodent model of advanced T2DM. While short-term outcomes are similar, long-term efficacy appears marginally better after RYGB, although this is tempered by the increased risk of hypoglycemia. Copyright © 2015 the American Physiological Society.

  14. Impact of a Standard Rodent Chow Diet on Tissue n-6 Fatty Acids, Δ9-Desaturation Index, and Plasmalogen Mass in Rats Fed for One Year.

    Science.gov (United States)

    Pédrono, F; Boulier-Monthéan, N; Catheline, D; Legrand, P

    2015-11-01

    Although many studies focus on senescence mechanisms, few habitually consider age as a biological parameter. Considering the effect of interactions between food and age on metabolism, here we depict the lipid framework of 12 tissues isolated from Sprague-Dawley rats fed standard rodent chow over 1 year, an age below which animals are commonly studied. The aim is to define relevant markers of lipid metabolism influenced by age in performing a fatty acid (FA) and dimethylacetal profile from total lipids. First, our results confirm impregnation of adipose and muscular tissues with medium-chain FA derived from maternal milk during early infancy. Secondly, when animals were switched to standard croquettes, tissues were remarkably enriched in n-6 FA and especially 18:2n-6. This impregnation over time was coupled with a decrease of the desaturation index and correlated with lower activities of hepatic Δ5- and Δ6-desaturases. In parallel, we emphasize the singular status of testis, where 22:5n-6, 24:4n-6, and 24:5n-6 were exceptionally accumulated with growth. Thirdly, 18:1n-7, usually found as a discrete FA, greatly accrued over the course of time, mostly in liver and coupled with Δ9-desaturase expression. Fourthly, skeletal muscle was characterized by a surprising enrichment of 22:6n-3 in adults, which tended to decline in older rats. Finally, plasmalogen-derived dimethylacetals were specifically abundant in brain, erythrocytes, lung, and heart. Most notably, a shift in the fatty aldehyde moiety was observed, especially in brain and erythrocytes, implying that red blood cell analysis could be a good indicator of brain plasmalogens.

  15. Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis.

    Science.gov (United States)

    Oliveira Junior, Silvio A; Padovani, Carlos R; Rodrigues, Sergio A; Silva, Nilza R; Martinez, Paula F; Campos, Dijon Hs; Okoshi, Marina P; Okoshi, Katashi; Dal-Pai, Maeli; Cicogna, Antonio C

    2013-04-15

    Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling

  16. Inhibition of rat lipoprotein lipid peroxidation by the oral administration of D003, a mixture of very long-chain saturated fatty acids.

    Science.gov (United States)

    Menéndez, R; Más, R; Amor, A M; Ledón, N; Pérez, J; González, R M; Rodeiro, I; Zayas, M; Jiménez, S

    2002-01-01

    Previous results have demonstrated that policosanol, a mixture of aliphatic primary alcohols isolated and purified from sugar cane wax, whose main component is octacosanol, inhibited lipid peroxidation in experimental models and human beings. D003 is a defined mixture of very long-chain saturated fatty acids, also isolated and purified from sugar cane wax, whose main component is octacosanoic acid followed by traicontanoic, dotriacontanoic, and tetracontanoic acids. Since very long-chain fatty acids are structurally related to their corresponding alcohols, we investigated the effect of oral treatment with D003 (0.5, 5, 50, and 100 mg/kg) over 4 weeks in reducing the susceptibility of rat lipoprotein to oxidative modification. The combined rat lipoprotein fraction VLDL + LDL was subjected to several oxidation systems, including those containing metal ions (CuSO4), those having the capacity to generate free radicals 2,2-azobis-2-amidinopropane hydrochloride (AAPH), and a more physiological system (resident macrophages). D003 (5, 50, and 100 mg/kg) significantly inhibited copper-mediated conjugated-diene generation in a concentration-dependent manner. D003 increased lag phase by 53.1, 115.3, and 119.3%, respectively, and decreased the rate of conjugate-diene generation by 16.6, 21.5, and 19.6%, respectively. D003 also inhibited azo-compound initiated and macrophage-mediated lipid peroxidation as judged by the significant decrease in thiobarbituric acid reactive substance (TBARS) generation. In all the systems the maximum effect was attained at 50 mg/kg. There was also a parallel attenuation in the reduction of lysine amino groups and a significant reduction of carbonyl content after oxidation of lipoprotein samples. Taken together, the present results indicate that oral administration of D003 protects lipoprotein fractions against lipid peroxidation in the lipid as well in the protein moiety.

  17. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  18. A High-Fat Diet Enriched with Low Omega-6 to Omega-3 Fatty Acid Ratio Reduced Fat Cellularity and Plasma Leptin Concentration in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    A. W. Tekeleselassie

    2013-01-01

    Full Text Available This study was aimed to investigate the effects of dietary fatty acids on the accretion pattern of major fat pads, inguinal fat cellularity, and their relation with plasma leptin concentration. Forty Sprague-Dawley rats were randomly assigned into four groups and received the following diets for 22 weeks: (1 standard rat chow diet (CTRL, (2 CTRL + 10% (w/w butter (HFAR, (3 CTRL + 3.33% (w/w menhaden fish oil + 6.67% (w/w soybean oil (MFAR, and (4 CTRL + 6.67% (w/w menhaden fish oil + 3.33% (w/w soybean oil (LFAR. Inguinal fat cellularity and plasma leptin concentration were measured in this study. Results for inguinal fat cellularity showed that the mean adipocyte number for the MFAR (9.2 * 105 ± 3.6 and LFAR (8.5 * 105 ± 5.1 groups was significantly higher (P<0.05 than the rest, while the mean adipocyte diameter of HFAR group was larger (P<0.05 (46.2 ± 2.8 than the rest. The plasma leptin concentration in the HFAR group was higher (P<0.05 (3.22 ± 0.32 ng/mL, than the other groups. The higher inguinal fat cellularity clearly indicated the ability of the polyunsaturated fatty acids (PUFA and butter supplemented diets to induce hyperplasia and hypertrophy of fat cells, respectively, which caused adipocyte remodeling due to hyperleptinemia.

  19. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  20. Bile acid elevation after Roux-en-Y gastric bypass is associated with cardio-protective effect in Zucker Diabetic Fatty rats.

    Science.gov (United States)

    Kumar, Sunil; Lau, Raymond; Hall, Christopher; Palaia, Thomas; Brathwaite, Collin E; Ragolia, Louis

    2015-12-01

    Roux-en-Y gastric bypass (RYGB) may improve cardiometabolic risk through alteration of bile acids and L-PGDS levels. The objective of this study was to investigate the effect of RYGB on aortic wall thickness, in relation to bile acid and L-PGDS metabolism. Zucker diabetic fatty (ZDF) rats were divided into two groups, ad lib (n = 4), and RYGB (n = 6). Bile acid and L-PGDS were measured presurgery and fourteen weeks post-surgery. Elevation of bile acid levels following RYGB in Zucker Diabetic Fatty (ZDF) rodents was observed, as compared to ad lib. RYGB in ZDF rodents led to a significantly decreased aortic wall thickness (25%) as compared to ad lib control. Although bile acid metabolism is implicated in these alterations, other mediators are likely involved. Our laboratory has demonstrated lipocalin prostaglandin D2 synthase (L-PGDS) is a kno n cardiometabolic modulator that also functions as a bile acid binding protein. Therefore, L-PGDS levels were measured and a significant elevation was observed with RYGB compared to ad lib control. Based on these findings, RYGB showed beneficial effect on aortic wall thickness, possibly through bile acids and L-PGDS elevation in a severely obese and diabetic rodent model. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  1. Effects of Intake of Maternal Dietary Elaidic Acids during Pregnancy and Lactation on the Fatty Acid Composition of Plasma, Erythrocyte Membrane, and Brain in Rat Pups

    Directory of Open Access Journals (Sweden)

    Noriko Komatsuzaki

    2013-01-01

    Full Text Available To investigate the effects of a dam’s dietary elaidic acid (EA intake during pregnancy and lactation on the fatty acid composition of plasma, erythrocyte membrane, and brain in rat pups, we fed two groups of dams either a soybean oil diet (SOD or a shortening diet (SHD containing soybean oil (10% or shortening (10%, respectively. Although EA was not detected in the SOD, EA accounted for 25.3% of all fatty acid content in the SHD. On day 8 after birth, the EA levels in the stomach, plasma, and erythrocyte membrane of pups nursed by the dams fed the SHD were %, %, and %, respectively. Although on day 8 after birth the EA level of the brains of pups nursed by SHD-fed dams was %, EA was not detected on day 21 or day 82 after birth. These results suggest that EA intake during pregnancy and lactation supplies EA to plasma, remains in the erythrocyte membrane of pups, and moves into the brain in early infancy.

  2. Time-related fatty acid profiles of plasma and lymph after gastric administration of fats to rats fed high-fat diets

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Straarup, E. M.; Brand, C. L.

    2000-01-01

    We examined in rats the intestinal absorption of 4 different dietary fats (rapeseed oil (RO), rapeseed oil interesterified with decanoic acid (R/C10), olive oil (OO), and butter) after feeding a high-fat (30 wt-%) diet rich in trans-fatty acids (mainly trans-C18:1) for 3 weeks. The trans...... investigated. Although decreasing during the early absorptive phase a continuous contribution of endogenous trans-C18:I and arachidonic acid was observed in plasma. Small differences were observed between the 4 dietary fats. In lymph, the transport of trans-C18:1 rose markedly after butter administration...... partly caused by the content of this fatty acid in butter, while the transport of trans-C18:1 after R/C10 was unchanged although still transported at a reasonable high rate. The transport of arachidonic acid increased after administration of both butter and R/C10. Minor changes were observed in plasma...

