WorldWideScience

Sample records for tokamak thomson scattering

  1. Thomson scattering on the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    McCool, S.C.

    1982-03-01

    Ruby laser Thomson scattering was performed on the PRETEXT tokamak. A 10 Joule Q-switched laser and a 1 meter 10 channel polychromator were used to diagnose the electron temperature and density profiles in the PRETEXT plasma. These parameters were measured as a function of time and radial position on a shot to shot basis. The density measurement was calibrated by Rayleigh and Raman scattering and by comparison with data from a 4 mm microwave interferometer. Electron densities ranging from 1 x 10 12 cm -3 to 2 x 10 13 cm -3 and temperatures ranging from 3 eV to 400 eV were observed. Detailed measurements were made throughout the 40 ms discharge with particular emphasis on the current rise phase. The Thomson scattering data was used as input to a one dimensional magnetic diffusion code. This code modelled the evolution of the current density and safety factor profiles. The results of this analysis were compared with existing theories of tokamak current penetration. The growth of resitive MHD tearing modes was proposed as a likely explanation for the anomalously rapid current penetration observed in PRETEXT

  2. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  3. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  4. First 50 pps Thomson scattering diagnostics in a tokamak

    International Nuclear Information System (INIS)

    Roehr, H.; Schramm, G.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1981-12-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A 50 pps Nd:YAG laser at 1.06 μm was used in ASDEX in combination with Si avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities of as low as 2 x 10 12 cm -3 . (orig.)

  5. Thomson scattering diagnostic for the Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson-scattering diagnostic system (TSS) on the Microwave Tokamak Experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900 ± 70 eV and 1 to 2 x 10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed by able to detect these electrons, which can have energies up to 10 keV, according to computer simulation. 7 refs., 4 figs

  6. Thomson scattering diagnostic for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson scattering diagnostic system (TSS) on the microwave tokamak experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900±70 eV and 1--2x10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed be able to detect these electrons, which can have energies up to 10 keV, according to computer simulation

  7. Preliminary project of s Thomson scattering system for the ETE tokamak

    International Nuclear Information System (INIS)

    Berni, Luiz Angelo

    1997-01-01

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light

  8. Preliminary project of s Thomson scattering system for the ETE tokamak; Projeto preliminar de um sistema de espalhamento Thomson para o Tokamak ETE

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Luiz Angelo

    1997-12-31

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light 4 refs., 26 figs.

  9. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  10. Design of new Thomson scattering diagnostic system on COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Aftanas, Milan; Böhm, Petr; Weinzettl, Vladimír; Šesták, David; Melich, Radek; Stöckel, Jan; Scannell, R.; Walsh, M.

    2010-01-01

    Roč. 623, č. 2 (2010), s. 656-659 ISSN 0168-9002. [International Conference on Frontiers in Diagnostic Technologies/1st./. Frascati, 25.11.2009-27.11.2009] R&D Projects: GA ČR GA202/09/1467; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * Laser diagnostic * Electron temperature * Electron density Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.142, year: 2010 www.elsevier.com/locate/nima

  11. First operations with the new Collective Thomson Scattering diagnostic on the Frascati Tokamak Upgrade device

    DEFF Research Database (Denmark)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.

    2015-01-01

    Anomalous emissions were found over the last few years in spectra of Collective Thomson Scattering (CTS) diagnostics in tokamak devices such as TEXTOR, ASDEX and FTU, in addition to real CTS signals. The signal frequency, down-shifted with respect to the probing one, suggested a possible origin i...

  12. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  13. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  14. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection...... and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown...

  15. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R.; Sos, M.

    2016-01-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  16. Personnel protection during the operation of Thomson scattering laser system on COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Böhm, Petr; Hron, Martin; Kovar, J.; Sova, J.; Zvolanek, M.; Aftanas, Milan; Bílková, Petra; Pánek, Radomír; Walsh, M.J.

    2011-01-01

    Roč. 86, 6-8 (2011), s. 699-702 ISSN 0920-3796. [Symposium on Fusion Technology, SOFT-26/26th./. Porto, 27.09.2010-01.10.2010] R&D Projects: GA ČR GA202/09/1467; GA ČR GD202/08/H057; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * Thomson scattering * Laser safety * Personnel protection * PLC Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011 http://www.sciencedirect.com/science/article/pii/S0920379611002432

  17. Timing and triggering of the Thomson scattering diagnostics on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Mikulín, Ondřej; Hron, Martin; Böhm, Petr; Naylor, G.; Bílková, Petra; Janky, Filip; Salášek, J.; Pánek, Radomír

    2014-01-01

    Roč. 89, č. 5 (2014), s. 693-697 ISSN 0920-3796. [The 9th Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research/9./. Hefei, 06.05.2013-10.05.2013] R&D Projects: GA MŠk 7G10072; GA MŠk(CZ) LM2011021; GA ČR GAP205/11/2470 Institutional support: RVO:61389021 Keywords : Tokamak * Timing and triggering * FPGA * Real-time control * Diagnostics control * Thomson scattering Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.152, year: 2014 http://www.sciencedirect.com/science/article/pii/S0920379614002105#

  18. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stefanikova, E. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm (Sweden); Peterka, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); MFF Charles University, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Bohm, P., E-mail: bohm@ipp.cas.cz; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Sos, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic)

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  19. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  20. Edge Thomson scattering diagnostic on COMPASS tokamak: Installation, calibration,operation, improvements

    Czech Academy of Sciences Publication Activity Database

    Böhm, Petr; Aftanas, Milan; Bílková, Petra; Štefániková, Estera; Mikulín, Ondřej; Melich, Radek; Janky, Filip; Havlíček, Josef; Šesták, David; Weinzettl, Vladimír; Stöckel, Jan; Hron, Martin; Pánek, Radomír; Scannell, R.; Frassinetti, L.; Fassina, A.; Naylor, G.; Walsh, M.J.

    2014-01-01

    Roč. 85, č. 11 (2014), 11E431-11E431 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/20./. Atlanta, Georgia, 01.06.2014-05.06.2014] R&D Projects: GA MŠk(CZ) LM2011021; GA ČR(CZ) GA14-35260S Institutional support: RVO:61389021 Keywords : plasma * tokamak * pedestal * Thomson scattering * diagnostic Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.614, year: 2014 http://scitation.aip.org/content/aip/journal/rsi/85/11/10.1063/1.4893995

  1. Technical development and operation of TV thomson scattering system on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Shiina, Tomio; Yamauchi, Toshihiko; Ishige, Yoichi

    1998-10-01

    Six years have passed since the TV Thomson scattering system (TVTS) was completed and the operation was started on the JFT-2M tokamak. TVTS was developed in collaboration with Princeton Plasma Physics Laboratory. Many troubles on the hardware are and the software are were encountered. Improvements of the system were needed in each occasion. Phenomena of troubles were carefully analyzed and they have been solved in operating the system. This paper presents thus obtained know-how necessary for the operation of TVTS as well as methods of operation. (author)

  2. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  3. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-01-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T e ) gradient and low electron density (n e ). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10

  4. Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...

  5. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  6. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  7. Measurement of high-beta tokamak pressure profiles with multipoint Thomson scattering

    International Nuclear Information System (INIS)

    Levinton, F.M.

    1983-01-01

    A multipoint Thomson-scattering system has been developed to obtain pressure profiles along the major radius of Torus II, a high-beta tokamak. The profiles obtained during the 20 to 25 μs lifetime of the discharge indicates that the plasma has a peak temperature of 80 eV and density of 1.0 x 10 15 cm - 3 . The profiles remain fairly constant during this time until the equilibrium is lost, after which the temperature and density decays to 10 eV and 10 14 cm - 3 very quickly (approx. 1 μs). Experimental results show Torus II has a high-beta ( approx. 10%) equilibrium, with a strong shift of the peak of the pressure profile towards the outside. Numerical results from a 2-D free boundary MHD equilibrium code have obtained equilibria which closely approximate the experimentally measured profiles

  8. Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak

    Science.gov (United States)

    Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent

    2018-02-01

    First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.

  9. First operations with the new Collective Thomson Scattering diagnostic on the Frascati Tokamak Upgrade device

    Science.gov (United States)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.; Castaldo, C.; De Angeli, M.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Grosso, G.; Korsholm, S. B.; Lontano, M.; Mellera, V.; Minelli, D.; Moro, A.; Nardone, A.; Nielsen, S. K.; Rasmussen, J.; Simonetto, A.; Stejner, M.; Tartari, U.

    2015-10-01

    Anomalous emissions were found over the last few years in spectra of Collective Thomson Scattering (CTS) diagnostics in tokamak devices such as TEXTOR, ASDEX and FTU, in addition to real CTS signals. The signal frequency, down-shifted with respect to the probing one, suggested a possible origin in Parametric Decay Instability (PDI) processes correlated with the presence of magnetic islands and occurring for pumping wave power levels well below the threshold predicted by conventional models. A threshold below or close to the Electron Cyclotron Resonance Heating (ECRH) power levels could limit, under certain circumstances, the use of the ECRH in fusion devices. An accurate characterization of the conditions for the occurrence of this phenomenon and of its consequences is thus of primary importance. Exploiting the front-steering configuration available with the real-time launcher, the implementation of a new CTS setup now allows studying these anomalous emission phenomena in FTU under conditions of density and wave injection geometry that are more similar to those envisaged for CTS in ITER. The upgrades of the diagnostic are presented as well as a few preliminary spectra detected with the new system during the very first operations in 2014. The present work has been carried out under an EUROfusion Enabling Research project. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  10. Design of Amplifier Circuit for the HT-7 Tokamak Thomson Scattering System

    International Nuclear Information System (INIS)

    Shi Lingwei; Ling Bili; Zhao Junyu; Yang Li; Zang Qing; Hu Qingsheng; Jia Yanqing

    2008-01-01

    Thomson scattering diagnostic is important for measuring electron temperature and density profiles. To improve the signal-to-noise ratio, a silicon avalanche photodiode (APD) with high quantum efficiency, high sensitivity, and high gain up to 100 was adopted to measure the Thomson scattering spectrum. A preamplifier, which has low noise, high bandwidth, and high sensitivity, was designed with suitable transimpedance. Using AD8367 as the post-amplifier, good performance of the APD readout electronics have been obtained. A discussion is presented on the performance of the amplifier using a laser diode to simulate the Thomson scattering light. The test results indicate that the designed circuit has a high amplifying factor and fast rising edge. So reduction of the integral gate of the CAMAC ADC converter can improve the signal-to-noise ratio. (brief communication and research note)

  11. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  12. Examination of a duo-collection optics design for the Korea superconducting tokamak advanced research (KSTAR) Thomson scattering system

    International Nuclear Information System (INIS)

    Oh, Seungtae; Lee, Jong Ha

    2011-01-01

    The comparison of collective optic designs is described for the Thomson scattering system of the Korea superconducting tokamak advanced research (KSTAR) device. The optical systems collecting the light emission induced through the interaction between the plasma electrons and a laser beam are the key components for the Thomson scattering system. In the first conceptual design of the collection optics for the KSTAR Thomson scattering system, a duo-lens system covering individually the core and the edge regions of the KSTAR plasma with two optical lens modules was proposed. In optical designs, the number of optical modules is a great concern in the case of limited system space. Here, the duo-lens system is evaluated through a comparison with a uni-lens system covering the whole region of the plasma with a single optical module. The duo-lens system turned out to have 2.0 times and 4.73 times higher light collections of the plasma core and edge compared with the uni-lens system

  13. Study of TJ-1 Tokamak plasmas with Thomson scattering and radiation diagnostics

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-06-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of T e and n e obtained in TJ-1 discharges are presented. This data makes possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Z eff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Z eff without non experimental assumptions. (author) 56 figs., 52 refs

  14. Design and testing of a magnetic shield for the Thomson scattering photomultiplier tubes in the stray fields of the ERASMUS tokamak

    International Nuclear Information System (INIS)

    Desoppere, E.; Van Oost, G.

    1983-01-01

    A multiple coaxial shield system has been designed for the photomultiplier tubes of the ERASMUS tokamak Thomson scattering diagnostic. A stray field of 75 x 10 -4 T was reduced to 0.01 x 10 -4 T for a field parallel to the tube axis, and to 0.03 x 10 -4 T for a perpendicular field

  15. Analysis and Performance of the Thomson Scattering Diagnostics on HT-7 Tokamak Based on I-EMCCD

    International Nuclear Information System (INIS)

    Shao Chunqiang; Zhao Junyu; Zang Qing; Han Xiaofeng; Xi Xiaoqi; Yang Jianhua; Chen Hui; Hu Ailan

    2014-01-01

    A visible light imaging Thomson scattering (VIS-TVTS) diagnostic system has been developed for the measurement of plasma electron temperature on the HT-7 tokamak. The system contains a Nd:YAG laser (λ = 532 nm, repetition rate 10 Hz, total pulse duration ≍ 10 ns, pulse energy > 1.0 J), a grating spectrometer, an image intensifier (I.I.) lens coupled with an electron multiplying CCD (EMCCD) and a data acquisition and analysis system. In this paper, the measurement capability of the system is analyzed. In addition to the performance of the system, the capability of measuring plasma electron temperature has been proved. The profile of electron temperature is presented with a spatial resolution of about 0.96 cm (seven points) near the center of the plasma

  16. Incoherent Thomson scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1996-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  17. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    International Nuclear Information System (INIS)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15 0 . Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, and produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity

  18. Enhanced Alignment Techniques for the Thomson Scattering Diagnostic on the Lithium Tokamak eXperiment (LTX)

    Science.gov (United States)

    Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.

    2014-10-01

    The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  19. Excess noise in Lidar Thomson scattering methods

    International Nuclear Information System (INIS)

    Smith, R J; Drake, L A P; Lestz, J B

    2012-01-01

    Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.

  20. Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Salewski, Mirko

    2010-01-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions...

  1. Evaluation of the optical design of laser Thomson scattering diagnostics for high-temperature EAST tokamak and low-temperature MAP-II divertor simulator

    International Nuclear Information System (INIS)

    Kado, Shinichiro; Scotti, Filippo; Xi Xiaoqi; Zhao Junyu

    2009-01-01

    The optical design of the laser Thomson scattering (LTS) system for EAST tokamak is now on-going. Based on the Visible YAG laser TVTS system developed in the MAP-II (material and plasma) steady-state linear divertor/edge plasma simulator at the University of Tokyo, the required specification and the applicability of the VIS-YAG-TVTS system was evaluated in terms of the photon number to be collected by the fiber light-guide to a spectrometer and the reciprocal linear dispersion of the spectrometer. Then, the possible design of the optical system was proposed. (author)

  2. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  3. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  4. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    Science.gov (United States)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  5. Ion temperature measurements of H-, D- and He-plasmas in the TCA tokamak by collective Thomson scattering of D2O laser radiation

    International Nuclear Information System (INIS)

    Behn, R.; Dicken, D.; Hackmann, J.; Salito, S.A.; Siegrist, M.R.

    1989-01-01

    Development of collective Thomson scattering as a method to measure the ion temperature of a tokamak plasma has been successful and encouraging results have been obtained during experiments on TCA in H-, D- and He-plasmas. Using a laser source in the far-infrared spectral region allows scattering angles close to 90 o , which results in excellent spatial resolution. The system installed on the TCA tokamak comprises an optically pumped D 2 O laser emitting 0.5 J in a 1.4 μs pulse on its Raman transition at 385μm. A heterodyne receiver with a Schottky barrier diode mixer has been chosen to detect the scattered radiation and analyze its spectral distribution in 12 channels of 80 MHz. Recent improvements of the mixer and 1st IF-amplifier yielded a system NEP of 2.2·10 -19 W/Hz. As a consequence we have obtained results which allow for the first time to evaluate the ion temperature T i in a single laser shot. (author) 3 figs., 1 tab

  6. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Science.gov (United States)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  7. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.cz; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R. [Institute of Plasma Physics, Prague (Czech Republic); Müller, H. W. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany); Institute of Materials Chemistry & Research, University of Vienna, Vienna (Austria); Silva, C.; Fernandes, H.; Figueiredo, H. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck (Austria); Kurzan, B. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany)

    2016-04-15

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{sub e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  8. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    International Nuclear Information System (INIS)

    Adamek, J.; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Müller, H. W.; Silva, C.; Fernandes, H.; Figueiredo, H.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Kurzan, B.

    2016-01-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ_B_P_P) and the floating potential (V_f_l) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T_e = (Φ_B_P_P − V_f_l)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  9. Multi-mode optical fibers for simultaneous 13-position measurements Thomson scattering apparatus in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro; Matoba, Tohru; Ogura, Yoshiaki.

    1987-11-01

    The characteristics of fiber bundles for Thomson scattering optics are studied, whose fibers are made of multi-mode optical fibers. The variety of output patterns were observed by weighting on the fiber as well as by bending it after passing a He-Ne laser through a fiber bundle. This variety influenced the matching loss considerably. Then, the effect of former is larger than the latter, which is caused by the micro bending. And also, the spread of pulse width by weighting is connected with the spread of output pattern. The spread of pulse width was about 3ns at the most in a 2.3 m length of fiber bundle. (author)

  10. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  11. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  12. First high-repetition-rate Thomson scattering for fusion plasmas

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Schramm, G.; Hirsch, K.; Salzmann, H.

    1982-01-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A Nd:YAG laser of 60 pulses per second at 1.06μm was used in ASDEX in combination with silicon avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities as low as 3x10 12 cm -3 . (author)

  13. Advances in the FTU collective Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it; Bruschi, A.; Grosso, G.; Alessi, E.; De Angeli, M.; Figini, L.; Garavaglia, S.; Granucci, G.; Lontano, M.; Mellera, V.; Minelli, D.; Moro, A.; Muraro, A.; Nardone, A.; Simonetto, A.; Tartari, U. [Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche, Milano (Italy); D’Arcangelo, O.; Castaldo, C.; Centioli, C.; Magagnino, S. [ENEA for EUROfusion, Frascati (Italy); and others

    2016-11-15

    The new collective Thomson scattering diagnostic installed on the Frascati Tokamak Upgrade device started its first operations in 2014. The ongoing experiments investigate the presence of signals synchronous with rotating tearing mode islands, possibly due to parametric decay processes, and phenomena affecting electron cyclotron beam absorption or scattering measurements. The radiometric system, diagnostic layout, and data acquisition system were improved accordingly. The present status and near-term developments of the diagnostic are presented.

  14. Digital filter polychromator for Thomson scattering applications

    Science.gov (United States)

    Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An

    2018-02-01

    Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.

  15. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  16. Thomson scattering if FIR radiation

    International Nuclear Information System (INIS)

    Evans, D.E.

    1976-12-01

    The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)

  17. High-resolution Thomson scattering system on the COMPASS tokamak: Evaluation of plasma parameters and error analysis

    Czech Academy of Sciences Publication Activity Database

    Aftanas, Milan; Böhm, Petr; Bílková, Petra; Weinzettl, Vladimír; Zajac, Jaromír; Žáček, František; Stöckel, Jan; Hron, Martin; Pánek, Radomír; Scannell, R.; Walsh, M.

    2012-01-01

    Roč. 83, č. 10 (2012), 10E350-10E350 ISSN 0034-6748. [Topical Conference High-Temperature Plasma Diagnostics/19./. Monterey, 06.05.2012-10.05.2012] R&D Projects: GA ČR GA202/09/1467; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : error analysis * Monte Carlo methods * plasma density * plasma diagnostics * plasma temperature * plasma toroidal confinement * Tokamak devices Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2012 http://dx.doi.org/10.1063/1.4743956

  18. TV thomson scattering system on JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Ishige, Yoichi; Dimock, D.

    1995-01-01

    A higher spatial resolution TV Thomson scattering system was constructed on JFT-2M tokamak. This system has been providing complete profiles of Te and ne at a single time during a plasma discharge. New detector system was developed composed of two stages of image intensifier tubes coupled to a CCD. The extinction ratio of image intensifier was improved to 1.4 x 10 7 at least. (author)

  19. Stray light reduction for Thomson scattering

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    In order to perform Thomson scattering in a gas discharge tube, the reduction of stray light is very important because of the very small Thomson cross-section. By introducing a sodium absorption cell as a notch filter, we can reduce the measured stray light considerably. Then we have to use a dye

  20. Alpha particle collective Thomson scattering in TFTR

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  1. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  2. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    International Nuclear Information System (INIS)

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-01-01

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result

  3. Mirror System for Collecting Thomson-Scattered Light in a Tangential Direction

    NARCIS (Netherlands)

    Barth, C. J.; Grobben, B. J. J.; Verhaag, G. C. H. M.

    1994-01-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test

  4. LIDAR Thomson scattering diagnostic on JET (invited)

    International Nuclear Information System (INIS)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3-J pulse energy, 300-ps pulse duration, 0.5-Hz repetition rate) together with a 700-MHz bandwidth detection and registration system yields a spatial resolution of about 12 cm. A spectrometer with six channels in the wavelength range 400--800 nm gives a dynamic range of the temperature measurements of 0.3--20 keV. The stray light problem in the backscatter geometry is overcome by spectral discrimination and gating of the photomultipliers. A ruby filter in the spectral channel containing the laser wavelength allows calibration of the vignetting along the line of sight by means of Raman scattering, enabling the measurement of density profiles. The low level of background signal due to the short integration time for a single spatial point yields low statistical errors (ΔT/sub e/ /T/sub e/ ≅6%, Δn/sub e/ /n/sub e/ ≅4% at T/sub e/ = 6 keV, n/sub e/ = 3 x 10/sup 19/ m/sup -3/ ). Goodness-of-fit tests indicate that the systematic errors are within the same limits. The system is described and examples of measurements are given

  5. Recent advances in Thomson scattering: high repetition rate Thomson scattering diagnostics on large plasma devices

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1982-09-01

    In contrast to conventional ruby laser scattering devices allowing only singly pulse measurements, time evolution of Te and ne can be obtained with multipulse lasers. Within a short time interval ( proportional 1 ms) rapid variations can be investigated by employing a periodically Q-switched ruby laser. Several scattering systems under construction in different laboratories to register the time evolution of Tsub(e) and nsub(e) during the whole plasma discharge will be reported. The set-up operating successfully on the Garching tokamak ASDEX will be described in detail. This scattering system uses a Nd:YAG laser (1 J/pulse, up to 100 pps, pulse duration 30 ns, burst of max. 400 pulses) and silicon avalanche diodes as detectors. Time resolved nsub(e) and Tsub(e) measurements on different types of ASDEX discharges are shown, e.g. the electron density and electron heating during neutral beam injection in a divertor discharge. As an example of relatively fast changes of nsub(e) and Tsub(e), results on pellet injection are presented. Interferometric and ECE measurements are in good agreement with the Thomson results. Stationary ''long pulse discharges'' in ASDEX (10 s) at low densitites (10 12 cm -3 ) were diagnosed with reduced time resolution by averaging over several laser pulses. Measurements of the time evolution of electron temperature and -density profiles were done in a first step with a scanning mirror system. These results enables optimazing out 15 spatial-point Thomson scattering system on ASDEX. (orig./AH)

  6. Incoherent Thomson scattering as a diagnostic tool

    NARCIS (Netherlands)

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  7. Theory of Thomson scattering in inhomogeneous media.

    Science.gov (United States)

    Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G

    2016-04-12

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  8. Progress in development of the advanced Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hatae, T; Naito, O; Howard, J; Ebizuka, N; Yoshida, H; Nakatsuka, M; Fujita, H; Kajita, S; Narihara, K; Yamada, I; Funaba, H; Hirano, Y; Koguchi, H

    2010-01-01

    We have been studied the advanced Thomson scattering diagnostics from viewpoints of new concepts, laser technology and spectrum analysis. This paper summarizes results of development on technologies for advanced Thomson scattering diagnostics.

  9. Thomson scattering measurements in atmospheric plasma jets

    International Nuclear Information System (INIS)

    Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.

    1999-01-01

    Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society

  10. measurements by Thomson scattering system

    Indian Academy of Sciences (India)

    oirity in measuring the electron temperature (Te) and density (ne) in fusion plasma devices like tokamaks. ... by the plasma electrons is used for the measurements. .... will be in the photon integration mode and will be acquired by a computer.

  11. Thomson scattering on COMPASS – commissioning and first data

    Czech Academy of Sciences Publication Activity Database

    Aftanas, Milan; Böhm, Petr; Scannell, R.; Tripsky, M.; Weinzettl, Vladimír; Hron, Martin; Pánek, Radomír; Stöckel, Jan; Walsh, M.; Bílková, Petra

    2012-01-01

    Roč. 7, č. 1 (2012), C01074-C01074 ISSN 1748-0221. [INTERNATIONAL CONFERENCE ON LASER AIDED PLASMA DIAGNOSTICS/15./. Jeju, 13.10.2011-19.10.2011] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * electron temperature * laser diagnostic * Plasma diagnostics - charged-particle spectroscopy * Plasma diagnostics - interferometry * spectroscopy and imaging * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/01/C01074/pdf/1748-0221_7_01_C01074.pdf

  12. The ITER Thomson scattering core LIDAR diagnostic

    NARCIS (Netherlands)

    Naylor, G.A.; Scannell, R.; Beurskens, M.; Walsh, M.J.; Pastor, I.; Donné, A.J.H.; Snijders, B.; Biel, W.; Meszaros, B.; Giudicotti, L.; Pasqualotto, R.; Marot, L.

    2012-01-01

    The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be

  13. The Thomson scattering system at DANTE

    International Nuclear Information System (INIS)

    Gadeberg, M.

    1983-08-01

    The construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE is described. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge. (Auth.)

  14. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  15. 3. Laser Thomson scattering by plasmas. 3.2. Applications of incoherent Thomson scattering. 3.2.2. Incoherent Thomson scattering systems for JT-60U and JFT-2M

    International Nuclear Information System (INIS)

    Hatae, Takaki; Yoshida, Hidetoshi; Naito, Osamu; Yamauchi, Toshihiko

    2000-01-01

    Development of Thomson scattering diagnostics for the JT-60U and JFT-2M Tokamaks are described. Two Thomson scattering systems have been installed on JT-60U. The first system uses two ruby lasers (10 J, 0.25 Hz) and measures electron temperature (T e ) and density (n e ) profiles of 60 spatial points with high spatial resolution (8 mm). The second system uses a YAG laser (2 J, 30 Hz) and measures time evolution of T e and n e profiles with 15 spatial points. On JFT-2M, a TV Thomson Scattering system (TVTS) has been installed and measures at 81 spatial points with high spatial resolution (8.6 mm). These systems have provided not only profiles of all over the plasma, but successfully measured local structures to study various physics issues; e.g. H-mode edge pedestal, internal transport barrier, local MHD event. (author)

  16. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando

    2005-01-01

    The EFDA Contract 04-1213 with Risø National Laboratory concerning a detailed integrated design of a Fast Ion Collective Thomson Scattering (CTS) diagnostic for ITER was signed on 31 December 2004. In 2003 the Risø CTS group finished a feasibility study and a conceptual design of an ITER Fast Ion...... Collective Thomson Scattering System (Contract 01.654) [1, 2]. The purpose of the CTS diagnostic is to measure the distribution function of fast ions in the plasma. The feasibility study demonstrated that the only system that can fully meet the ITER measurement requirements for confined fusion alphas is a 60...... the blanket gap, and calculations of diagnosing fuel ion ratio and rotation velocity by CTS....

  17. Improvement of the bandwidth of the transient digitizers in the LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Kristensen, E.

    1990-06-01

    The main limitation on the spatial resolution of the LIDAR Thomson scattering diagnostic on the JET tokamak is due to the narrow bandwidth of the detection system. The transient digitizers, Tektronik 7912AD, are the main contributors to the narrow bandwidth. It is shown how the digitizers can be modified to improve the response time from approx. 480 to 410 ps. (author)

  18. Vacuum component subsystem of TV Thomson scattering system in JFT-2M

    International Nuclear Information System (INIS)

    Shiina, Tomio; Yamauchi, Toshihiko; Fujisawa, Atsushi; Hanawa, Osamu; Dimock, D.; Takahashi, Akira; Inomata, Shinji.

    1991-03-01

    The vacuum component subsystem, which is one of six subsystems in TV Thomson scattering (TVTS) system for the JFT-2M tokamak, is completed under a US-JAPAN cooperative program. This subsystem is composed of top and bottom flanges, side flange, beam dump, viewing dump and so on. These components are fitted in the existing 13-point Thomson scattering system as well as the TVTS optics newly developed by Princeton Plasma Physics Laboratory (PPPL) in USA. New feedback system of laser beam alignment was designed and developed. (author)

  19. Detectors for LIDAR type Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hirsch, K.

    1991-04-01

    A report on the capability of the microchannel plate photomultiplier type (ITT F4128) presently used at the JET LIDAR Thomson Scattering System is given. Detailed investigation on time response, low noise amplification, shutter ratio, gating behaviour, linear mode of operation and saturation pulse recovery carried out during the design phase for LIDAR are presented. New investigation with respect to dc- and gated operation showed no measurable changes in sensitivity of this MCP photomultiplier. Comparing this type of detector with other MCP photomultipliers and with streak cameras some detection schemes for future LIDAR type diagnostic are proposed. (orig.)

  20. Operation of the NSTX Thomson Scattering System

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; Palladino, R.W.

    2002-01-01

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration

  1. DIII-D Thomson Scattering Diagnostic Data Acquisition, Processing and Analysis Software

    International Nuclear Information System (INIS)

    Middaugh, K.R.; Bray, B.D.; Hsieh, C.L.; McHarg, B.B.Jr.; Penaflor, B.G.

    1999-01-01

    One of the diagnostic systems critical to the success of the DIII-D tokamak experiment is the Thomson scattering diagnostic. This diagnostic is unique in that it measures local electron temperature and density: (1) at multiple locations within the tokamak plasma; and (2) at different times throughout the plasma duration. Thomson ''raw'' data are digitized signals of scattered light, measured at different times and locations, from the laser beam paths fired into the plasma. Real-time acquisition of this data is performed by specialized hardware. Once obtained, the raw data are processed into meaningful temperature and density values which can be analyzed for measurement quality. This paper will provide an overview of the entire Thomson scattering diagnostic software and will focus on the data acquisition, processing, and analysis software implementation. The software falls into three general categories: (1) Set-up and Control: Initializes and controls all Thomson hardware and software, synchronizes with other DIII-D computers, and invokes other Thomson software as appropriate. (2) Data Acquisition and Processing: Obtains raw measured data from memory and processes it into temperature and density values. (3) Analysis: Provides a graphical user interface in which to perform analysis and sophisticated plotting of analysis parameters

  2. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  3. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  4. A compact multichannel spectrometer for Thomson scattering

    International Nuclear Information System (INIS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-01-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T e e > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (∼2 ns) ICCD camera for detection. A Gen III image intensifier provides ∼45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  5. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  6. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Moseev, D.

    2011-11-01

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  7. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D.

    2011-11-15

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  8. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Müller, H.W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horáček, Jan; Kurzan, B.; Bílková, Petra; Böhm, Petr; Aftanas, Milan; Vondráček, Petr; Stöckel, Jan; Pánek, Radomír; Fernandes, H.; Figueiredo, H.

    2016-01-01

    Roč. 87, č. 4 (2016), č. článku 043510. ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA14-35260S; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ball- pen probe (BPP) * ASDEX Upgrade * Langmuir probe (LP) * ISTTOK (Instituto Superior Tecnico TOKamak) * COMPASS (COMPact ASSembly), Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/4/10.1063/1.4945797

  9. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Müller, H.W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horáček, Jan; Kurzan, B.; Bílková, Petra; Böhm, Petr; Aftanas, Milan; Vondráček, Petr; Stöckel, Jan; Pánek, Radomír; Fernandes, H.; Figueiredo, H.

    2016-01-01

    Roč. 87, č. 4 (2016), č. článku 043510. ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA14-35260S; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ball-pen probe (BPP) * ASDEX Upgrade * Langmuir probe (LP) * ISTTOK (Instituto Superior Tecnico TOKamak) * COMPASS (COMPact ASSembly), Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/4/10.1063/1.4945797

  10. Thomson scattering upgrade on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, F., E-mail: fabrice.leroux@cea.f [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Manenc, L.; Moreau, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2010-07-15

    The Thomson scattering diagnostic supplies the electron temperature and density of Tore Supra plasmas from the spectrum analysis of scattered light of a very short laser pulse. A new spectrometer has been realized to improve the signal to noise ratio. In order to obtain an efficient noise reduction, a real time calculation is necessary. The current analogue integration of the signal is inadequate. A fast digitalization must be used with a sampling rate of 1 GSamples/s, a bandwidth of 150 MHz and a 12 bits dynamic range. In a first step, fast analogue data acquisition boards for 4 channels were added in 2009 to the VME acquisition system in place. A MATACQ (Matrix for acquisition) board was chosen for sampling analogue data up to 2 GSamples/s over 4 channels with a large bandwidth of 300 MHz and a 14 bits dynamic range. This solution offers a low cost acquisition system that is not available in any other commercial board with this dynamic range. The first results will be obtained on calibration period with a light emitted diode before the summer 2009. This article will present the new data acquisition system and the coming first results.

  11. 154 GHz collective Thomson scattering in LHD

    Science.gov (United States)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  12. Improvements to the MST Thomson Scattering Diagnostic

    Science.gov (United States)

    Adams, D. T.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Kile, T.; Kubala, S. Z.; Jacobson, C. M.; Thomas, M. A.; Wallace, J. P.; Young, W. C.; MST Thomson Scattering Team

    2017-10-01

    Multiple upgrades to the MST Thomson Scattering diagnostic have been implemented to expand capabilities of the system. In the past, stray laser light prevented electron density measurements everywhere and temperature measurements for -z/a >0.75. To mitigate stray light, a new laser beamline is being commissioned that includes a longer entrance flight tube, close-fitting apertures, and baffles. A polarizer has been added to the collection optics to further reduce stray light. An absolute density calibration using Rayleigh scattering in argon will be performed. An insertable integrating sphere will provide a full-system spectral calibration as well as maps optical fibers to machine coordinates. Reduced transmission of the collection optics due to coatings from plasma-surface interactions is regularly monitored to inform timely replacements of the first lens. Long-wavelength filters have been installed to better characterize non-Maxwellian electron distribution features. Previous work has identified residual photons not described by a Maxwellian distribution during m =0 magnetic bursts. Further effort to characterize the distribution function will be described. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award No. DE-FC02-05ER54814.

  13. Edge Thomson scattering on RFX-mod

    International Nuclear Information System (INIS)

    Alfier, A.; Pasqualotto, R.

    2006-01-01

    Electron temperature and density profiles of the RFX-mod experiment are characterized by edge gradients typically steeper than the flatter central region. The main Thomson scattering (TS) diagnostic which measures 84-point profiles along a diameter is mainly devoted to cover the core region. A second TS system has been developed to measure 12-point profiles in the external region 0.8< r/a<1, with a spatial resolution of 1 cm. It uses a single shot ruby laser. Input and collection optics share the same vacuum port and they are mounted on one optical bench, which allows offline aligning the system before connecting it to the vessel. The scattered signal is collected by a row of 12 fibers, while 4 fibers on the sides are used to check the alignment and measure the plasma light. The fibers, arranged in a 4x4 pattern, are fed into a four channel filter spectrometer and the spectrum is detected by a GaAs intensified charge-coupled device camera. The filters are arranged in a zigzag geometry, such that only one detector is needed

  14. Equipment of Thomson scattering measurement on DIVA plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Funahashi, Akimasa; Matoba, Thoru; Sengoku, Seio

    1980-02-01

    Equipment of Thomson scattering measurement using ruby-laser light is explained. DIVA device was shut down in September 1979; it gave numerous fruitful experimental results during its five years operation. We measured the profiles of electron temperature and density with the Thomson scattering equipment, which played an important role in research of the energy confinement and heating characteristics. In Thomson scattering measurements on DIVA, studies and improvements were made for reduction of stray light, increase of measuring points and data processing. The profile of electron temperature and density were thus measured successful. In this report is given an over-all view of the Thomson scattering equipment together with the above improvements. As two representative examples, the measured results of electron temperature profiles on DIVA plasma under divertor operation and low-q discharge respectively are described. (author)

  15. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    In this report we investigate the feasibility of diagnosing the fast ions in ITER by collective Thomson scattering (CTS), exploring and comparing the diagnostic potentials of CTS systems base on a range of different probe frequencies. In the first section we first recall the requirements for meas...... the diagnostic potentials uncovered in the preceding four sections. A number of more detailed discussions are placed in appendices along with supporting material....... for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...... covers many more details. Here we introduce terms and methods used in the more detailed system evaluations later in the report. In Sections 2 through 5 we consider four different types of CTS systems, which differ by the ranges in which their probe frequencies lie. In Section 6 we summarize and compare...

  16. Thomson scattering on ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Cobble, J.A.

    1985-04-01

    Below 10 12 cm -3 density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10 11 cm -3 . Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10 12 cm -3 and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations

  17. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  18. Control and acquisition for MAST Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Shibaev, S.; Naylor, G.; Scannell, R.; McArdle, G.; O'Gorman, T.; Walsh, M.J.

    2010-01-01

    The MAST (mega-amp spherical tokamak) Thomson scattering (TS) diagnostics have been radically upgraded and expanded. Eight 30 Hz 1.6 J Nd:YAG lasers have been combined to produce a sampling rate of 240 Hz. The scattered signals are acquired by two spectrometer systems: core and edge. The core system has been built anew: collection optics, polychromators, digitizers, and control computers. It allows measurement of electron temperature and density at 130 spatial points with ∼10 mm resolution across the plasma. The Nd:YAG scattered light signals are registered in 650 channels as polychromator outputs; each channel is registered on two ADCs: at 1 GHz rate in a short interval around each laser pulse and at 100 kHz for background data. The fast ADCs are combined in 26 data acquisition units. Each unit is assembled in a 6 U PXI chassis with embedded controller and six 4-channel 1 GHz ADC cards. Some chassis contain a 96-channel slow ADC card with Ethernet control. The Ruby TS has been rebuilt with a new spectrometer and CCD camera to provide higher spatial resolution - 512 points; the laser has been modified to add double pulse capability. A new control and acquisition system has been developed; it has modular design allowing flexibility and seamless expansion. The system supports event-triggered and real-time operation (will be added in a later stage). A smart trigger device has been developed for TS timing and synchronisation. It provides complex pulse sequences for laser firing with resynchronisation on a number of digital and analogue inputs including plasma events. This device also triggers TS acquisition. The system is integrated by a TS master process running on the dedicated computer; it is represented as a standard MAST data acquisition unit. The Ruby TS is also implemented as a standard MAST unit linked with the Nd:YAG TS by MAST system services.