  3. A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway.

    Science.gov (United States)

    Aoun, Manar; Michel, Francoise; Fouret, Gilles; Casas, Francois; Jullien, Melanie; Wrutniak-Cabello, Chantal; Ramos, Jeanne; Cristol, Jean-Paul; Coudray, Charles; Carbonneau, Marie-Annette; Feillet-Coudray, Christine

    2010-12-01

    High-fat or high-fat-high-sucrose diets are known to induce non-alcoholic fatty liver disease and this is emerging as one of the most common liver diseases worldwide. Some polyphenols have been reported to decrease rat hepatic lipid accumulation, in particular those extracted from red grapes such as resveratrol. The present study was designed to determine whether a polyphenol extract (PPE), from red grapes, modulates liver fatty acid composition and desaturase activity indexes in rats fed a high-fat-high-sucrose (HFHS) diet, and to explore whether sirtuin-1 deacetylase activation was implicated in the effect of the PPE against liver steatosis. The effect of this PPE on mitochondriogenesis and mitochondrial activity was also explored. The PPE decreased liver TAG content in HFHS+PPE diet-fed rats in comparison with HFHS diet-fed rats. The PPE had no effect on liver fatty acid composition, desaturase activity indexes and stearoyl-CoA desaturase 1 (SCD1) gene expression. Sirtuin-1 deacetylase protein expression was significantly increased with the PPE; AMP kinase protein expression was higher with the PPE in comparison with the HFHS rats, but no modification of phosphorylated AMP kinase was observed. Protein expression of phospho-acetyl-CoA carboxylase was decreased in HFHS rats and returned to basal values with the PPE. Finally, the PPE modulated PPARγ coactivator-1α (PGC-1α) but did not modify mitochondriogenesis and mitochondrial activity. In conclusion, the PPE partially prevented the accumulation of TAG in the liver by regulating acetyl-CoA carboxylase phosphorylation, a key enzyme in lipid metabolism, probably via sirtuin-1 deacetylase activation. However, the PPE had no effect on the qualitative composition of liver fatty acids.

  4. Dietary Blueberry and Bifidobacteria Attenuate Nonalcoholic Fatty Liver Disease in Rats by Affecting SIRT1-Mediated Signaling Pathway

    Science.gov (United States)

    Ren, Tingting; Huang, Chao; Cheng, Mingliang

    2014-01-01

    NAFLD model rats were established and divided into NAFLD model (MG group), SIRT1 RNAi (SI group), blueberry juice (BJ group), blueberry juice + bifidobacteria (BJB group), blueberry juice + SIRT1 RNAi (BJSI group), and blueberry juice + bifidobacteria + SIRT1 RNAi groups (BJBSI group). A group with normal rats was a control group (CG). BJB group ameliorated NAFLD, which was better than BJ group (P Blueberry juice and bifidobacteria improve NAFLD by activating SIRTI-mediating signaling pathway. PMID:25544867

  5. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision.

    Science.gov (United States)

    Baumgartner, Jeannine; Smuts, Cornelius M; Zimmermann, Michael B

    2014-06-13

    We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56-91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on the conversion of ALA to EPA and DHA.

  6. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity.

    Directory of Open Access Journals (Sweden)

    Yumei Wang

    Full Text Available BACKGROUND: Dipeptidyl peptidase 4 (DPP4 and angiotensin-converting enzyme (ACE are important target enzymes in glycemic control and renovascular protection. Here, we studied the effect of NWT-03, an egg protein hydrolysate with DPP4- and ACE-inhibitory activity, on renovascular damage in Zucker diabetic fatty (ZDF rats. Comparisons were made to rats treated with vildagliptin (VIL, included as a positive control for the effect of DPP4 inhibition. METHODS: ZDF rats received NWT-03 (1 g/kg/day or VIL (3 mg/kg/day from 10 to 25 weeks of age. Metabolic and renal functions were assessed; the kidney was removed for histological analysis of glomerulosclerosis and expression of pro-inflammatory/fibrotic markers (RT-PCR and Western blotting; and the aorta was removed for studies of endothelium-dependent relaxation (EDR. FINDINGS: Hyperinsulinemic ZDF rats typically developed signs of type-2 diabetes and renovascular damage, as evidenced by albuminuria, glomerulosclerosis, and impaired EDR. Neither NWT-03 nor VIL improved metabolic parameters; for VIL, this was despite a 5-fold increase in glucagon-like peptide (GLP-1 levels. NWT-03 and VIL both reduced renal interleukin (Il-1β/Il-13 mRNA expression and glomerulosclerosis. However, only NWT-03 additionally decreased renal tumor necrosis factor (TNF-α mRNA and P22(phox protein expression, reduced albuminuria, and restored aortic EDR. Indomethacin added to the organ bath instantly improved aortic EDR, indicating a role for cyclooxygenase (COX-derived contractile prostanoids in opposing relaxation in ZDF rats. This indomethacin effect was reduced by NWT-03, but not by VIL, and coincided with decreased renal COX-1/2 protein expression. CONCLUSION AND INTERPRETATION: Long-term supplementation with the egg protein hydrolysate NWT-03 attenuated renovascular damage in this preclinical rat model of type 2 diabetes. A comparison to the DPP4-inhibitor VIL suggests that the effects of NWT-03 were related to both

  7. Metabolism of fatty acids and the levels of ketone bodies in the livers of pyridoxine-deficient rats

    International Nuclear Information System (INIS)

    Gomikawa, Shuzo; Okada, Mitsuko

    1978-01-01

    Lipid metabolism was examined in rats fed a high-protein pyridoxine-deficient diet, and their livers were found to contain large amounts of lipids, mainly in the forms of triglycerides and cholesteryl ester. The contents of ketone bodies in the livers of pyridoxine-deficient and the control rats were similar. Their NAD + /NADH ratios, calculated from the amounts of ketone bodies, were also similar in pyridoxine-deficient and control groups when the animals were fed, but the ratio in pyridoxine-deficient rats was lower than that of control rats when the animals were starved. After injection of 14 C-linoleic acid, the amounts of expired 14 CO 2 in pyridoxine-deficient and control rats were similar. The pattern of incorporations of 14 C-linoleic acid into various lipid components of the livers were examined; incorporation into the phospholipid fraction was similar in control and deficient rats, but the incorporation into the triglyceride fraction was slower, and the incorporation into cholesterol was faster in deficient animals than in controls. (auth.)

  8. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats.

    Science.gov (United States)

    Liu, Jiali; Han, Lina; Zhu, Leilei; Yu, Yerong

    2016-02-11

    The incidence of non-alcoholic fatty liver disease (NAFLD), commonly associated with obesity and metabolic syndrome, is increasing worldwide. However, the specific mechanisms that mediate the progression from simple steatosis to non-alcoholic steatohepatitis remain largely unclear. This study aimed to investigate the time dependent changes of triglyceride (TG) and free fatty acid (FFA) levels in the blood and liver over 24 weeks in high-fat diet-induced obese rats with NAFLD and to clarify the role of high FFA levels in the progression of liver injury. Male Wistar rats were randomly divided into three groups (n = 30 per group): the Control group, fed standard chow; the High-fat diet (HFD) group, fed high-fat chow; and the Acipimox group, fed an HFD plus acipimox (100 mg/kg/d, ig) for 8, 16 and 24 weeks. After treatment, blood and liver samples were collected for biochemical analyses, western blotting analysis and a histopathological study. The visceral fat/weight and liver/body weight ratios were higher in both the HFD and Acipimox groups than in the Control group. The TG and FFA concentrations in blood and liver were increased in the HFD group and associated with elevated serum alanine aminotransferase (ALT) and liver malondialdehyde (MDA) levels and macro/microvesicular steatosis on hepatic fragments. Although the TG levels in the liver were similar between the HFD and Acipimox groups (p > 0.05), the FFA concentrations in the blood and liver were much lower in the latter group (p 0.05), but the protein expression level of carnitine palmitoyltransferase 1a (CPT-1a) was higher in the Acipimox group. Liver TG accumulation does not cause cellular injury in the liver; rather, FFAs or their metabolites are responsible for liver injury via increased oxidative stress. It is suggested that the therapeutic efforts to prevent non-alcoholic liver injury progression should be focused on reducing the burden of fatty acids transported to the liver or those being synthesized in

  9. Cardiac Connexin-43 and PKC Signaling in Rats With Altered Thyroid Status Without and With Omega-3 Fatty Acids Intake

    Czech Academy of Sciences Publication Activity Database

    Szeiffová Bačová, B.; Egan Beňová, T.; Viczenczová, C.; Soukup, Tomáš; Rauchová, Hana; Pavelka, Stanislav; Knezl, V.; Barančík, M.; Tribulová, N.

    2016-01-01

    Roč. 65, Suppl.1 (2016), S77-S90 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * Connexin-43 * omega-3 polyunsaturated fatty acids Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  10. Chylomicron Remnants and Nonesterified Fatty Acids Differ in Their Ability to Inhibit Genes Involved in Lipogenesis in Rats123

    OpenAIRE

    Kohan, Alison B.; Qing, Yang; Cyphert, Holly A.; Tso, Patrick; Salati, Lisa M.

    2010-01-01

    Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated...

  11. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).

    Science.gov (United States)

    Shi, Li-juan; Shi, Lei; Song, Guang-yao; Zhang, He-fang; Hu, Zhi-juan; Wang, Chao; Zhang, Dong-hui

    2013-08-15

    The aim of this study was to examine the therapeutic effect of oxymatrine, a monomer isolated from the medicinal plant Sophora flavescens Ait, on the hepatic lipid metabolism in non-alcoholic fatty liver (NAFLD) rats and to explore the potential mechanism. Rats were fed with high fructose diet for 8 weeks to establish the NAFLD model, then were given oxymatrine treatment (40, 80, and 160 mg/kg, respectively) for another 8 weeks. Body weight gain, liver index, serum and liver lipids, and histopathological evaluation were measured. Enzymatic activity and gene expression of the key enzymes involved in the lipogenesis and fatty acid oxidation were assayed. The results showed that oxymatrine treatment reduced body weight gain, liver weight, liver index, dyslipidemia, and liver triglyceride level in a dose dependant manner. Importantly, the histopathological examination of liver confirmed that oxymatrine could decrease the liver lipid accumulation. The treatment also decreased the fatty acid synthase (FAS) enzymatic activity and increased the carnitine palmitoyltransferase 1A (CPT1A) enzymatic activity. Besides, oxymatrine treatment decreased the mRNA expression of sterol regulatory element binding transcription factor 1(Srebf1), fatty acid synthase (Fasn), and acetyl CoA carboxylase (Acc), and increased the mRNA expression of peroxisome proliferator activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), and acyl CoA oxidase (Acox1) in high fructose diet induced NAFLD rats. These results suggested that the therapeutic effect of oxymatrine on the hepatic steatosis in high fructose diet induced fatty liver rats is partly due to down-regulating Srebf1 and up-regulating Pparα mediated metabolic pathways simultaneously. © 2013 Elsevier B.V. All rights reserved.

  12. EGb761, a Ginkgo biloba extract, is effective against atherosclerosis in vitro, and in a rat model of type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Soo Lim

    Full Text Available BACKGROUND: EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes. METHODS AND RESULTS: EGb761 (100 and 200 mg/kg or normal saline (control were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury. Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity. CONCLUSIONS: EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis.

  13. Evaluation of the reproductive and developmental toxicity of the D-003, a mixture of long-chain fatty acids, in rats and rabbits.

    Science.gov (United States)

    Rodríguez, M D; González, J E; Alemán, C; Rodeiro, I; Arango, E; Gámez, R; Valdés, S; García, H; Goicochea, E; Acosta, C P

    2004-12-01

    D-003 is a mixture of long-chain fatty acids isolated and purified from sugar cane wax with cholesterol-lowering properties. D-003 given orally (500 and 1000 mg/kg/day) to female rats for 15 days prior to mating, through mating and gestation to day 21 of lactation and male rats for 4 weeks prior and during mating did not induce toxic effects on reproduction. There were no significant reductions in the number of animals that conceived, in the numbers of pups born to those that did conceive, in the numbers of pups that survived until weaning, and in their body weights at weaning. Drug-treated and control groups' offspring were comparable in growth, physical and behavioral development, spontaneous activity and reproductive performance. Pregnant New Zealand rabbits were given D-003 as oral doses of 500 and 1000 mg/kg/day on days 6 through 18 of gestation without any evidence of embryotoxicity or teratogenicity. The no-observed-effect dose in these two experimental studies was 1000 mg/kg/day. After assessment of the potential of high doses of D-003 to act on developing embryo and reproduction process, no evidence supports the conclusion that D-003 is a reproductive and developmental toxicant/teratogen.

  14. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  15. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P strategy to improve some of the plasma and liver alterations featured by the MS.

  16. Maternal essential fatty acid supplementation increases zinc absorption in neonatal rats: relevance to the defect in zinc absorption in acrodermatitis enteropathica

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, S.C.

    1982-08-01

    Pregnant zinc deficient and zinc adequate rats were injection subcutaneously with evening primrose oil throughout gestation and for 3 days post partum. The nursing pups were injected intragastrically with /sup 65/Zn on day 3 of live and sacrifices 4 hr later. The % of the total injected zinc recovered in the carcass (minus the gut and gut contents) was significantly increased in those pups nursed by mothers injected with evening primrose oil, regardless of their dietary zinc intake. The fatty acid composition of the total lipid extract of the gut and gut contents of the neonates with increased /sup 65/Zn absorption indicated that these pups had higher proportions of arachidonic acid and other metabolites of linoleic than did those with lower /sup 65/Zn absorption. In other 3-day-old rat pups, intragastric injection of linoleic, gamma-linolenic or dihomo-gamma-linolenic acids along with the dose /sup 65/Zn very significantly increased /sup 65/Zn absorption in a dose-related manner. Arachindonic acid however had no significant effect on /sup 65/Zn absorption. Prostaglandin E1 caused a significant increase in /sup 65/Zn absorption but prostaglandin E2 had no consistant effect. Indomethacin caused a dosa-related inhibition of /sup 65/Zn absorption.

  17. Protective Effect of Prunus Cerasus (Sour Cherry Seed Extract on the Recovery of Ischemia/Reperfusion-Induced Retinal Damage in Zucker Diabetic Fatty Rat

    Directory of Open Access Journals (Sweden)

    Balázs Varga

    2017-10-01

    Full Text Available Among diabetes patients, ophthalmological complications are very frequent. High blood glucose and (consequential ischemia-reperfusion (I/R injury contribute significantly to the severity of retinopathies. Diabetic retinopathy is among the leading causes of blindness. Our study demonstrates the effect of sour cherry seed extract (SCSE on blood glucose and function of the retina with electroretinography (ERG in a diabetic setting with or without ischemia-reperfusion (I/R injury in Zucker Diabetic Fatty (ZDF rats. Our results prove that the SCSE has a retinoprotective effect in diabetic rats: according to ERG measurements, SCSE treatment mitigated the retinal function-damaging effect of diabetes, and proved to be protective in the diabetic eye against ischemia-reperfusion injuries of the retina. Outcomes suggest that the protective effects of SCSE may occur through several pathways, including HO-1 dependent mechanisms. The observation that SCSE treatment decreases blood glucose is also novel. These findings offer the possibility for development of novel therapeutic strategies utilizing this emerging functional food, in particular in the prevention of conditions resulting from high blood glucose or I/R injury, such as deterioration of retinal microcirculation.

  18. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood.

    Science.gov (United States)

    Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates

    2015-09-05

    The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights

  19. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD

    Directory of Open Access Journals (Sweden)

    Dervola Kine S

    2012-12-01

    Full Text Available Abstract Background Previous reports suggest that omega-3 (n-3 polyunsaturated fatty acids (PUFA supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR. SHR dams were given n-3 PUFA (EPA and DHA-enriched feed (n-6/n-3 of 1:2.7 during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY control rats were given control-feed (n-6/n-3 of 7:1. During postnatal days (PND 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms

  20. [Effects of dietary different ratios of n-3 to n-6 polyunsaturated fatty acids influence lipid metabolism and appetite of rats].

    Science.gov (United States)

    Jia, Manxue; Xue, Nan; Cao, Zipeng; Liu, Hanqiang

    2009-03-01

    To study the effects of dietary different ratios of n-3 to n-6 polyunsaturated fatty acids on food intake of SD rats and potential mechanisms. According to their serum total cholesterol level, male rats were randomly divided into 6 groups, and were fed common feed diet, high fat diet, high fat with n-3/n-6 1:1 PUFA diet, high fat with n-3/n-6 1:5 PUFA diet, common feed with n-3/n-6 1:1 PUFA diet, and common feed with n-3/n-6 1:5 PUFA diet, respectively. Weights were measured about every 6 days, and food intake were measured everyday. At 0, 15, 30 and 45 days, triglycerides (TG) and total cholesterol (TC) in the plasma were measured using kits. After 45 days, the rats were sacrificed. RT-PCR was used for measuring the expression of neuropepide Y (NPY) and AMP-activated protein kinase-alpha2 (AMPK-alpha2) mRNA in the hypothalamus. Four diets with any ratio of n-3/n-6 PUFA resulted in significant restraint of body weight gain, TC and TG level in the plasma, NPY and AMPK-alpha2 mRNA level in the hypothalamus compared to high fat diets (P < 0.05). These situations in two groups with common diet and one group with high diet added 1:1 PUFA are more significant than the high fat diet group. These results indicate that dietary PUFA improved lipid metabolism which may be related with appetite control through AMPK path.

  1. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity

    Science.gov (United States)

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle. PMID:24408995

  2. Effect of high saturated free fatty acids feeding on progression of renal failure in rat model of experimental nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Zaid O. Ibraheem

    2012-02-01

    Full Text Available The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFDreceived an experimental high fat diet rich in palm kernel oil (40% of Calories as fat for the same period. The third group (HFDG was given 80 mg/kg (body weight/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure.

  3. Effects on lipid and glucose metabolism of diets with different types of fat and sugar in male fatty Zucker rats

    NARCIS (Netherlands)

    Waard, de H.