  19. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H. [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Yamada, I. [National Institute Fusion Science, Toki, Gifu 509-5292 (Japan); Park, Jae Sun [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-11-15

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.

  20. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    NARCIS (Netherlands)

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  1. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  2. Development of high-spatial resolution TV Thomson scattering system for JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Kozawa, Teruo; Ishige, Youichi.

    1996-01-01

    The JFT-2M TV Thomson scattering system (TVTS) with high spatial resolution was completed in the cooperation of the fusion research and development for the DOE-JAERI collaborative program, and has been operated for 3 years. The system is composed of six subsystems; vacuum components, optics, detector, control and data acquisition, software and laser subsystems. TVTS was totally tested in the JFT-2M tokamak and the electron temperature and density profiles are measured with good reproducibility, and the increase of electron temperature by increasing toroidal magnetic field is also measured with TVTS. (author)

  3. Feasability study of using the TFTR Thomson scattering system for q profile measurements

    International Nuclear Information System (INIS)

    Brizard, A.; Grewk, B.; Johnson, D.; LeBlanc, B.

    1986-01-01

    The results of a study made to determine the possibility of using the TFTR 76 channels Thomson scattering system to measure the direction of local magnetic fields in a tokamak plasma are presented. As this is a local measurement, this technique can in principle yield q profiles without the need of any de-convolution. The effect of the TFTR geometrical configuration and its various components on the expected measurement accuracy is discussed. The authors find that the measurement of q values within the inner half of the plasma should be possible, with only minor modification to the present TVTS system

  4. Gated integrator PXI-DAQ system for Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Thomas, Jinto; Kumar, Ajai

    2017-06-15

    Gated Integrator (GI) PXI based data acquisition (DAQ) system has been designed and developed for the ease of acquiring fast Thomson Scattered signals (∼50 ns pulse width). The DAQ system consists of in-house designed and developed GI modules and PXI-1405 chassis with several PXI-DAQ modules. The performance of the developed system has been validated during the SST-1 campaigns. The dynamic range of the GI module depends on the integrating capacitor (C{sub i}) and the modules have been calibrated using 12 pF and 27 pF integrating capacitors. The developed GI module based data acquisition system consists of sixty four channels for simultaneous sampling using eight PXI based digitization modules having eight channels per module. The error estimation and functional tests of this unit are carried out using standard source and also with the fast detectors used for Thomson scattering diagnostics. User friendly Graphical User Interface (GUI) has been developed using LabVIEW on Windows platform to control and acquire the Thomson scattering signal. A robust, easy to operate and maintain with low power consumption, having higher dynamic range with very good sensitivity and cost effective DAQ system is developed and tested for the SST-1 Thomson scattering diagnostics.

  5. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  6. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  7. LIDAR Thomson scattering for ITER core plasma revisited

    International Nuclear Information System (INIS)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2016-01-01

    The authors have become aware that the development of the hitherto planned time-of-flight Thomson scattering system for the ITER core plasma is not proceeding and that conventional Thomson scattering set-ups are being discussed as an alternative. In this paper, we want to point out the advantages of LIDAR and show how criticized details of the original design can be improved. We present a design of the front optics, which in neutronics terms closely resembles a layout already previously accepted. The presented design does not require Raman scattering calibration for the density measurement. Comparison with the JET Core LIDAR system and simulations at higher temperatures both show that with the new design the specified accuracy can be met with a 1–2 J laser. Current laser and detector technology is reviewed. A strategy for how to proceed is presented

  8. Upgraded divertor Thomson scattering system on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); McLean, A. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  9. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  10. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  11. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  12. Optical design of the TMX Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Frank, A.M.

    1979-01-01

    The Thomson Scattering Diagnostic on TMX was built to measure the electron temperature in the plug. The design was based on the 2XII system built by Tom Simonen. Substantial improvements were realized over the original design, these include: (1) improved sensitivity, (2) simultaneous multiple position sampling, (3) multiple pulse capability, (4) achromatic imaging, (5) vacuum alignment capability, (6) high reliability, and (7) built in calibration and performance monitoring

  13. A triple spectrograph system for low stray light Thomson scattering measurements

    NARCIS (Netherlands)

    Sande, van de M.J.; Mullen, van der J.J.A.M.

    2001-01-01

    Thomson scattering is scattering of photons by the electrons in a plasma. From the scattering spectrum, the electron temperature and density (Te, ne) of the plasma can be deduced. In the past decade, the development of high power lasers and sensitive detection devices has made Thomson scattering a

  14. Design and development of the large helical device TV Thomson scattering

    International Nuclear Information System (INIS)

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-01-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data

  15. Modeling traveling-wave Thomson scattering using PIConGPU

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)

    2016-07-01

    Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.

  16. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  17. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    Science.gov (United States)

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  18. Calibration of the ORNL two-dimensional Thomson scattering system

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.; Lazarus, E.A.; Kindsfather, R.R.; Murakami, M.; Stewart, K.A.

    1985-10-01

    A unified presentation of the calibrations needed for accurate calculation of electron temperature and density from Thomson scattering data for the Oak Ridge National Laboratory two-dimensional Thomson scattering system (SCATPAK II) is made. Techniques are described for measuring the range of wavelengths to which each channel is responsive. A statistical method for calibrating the gain of each channel in the system is given, and methods of checking for internal consistency and accuracy are presented. The relationship between the constants describing the relative light collection efficiency of each channel and plasma light-scattering theory is developed, methods for measuring the channel efficiencies and evaluating their accuracy are described, and the effect on these constants of bending fiber optics is discussed. The use of Rayleigh or Raman scattering for absolute efficiency (density) calibration, stray light measurement, and system efficiency evaluation is discussed; the relative merits of Rayleigh vs Raman scattering are presented; and the relationship among the Rayleigh/Raman calibrations, relative channel efficiency constants, and absolute efficiencies is developed

  19. Thomson scattering on non-equilibrium low density plasmas : principles, practice and challenges

    NARCIS (Netherlands)

    Carbone, E.A.D.; Nijdam, S.

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters

  20. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  1. Periodic Thomson scattering diagnostic with 16 spatial channels on ASDEX

    International Nuclear Information System (INIS)

    Meisel, D.; Murmann, H.; Roehr, H.; Steuer, K.H.; Becker, G.; Bosch, H.S.; Brocken, H.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. v.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Janeschitz, G.; Karger, F.; Klueber, O.; Kornherr, M.; Lackner, K.; Lenoci, M.; Lisitano, G.; Mast, F.; Mayer, H.M.; McCormick, K.; Mertens, V.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Roth, J.; Schneider, F.; Setzensack, C.; Siller, G.; Soeldner, F.X.; Wagner, F.; Zasche, D.; Izvozchikov, A.; Ryter, F.

    1986-01-01

    The Nd-YAG Periodic Scattering System (PSS) was developped in teamwork with IPF of Stuttgart-University. At first a PSS with only one spatial channel was successfully tested in the ASDEX-Tokamak in 1982. Subsequently an upgraded system with 16 spatial channels was constructed. This new system is capable of measuring Te, Ne-profiles at 17 ms intervals during the entire ASDEX-Tokamak-discharge. The PSS has been working successfully for the last one and a half years as a standard diagnostic method in the ASDEX-Tokamak. This means, that the measurement is being automatically performed during all plasma-discharges. The Te- and Ne-values are stored in the ASDEX-computer and every user has the possibility to get the Te(r, t), Ne(r, t)-data for his own needs. (orig.)

  2. Thomson scattering in magnetic fields. [of white dwarf stars

    Science.gov (United States)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  3. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  4. Collective Thomson scattering data analysis for Wendelstein 7-X

    DEFF Research Database (Denmark)

    Abramovic, I.; Pavone, A.; Svensson, J.

    2017-01-01

    Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated...... into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report...... on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis....

  5. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general ...... and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system. © 2010 EURATOM...

  6. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  7. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...... in CTS spectra have been suggested as the basis for a new fuel ion ratio diagnostic which would be well suited for reactor environments and capable of providing spatially resolved measurements in the plasma core. Such measurements were demonstrated in recent experiments in the TEXTOR tokamak. Here we...... conduct a sensitivity study to investigate the potential measurement accuracy of a CTS fuel ion ratio diagnostic on ITER. The study identifies regions of parameter space in which CTS can be expected to provide useful information on plasma composition, and we find that a CTS fuel ion ratio diagnostic could...

  8. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    reported [Bindslev , Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150 kW of 110-GHz gyrotron probing radiation......Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently...... of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations....

  9. Advanced Thomson scattering system for high-flux linear plasma generator

    NARCIS (Netherlands)

    Meiden, van der H.J.; Lof, A.R.; Berg, van den M.A.; Brons, S.; Donné, A.J.H.; Eck, van H.J.N.; Koelman, Peter; Koppers, W.R.; Kruijt, O.G.; Naumenko, N.N.; Oyevaar, T.; Prins, P.R.; Rapp, J.; Scholten, J.; Schram, D.C.; Smeets, P.H.M.; Star, van der G.; Tugarinov, S.N.; Zeijlmans van Emmichoven, P.A.

    2012-01-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating

  10. Thomson scattering in a low-pressure argon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2000-01-01

    The electron density and the electron temperature in a low-pressure argon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 5

  11. Thomson scattering in a low-pressure neon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2001-01-01

    The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10

  12. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  13. The Thomson scattering system at Wendelstein 7-X

    Science.gov (United States)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  14. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    Science.gov (United States)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  15. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  16. Rotational Raman scattering using molecular nitrogen gas for calibration of Thomson-scattering apparatus

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro

    1987-01-01

    Anti-Stokes rotational Raman lines in molecular nitrogen gas were used for the calibration of Thomson-scattering apparatus. It was found that molecular nitrogen gas is suitable for a vessel having strong stray light. The polarization ratio was 0.16 using linear-polarized laser light. (author)

  17. Study of a CW, two-dimensional Thomson scattering diagnostic system

    International Nuclear Information System (INIS)

    Hsieh, C.L.; Bray, B.D.; Liu, C.

    2004-01-01

    We describe an approach to Thomson scattering diagnostic that relies upon a high power CW laser cavity and a rf signal detection technique, instead of the more usual pulsed high energy laser. The system has three major elements: an ultra long (∼150 m) laser resonance cavity that includes the plasma region; an array of CW diode lasers of high power and high modulation frequency that pumps and maintains the average cavity energy (∼10 mJ); and a lock-in detection system of narrow frequency bandwidth (∼2 kHz). The resonance cavity consists of a pumping chamber for power input from diode lasers, and many relay chambers (∼30) distributed across the plasma cross section for Thomson measurement. The cavity has a low energy loss (∼2% round trip) and zero output power. It is estimated that signal-to-noise of the system is ∼100 times better than the present pulsed system on DIII-D Tokamak due to the increase in usable laser energy and the improved background signal rejection

  18. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Schlossberg, D J; Bongard, M W; Fonck, R J; Schoenbeck, N L; Winz, G R

    2013-01-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 10 19 m −3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development

  19. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  20. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  1. Design of a Thomson scattering diagnostic system for VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Gi [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Jong Ha [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of); Lee, Jeongwon; An, YoungHwa; Dang, Jeong Jeung; Jo, Jungmin; Lee, HyunYeong; Chung, Kyoung-Jae; Hwang, Y.S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Na, Yong-Su, E-mail: ysna@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-10-15

    Highlights: • A Thomson scattering system for Versatile Experiment Spherical Torus is designed. • The system is designed with care for the plasma with a low target electron density. • APD of low dark current and enhanced sensitivity for near infrared has been chosen. • A collecting optics system will provide a sufficient number of photoelectrons. • A designed polychromator is able to measure the electron temperature of 10–1000 eV. - Abstract: A Thomson scattering diagnostic system is designed for Versatile Experiment Spherical Torus (VEST) to measure the spatial profiles of the electron temperature. The system is carefully designed to collect a sufficient number of photoelectrons and to reduce the noise sources, since relatively low electron densities and temperatures are expected in VEST due to the limited power capacity at present. The target electron temperature and the density are 10–200 eV and 5 × 10{sup 18} m{sup −3}, respectively which are extrapolated from the data of triple Langmuir probes measuring the edge plasma parameters at R = 0.75 m by assuming a parabolic density profile. The collecting optics is designed to have a wide-view angle and low cost by using a commercial photographic lens of low f-number and high transmittance optical fiber bundle. The bandwidths of the interference filters in the polychromator are designed for reliable measurements within the target electron temperature range. As a photo detector which is coupled with the filters, an avalanche photodiode (APD) with a low dark current and an adequate quantum efficiency near the laser wavelength is selected for the high signal-to-noise ratio. The number of photons transferred to the polychromator and the number of photoelectrons in the APD are calculated. At the commissioning phase, an oscilloscope with a high sampling rate will be adopted to check the necessity of the noise reduction by multi-shot signal accumulation.

  2. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  3. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    International Nuclear Information System (INIS)

    Morton, L A; Parke, E; Hartog, D J Den

    2013-01-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined

  4. Operation of ADITYA Thomson scattering system: measurement of temperature and density

    International Nuclear Information System (INIS)

    Thomas, Jinto; Pillai, Vishal; Singh, Neha; Patel, Kiran; Lingeshwari, G.; Hingrajiya, Zalak; Kumar, Ajai

    2015-01-01

    ADITYA Thomson scattering (TS) system is a single point measurement system operated using a 10 J ruby laser and a 1 meter grating spectrometer. Multi-slit optical fibers are arranged at the image plane of the spectrometer so that each fiber slit collects 2 nm band of scattered spectrum. Each slit of the fiber bundle is coupled to high gain Photomultiplier tubes (PMT). Standard white light source is used to calibrate the optical fiber transmission and the laser light itself is used to calibrate the relative gain of the PMT. Rayleigh scattering has been performed for the absolute calibration of the TS system. The temperature of ADITYA plasma has been calculated using the conventional method of estimation (calculated using the slope of logarithmic intensity vs the square of delta lambda). It has been observed that the core temperature of ADITYA Tokamak plasma is in the range of 300 to 600 eV for different plasma shots and the density 2-3 X 10 13 /cc. The time evolution of the plasma discharge has been studied by firing the laser at different times of the discharge assuming the shots are identical. In some of the discharges, the velocity distribution appears to be non Maxwellian. (author)

  5. Feasibility study of direct spectra measurements for Thomson scattered signals for KSTAR fusion-grade plasmas

    Science.gov (United States)

    Park, K.-R.; Kim, K.-h.; Kwak, S.; Svensson, J.; Lee, J.; Ghim, Y.-c.

    2017-11-01

    Feasibility study of direct spectra measurements of Thomson scattered photons for fusion-grade plasmas is performed based on a forward model of the KSTAR Thomson scattering system. Expected spectra in the forward model are calculated based on Selden function including the relativistic polarization correction. Noise in the signal is modeled with photon noise and Gaussian electrical noise. Electron temperature and density are inferred using Bayesian probability theory. Based on bias error, full width at half maximum and entropy of posterior distributions, spectral measurements are found to be feasible. Comparisons between spectrometer-based and polychromator-based Thomson scattering systems are performed with varying quantum efficiency and electrical noise levels.

  6. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  7. Enhanced Thomson scattering theory applied to eight experiments

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.

    1985-01-01

    The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks

  8. X-ray Thomson Scattering from Spherically Imploded ICF Ablators

    Science.gov (United States)

    Kritcher, Andrea; Doeppner, Tilo; Landen, Otto; Glenzer, Siegfried

    2010-11-01

    Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113^o and 135^o. for two drive pulse shapes.As an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beamswhen compressed a factor of 4.83x) yielded electron densities of ˜ 1.2±0.23x10^24cm-3, temperatures of ˜13±32 eV, and an ionization state of Be(+2), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 +0.3/-.5 with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).

  9. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-11-15

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  10. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Patel, Kiran; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-01-01

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  11. Te and ne profiles on JFT-2M plasma with the highest spatial resolution TV Thomson scattering system

    International Nuclear Information System (INIS)

    Yamauchi, T.

    1993-01-01

    A high spatial resolution TV Thomson scattering system was constructed on JFT-2M tokamak. This system is similar to those used at PBX-M and TFTR. These systems are providing complete profiles of Te and ne at a single time during a plasma discharge. The characteristics of JFT-2M TVTS are as follows: 1. Measured points are composed of not only 81 points for the scattered light and plasma light, whose time difference is 2 ms, but also 10 points for plasma light measured at the same time with scattered light. 2. Spatial resolution is 0.86 cm, which is higher than any other Thomson scattering system. 3. Sensitivity of detector composed of image intensifier tubes and CCD is as high as that of photomultiplier tube. Te and ne profiles have been measured over one year on JFT-2M. The line-averaged electron density measured was in the region of 5x10 12 cm -3 - 7x10 13 cm -3 and the measured electron temperature was in the region of 50 eV -1.2 keV. (author) 7 refs., 7 figs., 1 tab

  12. X-Ray Thomson Scattering Without the Chihara Decomposition

    Science.gov (United States)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  13. Focusing effects in laser-electron Thomson scattering

    Directory of Open Access Journals (Sweden)

    Chris Harvey

    2016-09-01

    Full Text Available We study the effects of laser pulse focusing on the spectral properties of Thomson scattered radiation. Modeling the laser as a paraxial beam we find that, in all but the most extreme cases of focusing, the temporal envelope has a much bigger effect on the spectrum than the focusing itself. For the case of ultrashort pulses, where the paraxial model is no longer valid, we adopt a subcycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focusing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to subwavelength spot sizes produce spectra that are qualitatively similar to those from subcycle pulses due to the shortening of the pulse with focusing. Finally, we study high-intensity fields and find that, in general, the focusing makes negligible difference to the spectra in the regime of radiation reaction.

  14. High-rep-rate Thomson scattering for LHD

    Science.gov (United States)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  15. Alignment of the Thomson scattering diagnostic on NSTX

    International Nuclear Information System (INIS)

    LeBlanc, B P; Diallo, A

    2013-01-01

    The Thomson scattering diagnostic can provide profile measurement of the electron temperature, T e , and density, n e , in plasmas. Proper laser beam path and optics arrangement permits profiles T e (R) and n e (R) measurement along the major radius R. Keeping proper alignment between the laser beam path and the collection optics is necessary for an accurate determination of the electron density. As time progresses the relative position of the collection optics field of view with respect to the laser beam path will invariably shift. This can be kept to a minimum by proper attention to the physical arrangement of the collection and laser-beam delivery optics. A system has been in place to monitor the relative position between laser beam and collection optics. Variation of the alignment can be detected before it begins to affect the quality of the profile data. This paper discusses details of the instrumentation and techniques used to maintain alignment during NSTX multi-month experimental campaigns

  16. Chevron beam dump for ITER edge Thomson scattering system

    International Nuclear Information System (INIS)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-01-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated

  17. Chevron beam dump for ITER edge Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Vayakis, G. [ITER Organization, 13115 St Paul Lez Durance Cedex (France)

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  18. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  19. Comparison in electron density distribution of tokamak plasma between ruby-laser scattering and milli-meter wave interferometric measurements

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa; Itagaki, Tokiyoshi; Takahashi, Koki; Kumagai, Katsuaki

    1976-08-01

    The electron density in JFT-2 tokamak has been measured by two methods, i.e. Thomson scattering of ruby-laser light and interferometry of millimeter wave. Two-dimensional distribution of the scattered light intensities were obtained by scattering measurement; absolute calibration was made by normalizing the scattered intensities with the averaged density determined from interferometric measurement. The horizontal density distributions in laser scattering were compared with those in from the averaged densities measured with a 4-mm interferometer through inverse-transformation. Agreement is good between the two measurements, except where they give erroneous data because of irreproducibility of the discharge. (auth.)