    1978-01-01

    The nutritional problem with regard to fat and sugar consumption in relation to lipid and glucose metabolism, and the ultimate goal of the study are generally outlined in Chapter 1. The obese Zucker rat was chosen as being likely a suitable animal model for a study like this. Chapter 2 is

  4. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    of formation of H-labelled 15-keto-dihydro-prostaglandin E plus 15-keto-prostaglandin E in high speed supernatants of lung and kidney from each of the groups of rats. Dehydrogenase activity (expressed as either pmol/min per mg soluble protein, or as nmol/min per g tissue) was decreased 30-40% in the lungs...

  5. A non-MHC locus essential for autoimmune type I diabetes in the Komeda Diabetes-Prone rat.

    OpenAIRE

    Yokoi, N; Kanazawa, M; Kitada, K; Tanaka, A; Kanazawa, Y; Suda, S; Ito, H; Serikawa, T; Komeda, K

    1997-01-01

    The Long-Evans Tokushima Lean (LETL) rat, characterized by rapid onset of insulin-dependent (type I) diabetes mellitus (IDDM), no sex difference in the incidence of IDDM, autoimmune destruction of pancreatic beta cells, and no significant T cell lymphopenia, is a desirable animal model for human IDDM. We have established a diabetes-prone substrain of the LETL rat, named Komeda Diabetes-Prone (KDP) rat, showing a 100% development of moderate to severe insulitis within 220 d of age. The cumulat...

  6. Chow fed UC Davis strain female Lepr fatty Zucker rats exhibit mild glucose intolerance, hypertriglyceridemia, and increased urine volume, all reduced by a Brown Norway strain chromosome 1 congenic donor region.

    Directory of Open Access Journals (Sweden)

    Craig H Warden

    Full Text Available Our objective is to identify genes that influence the development of any phenotypes of type 2 diabetes (T2D or kidney disease in obese animals. We use the reproductively isolated UC Davis fatty Zucker strain rat model in which the defective chromosome 4 leptin receptor (LeprfaSte/faSte results in fatty obesity. We previously produced a congenic strain with the distal half of chromosome 1 from the Brown Norway strain (BN on a Zucker (ZUC background (BN.ZUC-D1Rat183-D1Rat90. Previously published studies in males showed that the BN congenic donor region protects from some phenotypes of renal dysfunction and T2D. We now expand our studies to include females and expand phenotyping to gene expression. We performed diabetes and kidney disease phenotyping in chow-fed females of the BN.ZUC-D1Rat183-D1Rat90 congenic strain to determine the specific characteristics of the UC Davis model. Fatty LeprfaSte/faSte animals of both BN and ZUC genotype in the congenic donor region had prediabetic levels of fasting blood glucose and blood glucose 2 hours after a glucose tolerance test. We observed significant congenic strain chromosome 1 genotype effects of the BN donor region in fatty females that resulted in decreased food intake, urine volume, glucose area under the curve during glucose tolerance test, plasma triglyceride levels, and urine glucose excretion per day. In fatty females, there were significant congenic strain BN genotype effects on non-fasted plasma urea nitrogen, triglyceride, and creatinine. Congenic region genotype effects were observed by quantitative PCR of mRNA from the kidney for six genes, all located in the chromosome 1 BN donor region, with potential effects on T2D or kidney function. The results are consistent with the hypothesis that the BN genotype chromosome 1 congenic region influences traits of both type 2 diabetes and kidney function in fatty UC Davis ZUC females and that there are many positional candidate genes.

  7. [Comparative study between two different sources of n-3 poliunsaturated fatty acids and it effect on thymus and lipid profile in rats].

    Science.gov (United States)

    Fernandez, Inés; Pallaro, Anabel N; Slobodianik, Nora H

    2007-06-01

    In the present paper we analyzed the effect caused by different recovery diets enriched with n-3 polyunsaturated fatty acids (PUFA n-3) on thymus and serum lipid pattern. Severe depleted weanling Wistar rats (D) were divided in three groups that received during 10 days a 20% casein diet supplemented with EPA+DHA (group Cas), a 20% protein milk diet prepared using a commercial reduced-fat product enriched with linolenic and linoleic acids (group L) and a 20% casein diet as control group C. Cas and L gave each other 24 mg/day of PUFA n-3 being the ratio n-6/n-3 8.1/1 and 7.6/1, respectively. Thymus was removed and weighted and cell number were determined; blood was recollected and Total cholesterol, triacylglycerol, HDL and LDL-cholesterol fractions and myristic, palmitic, stearic, oleic, linoleic, linolenic, araquidonic, EPA and DHA fatty acid concentrations were measured in serum. Statistical analysis was performed using Anova test. Cell number were higher (p<0.01) in Cas (44.48+/-8.20) and in L (56.45+/-14.72) when compared to group D (1.80+/-0.70) and group C (23.70+/-4.04). L presented lower values of cholesterol, HDL and LDL-cholesterol (p<0.01) and higher values of triacylglycerol (p<0.05) when compared to Cas, being EPA (p<0.05) and DHA (p<0.01) higher in Cas. Being PUFA n-3 contribution the same in Cas and L, both diets were able to reverse the thymic athropy presenting a different hipolipemic behavior due to the different sources of PUFA n-3 used in the diets.

  8. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats.

    Directory of Open Access Journals (Sweden)

    Elnaz Karimian Azari

    Full Text Available PPAR-α plays a key role in lipid metabolism; it enhances fatty acid oxidation (FAO and ketogenesis. Pharmacological PPAR-α activation improves insulin sensitivity and reduces food intake, but its mechanisms of action remain unknown. We here report that intraperitoneal (IP administration of the PPAR-α agonist Wy-14643 (40 mg/kg BW reduced food intake in adult male rats fed a high-fat diet (HFD, 49% of the energy mainly through an increase in the latency to eat after injection, and without inducing a conditioned taste avoidance. Also, IP administered Wy-14643 caused an acute (the first 60 min decrease in the respiratory quotient (RQ and an increase in hepatic portal vein β-hydroxybutyrate level (at 35 min without affecting plasma non-esterified fatty acids. Given the known stimulatory effect of PPAR-α on FAO and ketogenesis, we measured the protein expression level of carnitine palmitoyltransferase-1 (CPT 1A and mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMG-CoAS2, two key enzymes for FAO and ketogenesis, respectively, in liver, duodenum and jejunum. Wy-14643 induced a significant increase in the expression of CPT 1A in the jejunum and duodenum and of HMG-CoAS2 in the jejunum, but neither CPT 1A nor HMG-CoAS2 expression was increased in the liver. The induction of CPT 1A and HMG-CoAS2 expression was associated with a decrease in the lipid droplet content selectively in the jejunum. Our findings indicate that Wy-14643 stimulates FAO and ketogenesis in the intestine, in particular in the jejunum, rather than in the liver, thus supporting the hypothesis that PPAR-α activation inhibits eating by stimulating intestinal FAO.

  9. Early life stress interacts with the diet deficiency of omega-3 fatty acids during the life course increasing the metabolic vulnerability in adult rats.

    Directory of Open Access Journals (Sweden)

    Juliana R Bernardi

    Full Text Available Early stress can cause metabolic disorders in adulthood. Omega-3 polyunsaturated fatty acids (n-3 PUFAs deficiency has also been linked to the development of metabolic disorders. The aim of this study was to assess whether an early stressful event such as maternal separation interacts with the nutritional availability of n-3 PUFAs during the life course on metabolic aspects. Litters were randomized into: maternal separated (MS and non-handled (NH. The MS group was removed from their dam for 3 hours per day and put in an incubator at 32 °C on days 1° to 10° postnatal (PND. On PND 35, males were subdivided into diets that were adequate or deficient in n-3 PUFAs, and this intervention was applied during the subsequent 15 weeks. Animal's body weight and food consumption were measured weekly, and at the end of the treatment tissues were collected. MS was associated with increased food intake (p = 0.047 and weight gain (p = 0.012, but no differences were found in the NPY hypothalamic content between the groups. MS rats had also increased deposition of abdominal fat (p<0.001 and plasma triglycerides (p = 0.018 when compared to the NH group. Interactions between early life stress and n-3 PUFAs deficiency were found in plasma insulin (p = 0.033, HOMA index (p = 0.049, leptin (p = 0.010 and liver PEPCK expression (p = 0.050, in which the metabolic vulnerability in the MS group was aggravated by the n-3 PUFAs deficient diet exposure. This was associated with specific alterations in the peripheral fatty acid profile. Variations in the neonatal environment interact with nutritional aspects during the life course, such as n-3 PUFAs diet content, and persistently alter the metabolic vulnerability in adulthood.

  10. Acute augmentation of epoxygenated fatty acid levels rapidly reduces pain-related behavior in a rat model of type I diabetes.

    Science.gov (United States)

    Inceoglu, Bora; Wagner, Karen M; Yang, Jun; Bettaieb, Ahmed; Schebb, Nils H; Hwang, Sung Hee; Morisseau, Christophe; Haj, Fawaz G; Hammock, Bruce D

    2012-07-10

    The nerve damage occurring as a consequence of glucose toxicity in diabetes leads to neuropathic pain, among other problems. This pain dramatically reduces the quality of life in afflicted patients. The progressive damage to the peripheral nervous system is irreversible although strict control of hyperglycemia may prevent further damage. Current treatments include tricyclic antidepressants, anticonvulsants, and opioids, depending on the severity of the pain state. However, available therapeutics have drawbacks, arguing for the need to better understand the pathophysiology of neuropathic pain and develop novel treatments. Here we demonstrate that stabilization of a class of bioactive lipids, epoxygenated fatty acids (EpFAs), greatly reduces allodynia in rats caused by streptozocin-induced type I diabetes. Inhibitors of the soluble epoxide hydrolase (sEHI) elevated and stabilized the levels of plasma and spinal EpFAs, respectively, and generated dose-dependent antiallodynic effects more potently and efficaciously than gabapentin. In acute experiments, positive modulation of EpFAs did not display differences in insulin sensitivity, glucose tolerance, or insulin secretion, indicating the efficacy of sEHIs are not related to the glycemic status. Quantitative metabolomic analysis of a panel of 26 bioactive lipids demonstrated that sEHI-mediated antiallodynic effects coincided with a selective elevation of the levels of EpFAs in the plasma, and a decrease in degradation products coincided with the dihydroxy fatty acids in the spinal cord. Overall, these results argue that further efforts in understanding the spectrum of effects of EpFAs will yield novel opportunities in treating neuropathic pain.

  11. Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle.

    Science.gov (United States)

    Hoshino, Daisuke; Yoshida, Yuko; Holloway, Graham P; Lally, James; Hatta, Hideo; Bonen, Arend

    2012-02-01

    Clenbuterol, a β2-adrenergic agonist, reduces mitochondrial content and enzyme activities in skeletal muscle, but the mechanism involved has yet to be identified. We examined whether clenbuterol-induced changes in the muscles' metabolic profile and the intrinsic capacity of mitochondria to oxidize substrates are associated with reductions in the nuclear receptor coactivator PGC-1 alpha and/or an increase in the nuclear corepressor RIP140. In rats, clenbuterol was provided in the drinking water (30 mg/l). In 3 wk, this increased body (8%) and muscle weights (12-17%). In red (R) and white (W) muscles, clenbuterol induced reductions in mitochondrial content (citrate synthase: R, 27%; W, 52%; cytochrome-c oxidase: R, 24%; W, 34%), proteins involved in fatty acid transport (fatty acid translocase/CD36: R, 36%; W, 35%) and oxidation [β-hydroxyacyl CoA dehydrogenase (β-HAD): R, 33%; W, 62%], glucose transport (GLUT4: R, 8%; W, 13%), lactate transport monocarboxylate transporter (MCT1: R, 61%; W, 37%), and pyruvate oxidation (PDHE1α, R, 18%; W, 12%). Concurrently, only red muscle lactate dehydrogenase activity (25%) and MCT4 (31%) were increased. Palmitate oxidation was reduced in subsarcolemmal (SS) (R, 30%; W, 52%) and intermyofibrillar (IMF) mitochondria (R, 17%; W, 44%) along with reductions in β-HAD activity (SS: R, 17%; W, 51%; IMF: R, 20%; W, 57%). Pyruvate oxidation was only reduced in SS mitochondria (R, 20%; W, 28%), but this was not attributable solely to PDHE1α, which was reduced in both SS (R, 21%; W, 20%) and IMF mitochondria (R, 15%; W, 43%). These extensive metabolic changes induced by clenbuterol were associated with reductions in PGC-1α (R, 37%; W, 32%) and increases in RIP140 (R, 23%; W, 21%). This is the first evidence that clenbuterol appears to exert its metabolic effects via simultaneous and reciprocal changes in the nuclear receptor coactivator PGC-1α and the nuclear corepressor RIP140.

  12. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat

    Directory of Open Access Journals (Sweden)

    Grace G. Abdukeyum

    2016-03-01

    Full Text Available Reactive oxygen species paradoxically underpin both ischaemia/reperfusion (I/R damage and ischaemic preconditioning (IPC cardioprotection. Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA are highly susceptible to peroxidation, but are paradoxically cardioprotective. This study tested the hypothesis that LCn-3 PUFA cardioprotection is underpinned by peroxidation, upregulating antioxidant activity to reduce I/R-induced lipid oxidation, and the mechanisms of this nutritional preconditioning contrast to mechanisms of IPC. Rats were fed: fish oil (LCn-3 PUFA; sunflower seed oil (n-6 PUFA; or beef tallow (saturated fat, SF enriched diets for six weeks. Isolated hearts were subject to: 180 min normoxic perfusion; a 30 min coronary occlusion ischaemia protocol then 120 min normoxic reperfusion; or a 3 × 5 min global IPC protocol, 30 min ischaemia, then reperfusion. Dietary LCn-3 PUFA raised basal: membrane docosahexaenoic acid (22:6n-3 DHA; fatty acid peroxidisability index; concentrations of lipid oxidation products; and superoxide dismutase (MnSOD activity (but not CuZnSOD or glutathione peroxidase. Infarct size correlated inversely with basal MnSOD activity (r2 = 0.85 in the ischaemia protocol and positively with I/R-induced lipid oxidation (lipid hydroperoxides (LPO, r2 = 0.475; malondialdehyde (MDA, r2 = 0.583 across ischaemia and IPC protocols. While both dietary fish oil and IPC infarct-reduction were associated with reduced I/R-induced lipid oxidation, fish oil produced nutritional preconditioning by prior LCn-3 PUFA incorporation and increased peroxidisability leading to up-regulated mitochondrial SOD antioxidant activity.

  13. Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats.

    Science.gov (United States)

    Bal, Ramazan; Türk, Gaffari; Yılmaz, Ökkeş; Etem, Ebru; Kuloğlu, Tuncay; Baydaş, Gıyasettin; Naziroğlu, Mustafa

    2012-06-01

    Clothianidin (CTD) is one of the latest members of the synthetic organic insecticides, the neonicotinoids. In the present study, it was aimed to investigate if daily oral administration of CTD at low doses for 90 days has any deleterious effects on reproductive functions of developing male rats. Animals were randomly divided into four groups of six rats each, assigned as control rats, or rats treated with 2 (CTD-2), 8 (CTD-8) or 32 (CTD-32) mg CTD/kg body weight by oral gavage. The significant decreases of the absolute weights of right cauda epididymis and seminal vesicles, and body weight were detected in the animals exposed to CTD administration at 32 mg/kgBW/day. Epididymal sperm concentration decreased significantly in CTD-32 group and the abnormal sperm rates increased in CTD-8 and CTD-32 groups when compared to control group. The testosterone level was significantly decreased in CTD-32 group when compared to control group. The administration of all CTD doses resulted in a significant decrease in the level of GSH. The number of TUNEL-positive cells significantly increased in the germinal epithelium of testis of rats exposed to CTD at 32 mg/kgBW/day. In groups CTD-8 and CTD-32, only docosapentaenoic, arachidonic, palmitic and palmitoleic acids were significantly elevated when compared to control. The ratios of 20:4/18:2 and 18:1n-9/18:0 were decreased when rats exposed to CTD. Sperm DNA fragmentation was observed in CTD-32 group, but not CTD-2 and CTD-8. It is concluded that low doses of CTD exposure during critical stages of sexual maturation had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. In addition, the reproductive system may be more sensitive to exposure of CTD even earlier in development (prenatal and early postnatal), and therefore it could be expected that more severe effects could also be observed at the NOAEL dose levels, if dosing had occurred in utero or early

  14. Desaturation and chain elongation of essential fatty acids in isolated liver cells from rat and rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Hagve, T.A.; Christophersen, B.O.; Dannevig, B.H.

    1986-03-01

    Isolated hepatocytes from rainbow trout and rat were incubated with /sup 14/C-labeled linoleic acid, linolenic acid, dihomogammalinolenic acid or eicosapentaenoic acid. The most striking difference in the desaturase activity was the lower level of delta 5 desaturase in trout than in rat. No delta 4 desaturation of 22:4(n-6) to 22:5(n-6) was observed in either of the two species, while the conversion of 22:5(n-3) to 22:6(n-3) was significant in both groups and highest in rainbow trout. The chain-elongating activity was remarkably similar in the two species, except for the dead-end elongation which was distinctly more important in fish.

  15. Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates.

    Science.gov (United States)

    Zarei, Mahnaz; Fakher, Shima; Tabei, Seyed Mohammad Bagher; Javanbakht, Mohammad Hassan; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Sadeghi, Mohammad Reza; Mostafavi, Ebrahim; Djalali, Mahmoud

    2016-03-01

    This study was designed and conducted to evaluate the effects of vitamin A, C and E supplementation, and omega-3 fatty acid supplementation on the activity of paraoxonase and arylesterase in an experimental model of diabetes mellitus. A total of 64 male Sprague Dawley® rats, each weighing 250 g, were randomly distributed into four groups: (a) normal control; (b) diabetic control; (c) diabetic with vitamin A, C and E supplementation; and (d) diabetic with omega-3 fatty acid supplementation. The animals were anaesthetised after four weeks of intervention, and paraoxonase and arylesterase activity in blood plasma, and liver and heart homogenates were measured. Arylesterase activity in the heart and liver homogenates was significantly lower in the diabetic control group than in the normal control group (p Vitamin A, C and E supplementation, and omega-3 fatty acid supplementation significantly increased liver arylesterase activity (p Vitamin A, C and E, or omega-3 fatty acid supplementation were found to increase liver arylesterase activity in streptozotocin-induced diabetic rats. These supplements may be potential agents for the treatment of diabetes mellitus complications. Copyright: © Singapore Medical Association.

  16. Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    2013-01-01

    Full Text Available Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.

  17. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced nonalcoholic fatty liver disease: a rat study.