  20. Tokamak T-10 multipulse laser scattering: Instrumentation modernization

    International Nuclear Information System (INIS)

    Baukov, V.A.; Ponomarev, A.V.; Gorshkov, A.V.; Rossikhin, B.A.; Sannikov, V.V.; Grek, B.

    1994-01-01

    The modernized Thomson scattering diagnostic complex of Tokamak T-10 is described. The complex is based on a high-power neodimium laser. Both the laser fundamental and second harmonics serve to find out the time-dependence of plasma electron temperature and density profiles, as well as to measure the electron distribution function. One detected the scattered laser radiation at θ = 90 degrees and 2.5 degrees angles. The new-version Nd laser generates eight-pulse sequences. The laser radiation energy is E o = 30-50 J/pulse. The radiation divergence was smaller than var-phi = 0.15 mrad. The multiple radiation parameters were found to be very stable. The operator could vary the inter-pulse time intervals within the pulse sequence. The second-harmonic radiation energy was E 2 = 10-15 J/pulse. The data acquisition and analysis system was supported by IBM/AT and Macintosh computers. 6 refs., 1 fig

  1. Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

    Directory of Open Access Journals (Sweden)

    T.D. Rognlien

    2017-08-01

    Full Text Available A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult low anomalous transport regime associated with the H-mode. The data set, which spans a range of plasma densities for both forward and reverse toroidal magnetic field (Bt, is provided by divertor Thomson scattering (DTS. Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (Te and density (ne across both divertor legs for individual discharges. The simulations focus on the open magnetic field-line regions, though they also include a small region of closed field lines. The calculations show the same features of in/out divertor plasma asymmetries as measured in the experiment, with the normal Bt direction (ion ∇B drift toward the X-point having higher ne and lower Te in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. These 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.

  2. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    International Nuclear Information System (INIS)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  3. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    International Nuclear Information System (INIS)

    Herranz, J.; Barth, C. J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-01-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  4. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    International Nuclear Information System (INIS)

    Farias, G.; Dormido-Canto, S.; Vega, J.; Santos, M.; Pastor, I.; Fingerhuth, S.; Ascencio, J.

    2014-01-01

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process

  5. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  6. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  7. A Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET

    International Nuclear Information System (INIS)

    Costley, A.E.; Hoekzema, J.A.; Stott, P.E.; Watkins, M.L.

    1988-01-01

    The paper presents the findings of a feasibility investigation into the proposed Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET. A description is given of the motivation for alpha particle diagnostics on JET, followed by a brief survey of possible α-particle diagnostics for JET. The basic principles of the collective Thomson scattering technique are presented, along with its implementation on JET. The expected performance of the system, and other applications of the diagnostic system are also discussed. (U.K.)

  8. Study of the effects of photoelectron statistics on Thomson scattering data

    International Nuclear Information System (INIS)

    Hart, G.W.; Levinton, F.M.; McNeill, D.H.

    1986-01-01

    A computer code has been developed which simulates a Thomson scattering measurement, from the counting statistics of the input channels through the mathematical analysis of the data. The scattered and background signals in each of the wavelength channels are assumed to obey Poisson statistics, and the spectral data are fitted to a Gaussian curve using a nonlinear least-squares fitting algorithm. This method goes beyond the usual calculation of the signal-to-noise ratio for the hardware and gives a quantitative measure of the effect of the noise on the final measurement. This method is applicable to Thomson scattering measurements in which the signal-to-noise ratio is low due to either low signal or high background. Thomson scattering data from the S-1 spheromak have been compared to this simulation, and they have been found to be in good agreement. This code has proven to be useful in assessing the effects of counting statistics relative to shot-to-shot variability in producing the observed spread in the data. It was also useful for designing improvements for the S-1 Thomson scattering system, and this method would be applicable to any measurement affected by counting statistics

  9. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    Science.gov (United States)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  10. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  11. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Michelsen, Poul; Hansen, S.K.

    2017-01-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respe...

  12. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  13. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  14. Comparison of fast ion collective Thomson scattering measurements at ASDEX Upgrade with numerical simulations

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Stejner Pedersen, Morten

    2010-01-01

    Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injecti...

  15. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  16. Control and automation of the Pegasus multi-point Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  17. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  18. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...

  19. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  20. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  1. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  2. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  3. Multi-Point Thomson Scattering Diagnostic for the Helicity Injected Torus

    Science.gov (United States)

    Liptac, J. E.; Smith, R. J.; Hoffman, C. S.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.

    1999-11-01

    The multi-point Thomson scattering system on the Helicity Injected Torus--II can determine electron temperature and density at 11 radial positions at a single time during the plasma discharge. The system includes components on loan from both PPPL and from the University of Texas. The collection optics and Littrow spectrometer from Princeton, and the 1 GW laser and multi-anode microchannel plate detector from Texas have been integrated into a compact structure, creating a mobile and reliable diagnostic. The mobility of the system allows alignment to occur in a room adjacent to the experiment, greatly reducing the disturbance to normal machine operation. The four main parts of the Thomson scattering system, namely, the laser, the beam line, the collection optics, and the mobile structure are presented and discussed.

  4. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    Science.gov (United States)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  5. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<Thomson cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  6. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  7. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Carlstrom, T. N. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); LeBlanc, B. P.; Ono, M.; Stratton, B. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  8. Plasma rotation and ion temperature measurements by collective Thomson scattering at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2015-01-01

    We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma sce...... scenario studied here. This demonstration opens the prospect for direct non-perturbative measurements of the properties of the main ion species in the plasma core with applications in plasma transport and confinement studies.......We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma...

  9. Use of webcams as tools for alignment and supervision of a Thomson scattering system in the near infrared

    Energy Technology Data Exchange (ETDEWEB)

    Andrebe, Y., E-mail: yanis.andrebe@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland); Behn, R.; Duval, B.P.; Etienne, P.; Pitzschke, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland)

    2011-10-15

    The alignment stability is a major concern for Thomson scattering systems. Even small angular deviations of the laser beams crossing the plasma lead to a loss of the calibration resulting in unreliable measurements of the electron density profile. For the TCV (Tokamak a Configuration Variable) installation, the beam paths from the laser output to the vacuum chamber are {approx}25 m long and include several optical components. In order to monitor the alignment on a regular basis, a set of 9 cameras has been installed at several locations along the beam path. They view the actual laser beam pattern by recording the scattered light from an intercepting optical surface (mirror or window) together with the position of markers used for reference. Small 'webcams' are used for this purpose; they feature adequate intensity response at the laser wavelength of 1.06 {mu}m, are compact, cheap and several units may be connected to a server PC simultaneously. The real-time images from all the cameras are accessible from a Web browser. This installation has proven to be extremely useful in the early detection of alignment problems and to assist the alignment procedure .

  10. Thomson scattering in the EXTRAP-T2 reversed-field pinch

    International Nuclear Information System (INIS)

    Welander, A.

    1996-11-01

    A Thomson scattering system has been installed on the EXTRAP-T2 RFP experiment. The system measures the electron density and temperature in three radial points using three spectral channels. A description of the system, the calibration techniques and examples of data obtained are given. The error bars for the electron temperature measurements are estimated to be < 10% for typical T2-plasmas. 4 refs

  11. Preliminary application of maximum likelihood method in HL-2A Thomson scattering system

    International Nuclear Information System (INIS)

    Yao Ke; Huang Yuan; Feng Zhen; Liu Chunhua; Li Enping; Nie Lin

    2010-01-01

    Maximum likelihood method to process the data of HL-2A Thomson scattering system is presented. Using mathematical statistics, this method maximizes the possibility of the likeness between the theoretical data and the observed data, so that we could get more accurate result. It has been proved to be applicable in comparison with that of the ratios method, and some of the drawbacks in ratios method do not exist in this new one. (authors)

  12. Hβ Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    International Nuclear Information System (INIS)

    Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der

    2012-01-01

    In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density

  13. New develops in Thomson scattering diagnostics on the L-2 stellarator

    International Nuclear Information System (INIS)

    Blokh, M.A.; Larionova, N.F.

    1989-01-01

    In this paper, a multichannel plasma diagnostic system employing Thomson scattering is modernized for the L-2 stellarator. A specialized polychromator with a large field of view, high contrast, and transmission is used together with a 16-channel photoelectron recorder. The modernized system makes it possible to measure the electron temperature at three points simultaneously in the plasma column cross-section at a local electron density 3.10 12 cm-3

  14. The data acquisition and control system for Thomson Scattering on ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Kindsfather, R.R.; Rasmussen, D.A.

    1989-01-01

    The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval. 3 refs

  15. Measuring main-ion temperatures in ASDEX upgrade using scattering of ECRH radiation

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2016-01-01

    We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak.......We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak....

  16. K-α X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, Andrea L.; Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H.; Falcone, Roger W.; Ja Lee, Hae; Lee, Richard W.; Morse, Edward C.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  17. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, A.L.; Neumayer, P.; Castor, J.; Doppner, T.; Falcone, R.W.; Landen, O.L.; Lee, H.J.; Lee, R.W.; Morse, E.C.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S.H.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation

  18. Thomson scattering measurements on the high beta pinch Extrap-T1

    International Nuclear Information System (INIS)

    Karlsson, P.

    1989-11-01

    Electron temperature and density measurement on a high beta discharge in the Extrap-T1 device have been performed with Thomson scattering. It was found that the signal levels were low and the plasma background radiation high. The spread of the measured temperatures and densities was large. A computer code was developed to investigate whether this spread in measured temperatures was due to shot to shot variations or to photon statistics. The code showed that the scattered data could be explained by photon statistics

  19. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  20. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  1. 3.5. Apparatus for plasma electron temperature measurement by Thomson scattering

    International Nuclear Information System (INIS)

    Kolacek, K.; Babicky, V.

    1981-01-01

    Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)

  2. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  3. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Salewski, Mirko; Korsholm, Søren Bang

    2013-01-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane of ...

  4. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H., E-mail: tojo.hiroshi@qst.go.jp; Hiratsuka, J.; Yatsuka, E.; Hatae, T.; Itami, K. [National Institutes for Quantum and Radiological Science and Technology, 801-1 Mukoyama, Naka 311-0193 (Japan); Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ejiri, A.; Togashi, H.; Takase, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2016-09-15

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T{sub e}) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T{sub e} and intensity of the signals. How accurate the values are depends on the electron temperature (T{sub e}) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T{sub e} and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T{sub e} in a wide T{sub e} range spanning over two orders of magnitude (0.01–1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T{sub e} measurements are valid under harsh radiation conditions. This method to obtain T{sub e} can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  5. Optical design for divertor Thomson scattering system for JT-60SA

    International Nuclear Information System (INIS)

    Kajita, Shin; Enokuchi, Akito; Hatae, Takaki; Itami, Kiyoshi; Hamano, Takashi; Kado, Shinichiro; Ohno, Noriyasu; Takeyama, Norihide

    2014-01-01

    Highlights: •A detailed designing for collection optical system of divertor Thomson scattering system in JT-60SA is conducted. •The assessment of the density and temperature errors of the measurement system is conducted. •It is shown that the measurement could be done with the temperature error of 50% when the density was 10 20 m −3 . •The availability of the laser transmission mirrors for the measurement system is discussed. •Several guidelines to improve the measurement system are discussed. -- Abstract: Optical design for divertor Thomson scattering system in JT-60SA has been conducted. The measurement system will use a Nd:YAG laser at 1064 nm, and scattered photons are collected by a collection optical system. The collection optics consists of primary mirror, secondary mirror, relay optics, and fiber collection optics. The laser transmission mirror and collection optics were designed to be installed in a slender lower port of JT-60SA. The assessment of the measurement errors in temperature was conducted for the designed collection optical system. Because of spatial limitation, the solid angle from the measurement points would be small especially for the measurement points in high field side, and consequently, the temperature errors in the high field side would be considerably large. The effects of several improvements on the error are discussed. Moreover, an assessment for the in-vessel laser transmission metallic mirrors is conducted for the present design

  6. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  7. First results from the Thomson scattering diagnostic on proto-MPEX

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Ray, H.; Shaw, G. [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-11-15

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  8. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  9. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  10. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  11. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  12. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    International Nuclear Information System (INIS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-01-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed

  13. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  14. Mechanism design of the Thomson scattering diagnostic system for the TMX east mirror plug

    International Nuclear Information System (INIS)

    Lang, D.D.; Goodman, R.K.; Jenkins, S.L.; Wilkerson, J.A.; Parkinson, J.L.

    1979-01-01

    This Thomson scattering diagnostic system is used to measure the electron temperature and density of the east mirror plug of the Tandem Mirror Experiment (TMX) at Lawrence Livermore Laboratory. The measurements are made by firing a high-power ruby laser pulse through the plasma where the electrons then re-radiate a small fraction of the light. Because of the velocity of the electrons, the wavelength of the re-radiated light is Doppler shifted. The width of the Doppler-shifted wavelength spectrum is a measure of the temperature of the electrons in the plasma, and the total amount of re-radiated light is proportional to the electron density

  15. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  16. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  17. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    International Nuclear Information System (INIS)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H.G.

    2005-01-01

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics

  18. Computer data-acquisition and control system for Thomson-scattering measurements

    International Nuclear Information System (INIS)

    Stewart, K.A.; Foskett, R.D.; Kindsfather, R.R.; Lazarus, E.A.; Thomas, C.E.

    1983-03-01

    The Thomson-Scattering Diagnostic System (SCATPAK II) used to measure the electron temperature and density in the Impurity Study Experiment is interfaced to a Perkin-Elmer 8/32 computer that operates under the OS/32 operating system. The calibration, alignment, and operation of this diagnostic are all under computer control. Data acquired from 106 photomultiplier tubes installed on 15 spectrometers are transmitted to the computer by eighteen 12-channel, analog-to-digital integrators along a CAMAC serial highway. With each laser pulse, 212 channels of data are acquired: 106 channels of signal plus background and 106 channels of background only. Extensive use of CAMAC instrumentation enables large amounts of data to be acquired and control processes to be performed in a time-dependent environment. The Thomson-scattering computer system currently operates in three modes: user interaction and control, data acquisition and transmission, and data analysis. This paper discusses the development and implementation of this system as well as data storage and retrieval

  19. A 130 point Nd:YAG Thomson scattering diagnostic on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Scannell, R.; Walsh, M. J.; Dunstan, M. R.; Figueiredo, J.; Naylor, G.; O' Gorman, T.; Shibaev, S. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Gibson, K. J.; Wilson, H. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-10-15

    A Thomson scattering diagnostic designed to measure both edge and core physics has been implemented on MAST. The system uses eight Nd:YAG lasers, each with a repetition rate of 30 Hz. The relative and absolute timing of the lasers may be set arbitrarily to produce fast bursts of measurements to suit the time evolution of the physics being studied. The scattered light is collected at F/6 by a 100 kg six element lens system with an aperture stop of 290 mm. The collected light is then transferred to 130 polychromators by 130 independent fiber bundles. The data acquisition and processing are based on a distributed computer system of dual core processors embedded in 26 chassis. Each chassis is standalone and performs data acquisition and processing for five polychromators. This system allows data to be available quickly after the MAST shot and has potential for real-time operations.

  20. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  1. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  2. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  3. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  4. High resolution Thomson scattering system for steady-state linear plasma sources

    Science.gov (United States)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  5. Design of the divertor Thomson scattering system on DIII-D

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Foote, J.H.; Nilson, D.G.; Rice, B.W.

    1994-05-01

    Local measurements of n e and T e in the divertor region are necessary for a more complete understanding of divertor physics. We have designed an extension to the existing multipulse Thomson scattering system to measure n e in the range 5 x 10 18 to 5 x 10 20 m -3 and T e 5--500 eV, with 1 cm resolution from 1--21 cm above the floor of the DIII-D vessel, in the region of the X-point for lower single-null diverted plasmas. One of the existing 8, 20 Hz, ND:YAG lasers will be redirected to a separate vertical port, and viewed radially with a specially designed, f/6.8 lens. Fiber optics carry the light to additional polychromators whose interference filters have been optimized for low T e measurements. Other aspect of the system, including the beam path to the vessel, polychromator design, real time data acquisition, laser control, calibration facility, and DIII-D timing and data acquisition interface will be shared with the existing multipulse Thomson system. An in-situ laser alignment monitor will provide alignment information for each laser pulse

  6. Progress on the multipulse Thomson scattering diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Stockdale, R.E.; Carlstrom, T.N.; Hsieh, C.L.; Makariou, C.C.

    1995-01-01

    The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd:YAG 20-Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fulfill varying plasma physics requirements. Custom circuitry for laser control (programmable with 1 μs precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst mode is useful to study a transient plasma event: a series of laser pulses are fired at a rate ≤10 kHz after an external asynchronous event trigger. Burst mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group mode allows a programmed set of lasers to fire simultaneously into the same (65 ns) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented

  7. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    Science.gov (United States)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sande, van de M.J.; Vries, de N.; Broks, B.H.P.; Iordanova, E.I.; Gamero, A.; Torres, J.; Sola, A.

    2007-01-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based

  9. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  10. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  11. Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2014-10-01

    A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.

  12. Measurement of the ion temperature in the tokamak TCA by collective Thomson diffusion in the far infrared

    International Nuclear Information System (INIS)

    Salito, S.A.

    1989-07-01

    This paper covers the analysis of spectra obtained by collective Thomson diffusion and the measurement, by this method, of the ionic temperature in the plasmas of the TCA tokamak. The experimental equipment we have used consists of a D 2 O laser and of a heterodyne detection system analyzing the spectra diffused by the plasma. The diffused spectra were obtained using a geometry determining a diffusion angle Θ s of 90 o . We could choose two different angles β between the wave vector k and the direction of the magnetic field (β=90 o , β=86 o ). We have performed the measurement of the coherent (collective) spectrum in the hydrogen, deuterium and helium plasmas of the TCA tokamak. When the electron density exceeded 4x10 19 m -3 , the diffused spectra were analyzed on the basis of a single laser shot of 1.4 μs duration. The ionic acoustic resonance was observed in the helium plasma for an angle β of 86 o . When β was 90 o , we observed that the experimental spectra were heavily disturbed by the effects of the magnetic field, and their shapes became triangular. A small concentration of light impurities affected the shape of the spectra up to their extremities. By collective diffusion we could measure the typical ionic temperatures of 330 eV for the hydrogen plasmas and of 390 eV for the deuterium and helium plasmas. The precision of this measurement was 10% at an average of 10 shots, and it was 25% for a single measurement of 1.4 μs duration. It is mainly limited by the signal/noise ratio which is in the order of 3 for one measurement during a single laser shot of 1.4 μs. (author) 70 figs., 5 tabs., 106 refs

  13. Design proposal for a JFT-2M TV Thomson scattering system

    International Nuclear Information System (INIS)

    Dimock, D.; Yamauchi, Toshihiko.

    1988-07-01

    A design for the optics of a TV Thomson scattering system for JFT-2M is presented, which will measure electron temperature and density profiles having up to 82 points, spanning the horizontal mid plane of the machine. A detailed design for the collecting optics is presented since it is critical to the success of the system. It is shown that the Bouwers type catadioptric collection optics can be color corrected allowing the system to be used over a wide wavelength range. The laser requirements are presented and are easily met with commercially available systems. Two sketches of spectrometer designs are presented for two different sizes of detector. The detector gating and readout requirements are presented and can be met in existing detector systems. The importance of developing larger area detectors is emphasized and a possible detector system is presented. (author)

  14. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  15. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marqués, J-L

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma. (fast track communication)

  16. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  17. Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma

    International Nuclear Information System (INIS)

    Aramaki, M.; Kobayashi, J.; Kono, A.; Stamate, E.; Sugai, H.