    Science.gov (United States)

    Cheng, Fafeng; Ma, Chongyang; Wang, Xueqian; Zhai, Changming; Wang, Guoli; Xu, Xiaolin; Mu, Jie; Li, Changxiang; Wang, Zisong; Zhang, Xiaoyu; Yue, Wenchao; Du, Xin; Lian, Yajun; Zhu, Wenxiang; Yin, Xiangjun; Wei, Zhen; Song, Wenjie; Wang, Qingguo

    2017-04-07

    Nonalcoholic fatty liver disease (NAFLD) represents one of the most common forms of liver disease worldwide, and it is always regarded as a consequence of a sedentary, food-abundant lifestyle, sitting for an extended time, and a low physical activity level, which often coincide with chronic and long-lasting psychological stress. A Chinese medicine Sinisan (SNS) may be a potential formula for treating this kind of disease. In this study, a long-term chronic restraint stress protocol was used to investigate the mechanism underlying stress-induced NALFD. To investigate the effect of SNS treatment on stress-induced NAFLD, we measured the liver and serum values of total cholesterol (TC), triglyceride (TG), liver free fatty acids (FFA), low-density lipoprotein, superoxide dismutase, tumor necrosis factor-α, malondialdehyde, interleukin (IL)-6, and serum values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase. Results are shown as a mean ± standard deviation. Significant differences between the groups were evaluated using the Student t-test. For multiple comparisons, one-way analysis of variance (ANOVA) was used. If the results of ANOVA indicated significant differences, post hoc analysis was performed with the Tukey test or Dunnett test, and p stress led to steatosis and non-alcoholic steatohepatitis. Additionally, SNS treatment significantly increased body weight gain (p stress may be a significant risk factor of NAFLD. Furthermore, the traditional Chinese medicine formula SNS may have some beneficial effect in antagonizing psychological stress and stress-related NAFLD.

  18. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats

    Science.gov (United States)

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Akter, Sadia; Davis, J. Wade

    2015-01-01

    Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree. PMID:26183477

  19. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats.

    Science.gov (United States)

    Periago, María Jesús; Martín-Pozuelo, Gala; González-Barrio, Rocío; Santaella, Marina; Gómez, Victoria; Vázquez, Nuria; Navarro-González, Inmaculada; García-Alonso, Javier

    2016-10-12

    The aims of the present study were to ascertain, indirectly, the prebiotic role of tomato juice, by analyzing its effect on the content of short chain fatty acids (SCFA) in feces of rats, and to determine the plausible mechanisms related to the hypocholesterolemic effects of tomato juice and lycopene, evaluating the activity of hepatic HMGCR and the formation of propionic acid. Two commercially available tomato juices with differing contents of lycopene (low and high lycopene contents: Llyc and Hlyc tomato juices) were used. Sprague-Dawley male rats were randomly divided into three experimental groups (n = 8): control group, normal diet and water; group 1, normal diet and Llyc tomato juice; and group 2, normal diet and Hlyc tomato juice, which were fed ad libitum for three weeks. Feces were collected at the beginning and the end of the study to determine SCFA, and blood and liver were obtained (after sacrificing the animals) to analyze the lipid plasmatic parameters and the HMGCR activity and total cholesterol, respectively. No significant differences were observed in the plasmatic parameters, except that HDL-cholesterol increased significantly after consumption of both tomato juices. Lycopene was accumulated in the liver in proportion to the amount ingested, and was observed to have an inhibitory effect on the HMGCR enzyme, according to the amount of lycopene in the liver. In relation to the SCFA in feces, no differences were observed in acetate and propionate after the consumption of tomato juice, but a significant increase in butyrate was observed in group 2 after the intake of Hlyc tomato juice. The content of this carboxylic acid together with excreted lycopene in feces could have a beneficial effect on colonic cells.

  20. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats.

    Science.gov (United States)

    Mahmoud, Mohamed O; Aboud, Heba M; Hassan, Amira H; Ali, Adel A; Johnston, Thomas P

    2017-05-28

    Atorvastatin calcium (ATV), a cholesterol-lowering agent, suffers from poor systemic availability (14%) after oral administration in addition to other side effects on the gastrointestinal tract, liver and muscle. The goal of the present investigation was to improve ATV bioavailability and overcome complications attendant with peroral administration by developing a new nanovesicular system encapsulating ATV for its delivery via the transdermal route. The vesicular systems were prepared by incorporating different polyethylene glycol fatty acid esters such as Labrasol, Cremophor EL, Gelucire 44/14 and Tween 80 as edge activators (EAs) in the lipid bilayer. The effect of the phosphatidylcholine (PC):EA molar ratio on the physicochemical properties of the vesicles was investigated. The pharmacokinetic studies of the optimized formulation were evaluated in rats. The optimized formulation was tested in poloxamer 407-induced hyperlipidemic rats. The plasma lipid profile, activity of liver enzymes, and oxidative stress parameters were measured using commercially available kits. The results revealed high ATV entrapment efficiency (EE%) ranging from 55.62 to 83.91%. The formulations that contained Labrasol showed the highest EE%. The mean diameter of the vesicles was in the range of 186-583nm. T8 containing Gelucire 44/14 as an EA in the molar ratio of 15:1 (PC:EA) gave the smallest size and exhibited the best permeation parameters across the skin. The pharmacokinetic studies revealed that about three times statistically significant (p<0.05) improvement in bioavailability, after transdermal administration of nanotransfersomal ATV gel compared to oral ATV suspension. The transdermal vesicular system exhibited a significant decrease in plasma total cholesterol, triglycerides and LDL cholesterol comparable to oral ATV. Additionally, it lowered the malondialdehyde levels in plasma and abolished the increase in liver enzyme activity. The results obtained suggest that the proposed

  1. Relationship Between Circulating Fatty Acids and Fatty Acid Ethanolamide Levels After a Single 2-h Dietary Fat Feeding in Male Sprague-Dawley Rats : Elevated levels of oleoylethanolamide, palmitoylethanolamide, linoleoylethanolamide, arachidonoylethanolamide and docosahexanoylethanolamide after a single 2 h dietary fat feeding in male Sprague Dawley rats.

    Science.gov (United States)

    Olatinsu, Anthonia O; Sihag, Jyoti; Jones, Peter J H

    2017-11-01

    Previous studies show that long term variations in dietary fat consumption impact circulating fatty acid ethanolamide (FAE) concentrations, however, few studies have investigated short term effects of dietary fat feeding on FAE levels. The trial's objective was to explore the effect of acute feeding of varying amounts of dietary n-9 and n-3 fatty acids on plasma and organ levels of FAE. Sixty-four rats were assigned to four groups fed meals containing 40% of energy as either safflower oil (control), canola oil (CO), or DHA rich oil (DRO), each consumed as a bolus within a 2-h window. Plasma and tissue FAE levels were measured at 3, 6, 12 and 24 h following the bolus. FAE profiles over time exhibited patterns that were specific both to FAE and to dietary fat type provided. At 3 h, plasma and liver OEA levels were higher (p fat types impacts tissue levels of FAE within a short time frame, which could further influence the physiological roles of FAE on appetite regulation and energy expenditure.

  2. [Serial assessment of myocardial thallium perfusion and fatty acid utilization in spontaneously hypertensive rats: assessment by autoradiography and pin-hole imaging].

    Science.gov (United States)

    Sago, M; Nishimura, T

    1989-07-01

    To evaluate the advantage of free fatty acid imaging on the detection of hypertrophied myocardium, we compared sequentially myocardial thallium and BMIPP (15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid) distribution in spontaneously hypertensive rat (SHR) using dual tracer autoradiography and in vivo pin-hole imaging. Autoradiography and pin-hole imaging showed uniform myocardial distribution of BMIPP and thallium within less than 27 weeks age SHR. In 40 weeks age SHR, thallium myocardial distribution showed uniform, however, BMIPP had focal decreases. Quantitative analysis of pin-hole images showed that myocardial BMIPP and thallium uptake ratio decreased according to the ages of SHR. Our data suggest that hypertension is associated with uniform myocardial perfusion and focal alternation in the substrate used for the performance of myocardial work. Based on the above autoradiographic and in vivo pin-hole imagings, I-123 BMIPP imaging may have a potential for early detection on hypertrophic myocardium compared to thallium perfusion in clinically hypertensive patients.

  3. The influence of folic acid, vitamins B(2) and B(6) supplementation on feed intake, body and organs weight, and liver fatty acids composition of rats subjected to 3 months moderate protein deprivation.

    Science.gov (United States)

    Debski, B; Bertrandt, J; Klos, A; Gralak, M

    2007-03-01

    This study was conducted to determine the effect of a 3-month dietary protein restriction - protein provided 9% of energy (20% in control group). In this dietary restriction folic acid, vitamins B(2) and B(6) were delivered in amount three times above the standard level. It was observed that animals fed a protein restricted (PR) diet weighed about 5% less than animals consuming adequate diet, but the difference was not statistically significant. Enrichment of PR diet with vitamin B or folic acid caused tendency to further suppression of weight gain, and in case of vitamin B(6) these differences were statistically significant. However, such body weight (BW) suppression was not observed when all studied vitamins were used together. Significant reductions in relative liver weight (vitamin B(2) addition), the heart (folic acid) and the lungs (vitamin B(6)) were observed. The PR diet, when all vitamins were added together, caused a decrease in weights of the lungs, heart and liver scaled to BW of rats, simultaneously with a significant increase in testis weight. Feed intake and feed conversion ratio were higher in animals given PR diet without a significant influence of vitamin supplementation (except vitamin B(6) causing further increase in feed conversion ratio). Hepatic fatty acids composition of rats was not affected by protein restriction, as well as by single vitamin supplementation. However, dietary supplementation of all examined vitamins together caused a decrease in monounsaturated fatty acids followed by an increase in polyunsaturated fatty acids participation in total fatty acids pool. It seems that enrichment of PR diet with a mixture of folic acid, vitamins B(2) and B(6) resulted in a partial reverse of growth suppression and reduction in testis size in rats.