    2006-01-01

    A high-efficiency multichannel Thomson scattering measurement system was developed as a tool for studying the electron heating mechanisms in a surface wave plasma. By improving the output power and repetition rate of the Nd:YAG laser, an F-number of spectrograph, and a quantum efficiency of ICCD camera, the overall Thomson signal collection efficiency per unit measurement time has been improved by a factor larger than 40 in comparison with the previous measurement system developed by the authors. The one-dimensional electron velocity distribution functions were measured in the vicinity of the dielectric window of a surface wave plasma

  18. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  19. Experimental considerations concerning the velocity measurement of the relativistic electron beam in a gyrotron by means of Thomson scattering

    International Nuclear Information System (INIS)

    Siegrist, M.R.; Soumagne, G.; Tran, M.Q.

    1992-11-01

    The feasibility of Thomson scattering to determine the beam velocity in a gyrotron has been analyzed and preliminary experiments to implement such a system on our 100 GHz quasi-optical gyrotron are reported. Although the project had to be abandoned due to technical problems, the conclusions are that for the 90 o scattering arrangement discussed it should be possible to determine at least one velocity component with an acceptable signal-to-noise ratio. (author) 11 figs., 10 refs

  20. Multipoint Thomson scattering system for the EXTRAP Z-pinch experiment

    International Nuclear Information System (INIS)

    Karlsson, P.

    1986-03-01

    A Thomson scattering system for simultaneous measurements of the electron temperature and density at three different positions at two different times during a single plasma shot has been developed for the EXTRAP-L1 Z-pinch. The plasma in the present version of EXTRAP-L1 is characterized by densities in the range from 10 21 to 10 22 m -3 , temperatures up to 50 eV and a pinch radius of the order of 1 cm. A spatial resolution down to 3 mm between positions is obtained by imaging the plasma onto an array of quartz optical fibres at the output slit of the spectrometer. Fifteen PM-tubes are used to detect the scattered radiation as well as the background radiation. Due to the relatively dense plasma prevailing in the present version of EXTRAP-L1 the number of scattered photons in large and the photon to electron conversion noise is small. The background radiation is the most important factor limiting the accuracy of the measurements. (author)

  1. A multi-laser system for a fast sampling Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Trost, P.K.; Carlstrom, T.N.; DeBoo, J.C.; Greenfield, C.M.; Hsieh, C.L.; Snider, R.T.

    1990-10-01

    A multi-laser system is being developed for the DIII-D Thomson scattering diagnostic. This system combines the beams from up to eight Nd:YAG lasers onto a common beamline in which the beams are nearly parallel and are all focused into a small, common area within the desired scattering volume. Each laser can be fired at a constant rate (20 Hz per laser) for a high average repetition rate, or together in a ''burst,'' which will give very high sampling rates (10--20 kHz) for short periods. The burst mode will be triggerable by plasma events, which will allow for study of transient phenomena, but will require non-periodic firing of the lasers. Beamline diagnostics include position sensitive detectors for computer controlled feedback alignment of the 35 m beamline, an image position detection system for monitoring the alignment of the collection lens to the scattering volume, and a 1-D reticon camera for divergence monitoring. The effects of the non-periodic firing of the lasers will be monitored with the reticon camera. 3 refs., 5 figs

  2. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10{sup 13} to 4 × 10{sup 14} cm{sup −3}. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  3. Laser scattering on an atmospheric pressure plasma jet : disentangling Rayleigh, Raman and Thomson scattering

    NARCIS (Netherlands)

    Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.

    2012-01-01

    Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial

  4. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  5. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  6. Development of collective Thomson scattering system using the gyrotrons of sub-tera Hz region

    International Nuclear Information System (INIS)

    Tatematsu, Y.; Kubo, S.; Nishiura, M.

    2010-11-01

    Collective Thomson scattering (CTS) system is being developed for fusion plasma and CTS measurement on the large helical device (LHD) plasma is discussed. Sub-terahertz frequencies are suitable to the probe beam for CTS on LHD. According to the feasibility study, frequency around 0.4 THz is best for the CTS measurement on LHD high density plasma, and power of 100 kW is required. Thus, only gyrotrons in the sub-terahertz range can meet these parameters. At the first stage of development, second harmonic gyrotrons have been developed. A sealed-off type of gyrotrons has been manufactured to improve a demountable one. Measured output power has increased to about 60 kW. In parallel with the development of gyrotrons, an actual CTS system using a 77 GHz gyrotron originally installed for heating is being developed as a benchmark of LHD CTS. A heterodyne receiver system of a fundamental mixer with a fixed frequency local oscillator was installed on the upstream of the transmission line. The probe beam is 100% power modulated at 50 Hz to separate the scattering component from background ECE. Signals that can be attributed to the CTS were obtained and the analysis method of these data is developed. (author)

  7. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  8. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  9. Short interval measurement of the Thomson scattering system at the pellet injection by using the event triggering system in LHD

    International Nuclear Information System (INIS)

    Yasuhara, R.; Sakamoto, R.; Motojima, G.; Yamada, I.; Hayashi, H.

    2013-01-01

    We have demonstrated Thomson scattering measurements of a short interval less than 1 ms by using the event triggering system with a multi-laser configuration. We have tried to measure this system at the pellet injection and obtained electron temperature and density profiles before and just after the pellet injection. Obtained profiles were dramatically changed after pellet injection with shot-by-shot measurements. This measurement technique will contribute understanding the physics of the pellet deposition. (author)

  10. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    Science.gov (United States)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  11. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  12. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  13. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  14. An energy confinement study of the MST [Madison Symmetric Torus] reversed field pinch using a Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Den Hartog, D.J.

    1989-11-01

    Thomson scattering measurements of the central electron temperature and density during the plasma current peak have been performed on the MST Reversed Field Pinch (RFP). This Thomson scattering diagnostic was calibrated for absolute electron density measurements. These measurements of T e and n e , when combined with profile assumptions, were used to calculate estimates of energy confinement time (τ E ) and poloidal beta (β θ ). A standard discharge with I p ∼ 400 kA, F ∼ -0.1, and θ ∼ 1.6 typically exhibited T e ∼ 275 eV, n e ∼ 2.0 x 10 13 cm -3 , τ E ≤ 1 ms, and β θ ≤ 8%. The results of a limited plasma current scaling study did not indicate a strong scaling of T e or τ E with I p . The Thomson scattering diagnostic was used in conjunction with a bolometer, VUV radiation monitor, and edge magnetic coils to study the loss of energy from the plasma. Results indicate that thermal transport from stochastic magnetic fields, particle loss, and radiation are important energy loss processes. The experiments done for this study included an F-scan, a paddle limiter insertion series, and an argon doping series. The plasma maintained a constant βτ during these perturbation experiments, suggesting that increases in one energy loss channel are compensated by drops in other channels and increases in input power to the plasma

  15. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  16. Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER

    International Nuclear Information System (INIS)

    Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi

    2006-06-01

    A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)

  17. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    Science.gov (United States)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  18. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  19. X-ray Thomson scattering in warm dense matter at low frequencies

    International Nuclear Information System (INIS)

    Murillo, Michael S.

    2010-01-01

    The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the 'plasmon-pole'-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.

  20. Summary of Thomson-scattering data from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Goodman, R.K.

    1982-01-01

    We provide a synthesis of our Thomson-scattering measurements of electron temperature (T/sub e/) and density (n/sub e/) for the Tandem Mirror Experiment (TMX). TMX operated in two modes - high and low T/sub e/. When performing in the high T/sub e/ mode (in general > 100 eV), heating the central-cell ions with neutral beams raised T/sub e/ in the end plug. We achieved a maximum T/sub e/ of 260 eV in the east end plug. Specifically, our experiments demonstrated that in the end plug, the radial T/sub e/ profiles were flat to r = 5 cm; the ratio of potential (phi/sub p/) to T/sub e/ ranged between four and six. In addition, we found that although T/sub e/ in the central cell was generally comparable to that in the plug, it was often not constant along a magnetic field line. Under some conditions a non-Maxwellian electron distribution may have been present

  1. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  2. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  3. Progress On The Thomson Scattering Diagnostic For The Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Green, A.; Emami, T.; Davies, R.; Frank, J.; Hopson, J.; Karama, J.; James, R. W.; Hopson, J.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team

    2017-10-01

    A high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 has been assembled on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL). This spectrometer will collect doppler shifted photons, emitted from the plasma by the first harmonic (1064 nm) of a 2.5 J Nd:YAG laser. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) single spatial point diagnostic system. A zero order half wave plate rotates the polarization of the second harmonic TS laser beam when operating at a wavelength of 532 nm. A linear actuated periscope has been constructed to remotely redirect the beam so that 532 and 1064 nm wavelengths can both be used. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. Operating at both 532 and 1064 nm results in a self-consistent measurement and better use our existing spectrometer and soon to be constructed polychrometer. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. The current status of the diagnostic development, spectrometer, and collection optics system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.

  4. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    International Nuclear Information System (INIS)

    Vries, N de; Zhu, X; Kieft, E R; Mullen, J van der

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine n e and T e from the measured spectrum. The maximum electron density and electron temperature obtained in the centre of the discharge varied in a time period of 5 ms between 1 x 10 21 m -3 e 21 m -3 and 6500 K e < 7100 K. In order to test the non-intrusive character of TS, we have derived a general expression for the heating of the electrons. By applying this to our mercury lamp and laser settings, we have confirmed the non-intrusiveness of our method. This is supported by the experimental findings. Furthermore, because the TS results were obtained directly, thus, without the local thermodynamic equilibrium (LTE) assumptions, they enabled us to follow the deviations from LTE as a function of time. Contrary to the generally made assumption that HID lamps are in LTE, we have found deviations from both the thermal and chemical equilibrium inside the high pressure mercury lamp at different phases of the applied current

  5. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  6. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    Science.gov (United States)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  8. ITER fast ion collective Thomson scattering, conceptual design of 60 GHz system

    International Nuclear Information System (INIS)

    Meo, F.; Bindslev, H.; Korsholm, S.B.

    2007-08-01

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma. The fast ion CTS diagnostic consists of two separate systems. Each system has its own RF launcher and separate set of detectors. The first system measures the perpendicular component of the fast ion velocity distribution. It consists of radially directed RF launcher and receiver, both located in the equatorial port on the low field side (LFS). This system will be referred to by the acronym LFS-BS system referring to the location of the receiver and the fact that it measures backscattered radiation. The second part of the CTS diagnostic measures the parallel component of the fast ion distribution. It consists of an RF launcher located in the mid-plane port on the LFS and a receiver mounted on the inner vacuum vessel wall that views the plasma from between two blanket modules. This system will be referred to as HFS-FS referring to the location of the receivers and that they measure forward scattered radiation. The design of both LFS-BS and HFS-FS receivers is aimed at measuring at different spatial locations simultaneously with no moveable components near the plasma. This report is a preliminary study of the hardware design and engineering constraints for this frequency range. Section 2 conceptually describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result in this section is that systems can be designed inside these constraints. Section 4 outlines the technical feasibility and describes in more detail the design and the engineering

  9. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  10. New physics capabilities from the upgraded Thomson scattering diagnostic on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, K J; Barratt, N; Snape, J; Tallents, G J; Thornton, A [Department of Physics, University of York, Heslington, York (United Kingdom); Chapman, I; Conway, N; Dunstan, M R; Field, A R; Garzotti, L; Kirk, A; Lloyd, B; Meyer, H; Naylor, G; O' Gorman, T; Scannell, R; Shibaev, S; Temple, D; Pinches, S; Valovic, M, E-mail: keiran.gibson@york.ac.u [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2010-12-15

    The newly upgraded MAST Thomson scattering (TS) system provides excellent spatial resolution ({approx}1 cm) at over 130 radial locations across a full plasma diameter, and utilizes eight individual Nd: :YAG laser systems which can be fired sequentially, providing electron temperature and density profiles approximately every 4 ms throughout a plasma discharge. By operating the system in burst mode, whereby the laser separation can be adjusted to within a few microseconds of each other, it is possible to obtain detailed profiles of transient and periodic phenomena such as sawteeth crashes, massive gas injection for disruption mitigation and the temperature perturbations associated with neoclassical tearing mode (NTM) islands. Following Fitzpatrick et al (1995 Phys. Plasmas 2 825), we consider a simplified model in which finite parallel diffusive heat transport can provide a threshold for NTM island growth and demonstrate that the TS derived electron temperature profiles around an island can be used to obtain both the island width and the critical island width below which temperature gradients are maintained across the island, potentially removing the bootstrap current drive for the NTM. Initial results from high beta, neutral beam injection heated discharges on MAST show that the measured island width inferred from the TS data is in good agreement with magnetic estimates of the island width (considering both a cylindrical approximation and using a full field line tracing estimate). The temporal behaviour of the island width obtained from the magnetic diagnostics indicates that for the scenarios considered to date, finite parallel diffusion is likely to play an important role in NTM threshold physics in MAST.

  11. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  12. Runaway electrons in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Satoh, Takemichi; Nakamura, Kazuo; Toi, Kazuo; Nakamura, Yukio; Hiraki, Naoji

    1981-01-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges. (author)

  13. Runaway electrons in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Nakamura, K; Toi, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-09-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges.

  14. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  15. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  16. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  17. Far forward scattering on TOSCA tokamak using a detector array

    International Nuclear Information System (INIS)

    Cote, A.; Evans, D.E.

    1987-01-01

    A gaussian beam from a CW CO 2 , laser is directed across the vertical minor diameter of TOSCA tokamak where it undergoes collective scattering at angles within the beam divergence. Scattered radiation recombines with the unperturbed part of the beam on the detector, generating intensity oscillations whose spatial, temporal, and phase distributions convey information about the strength, scale length, frequency, and propagation direction of the plasma density fluctuations in which they originate. The distribution of these oscillations is measured across the diameter of the probe beam profile, either with a single photoconductive Ge:Hg detector over a sequence of plasma discharges, or with a 12-channel array of Ge:Hg detectors during a single discharge. A model describing counter-rotating waves, such as a poloidal structure encountered twice by the probe beam as it traverses the plasma, is able to furnish a satisfactory fit to the data. Use of the array provides a phase distribution from which the sense of rotation of the waves can be deduced. A dispersion relation with frequencies up to 250 kHz, wavenumbers in the range 60-300 m -1 , and a phase velocity of ≅ 6x10 3 ms -1 is found

  18. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  19. H{sub {beta}} Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Huebner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sola, A.; Gamero, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-07-15

    In the present work Stark broadening measurements have been carried out on low electron density (n{sub e} < 5{center_dot}10{sup 19} m{sup -3}) and (relatively) low gas temperature (T{sub g} < 1100 K) argon-hydrogen plasma, under low-intermediate pressure conditions (3 mbar-40 mbar). A line fitting procedure is used to separate the effects of the different broadening mechanisms (e.g. Doppler and instrumental broadening) from the Stark broadening. A Stark broadening theory is extrapolated to lower electron density values, below its theoretical validity regime. Thomson scattering measurements are used to calibrate and validate the procedure. The results show an agreement within 20%, what validates the use of this Stark broadening method under such low density conditions. It is also found that Stark broadened profiles cannot be assumed to be purely Lorentzian. Such an assumption would lead to an underestimation of the electron density. This implies that independent information on the gas temperature is needed to find the correct values of n{sub e}. - Highlights: Black-Right-Pointing-Pointer Stark broadening measurements at low density and temperature conditions Black-Right-Pointing-Pointer Calibration with Thomson scattering Black-Right-Pointing-Pointer Indications of the non-Lorentzian shape of the Stark broadening Black-Right-Pointing-Pointer Impossibility of simultaneous diagnostic of gas temperature and electron density.

  20. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    International Nuclear Information System (INIS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-01-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  1. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  2. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  3. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  4. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomez, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthemore, a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, is included in a Tokamak plasma using spectral analysis of the scattered radiation. (author) [es

  5. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomerz, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs

  6. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  7. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    International Nuclear Information System (INIS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-01-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  8. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  9. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  10. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  11. Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating

    DEFF Research Database (Denmark)

    Salewski, Mirko; Asunta, O.; Eriksson, L.-G.

    2009-01-01

    Auxiliary heating such as neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) will accelerate ions in ITER up to energies in the MeV range, i.e. energies which are also typical for alpha particles. Fast ions of any of these populations will elevate the collective Thomson...... functions of fast ions generated by NBI and ICRH are calculated for a steady-state ITER burning plasma equilibrium with the ASCOT and PION codes, respectively. The parameters for the auxiliary heating systems correspond to the design currently foreseen for ITER. The geometry of the CTS system for ITER...... is chosen such that near perpendicular and near parallel velocity components are resolved. In the investigated ICRH scenario, waves at 50MHz resonate with tritium at the second harmonic off-axis on the low field side. Effects of a minority heating scheme with He-3 are also considered. CTS scattering...

  12. High resolution Thomson scattering on the COMPASS tokamak - extending edge plasma view and increasing repetition rate

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Böhm, Petr; Aftanas, Milan; Šos, Miroslav; Havránek, Aleš; Šesták, David; Weinzettl, Vladimír; Hron, Martin; Pánek, Radomír

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01024. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics (LAPD2017) /18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA ČR(CZ) GA14-35260S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Trigger concepts and systems (hardware and software) Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01024/meta

  13. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Štefániková, Estera; Peterka, Matěj; Böhm, Petr; Bílková, Petra; Aftanas, Milan; Sos, M.; Urban, Jakub; Hron, Martin; Pánek, Radomír

    2016-01-01

    Roč. 87, č. 11 (2016), č. článku 11E536. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics 2016/21./. Madison, Wisconsin, 05.06.2016-09.06.2016] R&D Projects: GA ČR(CZ) GA14-35260S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : pedestal * fitting * instrument function Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4961554

  14. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Nielsen, Stefan Kragh; Porte, L.

    2007-01-01

    ) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also...

  15. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  16. Far-infrared laser scattering from spontaneous and driven fluctuations in the UCLA microtor tokamak

    International Nuclear Information System (INIS)

    Lee, P.; Luhmann, N.C.; Park, H. Jr.; Peebles, W.A.; Taylor, R.J.; Xu, Ying; Yu, C.X.

    1982-01-01

    A far-infrared (FIR) laser scattering system for the study of tokamak density fluctuations is described. Recent scattering data from low frequency microturbulence in high density (n >= 5 x 10 13 cm -3 ) microtor discharges are presented. In addition, the first observation and identification of internal modes generated during ICRF heating are described. The latter study directly conforms to fast wave mode conversion theory in a two-ion species plasma. In particular, the first internal observation of mode converted ion Bernstein waves in a tokamak plasma has been made. (author)

  17. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  18. Design study of a traveling-wave Thomson-scattering experiment for the realization of optical free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Steiniger, Klaus; Loeser, Markus; Pausch, Richard; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Albach, Daniel; Debus, Alexander; Roeser, Fabian; Siebold, Matthias; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present an experimental setup strategy for the realization of an optical free-electron laser (OFEL) in the Traveling-Wave Thomson-Scattering geometry (TWTS). In TWTS, the electric field of petawatt class, pulse-front tilted laser pulses is used to provide an optical undulator field. This is passed by a relativistic electron bunch so that electron direction of motion and laser propagation direction enclose an interaction angle. The combination of side scattering and pulse-front tilt provides continuous overlap of electrons and laser pulse over meter scale distances which are achieved with centimeter wide laser pulses. An experimental challenge lies in shaping of these wide laser pulses in terms of laser dispersion compensation along the electron trajectory and focusing. In the talk we show how diffraction gratings in combination with mirrors are used to introduce and control dispersion of the laser in order to provide a plane wave laser field along the electron trajectory. Furthermore we give tolerance limits on alignment errors to operate the OFEL. Example setups illustrate functioning and demonstrate feasibility of the scheme.