  4. Cimicifuga racemosa impairs fatty acid β-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension.

    Science.gov (United States)

    Campos, Lilian Brites; Gilglioni, Eduardo Hideo; Garcia, Rosângela Fernandes; Brito, Márcia do Nascimento; Natali, Maria Raquel Marçal; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2012-08-15

    The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6 mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Organ-Specific Alterations in Fatty Acid De Novo Synthesis and Desaturation in a Rat Model of Programmed Obesity

    Directory of Open Access Journals (Sweden)

    Desai Mina

    2011-05-01

    Full Text Available Abstract Background Small for gestational age (SGA leads to increased risk of adult obesity and metabolic syndrome. Offspring exposed to 50% maternal food restriction in utero are born smaller than Controls (FR, catch-up in growth by the end of the nursing period, and become obese adults. The objective of the study was to determine stearoyl-CoA desaturase activity (SCD1 and rates of de novo fatty acid synthesis in young FR and Control offspring tissues at the end of the nursing period, as possible contributors to catch-up growth. Methods From gestational day 10 to term, dams fed ad libitum (Control or were 50% food-restricted to produce small FR pups. Control dams nursed all pups. At postnatal day 1 (p1 and p21, offspring body tissues were analyzed by GC/MS, and desaturation indices of palmitoleate/palmitate and oleate/stearate were calculated. SCD1 gene expression was determined by real-time PCR on adipose and liver. Offspring were enriched with deuterium that was given to dams in drinking water during lactation and de novo synthesis of offspring body tissues was determined at p21. Primary adipocyte cell cultures were established at p21 and exposed to U13C-glucose. Results FR offspring exhibited higher desaturation index in p1 and p21 adipose tissue, but decreased desaturation index in liver at p21. SCD1 gene expression at p21 was correspondingly increased in adipose and decreased in liver. FR subcutaneous fat demonstrated increased de novo synthesis at p21. Primary cell cultures exhibited increased de novo synthesis in FR. Conclusions Adipose tissue is the first site to exhibit increased de novo synthesis and desaturase activity in FR. Therefore, abnormal lipogenesis is already present prior to onset of obesity during the period of catch-up growth. These abnormalities may contribute to future obesity development.

  6. Determination of neutron fluxes at the self-shielded PET cyclotron and the electron liniac apparatus of Tokushima University Hospital using activation foil method

    International Nuclear Information System (INIS)

    Sakama, Minoru; Tanii, Takashi; Maezawa, Hiroshi; Saze, Takuya; Maeda, Kouji; Sato, Kazuo; Honda, Eiichi; Nishitani, Hiromu

    2008-01-01

    Up till now, from a radiation safety management point of view, it has been discussed to construct guidelines on estimation of neutron fluxes produced via operating various medical small accelerators and to establish uniformly the clearance system related to having neutron activation effects into each accelerator facility. That is, it was the aim of this investigation to accumulate the data on estimation basis of neutron flux measurements at those medical small accelerators by an activation foil method. In this work, the neutron fluxes at the self-shielded PET cyclotron and the electron liniac apparatus of Tokushima University Hospital have been measured as the medical small accelerator. As a result, for the self-shielded PET cyclotron, it was found that the thermal neutron flux is (1.04±0.05) x10 7 cm -2 s -1 and the fast neutron fluxes are distributed over the range 1x10 4 (the neutron energy E n =9 MeV) to 1x10 7 (E n =1.5 MeV) cm -2 s -1 into the radiation shelter, and while the thermal neutron fluxes would be distributed over the range 5.0x10 1 to 9.9x10 1 cm -2 s -1 and then the fast neutron dose leakages were not detected outside there. For the 6/10 MV electron liniac apparatus, it was also found that nearly the same thermal neutron fluxes would be distributed all around the liniac room and those measured values are over the range (1.01±0.18)x10 3 to (1.32±0.10)x10 3 cm -2 s -1 . (author)

  7. The Prevention Disaster Program of Flood in 2013 for the 4th Grade Students of Kawatanaka Primary School, Tokushima Prefecture, Japan and Underflow Channels Revealed in 2016

    Science.gov (United States)

    Kawamata, Sanae; Murata, Mamoru

    2017-12-01

    The Typhoon No. 18 caused flood on September 15, 2013 in the Kawata River basin, Yoshinogawa City, Tokushima Prefecture. The Kawata River is a raised river bed of 36.7 m with banks to 40.5 m above sea level. The heavy rain did not destroy the banks but made the river level 39.4 m high and then pressed the underflow channel. As the Kawatanaka primary school is located at 36.2 m height, it was not submerged although the underflow channel overbanked the adjacent playground. An educational program on the prevention and reduction for natural disaster, which consists of science, social studies and presentation, was conducted to 18 students of the 4th grade in the period of integrated study in the Kawatanaka primary school from September 17, 2013. On the first day, flow current markings from 625 holes, 30 cm to 1 mm in diameter, on the playground were observed. The flow currents showed direction from SE to NW. On the basis of their observations on the flow currents that water runs from high to low, the students considered the phenomena as a result of tilting of the ground. They conducted activity as their homework to confirm their hypothesis to know if there is any tilt in the ground. They took plastic bottle filled with water and reviled that the ground had 1 to 2 degrees’ tilt to the NW during the experiment. On the bases of the difference between E to W flow of the Kawata River and their SE to NW estimated current flow on the playground and the fact that the bank of the river was not destroyed, the students suggested that the heavy rain had pressed the underflow channels. The suggested channels were found on the playground, where new school buildings were constructed in 2016, by one of the students who studied the program in 2013.

  8. Soy milk suppresses cholesterol-induced inflammatory gene expression and improves the fatty acid profile in the skin of SD rats.

    Science.gov (United States)

    Lee, Seung-Min; Kim, Yunhye; Choi, Hye jung; Choi, Jina; Yi, Yue; Yoon, Sun

    2013-01-04

    Recently, an elevation in skin cholesterol level has been implicated in skin inflammation. Given the potential therapeutic effects of soy on low grade inflammatory diseases, we hypothesized that a CHOL diet could promote an inflammatory response in skin and that soy milk (SM) or fermented soy milk (F.SM) could prevent this cholesterol-induced skin inflammation. To test this hypothesis, freeze-dried SM or F.SM was provided as a protein replacement for 20% of the casein in the diets of Sprague-Dawley (SD) rats. The animals were divided into the following groups: (1) control group (CTRL), AIN76A diet without cholesterol, (2) high cholesterol (CHOL) group, AIN76A with 1% (w/w) cholesterol, (3) SM group, CHOL diet with freeze-dried SM, and (4) F.SM group, CHOL diet with F.SM. In the CHOL group, the expression levels of pro-inflammatory genes, including IL-1β, IL-1α, iNOS, and COX-2, were elevated. In comparison, the SM and F.SM groups displayed the lowered expression of IL-1β, COX-2, F4/80, and Cd68, an increase of a n-3/n-6 ratio, and a reduction in the estimated desaturase activities of delta 5 desaturase (D5D) and steaoryl CoA desaturase (SCD-1). In particular, F.SM significantly increased the proportion of dihomo-γ-linolenic acid (DGLA) in skin fatty acid (FA) composition compared with the CHOL group. Here we present evidence that SM or F.SM could alleviate the inflammatory response in the skin that is triggered by excess dietary cholesterol by reducing the expression of pro-inflammatory genes. This response could be partly associated with a decreased in macrophages in skin and/or by modulation of the skin's FA composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Effect of footshock stress on place conditioning produced by Δ9-tetrahydrocannabinol and the fatty acid amide hydrolase (FAAH) inhibitor, URB597, in Sprague-Dawley rats.

    Science.gov (United States)

    DeVuono, Marieka V; Wills, Kiri L; MacPherson, Danielle V; Hrelja, Kelly M; Parker, Linda A

    2017-11-01

    Unlike other drugs of abuse, Δ 9 -tetrahydrocanabinol (THC) is generally aversive in rodent conditioned place preference models, but little is known about how stress may modify THC affective properties. We evaluate the potential of footshock stress to enhance the rewarding effects of THC and the fatty acid amide hydrolase inhibitor, URB597, as it has been shown to enhance their anxiolytic effects. The effect of footshock stress 24 h prior to each conditioning trial on the rewarding/aversive effects of THC (1, 0.1, 0.5 mg/kg, ip) and URB597 (0.3 mg/kg, ip) was evaluated in an unbiased place conditioning procedure in rats. Subsequently, the same stressor was given immediately prior to conditioning with THC (1 and 0.1 mg/kg). Locomotor activity was also measured during conditioning. A dose of 1 mg/kg THC, but not 0.1-0.5 mg/kg, produced a conditioned place aversion (CPA) that was not modified by footshock delivered 24 h prior to conditioning trials; however, footshock delivered immediately prior to conditioning trials prevented that CPA. Lower doses of THC and URB597 produced no place conditioning regardless of footshock conditions. A dose of 1 mg/kg THC produced locomotor suppression during conditioning trials that was prevented by footshock delivered 24 h before and reversed to locomotor activation by footshock delivered immediately before conditioning. Unlike the effect of footshock on THC- and URB597-induced anxiolytic effects, footshock does not promote THC or URB597-induced reward in a conditioned place preference paradigm. However, footshock stress reverses the sedative effects of 1 mg/kg THC.