  19. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  20. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...

  1. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  2. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    Science.gov (United States)

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  3. Study of a filter spectrometer in the framework of a new method for measuring the temperature of thermonuclear plasmas by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Lasalle, J.

    1975-06-01

    A new method which greatly simplifies the number of measurements necessary for obtaining the temperature in thermonuclear plasmas, using the relativistic effects of Thomson scattering is presented. A few orders of magnitude are computed for probing the feasibility of such temperature measurements. The data used correspond to magnitudes relating to T.F.R. The characteristics of a filter equipped spectrometer are then defined in view of a double function: separation of the lambda>lambda laser and lambda [fr

  4. Electron density and temperature determination in a Tokamak plasma using light scattering; Determinacion de la densidad y temperatura electronicas en un Tokamak mediante difusion luminosa

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Navarro Gomerz, A; Zurro Hernandez, B

    1976-07-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs.

  5. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing...... the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v/v| ... scattering system with receivers on the high-field side would be sensitive to co- and counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution...

  6. An FPGA based control unit for synchronization of laser Thomson scattering measurements to plasma events on MAST

    International Nuclear Information System (INIS)

    Naylor, G.A.

    2010-01-01

    The power and flexibility of modern Field Programmable Gate Arrays (FPGAs) is now being recognised in many areas of instrumentation and control . The high performance of modern ADCs and the high throughput of FPGAs allow the emulation of many specialised analogue instruments. The functions of heterodyne detection, phase measurements, spectrum analyzers, phase sensitive detectors, counters, etc. can be achieved in relatively simple hardware using an FPGA. The complex filtering functions can be efficiently performed digitally in the FPGA, without recourse to a separate DSP chip. This paper describes the use of a custom off the shelf FPGA board with a collection of custom interface boards to produce a powerful custom trigger system. This has been developed for agile triggering of YAG lasers on MAST. This unit allows various analogue inputs including magnetics data to be processed in real-time and allow Thomson scattering data to be collected at accurate times with respect to randomly occurring MHD phenomena such as neoclassical tearing modes (NTMs). The FPGA allows a 'System On a Chip' architecture in order to perform fast filtering in logic coupled to a dedicated soft processor for real-time fixed latency operations and a second soft processor to handle external communications with the control system for system configuration and reporting of status/archived data. The use of such a generic structure in order to provide a common approach, with reduced software development times, for diverse diagnostic situations will be discussed.

  7. A real-time digital control, data acquisition and analysis system for the DIII-D multipulse Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Campbell, G.L.; Carlstrom, T.N.; DeBoo, J.C.; Hsieh, C.-L.; Snider, R.T.; Trost, P.K.

    1990-10-01

    A VME-based real-time computer systems for laser control, data acquisition and analysis for the DIII-D multipulse Thomson scattering diagnostic is described. The laser control task requires precise timing of up to 8 Nd:YAG lasers, each with an average firing rate of 20 Hz. A cpu module in real-time multiprocessing computer system will operate the lasers with evenly staggered laser pulses or in a ''burst mode'', where all available (fully charged) lasers can be fired at 50--100 μsec intervals upon receipt of an external event trigger signal. One of more cpu modules, along with a LeCroy FERA (Fast Encoding and Readout ADC) system, will perform real-time data acquisition and analysis. Partial electron temperature and density profiles will be available for plasma feedback control within 1 msec following each laser pulse. The VME-based computer system consists of 2 or more target processor modules (25 MHz Motorola 68030) running the VMEexec real-time operating system connected to a Unix based host system (also a 68030). All real-time software is fully interrupt driven to maximize system efficiency. Operator interaction and (non real-time) data analysis takes place on a MicroVAX 3400 connected via DECnet. 17 refs., 1 fig

  8. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  9. Real-time digital control, data acquisition, and analysis system for the DIII-D multipulse Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Campbell, G.L.; Carlstrom, T.N.; DeBoo, J.C.; Hsieh, C.; Snider, R.T.; Trost, P.K.

    1990-01-01

    A VME-based real-time computer system for laser control, data acquisition, and analysis for the DIII-D multipulse Thomson scattering diagnostic is described. The laser control task requires precise timing of up to eight Nd:YAG lasers, each with an average firing rate of 20 Hz. A cpu module in a real-time multiprocessing computer system will operate the lasers with evenly staggered laser pulses or in a ''burst mode,'' where all available (fully charged) lasers can be fired at 50--100 μs intervals upon receipt of an external event trigger signal. One or more cpu modules, along with a LeCroy FERA (fast encoding and readout ADC) system, will perform real-time data acquisition and analysis. Partial electron temperature and density profiles will be available for plasma feedback control within 1 ms following each laser pulse. The VME-based computer system consists of two or more target processor modules (25 MHz Motorola 68030) running the VMEexec real-time operating system connected to a Unix-based host system (also a 68030). All real-time software is fully interrupt driven to maximize system efficiency. Operator interaction and (non-real-time) data analysis takes place on a MicroVAX 3400 connected via DECnet

  10. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  11. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    International Nuclear Information System (INIS)

    Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2010-01-01

    The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  12. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited)

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    of the system. First results in near perpendicular of scattered spectra in a neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) plasma (minority hydrogen) on ASDEX Upgrade have shown evidence of ICRH heating phase of hydrogen. ©2008 American Institute of Physics...

  13. Active beam scattering apparatus and its application to JFT-2 tokamak

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Nishitani, Takeo; Shiho, Makoto; Maeda, Hikosuke; Konagai, Chikara; Kimura, Hironobu.

    1983-09-01

    The capability to assess the ion temperatures using a neutral beam scattering system is investigated on the JFT-2 tokamak. The neutral beam scattering system consists of a 15 KeV neutral hydrogen atom beam and a momentum analyser with silicon surface barrier detectors. The energy analysis of scattered particles on the scattering angle of 4 0 gives the estimation of ion temperatures, which agree well with the one deduced from passive charge-exchange neutral measurements. The influence of impurity ions to the scattering spectrum is not observed and the results of gas scattering experiments suggests that this phenomenon occurs because of the ionization of neutral beam due to the collisions with impurity ions. (author)

  14. Thomson scattering measuring device using high sensitivity photomultipliers: 16% up to 860nm

    International Nuclear Information System (INIS)

    Hesse, M.

    1976-03-01

    Photomultipliers with high quantum efficiency were used to observe the entire rubis laser light spectrum scattered by a plasma. The optical and electronic acquisition device used to study this spectrum is described. The spectra obtained revealed a dissymmetry larger than that expected from relativistic theory. These results could not be interpreted. The diagnostic sensitivity allows the measurement of low electron densities (2.10 12 ecm -3 ) [fr

  15. Proposal for a new Thomson scattering technique for large fusion devices

    International Nuclear Information System (INIS)

    Salzmann, H.; Hirsch, K.

    1982-11-01

    The application of 180 0 scattering using ultrashort laser pulses is proposed. Spatial resolution along the laser beam is achieved by high-speed detection allowing time-of-flight measurements. This LIDAR technique uses a minimum number of window ports, reduces drastically the number of optical components in the vicinity of the discharge vessel and makes remote control unnecessary. As an example the performance of such a system is discussed on the basis of available laser and detection technology for the JET geometry. (orig.)

  16. Thomson scattering of chiral tensors and scalars against a self-dual string

    International Nuclear Information System (INIS)

    Arvidsson, Paer; Flink, Erik; Henningson, Maans

    2002-01-01

    We give a non-technical outline of a program to study the (2,0) theories in six space-time dimensions. Away from the origin of their moduli space, these theories describe the interactions of tensor multiplets and self-dual spinning strings. We argue that if the ratio between the square of the energy of a process and the string tension is taken to be small, it should be possible to study the dynamics of such a system perturbatively in this parameter. As a first step in this direction, we perform a classical computation of the amplitude for scattering chiral tensor and scalar fields (i.e. the bosonic part of a tensor multiplet) against a self-dual spinnless string. (author)

  17. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  18. Clasificador de Imágenes del Diagnóstico Thomson Scattering del TJ II Basado en Template Matching

    Directory of Open Access Journals (Sweden)

    Jesús A. Vega Sánchez

    2010-07-01

    Full Text Available La automatización del análisis de las señales generadas en un ambiente de fusión nuclear constituye una meta importante. El presente trabajo se encuadra en el contexto del desarrollo de clasificadores automáticos para las señales generadas en el Diagnóstico Thomson Scattering del TJ II, siendo este un ambiente de fusión específico. Dos etapas fundamentales son consideradas en el diseño del clasificador: el procesamiento de las señales y extracción de sus características, por un lado, y la clasificación, por otro. La primera es implementada, en el trabajo, recurriendo a las transformadas wavelet mientras que la segunda es implementada a través de la comparación entre las características de las señales disponibles y las de un conjunto de señales previamente seleccionadas como prototipos (template matching, operación esta que es efectuada utilizando a técnicas de trayectoria de búsqueda óptimas basadas en programación dinámica. En el mismo se muestra que la metodología empleada permite la clasificación de las señales en cuestión y que con un entrenamiento adecuado se puede extraer un buen rendimiento al clasificador desarrollado.

  19. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)

    2010-03-15

    The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  20. Scattering effects of small-scale density fluctuations on reflectometric measurements in a tokamak plasma

    International Nuclear Information System (INIS)

    Garcia, J.P.; Manso, M.E.; Serra, F.M.; Mendonca, J.T.

    1989-01-01

    When a wave propagates in a non homogeneous fluctuating plasma part of the incident energy is scattered out to the nonlinear interaction between the wave and the oscillating modes perturbing the plasma. The possibility of enhanced scattering at the cutoff layer, where reflection of the incident wave occurs, has been recently suggested as the basis of a reflectometric experiment to determine the spatial location of small scale fluctuations in a fusion plasma. Here we report on the development of a theoretical model to evaluate the flux of energy scattered by fluctuations, in order to give insight about the interpretation of measurements using a microwave reflectometry diagnostic in a tokamak. The scattered field is obtained through the resolution of a (non-homogeneous) wave propagation equation where the source term is related with the nonlinear current due to the interaction between the incident wave and local fluctuations. We use a slab model for the plasma, and an ordinary (0) wave propagation along the density gradient is considered. The amplitude of the scattered wave at the border of the plasma is estimated. In order to know the contributions to the energy scattered both from the propagation region and the reflecting layer, an approach was used where perturbations are modelled by spatial step functions at several layers. The main contribution to the scattered power comes from the cutoff region, where the electric field amplitude swells as compared with the incident value. Considering the reflectometric system recently installed on the ASDEX tokamak, and using typical density profiles, expected values of the 'swelling factor' have been numerically evaluated. The role of incoherent scattering due to drift wave activity is discussed as well as the coherent scattering due to fluctuations induced by lower hybrid (LH) waves. (author) 2 refs., 4 figs

  1. RADAR upper hybrid resonance scattering diagnostics of small-scale fluctuations and waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bulyiginskiy, D.G.; Gurchenko, A.D.; Gusakov, E.Z.; Korkin, V.V.; Larionov, M.M.; Novik, K.M.; Petrov, Yu.V.; Popov, A.Yu.; Saveliev, A.N.; Selenin, V.L.; Stepanov, A.Yu.

    2001-01-01

    The upper hybrid resonance (UHR) scattering technique possessing such merits as one-dimensional probing geometry, enhancement of cross section, and fine localization of scattering region is modified in the new diagnostics under development to achieve wave number resolution. The fluctuation wave number is estimated in the new technique from the scattering signal time delay measurements. The feasibility of the scheme is checked in the proof of principal experiment in a tokamak. The time delay of the UHR scattering signal exceeding 10 ns is observed. The small scale low frequency density fluctuations are investigated in the UHR RADAR backscattering experiment. The UHR cross-polarization scattering signal related to small scale magnetic fluctuations is observed. The lower hybrid (LH) wave propagation and both linear and nonlinear wave conversion are investigated. The small wavelength (λ≤0.02 cm) high number ion Bernstein harmonics, resulting from the linear wave conversion of the LH wave are observed in a tokamak plasma for the first time

  2. Comparative studies of the laser Thomson scattering and Langmuir probe methods for measurements of negative ion density in a glow discharge plasma

    International Nuclear Information System (INIS)

    Noguchi, M; Hirao, T; Shindo, M; Sakurauchi, K; Yamagata, Y; Uchino, K; Kawai, Y; Muraoka, K

    2003-01-01

    The newly developed method of the negative ion density measurement in a plasma by laser Thomson scattering (LTS) was checked by comparing the obtained results against an independent technique, namely the Langmuir probe method. Both measurements were performed at the same position of the same inductively coupled plasma. The results agree quite well with each other and this has given confidence in the LTS method of negative ion density measurement. At the same time, both methods are complementary to each other, because the Langmuir probe measurement requires knowledge of the positive ion mass number

  3. Observation of short time-scale spectral emissions at millimeter wavelengths with the new CTS diagnostic on the FTU tokamak

    DEFF Research Database (Denmark)

    Bruschi, A.; Alessi, E.; Bin, W.

    2017-01-01

    On the FTU tokamak, the collective Thomson scattering (CTS) diagnostic was renewed for investigating the possible excitation of parametric decay instabilities (PDI) by electron cyclotron (EC) or CTS probe beams in presence of magnetic islands and measure their effects on the EC power absorption...

  4. Heldi Thomson

    Index Scriptorium Estoniae

    1997-01-01

    Teaduspreemia autorite kollektiivile arstiteaduse alal töö "Vähktõbi Eestis 1968-1992: haigestumus, levimus, elulemus ja suremus" eest - Mati Rahu (kollektiivi juht), Tiiu Aarelaid, Kaja Gornoi, Heldi Thomson

  5. Experimental measurements of lower-hybrid wave propagation in the Versator II tokamak using microwave scattering

    International Nuclear Information System (INIS)

    Rohatgi, R.; Chen, K.; Bekefi, G.; Bonoli, P.; Luckhardt, S.C.; Mayberry, M.; Porkolab, M.; Villasenor, J.

    1991-01-01

    A series of 139 GHz microwave scattering experiments has been performed on the Versator II tokamak (B. Richards, Ph.D. thesis, Massachusetts Institute of Technology, 1981) to study the propagation of externally launched 0.8 GHz lower-hybrid waves. During lower-hybrid current drive, the launched waves are found to follow a highly directional resonance cone in the outer portion of the plasma. Wave power is also detected near the center of the plasma, and evidence of wave absorption is seen. Scattering of lower-hybrid waves in k space by density fluctuations appears to be a weak effect, although measurable frequency broadening by density fluctuations is found, Δω/ω=3x10 -4 . In the detectable range (2.5 parallel parallel spectra inferred from the scattering measurements are quite similar above and below the current drive density limit. Numerical modeling of these experiments using ray tracing is also presented

  6. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  7. Experimental determination of EEDF and He{sub 2}{sup *} Rydberg-state density by Thomson scattering in a ns-pulsed atmospheric micro-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)

    2016-07-01

    An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.

  8. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2004-06-01

    Full Text Available We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.

  9. Observation of dusts by laser scattering method in the JIPPT-IIU tokamak

    International Nuclear Information System (INIS)

    Narihara, K.; Toi, K.; Hamada, Y.

    1997-03-01

    Laser scattering signals which indicate the presence of small dusts (diameter ≤ 2 μm) were occasionally observed in the JIPPT-IIU tokamak chamber. This phenomenon was reproduced by deliberately spreading carbon dusts from the top of the vacuum chamber. No noticeable effect on the plasma was observed for dust-fall of up to at least 10 6 dusts (10 μg) in 20 ms during discharge. Dusts fallen just before the plasma start-up seemed to be confined but soon be ejected in less than 30 ms. (author)

  10. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  11. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    International Nuclear Information System (INIS)

    Tammen, H.F.

    1995-01-01

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics 'Rijnhuizen', was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL)

  12. THE THOMSON SURFACE. I. REALITY AND MYTH

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2012-01-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90° range of solar exit angles at each given position in the image plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  13. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  14. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  15. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2010-07-15

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  16. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  17. High Beta Tokamak research

    International Nuclear Information System (INIS)

    Navratil, G.A.; Mauel, M.E.; Ivers, T.H.; Sankar, M.K.V.; Eisner, E.; Gates, D.; Garofalo, A.; Kombargi, R.; Maurer, D.; Nadle, D.; Xiao, Q.

    1993-01-01

    During the past 6 months, experiments have been conducted with the HBT-EP tokamak in order to (1) test and evaluate diagnostic systems, (2) establish basic machine operation, (3) document MHD behavior as a function of global discharge parameters, (4) investigate conditions leading to passive stabilization of MHD instabilities, and (5) quantify the external saddle coil current required for DC mode locking. In addition, the development and installation of new hardware systems has occurred. A prototype saddle coil was installed and tested. A five-position (n,m) = (1,2) external helical saddle coil was attached for mode-locking experiments. And, fabrication of the 32-channel UV tomography and the multipass Thomson scattering diagnostics have begun in preparation for installation later this year

  18. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  19. Production of High Harmonic X-ray Radiation from Non-linear Thomson Scattering at LLNL PLEIADES

    International Nuclear Information System (INIS)

    Lim, J; Doyuran, A; Frigola, P; Travish, G; Rosenzweig, J; Anderson, S; Betts, S; Crane, J; Gibson, D; Hartemann, F; Tremaine, A

    2005-01-01

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a ''figure-8'' motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: a L = eE L /m e cw L (ge) 1. With large a L this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals

  20. Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    1976-07-01

    Several diagnostics (soft X-ray, Thomson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(e0)/Tsub(e0) up to 17% and of Δnsub(e0)/nsub(e0) of a few % or less have been measured

  1. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  2. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  3. FIR laser scattering and heterodyne receiver measurements on Alcator C

    International Nuclear Information System (INIS)

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  4. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  5. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  6. Rothmund - Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Sharma N. L

    2003-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare geno-photodermatosis of children. Poikilodermatous cutaneous changes, growth retardation, juvenile cataract and high incidence of malignancy are its classical features. A Thomson type of Rothmund-Thomson syndrome with characteristic poikiloderma congenitale, growth retardation, absence of juvenile cataract and parental non-consanguinity is described in an 8 year old Indian girl.

  7. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  8. Performance and analysis of the TVTS diagnostic system on HT-7 tokamak

    International Nuclear Information System (INIS)

    Han Xiaofeng; Shao Chunqiang; Xi Xiaoqi; Zhao Junyu; Qing Zang; Yang Jianhua; Dai Xingxing

    2013-01-01

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP. After about one month trial running on the superconducting HT-7 tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1x10"1"9 m"-"3. Finally, the data processing method and experimental results are presented. (author)

  9. Application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-01-01

    In the limit of the first Born approximation for a partially coherent secondary source consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation conveys information on the three-dimensional intensity distribution of the secondary source

  10. Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1990-01-01

    A 119μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (author) 1 ref., 3 figs

  11. Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1990-01-01

    A 119 μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (orig./AH)

  12. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tetsuo

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.).

  13. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo.

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.)

  14. Upgrade of the Automatic Analysis System in the TJ-II Thomson Scattering Diagnostic: New Image Recognition Classifier and Fault Condition Detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L.; Dormido-Canto, S. [UNED, Madrid (Spain); Vega, J.; Pastor, I.; Pereira, A.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. [Association EuratomCIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Instituut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2009-07-01

    Full text of publication follows: An automatic image classification system has been in operation for years in the TJ-II Thomson diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut o density during ECH heating. Each kind of image implies the execution of different application software. Therefore, the classification system was developed to launch the corresponding software in an automatic way. The method to recognize the several classes was based on a learning system, in particular Support Vector Machines (SVM). Since the first implementation of the classifier, a relevant improvement has been accomplished in the diagnostic: a new notch filter is in operation, having a larger stray-light rejection at the ruby wavelength than the previous filter. On the other hand, its location in the optical system has been modified. As a consequence, the stray light pattern in the CCD image is located in a different position. In addition to these transformations, the power of neutral beams injected in the TJ-II plasma has been increased about a factor of 2. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. The creation of a new model (also based on SVM) under the present conditions has been necessary. Finally, specific error conditions in the data acquisition process can automatically be detected now. The recovering process can be automated, thereby avoiding the loss of data in ensuing discharges. (authors)

  15. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  16. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  17. The SPARC-LAB Thomson source

    International Nuclear Information System (INIS)

    Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.

    2016-01-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  18. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  19. On steady poloidal and toroidal flows in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  20. Stationary density profiles in the Alcator C-mod tokamak

    International Nuclear Information System (INIS)

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Shiraiwa, S.; Whyte, D.; Scott, S.

    2012-01-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  1. Bobina de Thomson

    Directory of Open Access Journals (Sweden)

    Horacio Munguía Aguilar

    2014-12-01

    Full Text Available Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  2. Rothmund-thomson Syndrome

    Directory of Open Access Journals (Sweden)

    M Z Mani

    1979-01-01

    Full Text Available A case of Rothmund-Thomson syndrome in an 8-year-old Indian male is reported. The patient had bilaterally symmertrical superficial pigmentary deposition of thin nebulae in the lower one-third of the cornea and oonjunctiva. Urinary togmphy rcvmw a dibasic aininoacid with excretion of arginine, lysine;.hmncicystine and glycine. Other features of interest in this patient were onset at the age of 8 days and start of the disease on the hands and feet rather than face. The patient also developed repeated ulcerations on the hands and feet subsequent to minor trauma.

  3. Rothmund-Thomson Syndrome

    DEFF Research Database (Denmark)

    Suter, Aude-Annick; Itin, Peter; Heinimann, Karl

    2016-01-01

    with neutropenia (PN) and Dyskeratosis Congenita (DC), poikiloderma occurs as one of the main symptoms. Here, we report on genotype and phenotype data of a cohort of 44 index patients with RTS or related genodermatoses. METHODS: DNA samples from 43 patients were screened for variants in the 21 exons of the RECQL4...... to assess the patients' cancer risk, to avoid continuous and inconclusive clinical evaluations and to clarify the recurrence risk in the families. Additionally, it shows that the phenotype of more than 50% of the patients with suspected Rothmund-Thomson disease may be due to mutations in other genes raising...

  4. Selected highlights of ECH/ECCD physics studies in the TCV tokamak

    Directory of Open Access Journals (Sweden)

    Goodman T.P.

    2015-01-01

    Full Text Available The Tokamak a Configuration Variable, TCV, has used Electron Cyclotron Heating and Current Drive as its only auxiliary heating system for nearly two decades. In addition to basic plasma heating and current profiling, ECH and ECCD under either feedforward or real-time (feedback control allows control of plasma parameters and MHD behaviour to aid in physics studies and measurements. This paper describes four such studies in which EC control has proved crucial – increased resolution Thomson Scattering measurements in the plasma edge, time-resolved plasma rotation modification during the sawtooth cycle, robust neoclassical tearing mode (NTM suppression, and double pass transmission measurements of EC waves for scattering and polarization studies. The relative merits of feedforward and feedback methods for recent TCV experiments are discussed.

  5. The simultaneous measurements of core and outer core density fluctuations in L-H transition using CO2 laser collective scattering diagnostic in the EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Cao, G.M.; Li, Y.D.; Zhang, X.D.; Sun, P.J.; Hu, L.Q.; Li, J.G.; Wu, G.J.

    2013-01-01

    The H-mode is the projected basic operation scenario for the ITER tokamak. The turbulence de-correlation by the synergistic effect of zonal flow and equilibrium ExB flow shear is believed to be the reason for L-H transition, however, the detailed physical mechanism has not been identified so far. Tangential multi-channel CO 2 laser collective scattering diagnostic system (mainly k r measurement) was first installed to investigate electron density fluctuations on EAST tokamak. The measurements in a spontaneous dithering L-H transition show that in core plasma (0 < r/a < 0.5) the low-frequency fluctuations strengthen greatly before L-H transition; meanwhile in outer core plasma (0.2 < r/a < 1) the low-frequency fluctuations strengthen slightly. Bispectral analysis reveals that the coupling strength between low- and high-frequency fluctuations in both core and outer core plasma strengthens greatly before the transition, but the latter is greater than the former. The results indicate that the low-frequency fluctuations of the core and outer core plasma play active, but different, roles in the spontaneous L-H transition. (author)

  6. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  7. Scaling Thomson scattering to big machines

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Walsh, M.; Böhm, Petr; Bassan, M.; Aftanas, Milan; Pánek, Radomír

    2016-01-01

    Roč. 11, č. 3 (2016), č. článku C03302. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/17./. Sapporo, 27.09.2015-01.10.2015] Institutional support: RVO:61389021 Keywords : Spectrometers * Nuclear instruments and methods for hot plasma diagnostics * Plasma diagnostics - interferometry * Spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/03/C03023/pdf

  8. ELECTRIC POTENIAL CELLS AT THE DIVERTED TOKAMAK SEPARATRIX

    International Nuclear Information System (INIS)

    SCHAFFER, M.J.; PORTER, G.D.; BOEDO, J.A.; BRAY, B.D.; HSIEH, C.L.; MOYER, R.A.; ROGNLIEN, T.D.; STANGEBY, P.C.; WATKINS, J.G.

    2000-01-01

    OAK-B135 Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p e ) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill (∼ 50 V) drives E x B circulation (potential cell) of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arise from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the (del)B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. They speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode

  9. Electric potential cells at the diverted tokamak separatrix

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Michael J.; Bray, Bruce D.; Hsieh, Chung-Lih [General Atomics, San Diego, California (United States); Porter, Gary D.; Rognlien, Thomas D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Boedo, Jose A.; Moyer, Richard A. [University of California, San Diego, California (United States); Stangeby, Peter C. [Univ. of Toronto, Toronto (Canada); Watkins, Jonathan G. [Sandia National Laboratories, Albuquerque, New Mexico (United States)

    2001-07-01

    Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p{sub e}) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill ({approx}100 V) drives ExB circulation ('potential cell') of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arises from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the {nabla}B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. We speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode. (author)

  10. Electric potential cells at the diverted tokamak separatrix

    International Nuclear Information System (INIS)

    Schaffer, Michael J.; Bray, Bruce D.; Hsieh, Chung-Lih; Porter, Gary D.; Rognlien, Thomas D.; Boedo, Jose A.; Moyer, Richard A.; Stangeby, Peter C.; Watkins, Jonathan G.

    2001-01-01

    Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p e ) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill (∼100 V) drives ExB circulation ('potential cell') of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arises from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the ∇B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. We speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode. (author)

  11. A tangential CO{sub 2} laser collective scattering system for measuring short-scale turbulent fluctuations in the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.M., E-mail: gmcao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Y.D. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Q. [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, X.D.; Sun, P.J.; Wu, G.J.; Hu, L.Q. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • A tangential CO{sub 2} laser collective scattering system was first installed on EAST. • It can measure the short-scale fluctuations in different regions simultaneously. • It can study the broadband fluctuations, QC fluctuations, MHD phenomenon, etc. - Abstract: A tangential CO{sub 2} laser collective scattering system has been first installed on the Experimental Advanced Superconducting Tokamak (EAST) to measure short-scale turbulent fluctuations in EAST plasmas. The system can measure fluctuations with up to four distinct wavenumbers simultaneously ranging from 10 cm{sup −1} to 26 cm{sup −1}, and correspondingly k{sub ⊥}ρ{sub s}∼1.5−4.3. The system is designed based on the oblique propagation of the probe beam with respect to the magnetic field, and thus the enhanced spatial localization can be achieved by taking full advantage of turbulence anisotropy and magnetic field inhomogeneity. The simultaneous measurements of turbulent fluctuations in different regions can be taken by special optical setup. Initial measurements indicate rich short-scale turbulent dynamics in both core and outer regions of EAST plasmas. The system will be a powerful tool for investigating the features of short-scale turbulent fluctuations in EAST plasmas.

  12. EDITORIAL: J J Thomson's Electron

    Science.gov (United States)

    Adams, Steve

    1997-07-01

    Westminster School, London, UK A few weeks ago David Thomson, J J Thomson's grandson, presented a Friday evening discourse at the Royal Institution. In it he traced the development of JJT's life from his early studies at Owen's College in Manchester, on to Trinity College Cambridge, his work under Rayleigh at the Cavendish, and his succession as Professor of Experimental Physics in 1884 (a post he passed on to Rutherford in 1919). These were years of heroic discoveries that shaped 20th century physics. Looking around the lecture theatre at all the bow-ties and dinner jackets, it must have been rather similar on 30 April 1897 when JJT delivered his famous discourse on 'Cathode Rays' in which he cautiously but confidently announced that his own results together with those of other experimenters (Lenard in particular): `....seem to favour the hypothesis that the carriers of the charges are smaller than the atoms of hydrogen.' In this issue articles by Leif Gerward and Christopher Cousins, and by Isobel Falconer explore the historical and philosophical context of that discovery. The sound-bites to history in many A-level courses have JJT as both the hero who single-handedly discovered the electron and the rather naive Victorian scientist who thought the atom was a plum pudding. It is valuable to see how Thomson's work pulled the threads of many experiments together and to realize that he may have been first to the post because of a difference in the philosophical approach to cathode rays in Britain compared to Europe. Experimental data must always be interpreted, and divergent philosophies can lead to quite different conclusions. The electron was, of course, the first subatomic particle to be identified. Christine Sutton's article looks at how 20th century discoveries reveal Nature's mysterious habit of repeating successful patterns---electrons for example have very close relations, the muon and the tau---but why? Perhaps the answer will come from the theoreticians

  13. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  14. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  15. Amount of impurity and its behavior in the STP-2 screw pinch tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1981-05-01

    Temporal and spatial evolution of oxygen spectral line intensities have been measured in the STP-2 screw pinch tokamak. The electron density and temperature as measured by Thomson scattering are of the order of 10 14 cm -3 and 10 eV, respectively. On the basis of these measurements, quasi-steady-state rate equations have been solved to give the OII and OIII ion densities. It is found that the density of oxygen impurity is about several percent of the electron density, and the impurity moves with the bulk plasma. It is confirmed that the impurity originates from the wall of the discharge tube during the initial phase of the discharge. (author)

  16. Knock-on tail formation due to nuclear elastic scattering and its observation method using γ-ray-generating "6Li+d reaction in tokamak deuterium plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Sugiyama, Shota; Kajimoto, Shogo; Sawada, Daisuke; Nishimura, Yosuke; Kawamoto, Yasuko

    2016-01-01

    A knock-on tail formation in deuteron velocity distribution function due to nuclear elastic scattering (NES) by energetic protons and its observation method using γ-ray-generating "6Li(d,pγ)"7Li reaction are examined for proton-beam-injected deuterium plasmas. The proton velocity distribution function is obtained by means of the ion trajectory analysis in a Tokamak magnetic configuration. The knock-on tail in two-dimensional (2D) deuteron velocity distribution function due to NES by energetic protons is evaluated via Boltzmann collision integral and 2D Fokker-Planck simulation. From the 2D deuteron velocity distribution function obtained, enhancement of the emission rate of 0.48-MeV γ-rays by "6Li(d,p)"7Li*, "7Li*→"7Li+γ reaction due to NES is evaluated. It is shown that the γ-ray emission rate is significantly influenced by the magnitude of the knock-on tail, and the γ-ray-generating reaction can be a useful tool for the knock-on tail observation. (author)

  17. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  18. New receiving line for the remote-steering antenna of the 140 GHz CTS diagnostics in the FTU Tokamak

    Science.gov (United States)

    D'Arcangelo, O.; Bin, W.; Bruschi, A.; Cappelli, M.; Fanale, F.; Gittini, G.; Pallotta, F.; Rocchi, G.; Tudisco, O.; Garavaglia, S.; Granucci, G.; Moro, A.; Tuccillo, A. A.

    2018-01-01

    A new receiving antenna for collecting signals of the Collective Thomson Scattering (CTS) diagnostics in FTU Tokamak has been recently installed. The squared corrugated section and the precisely defined length make it possible to receive from different directions by remotely steering the receiving mirrors. This type of Remote-Steering (RS) antennas, being studied on FTU for the DEMO Electron Cyclotron Heating (ECH) system launch, is already installed on the W7- X stellarator and will be tested in the next campaign. The transmission of the signal from the antenna in the tokamak hall to the CTS diagnostics hall will be mainly realized by means of oversized circular corrugated waveguides carrying the hybrid HE11 (quasi-gaussian) waveguide mode, with inclusion of a special smooth-waveguide section and a short run of reduced-size square-corrugated waveguide through the tokamak bio-shield. The coupling between different waveguide types is made with ellipsoidal focusing mirrors, using quasi-optical matching formulas between the gaussian-shaped beams in input and output to the waveguides. In this work, after a complete study of feasibility of the overall line, a design for the receiving line will be proposed, in order to realize an executive layout to be used as a guideline for the commissioning phase.

  19. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  20. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  1. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  2. Progress in diagnostics of the COMPASS tokamak

    Science.gov (United States)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  3. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  4. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  5. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  6. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    International Nuclear Information System (INIS)

    Walkden, N. R.; Adamek, J.; Komm, M.; Allan, S.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Dudson, B. D.

    2015-01-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the E R measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak

  7. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    Science.gov (United States)

    Walkden, N. R.; Adamek, J.; Allan, S.; Dudson, B. D.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Komm, M.

    2015-02-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ˜1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  8. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    Energy Technology Data Exchange (ETDEWEB)

    Walkden, N. R., E-mail: nrw504@york.ac.uk [CCFE, Culham Science Centre, Abingdon,Oxon OX14 3DB (United Kingdom); Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Adamek, J.; Komm, M. [Institute of Plasma Physics of AS CR, v. v. i., Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Allan, S.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A. [CCFE, Culham Science Centre, Abingdon,Oxon OX14 3DB (United Kingdom); Dudson, B. D. [Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-02-15

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the E{sub R} measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  9. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  10. Special Important Aspects of the Thomson Effect

    Science.gov (United States)

    Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.

    2018-03-01

    A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

  11. 76 FR 45879 - West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From...

    Science.gov (United States)

    2011-08-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,198] West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From Adecco, Including a Teleworker...-W-73,198 is hereby issued as follows: All workers of West, A Thomson Reuters Business, Thomson...

  12. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-08-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From Adecco, Albuquerque, New... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, including On-Site...

  13. The Kelvin-Thomson atom

    International Nuclear Information System (INIS)

    Walton, A.J.

    1977-01-01

    The contributions made by Kelvin and later by J.J. Thomson to the 'current-bun' model of the atom are discussed. It is felt that the model is worth retaining as a didactic aid since it serves as a good example around which to hang a discussion of modelling as well as providing good examples of the application of Coulomb's and Gauss's laws. The structure of atoms containing up to six electrons is examined using an analysis based on this model. It is shown that it is possible to have a mechanically stable arrangement of up to six electrons located within a sphere of uniform positive charge. With up to three electrons the arrangement is coplanar with the centre of the sphere. (U.K.)

  14. Tokamak COMPASS

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan; Křenek, Petr

    2011-01-01

    Roč. 17, č. 1 (2011), s. 32-34 ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * tokamak * Compass * Golem * Institute of Plasma Physics AVCR v.v * NBI * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  16. Experimental study of the β-limit in ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Krikunov, S.V.; Levin, L.S.; Rozhdestvensky, V.V.; Tukachinsky, A.S.; Yaroshevich, S.P.

    1998-01-01

    Because of its high confinement properties, the H-mode provides good opportunities to achieve high beta values in a tokamak. In this paper the results of an experimental study of β T and β N limits in the H-mode, obtained in a circular cross section tokamak without auxiliary heating are presented. The experiments were performed in the TUMAN-3M tokamak. The device has the following parameters: R 0 =0.53m, a s =0.22m (limiter configuration), B T ≤1.2T, I p ≤175kA, n-bar e ≤6.2x10 19 m -3 . The stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with fast current ramp-down in ohmic H-mode. A maximum value of β T of 2.0% and β N of 2.0 were achieved. The β N limit achieved reveals itself as a 'soft' (non-disruptive) limit. The stored energy slowly decays after the current ramp-down. No correlation was found between beta restriction and MHD phenomena. Internal transport barrier (ITB) formation was observed in ohmic H-mode. An enhancement factor of 2.0 over ITER93H(ELM-free) was found in the ohmic H-mode with ITB. (author)

  17. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  18. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,099] West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased Workers From ADECCO, Albuquerque, NM... Adjustment Assistance (TAA) applicable to workers and former workers of West, A Thomson Reuters Business...

  19. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  20. Tokamak physics

    International Nuclear Information System (INIS)

    Haines, M.G.

    1984-01-01

    The physical conditions required for breakeven in thermonuclear fusion are derived, and the early conceptual ideas of magnetic confinement and subsequent development are followed, leading to present-day large scale tokamak experiments. Confinement and diffusion are developed in terms of particle orbits, whilst magnetohydrodynamic stability is discussed from energy considerations. From these ideas are derived the scaling laws that determine the physical size and parameters of this fusion configuration. It becomes clear that additional heating is required. However there are currently several major gaps in our understanding of experiments; the causes of anomalous electron energy loss and the major current disruption, the absence of the 'bootstrap' current and what physics determines the maximum plasma pressure consistent with stability. The understanding of these phenomena is a major challenge to plasma physicists. (author)

  1. Radiation scattering back to the plasma by the tokamak inner wall in the energy range 50-500 keV during lower hybrid current drive

    International Nuclear Information System (INIS)

    Peysson, Y.

    1990-10-01

    We describe the wall reflectivity by the ratio between the number of photons emerging from the wall and the number entering - and determine the proportion of the reflected contribution to the detected radiations. Various emission profiles and plasma positions in the tokamak chamber have been considered. The contribution of multiple reflections has also be investigated. The wall reflectivity can lead to spurious conclusions for a peaked radial profile in the vicinity of the plasma edge. The next step is devoted to the resolution of the radiation transport equation in solid matter. As an heterogeneous medium is considered - carbon tiles brazed on an iron bulk -, the solution is determined by a numerical Monte-Carlo method. The reflectivity is greatly enhanced by a carbon layer between 50 keV and 150 keV, even for a thickness of one centimeter. The reflectivity is then nearly independent of the energy of the entering photons up to 500 KeV, and lies between 0.15 and 0.4 from a perpendicular to a nearly tangential incidence. Angular corrections have also been considered. Finally, a fully description of the X-ray reflectivity in the high energy range has been performed, taking account of the toroidal geometry and the exact solution of the radiation transport equation. Comparison between theoretical and experimental results obtained with the Tore-Supra high energy X-ray spectrometer has been done. A strong reflectivity effect is observed for the more peripheral line of sight when the plasma emission profile is peaked. There is a good agreement for the total number of detected photons with an energy greater than 100 keV The measured energy spectrum lies up to 200 keV when the photon energy spectrum of the plasma determined from the central chords extends up to 500 keV. A procedure to determine the energy threshold above which the photon energy spectrum is free of the reflected contribution is proposed

  2. Fast Ion Collective Thomson Scattering Diagnostic for ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2008-01-01

    In the era of high power and burning plasma fusion experiments with significant populations of fast particles, the diagnosis of fast ion dynamics becomes an important topic. In ITER, populations of fast ions due to ICRH and NBI, as well as fusion born alphas will carry a significant fraction...... of mock-up measurements have brought the design towards a four mirror quasi-optical solution. The development as well as the present design will be presented....

  3. Fast ion collective Thomson scattering diagnostic for ITER: Design elements

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    perpendicular, and the other measures the component near parallel to the magnetic field. Each system has a high-power probe beam at an operating frequency of 60 GHz and a receiver unit. In order to prevent neutron damage to moveable parts, the geometry of the probes and receivers is fixed An array of receivers...

  4. Thomson, Raman and Rayleigh scattering on atmospheric plasma jets

    NARCIS (Netherlands)

    Gessel, van A.F.H.

    2010-01-01

    Non-equilibrium atmospheric pressure plasma jets are the subject of growing interest, due to their applicability in many fields, including material processing, surface treatment and medical applications. However the plasma operates in contact with air, thus species like oxygen and nitrogen diffuse

  5. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...

  6. Imaging Near-Earth Electron Densities Using Thomson Scattering

    Science.gov (United States)

    2009-01-15

    geocentric solar magnetospheric (GSM) coordinates1. TECs were initially computed from a viewing loca- tion at the Sun-Earth L1 Lagrange point2 for both...further find that an elliptical Earth orbit (apogee ~30 RE) is a suitable lower- cost option for a demonstration mission. 5. SIMULATED OBSERVATIONS We

  7. Progresses in development of the ITER edge Thomson scattering system

    Czech Academy of Sciences Publication Activity Database

    Yatsuka, E.; Bassan, M.; Hatae, T.; Ishikawa, M.; Shimada, T.; Vayakis, G.; Walsh, M.; Scannell, R.; Huxford, R.; Bílková, Petra; Böhm, Petr; Aftanas, Milan; Itami, K.

    2013-01-01

    Roč. 8, č. 12 (2013), C12001-C12001 ISSN 1748-0221. [International Conference on Laser Aided Plasma Diagnostics (16thLAPD)/16./. Madison, 22.09.2013-26.09.2013] Institutional support: RVO:61389021 Keywords : Data processing methods * Plasma diagnostics - iterferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/12/C12001

  8. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  9. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  10. Task I. Basic mirror studies. Task II. Basic tokamak studies. Annual progress report

    International Nuclear Information System (INIS)

    Smullin, L.D.; Bekefi, G.; Porkolab, M.

    1979-01-01

    Brief discussions of research progress are given for each of the following areas: (1) building equipment, (2) rf heating, (3) interferometry, (4) gas puffing, (5) mm collective scattering, (6) uv spectroscopy, (7) soft x radiation, (8) charge exchange, and (9) Thomson scattering

  11. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  12. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  13. Synonymic notes on Lepidanthrax osten sacken and redescription of L. tinctus (Thomson (Diptera, Bombyliidae, Anthracinae

    Directory of Open Access Journals (Sweden)

    Carlos José Einicker Lamas

    1996-01-01

    Full Text Available Based on the analysis of types, Lepidanthrax brachialis (Thomson, 1869 and L. quinquepunclatus (Thomson, 1869 are considered junior synonyms of L. tinctus (Thomson, 1869. Notes and illustrations of the type are presented.

  14. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  15. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  16. ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas

    International Nuclear Information System (INIS)

    Zurro, B.; Wieland, R.M.; Murakami, M.; Swain, D.W.

    1980-03-01

    A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given

  17. A measurement of deuterium neutral by the Balmer-series in the STP-2 high beta screw pinch tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Hirano, K.

    1980-06-01

    The Balmer-alpha and beta are measured with a calibrated spectrograph in STP-2 screw pinch tokamak operated under the maximum toroidal field being 9.2 kG, peak plasma current 30 kA and filling pressure 5 mtorr. The electron temperature and density profiles are obtained by ruby laser Thomson scattering. It is shown that electron temperature is about 10 eV and density is of the order of 10 14 /cm 3 . A non-cylindrical symmetric Abel-inversion technique is used to deduce the emission coefficient profiles from that of the line intensity of the Balmer's. In the present parameter range the neutral deuterium density is almost equal to the population density of the ground state, so that it is obtainable from measured intensities of D sub(α) and D sub(β) which give the population densities of the upper levels i = 3 and 4. The Collisional Radiative (CR) model is applied to the rate equations to estimate the ground state population density. It is found that at 4 μsec from the start of the discharge the deuterium neutral density may be approximately 2 x 10 12 /cm 3 at the center of plasma and 2 x 10 14 /cm 3 at the periphery. These values may contain an error of about factor two. Time history of neutral deuterium density is consistent with the increase of plasma density. (author)

  18. Upgraded ECE radiometer on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S.; Kraemer-Flecken, A.

    2004-01-01

    effects. All these precautions lead to ECE temperature profiles which are very consistent with Thomson scattering measurements (absolute precision ±6%, relative precision between channels ±3%). This relative precision is improved by doing same ohmic plasmas with small changes in the magnetic field. Using analytical formulas, post-pulse data processing takes routinely into account the total magnetic field and the Maxwellian relativistic radial shift to improve radial location estimate. These formulates are compatible with real time processing in order to control the plasma. We are preparing temperature fluctuation measurements by using two tuning IF YIG filters, the principle and the set-up will be described in the paper. The goal is to achieve two channels having 100 MHz bandwidth and tuneable central frequencies in order to do cross-correlation measurements. (authors)

  19. Upgraded ECE radiometer on the Tore Supra Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Antar, G.Y. [Center for Energy Research, UCSD, La Jolla CA (United States); Kraemer-Flecken, A. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik

    2004-07-01

    effects. All these precautions lead to ECE temperature profiles which are very consistent with Thomson scattering measurements (absolute precision {+-}6%, relative precision between channels {+-}3%). This relative precision is improved by doing same ohmic plasmas with small changes in the magnetic field. Using analytical formulas, post-pulse data processing takes routinely into account the total magnetic field and the Maxwellian relativistic radial shift to improve radial location estimate. These formulates are compatible with real time processing in order to control the plasma. We are preparing temperature fluctuation measurements by using two tuning IF YIG filters, the principle and the set-up will be described in the paper. The goal is to achieve two channels having 100 MHz bandwidth and tuneable central frequencies in order to do cross-correlation measurements. (authors)

  20. Calculation of triton confinement and burn-up in tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Battistoni, P.

    1987-01-01

    An analytical investigation is made of the confinement and subsequent burn-up of fusion produced tritons in a deuterium Tokamak plasma. Explicit approximations are obtained for the triton confinement factor, clearly displaying the scaling with physical parameters. The importance of pitch angle scattering losses during the triton slowing down is also estimated. A comparison with experiments and numerical calculations on the FT Tokamak slows good qualitative agreement. (authors)

  1. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  2. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  3. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  4. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  5. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  6. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    Evans, T.E.

    1984-09-01

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  7. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  8. Revisão do gênero Cyclopeplus Thomson (Coleoptera, Cerambycidae, Lamiinae, Anisocerini Revision of the genus Cyclopeplus Thomson (Coleoptera, Cerambycidae, Lamiinae, Anisocerini

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Alvarenga Júlio

    2002-12-01

    Full Text Available The genus Cyclopeplus Thomson, 1860 is revised. New synonyms proposed: C. violaceus Lane, 1957 = C. peruvianas Tippmann, 1939 and C. germaini Gounelle, 1906 = C. lacordairei Thomson, 1868. The five species of Cyclopeplus are keyed, redescribed and illustrated.

  9. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  10. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    Science.gov (United States)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  11. Using bremsstrahlung for electron density estimation and correction in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yingjie, E-mail: bestfaye@gmail.com; Wu, Zhenwei; Gao, Wei; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Zhang, Ling; Zhao, Junyu

    2013-11-15

    Highlights: • The visible bremsstrahlung diagnostic provides a simple and effective tool for electron density estimation in steady state discharges. • This method can make up some disadvantages of present FIR and TS diagnostics in EAST tokamak. • Line averaged electron density has been deduced from central VB signal. The results can also be used for FIR n{sub e} correction. • Typical n{sub e} profiles have been obtained with T{sub e} and reconstructed bremsstrahlung profiles. -- Abstract: In EAST electron density (n{sub e}) is measured by the multi-channel far-infrared (FIR) hydrogen cyanide (HCN) interferometer and Thomson scattering (TS) diagnostics. However, it is difficult to obtain accurate n{sub e} profile for that there are many problems existing in current electron density diagnostics. Since the visible bremsstrahlung (VB) emission coefficient has a strong dependence on electron density, the visible bremsstrahlung measurement system developed to determine the ion effective charge (Z{sub eff}) may also be used for n{sub e} estimation via inverse operations. With assumption that Z{sub eff} has a flat profile and does not change significantly in steady state discharges, line averaged electron density (n{sup ¯}{sub e}) has been deduced from VB signals in L-mode and H-mode discharges in EAST. The results are in good coincidence with n{sup ¯}{sub e} from FIR, which proves that VB measurement is an effective tool for n{sub e} estimation. VB diagnostic is also applied to n{sup ¯}{sub e} correction when FIR n{sup ¯}{sub e} is wrong for the laser phase shift reversal together with noise causes errors when electron density changed rapidly in the H-mode discharges. Typical n{sub e} profiles in L-mode and H-mode phase are also deduced with reconstructed bremsstrahlung profiles.

  12. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  13. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  14. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  15. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  16. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  17. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  18. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  19. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  20. Stability at high performance in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Buttery, R.J.; Akers, R.; Arends, E. =

    2003-01-01

    The development of reliable H-modes on MAST, together with advances in heating power and a range of powerful diagnostics, has provided a platform to enable MAST to address some of he most important issues of tokamak stability. In particular the high β potential of the ST is highlighted with stable operation at β N ∼5-6 , β T ∼ 16% and β p as high as 1.9, confirmed by a range of profile diagnostics. Calculations indicate that β N levels are in the vicinity of no-wall stability limits. Studies have provided the first identification of the Neoclassical Tearing Mode (NTM) in the ST, using its behaviour to quantitatively validate predictions of NTM theory, previously only applied to conventional tokamaks. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs - by avoiding large sawteeth much higher β N can, and has, been reached. Further studies have confirmed the NTM's significance, with large islands observed using the 300 point Thomson diagnostic, and locking of large n=1 modes frequently leading to disruptions. H-mode plasmas are also limited by ELMs, with confinement degraded as ELM frequency rises. However, unlike the conventional tokamak, the ELMs in high performing regimes on MAST (H IPB98Y2 ∼1) appear to be type III in nature. Modelling identifies instability to peeling modes, consistent with a type III interpretation, and shows considerable scope to raise pressure gradients (despite n=∞ ballooning theory predictions of instability) before ballooning type modes (perhaps associated with type I ELMs) occur. Finally sawteeth are shown not to remove the q=1 surface in the ST - other promising models are being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels, and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER. (author)

  1. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  2. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  3. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  4. Magnetic ''islandography'' in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Waddell, B.V.; Hicks, H.R.

    1978-09-01

    Tearing modes are shown to be responsible for most of the experimentally observed macroscopic behavior of tokamak discharges. The effects of these collective magnetic perturbations on magnetic topology and plasma transport in tokamaks are shown to provide plausible explanations for: internal disruptions (m/n = 1); Mirnov oscillations (m/n = 2,3...); and major disruptions (coupling of 2/1-3/2 modes). The nonlinear evolution of the tearing modes is followed with fully three-dimensional computer codes. The effects on plasma confinement of the magnetic islands or stochastic field lines induced by the macroscopic tearing modes are discussed and compared with experiment. Finally, microscopic magnetic perturbations are shown to provide a natural model for the microscopic anomalous transport processes in tokamaks

  5. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  6. A variational proof of Thomson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  7. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  8. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  9. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  10. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  11. The calculation of Tritium burnup in Tokamaks

    International Nuclear Information System (INIS)

    Bittoni, E.; Haegi, M.

    1987-01-01

    In a deuterium plasma tokamak, the contained fusion-produced tritons are supposed to be decelerated down to thermalization according to classical Coulomb scattering. A fraction of these fast tritons undergoes the DT fusion reaction producing 14.1 MeV neutrons. It is thus possible to get information on the confinement of these fast tritons by comparing the measured and the calculated ratio of the 14.1 MeV to the 2.45 MeV neutron flux. This report describes the calculation of this flux ratio by means of a numerical Monte Carlo-like code

  12. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  13. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  14. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  15. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  16. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  17. Research using small tokamaks

    International Nuclear Information System (INIS)

    1993-01-01

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  18. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  19. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1990-04-01

    This paper discusses the following work on the text tokamak: data systems; particle confinement; impurity transport; plasma rotation; runaway electrons; electron cyclotron heating; FIR system; transient transport; internal turbulence; edge turbulence; ion temperature; EML experiments; impurity pellet experiments; MHD experiments and analysis; TEXT Upgrade; and Upgrade diagnostics

  20. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... that generate peak intensity up to 1022 W/cm2 on a table top [1]. ... and energy, plasma wake fields are generated that accelerate electrons to GeVs ... more detail, it is inevitable to use Thomson parabola spectrometer (TPS).

  1. J J Thomson and the discovery of the electron

    International Nuclear Information System (INIS)

    Squires, Gordon

    1997-01-01

    This short biography describes the life of J.J. Thomson, head of the Cavendish Laboratory in Cambridge. His early life as well as his contributions to physics, including the discovery of the electron from his research on cathode rays in 1897 are included. The work of other contributors to the understanding of electron properties is also noted briefly. (UK)

  2. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  3. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  4. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  5. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    Science.gov (United States)

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  6. Prediction of Isoenthalps, Joule–Thomson Coefficients and Joule–Thomson Inversion Curves of Refrigerants by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Figueroa-Gerstenmaier, S.; Lísal, Martin; Nezbeda, Ivo; Smith, W.R.; Trejos, V.M.

    2014-01-01

    Roč. 375, AUG 15 (2014), s. 143-151 ISSN 0378-3812 Grant - others:NSERCC(CA) OGP-1041 Institutional support: RVO:67985858 Keywords : refrigerants * molecular simulation * Joule-Thomson Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.200, year: 2014

  7. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  8. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  9. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  10. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  11. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  12. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  13. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  14. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  15. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  16. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  17. Thomson Reuters to release Book Citation Index later this year

    Science.gov (United States)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  18. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  19. Thomson parabola spectrometry for gold laser generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Andó, L.; Ullschmied, Jiří

    2013-01-01

    Roč. 20, č. 2 (2013), 023106-023106 ISSN 1070-664X R&D Projects: GA MŠk LM2010014 Institutional research plan: CEZ:AV0Z20430508 Keywords : acceleration * ions * Thomson parabola spectrometry * PALS laser * laser targets * gold ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.249, year: 2013 http://pop.aip.org/resource/1/phpaen/v20/i2/p023106_s1

  20. Rothmund-Thomson syndrome and tolerance of chemoradiotherapy

    International Nuclear Information System (INIS)

    Borg, M.F.; Olver, I.N.; Hill, M.P.

    1998-01-01

    Rothmund-Thomson syndrome (RTS) is a rare disorder with a predisposition for cutaneous and non-cutaneous malignancy. It is speculated that ultraviolet (UV) sensitivity and deficient DNA repair may account for this predisposition and influence the tolerance of chemoradiotherapeutic management. A case is reported of the management of an RTS patient with squamous cell carcinoma of the tongue who demonstrated increased radiosensitivity and tissue intolerance to chemotherapy. Copyright (1998) Blackwell Science Pty Ltd

  1. Four new species of Nyctonympha Thomson, 1868 (Coleoptera, Cerambycidae, Lamiinae

    Directory of Open Access Journals (Sweden)

    Antonio Santos-Silva

    2017-06-01

    Full Text Available Four new species of Nyctonympha Thomson, 1868 are described: N. antonkozlovi sp. nov. and N. sinjaevi sp. nov. from Colombia, N. birai sp. nov. from Venezuela and N. mariahelenae sp. nov. from Brazil (Rondônia, Bolivia and Peru. Nyctonympha flavipes Aurivillius, 1990 is formally excluded from the Peruvian and Brazilian fauna. A provisional key to species of Nyctonympha is provided.

  2. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  3. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  4. The density limit in Tokamaks

    International Nuclear Information System (INIS)

    Alladio, F.

    1985-01-01

    A short summary of the present status of experimental observations, theoretical ideas and understanding of the density limit in tokamaks is presented. It is the result of the discussion that was held on this topic at the 4th European Tokamak Workshop in Copenhagen (December 4th to 6th, 1985). 610 refs

  5. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  6. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  7. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  8. Tokamak instrumentation and controls

    International Nuclear Information System (INIS)

    Becraft, W.R.; Bettis, E.S.; Houlberg, W.A.; Onega, R.J.; Stone, R.S.

    1979-02-01

    The three areas of study emphasis to date are: (1) Physics implications for controls, (2) Computer simulation, and (3) Shutdown/aborts. This document reports on the FY 78 efforts (the first year of these studies) to address these problems. Transient scenario options for the startup of a tokamak are developed, and the implications for the control system are discussed. This document also presents a hybrid computer simulation (analog and digital) of the Impurity Study Experiment (ISX-B) which is now being used for corroborative controls investigations. The simulation will be expanded to represent a TNS/ETF machine

  9. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  10. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    Minardi, E.

    1989-01-01

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  11. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  12. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  13. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  14. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-06-01

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  15. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  16. Plasma diagnostics for tokamaks and stellarators. Proceedings of the IV Course and Workshop on Magnetic Confinement Fusion. UIMP Santander (Spain), June 1992

    International Nuclear Information System (INIS)

    Stott, P. E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs

  17. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  18. Quasimonochromatic x-rays generated from nonlinear Thomson backscattering

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin

    2007-01-01

    The nonlinear Thomson backscattering in a circularly polarized Gaussian laser pulse is investigated and spectral characteristics of the emission are discussed. It is indicated that the frequency of the emitted light is up-shifted by the nonlinear doppler effect. By using a properly focused laser beam or putting the electron before the focus, the variety of the nonlinear Doppler shift during the interaction can be minimized and quasimonochromatic x-rays are generated. Taking into account the emission power, the optimum situations for generating quasimonochromatic x-rays are explored

  19. Natural current profiles in tokamaks

    International Nuclear Information System (INIS)

    Biskamp, D.

    1986-01-01

    It is proposed that a certain class of equilibrium, which follow from an elementary variational principle, are the natural current profiles in tokamaks, to which actual discharge profiles tend to relax. (orig.)

  20. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...