  10. Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat.

    Science.gov (United States)

    Morgado, Nora; Rigotti, Attilio; Valenzuela, Alfonso

    2005-01-01

    While elevated plasma high-density lipoprotein (HDL) levels has been associated to a reduction in cardiovascular risk, dietary fish oils rich in omega-3 polyunsaturated fatty acids (PUFAs) may protect against this disease. The protective effect of HDL is associated to its participation in the reverse cholesterol transport pathway. On the other hand, omega-3 PUFAs decrease plasma HDL levels compared to other fatty acids, which may suggest an effect on reverse cholesterol transport. In this work, the effect of dietary fish oil on the fatty acid composition of hepatic membranes, plasma lipoprotein cholesterol profile, biliary lipids, and the expression of proteins involved in reverse cholesterol transport, was compared to other dietary oils having a different degree of fatty acid unsaturation. Male rats were fed a semi synthetic diet containing fish oil (omega-3), sunflower oil (omega-6), olive oil (omega-9) or coconut oil (saturated). Hepatic membrane fatty acid composition, plasma cholesterol levels, lipoprotein cholesterol profile, biliary lipids, hepatic mRNA levels for lecithin cholesterol acyltransferase, hepatic lipase, apo E, and apo A-I, and hepatic protein levels of the scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 were analyzed. Plasma apo A-I and apo E protein levels were also evaluated. Compared to the other diets, omega-3 PUFAs significantly changed omega-3/omega-6 fatty acid ratio of hepatic membranes, caused a reduction of plasma total and HDL cholesterol, and selectively increased biliary cholesterol secretion. No modification in the expression levels of lecithin cholesterol acyltransferase, hepatic lipase, apo A-I and apo E mRNA was observed. Hepatic scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 protein levels were also not affected. Plasma apo A-I, but not apo E, was reduced. These results show that dietary omega-3 PUFAs reduce plasma HDL cholesterol and

  11. Western diet, but not high fat diet, causes maladaptation of cardiac fatty acid metabolism and cardiac dysfunction in the Wistar rat

    Science.gov (United States)

    Obesity and diabetes are associated with increased fatty acid availability in excess of fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction. We tested the hypothesis that a "western" or a high fat diet will lead to maladaptation of cardia...

  12. Naturally-occurring estradiol-17β-fatty acid esters, but not estradiol-17β, preferentially induce mammary tumorigenesis in female rats: Implications for an important role in human breast cancer

    International Nuclear Information System (INIS)

    Mills, Laura H.; Yu Jina; Xu Xiaomeng; Lee, Anthony J.; Zhu Baoting

    2008-01-01

    Because mammary glands are surrounded by adipose tissues, we hypothesize that the ultra-lipophilic endogenous estrogen-17β-fatty acid esters may have preferential hormonal and carcinogenic effects in mammary tissues compared to other target organs (such as the uterus and pituitary). This hypothesis is tested in the present study. We found that all 46 rats implanted with an estradiol-17β pellet developed large pituitary tumors (average weight = 251 ±103 mg) and had to be terminated early, but only 48% of them developed mammary tumors. In addition, approximately one-fourth of them developed a huge uterus. In the 26 animals implanted with a mixture containing estradiol-17β-stearate and estradiol-17β-palmitate (two representative estradiol-17β-fatty acid esters) or in the 29 animals implanted with estradiol-17β-stearate alone (in the same molar dose as estradiol-17β), 73% and 79%, respectively, of them developed mammary tumors, whereas only 3 or 2 animals, respectively, had to be terminated early due to the presence of a large pituitary tumor. Both tumorous and normal mammary tissues contained much higher levels of estrogen esterase than other tissues, which catalyzes the releases of bioactive estrogens from their fatty acid esters. In conclusion, while estradiol-17β is much stronger in inducing pituitary tumor (100% incidence) than mammary tumor, estradiol-17β-fatty acid esters have a higher efficacy than estradiol-17β in inducing mammary tumor and yet it only has little ability to induce uterine out-growth and pituitary tumorigenesis. This study establishes the endogenous estrogen-17β-fatty acid esters as preferential inducers of mammary tumorigenesis

  13. Combined long-term caffeine intake and exercise inhibits the development of diabetic nephropathy in OLETF rats.

    Science.gov (United States)

    Suzuki, Masato; Shindo, Daisuke; Suzuki, Ryuichiro; Shirataki, Yoshiaki; Waki, Hidefumi

    2017-05-01

    This study was performed to examine the effects of long-term caffeine-intake, with and without exercise, on the progression of diabetic nephropathy (DN) in an obese diabetic rat model. Thirty-two male Otsuka Long-Evans Tokushima fatty (OLETF) rats were assigned to sedentary (OLETF-Sed), exercise (OLETF-Ex), caffeine-intake (OLETF-Caf), and combined (OLETF-Caf + Ex) groups. Caffeine-intake groups were fed rat chow containing caffeine (90.7 ± 4.7 mg/kg/day). The OLETF-Ex and OLETF-Caf + Ex groups were able to run voluntarily at any time using a rotatory wheel. Body weight (BW) and blood pressure (BP) were measured weekly from 24 to 29 wk of age. Pre- and posttreatment serum glucose, insulin, and creatinine concentrations were measured, and a 24 h urine sample was collected for measurement of creatinine clearance (Ccr) and albumin excretion (UE Alb ). After treatment, the kidneys were removed for morphological analysis. The OLETF-Caf and OLETF-Caf + Ex groups exhibited no BP increase during the study. Both the caffeine-intake groups exhibited a significant increase in urine volume (UV), electrolyte excretion, and Ccr, and decreased UE Alb , following treatment. Furthermore, no structural damage was observed in the kidneys of rats from either caffeine-intake group, whereas the OLETF-Sed and OLETF-Ex groups exhibited DN progression. This study demonstrates that caffeine-intake alone and/or combined with exercise significantly decreases BW and improves glucose intolerance, without the progression of DN. Further research should be performed to examine whether the quantities of caffeine contained in a normal human daily intake also have a protective effect against kidney damage. NEW & NOTEWORTHY The present study showed that caffeine administration alone and/or combined with exercise results in an improvement of diabetic nephropathy (DN), including an increase in creatinine clearance and urinary Na excretion, a decrease in urinary protein excretion, and in renal

  14. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  15. Fatty Liver

    Science.gov (United States)

    ... Drug Interactions Pill Identifier Commonly searched drugs Aspirin Metformin Warfarin Tramadol Lactulose Ranitidine News & Commentary Recent News ... Rarely, fat accumulates in the liver during late pregnancy. This disorder, called fatty liver of pregnancy or ...

  16. [Effect of targeted inhibition of hypoxia-inducible factor-1α by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole on the progression of non-alcoholic fatty liver disease in rats].

    Science.gov (United States)

    Shen, W D; Zhang, W; Xu, Q H; Liu, P F

    2016-10-20

    Objective: To investigate the effect of targeted inhibition of hypoxia-inducible factor-1α (HIF-1α) by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) on the progression of non-alcoholic fat liver diseases (NAFLD) in rats. Methods: A total of 72 male Sprague-Dawley rats were randomly divided into normal group, model group, and intervention group, and the rats were given high-fat feed to establish the rat model of fatty liver disease. After the establishment of the model, the rats in the intervention group were given intraperitoneally injected YC-1 (at a dose of 2 mg/kg) every two weeks and were observed at 4, 8, 12, and 16 weeks. Blood samples and liver tissues were collected after the end of intervention, and blood lipid, biochemical markers for liver function, fasting blood glucose, and insulin were measured. Histopathological examinations were performed, and insulin resistance index was calculated. Real-time PCR was used to measure the mRNA transcriptional levels of HIF-1α, peroxisome proliferator-activated receptor α, and nuclear factor-kappa B (NF-κB), and Western blot was used to measure their protein expression levels. An analysis of variance with group design and the Kruskal-Wallis H test were used for comparison of continuous data between multiple groups, and the least significant difference method was used for comparison between any two groups. P hepatic steatosis and significant improvement in inflammation degree ( P < 0.05), and after 12 weeks of continuous injection of YC-1, the intervention group had a significant reduction in liver fibrosis degree ( P < 0.05); after 12 and 16 weeks of continuous administration, the intervention group had a significant increase in the mRNA expression of peroxisome proliferator-activated receptor α and a significant reduction in the mRNA expression of NF-κB. The protein expression of HIF-1α, peroxisome proliferator-activated receptor α, and NF-κB in fatty liver tissues at different time points showed

  17. Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids.

    Directory of Open Access Journals (Sweden)

    Akshaya Meher

    Full Text Available Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs, which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12 diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group as follows; control, folic acid deficient (FD, vitamin B12 deficient (BD and omega-3 fatty acid supplemented groups (FDO and BDO. Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at -80°C. Maternal micronutrients deficiency resulted in lower (p<0.05 levels of pup liver docosahexaenoic acid (DHA and arachidonic acid (ARA as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05 in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05 levels of both PPARα and PPARγ but reduced (p<0.05 SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05 PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01 in both the micronutrients deficient groups and could be normalized (p<0.05 by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors

  18. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented