WorldWideScience

Sample records for tokamak program issues

  1. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  2. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  3. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  4. Technology and physics in the Tokamak Program: The need for an integrated, steady-state RandD tokamak experiment

    International Nuclear Information System (INIS)

    1988-05-01

    The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs

  5. Issues for the electric utilities posed by DT tokamak fusion powerplants

    International Nuclear Information System (INIS)

    Roth, J.R.

    1990-01-01

    The DT tokamak is the mainline approach to magnetic fusion energy in all industrialized countries with a major commitment to fusion research. It achieved this status largely through historical accident and not as the result of considered choice among alternatives. After twenty-five years of intensive tokamak research, it is appropriate to ask whether the path down which the tokamak concept is leading the fusion community is the way to an acceptable powerplant for the electric utilities, or an aberration which should be replaced with an approach more promising in the long term. Issues surrounding the DT tokamak can be grouped in three broad areas: physics; safety/environmental; and engineering/economic. In addition to these problems, detailed engineering design studies of DT tokamak fusion powerplants over a twenty year period have revealed a number of additional problems. Most of thee are related to the presence of tritium and energetic neutron fluxes, which tend to make the cost of electricity of DT tokamaks higher than that of fossil or fission powerplants. These safety and economic issues of the DT tokamak powerplant also appear to be intractable, and have not been made to go away by twenty years of progressively more detailed and extensive engineering design studies

  6. The scientific program of the Tokamak de Varennes

    International Nuclear Information System (INIS)

    Daughney, C.C.

    1989-01-01

    The Tokamak de Varennes (TdeV) is the principal research tool of the Centre canadien de fusion magnetique (CCFM). This article places the Tokamak de Varennes within the framework of the Canadian National Fusion Program (NFP) and describes the scientific program of the TdeV as it was presented at the April 1989 meeting of the CCFM Advisory Committee. The CCFM scientific plant contains three main elements: tokamak development, research on transport and equilibrium in plasmas, and research on the plasma-wall problem. Phase I of the experimental program, commissioning the tokamak and the diagnostic systems, has been completed. Phase II of the experimental program will begin in December 1989 with the plasma boundary defined by a magnetic divertor and the power supplies and vacuum system capable of creating a sequence of one-second plasma pulses. (3 figs., 3 refs.) (L.L.)

  7. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  8. Proposed tokamak poloidal field system development program

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Vogel, H.F.; Warren, R.W.; Weldon, D.M.

    1977-05-01

    A program is proposed to develop poloidal field components for TNS and EPR size tokamak devices and to test these components in realistic circuits. Emphasis is placed upon the development of the most difficult component, the superconducting ohmic-heating coil. Switches must also be developed for testing the coils, and this switching technology is to be extended to meet the requirements for the large scale tokamaks. Test facilities are discussed; power supplies, including a homopolar to drive the coils, are considered; and poloidal field systems studies are proposed.

  9. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  10. Fusion Canada issue 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs.

  11. Fusion Canada issue 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs.

  12. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  13. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  14. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  15. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  16. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  17. Overview of the Tokamak de Varennes program

    International Nuclear Information System (INIS)

    Pacher, H.D.

    1986-01-01

    The Tokamak de Varennes will be the major Canadian experiment in the magnetic fusion domain. It has a toroidal field of 1.5 tesla, major radius of 0.85 m, a minor radius of 0.25 m, and will study long pulses, up to 30 seconds duration. Initially, a series of successive plasma pulses, each of the order of seconds, will yield a duty factor of over 50 percent. During this phase, the major emphasis will be on the study of impurity generation, transport, and control, plasma-wall interactions and material properties. The program will include studies of fast current rampdown and the resultant current profile modifications. The development of advanced diagnostics will also be undertaken. To attain a higher duty factor with continuous plasma operation, noninductive current drive by radio=frequency will be added as an early upgrade. This will introduce current drive investigations such as transformer recharge and profile relaxation, and enhance the wall and materials study program. In this context, the Tokamak de Varennes will concentrate on the study of impurity exhaust and retention as well as net erosion of the limiter and neutralization plate materials

  18. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  19. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  20. Tokamak first-wall coating program development

    International Nuclear Information System (INIS)

    Davis, M.J.; Langley, R.A.; Prevender, T.S.

    1977-08-01

    The development of a research program to study coatings for control of impurities originating from the first wall of a Tokamak reactor is extensively discussed. The first wall environment and sputtering, temperature, surface chemical, and bulk radiation damage effects are reviewed. Candidate materials and application techniques are discussed. The philosophy and flow chart of a recommended coating development plan are presented and discussed. Projected impacts of the proposed plan include benefits to other aspects of confinement experiments. A list of 45 references is appended

  1. Fusion Canada issue 6

    International Nuclear Information System (INIS)

    1989-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a funding report for CFFTP, a technical update for Tokamak de Varennes and a network for university research by the National Fusion Program. 4 figs

  2. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  3. Overview of the TCV tokamak program: scientific progress and facility upgrades

    DEFF Research Database (Denmark)

    Coda, S.; Ahn, J.; Albanese, R.

    2017-01-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range with...

  4. Overview of the TCV tokamak program : scientific progress and facility upgrades

    NARCIS (Netherlands)

    Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.N.A.; Bin, W.; Blanchard, P.; Blanken, T.C.; Boedo, J.A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F.H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I.T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B.P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T.P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J.P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.- P.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D.L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H.B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V.P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I.G.; Molina Cabrera, P.A.; Moret, J.M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A.H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J.J.; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M.Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.H.A.; Vermare, L.; Vianello, N.; Vijvers, W.A.J.; Vlahos, L.; Vu, N.M.T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.

    2017-01-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without

  5. Fusion Canada issue 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-06-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on operation at Tokamak de Varennes, CRITIC irradiations at AECL, Tritium systems at TFTR, physics contribution at ITER. 4 figs.

  6. Theoretical issues in tokamak confinement: (i) Internal/edge transport barriers and (ii) runaway avalanche confinement

    International Nuclear Information System (INIS)

    Connor, J.W.; Helander, P.; Thyagaraja, A.; Andersson, F.; Fueloep, T.; Eriksson, L.-G.; Romanelli, M.

    2001-01-01

    This paper summarises a number of distinct, but related, pieces of work on key confinement issues for tokamaks, in particular the formation of internal and edge transport barriers, both within turbulent and neoclassical models, and radial diffusion of avalanching runaway electrons. First-principle simulations of tokamak turbulence and transport using the two-fluid, electromagnetic, global code CUTIE are described. The code has demonstrated the spontaneous formation of internal transport barriers near mode rational surfaces, in qualitative agreement with observations on JET and RTP. The theory of neoclassical transport in an impure, toroidal plasma has been extended to allow for steeper pressure and temperature gradients than are usually considered, and is then found to become nonlinear under conditions typical of the tokamak edge. For instance, the particle flux is found to be a nonmonotonic function of the gradients, thus allowing for a bifurcation in the ion particle flux. Finally, it is shown that radial diffusion caused by magnetic fluctuations can effectively suppress avalanches of runaway electrons if the fluctuation amplitude exceeds δB/B∼10 -3 . (author)

  7. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  8. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  9. General Tokamak Circuit Simulation Program-GTCSP

    International Nuclear Information System (INIS)

    Matsukawa, Makoto; Miura, Yushi; Aoyagi, Tetsuo.

    1997-05-01

    General Tokamak Circuit Simulation Program (GTCSP) was originally developed for the design work of JT-60 Power Supply System in JAERI. Therefore the prepared models (components) to be analyzed are generator, thyristor converter and coils. This is one of the unique points of GTCSP in comparison with other conventional electric circuit analysis program, because they make a circuit from the small devices such as resister, coil, condenser, transistor and so on. However, GTCSP is also clearly conventional because it is possible to construct an electric circuit freely with the prepared components. Moreover, a similar function could be realized by addition a new component to GTCSP. This report is assumed to be used as an User Manual of the GTCSP, not only to present the development and the analytical functions. Then some useful examples are described, and how to get graphic outputs are also mentioned. (author)

  10. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Seokho H.; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  11. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  12. Fusion Canada issue 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig.

  13. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  14. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-15

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established.

  15. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established

  16. Fusion Canada issue 7

    International Nuclear Information System (INIS)

    1989-05-01

    A short bulletin from the National Fusion Program. Included in this issue are CFFTP highlights on the Karlsruhe Isotope Separation System, a report on ITER tritium process systems, an experimental update on Tokamak de Varennes and Canada-U.S. bilateral technical collaboration topics. 2 figs

  17. Fusion Canada issue 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    A short bulletin from the National Fusion Program. Included in this issue are CFFTP highlights on the Karlsruhe Isotope Separation System, a report on ITER tritium process systems, an experimental update on Tokamak de Varennes and Canada-U.S. bilateral technical collaboration topics. 2 figs.

  18. Fusion Canada issue 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington`s Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs.

  19. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  20. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  1. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  2. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  3. Overview of recent experimental results from the DIII-D advanced tokamak program

    International Nuclear Information System (INIS)

    Burrell, K.H.

    2003-01-01

    The D III-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: 1) We have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; 2) Using this rotational stabilization, we have achieved β N H 89 ≥ 10 for 4 τ E limited by the neoclassical tearing mode; 3) Using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased β T by 60%; 4) We have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; 5) We have made the first integrated AT demonstration discharges with current profile control using ECCD; 6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and 7) We have demonstrated stationary tokamak operation for 6.5 s (36 τ E ) at the same fusion gain parameter of β N H 89 /q 95 2 ≅ 0.4 as ITER but at much higher q 95 = 4.2. We have developed general improvements applicable to conventional and advanced tokamak operating modes: 1) We have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 τ E ) with constant density and constant radiated power; 2) We have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; 3) We have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. (author)

  4. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  5. Fusion Canada issue 22

    International Nuclear Information System (INIS)

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs

  6. Fusion Canada issue 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it`s role. 1 fig.

  7. Fusion Canada issue 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs.

  8. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  9. Fusion Canada issue 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs.

  10. Fusion Canada issue 9

    International Nuclear Information System (INIS)

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs

  11. The role of the spherical tokamak in clarifying tokamak physics

    International Nuclear Information System (INIS)

    Morris, A.W.; Akers, R.J.; Connor, J.W.; Counsell, G.F.; Gryaznevich, M.P.; Hender, T.C.; Maddison, G.P.; Martin, T.J.; McClements, K.G.; Roach, C.M.; Robinson, D.C.; Sykes, A.; Valovic, M.; Wilson, H.R.; Fonck, R.J.; Gusev, V.; Kaye, S.M.; Majeski, R.; Peng, Y.-K.M.; Medvedev, S.; Sharapov, S.; Walsh, M.J.

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one's understanding will be emphasized. (author)

  12. Initial DEMO tokamak design configuration studies

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Christian, E-mail: christian.bachmann@efda.org [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Aiello, G. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Albanese, R.; Ambrosino, R. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Arbeiter, F. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Boccaccini, L.; Carloni, D. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Federici, G. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kovari, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Loving, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maione, I. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Mattei, M. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Mazzone, G. [ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Meszaros, B. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Riccardo, V. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    Highlights: • A definition of main DEMO requirements. • A description of the DEMO tokamak design configuration. • A description of issues yet to be solved. - Abstract: To prepare the DEMO conceptual design phase a number of physics and engineering assessments were carried out in recent years in the frame of EFDA concluding in an initial design configuration of a DEMO tokamak. This paper gives an insight into the identified engineering requirements and constraints and describes their impact on the selection of the technologies and design principles of the main tokamak components. The EU DEMO program aims at making best use of the technologies developed for ITER (e.g., magnets, vessel, cryostat, and to some degree also the divertor). However, other systems in particular the breeding blanket require design solutions and advanced technologies that will only partially be tested in ITER. The main differences from ITER include the requirement to breed, to extract, to process and to recycle the tritium needed for plasma operation, the two orders of magnitude larger lifetime neutron fluence, the consequent radiation dose levels, which limit remote maintenance options, and the requirement to use low-activation steel for in-vessel components that also must operate at high temperature for efficient energy conversion.

  13. Fusion Canada issue 21

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    A short bulletin from the National Fusion Program highlighting in this issue Europe proposes Canada`s participation in ITER, tritium for JET, CCFM/TdeV-Tokamak helium pumping and TdeV update, ITER-related R and D at CFFTP, ITER Deputy Director visits Canada, NFP Director to Chair IFRC, Award for Akira Hirose. 3 figs.

  14. Fusion Canada issue 21

    International Nuclear Information System (INIS)

    1993-08-01

    A short bulletin from the National Fusion Program highlighting in this issue Europe proposes Canada's participation in ITER, tritium for JET, CCFM/TdeV-Tokamak helium pumping and TdeV update, ITER-related R and D at CFFTP, ITER Deputy Director visits Canada, NFP Director to Chair IFRC, Award for Akira Hirose. 3 figs

  15. Fusion Canada issue 14

    International Nuclear Information System (INIS)

    1991-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on a fusion cooperation agreement between Japan and Canada, an update at Tokamak de Varennes on plasma biasing experiments and boronization tests and a collaboration between Canada and the U.S. on a compact toroid fuelling gun. 4 figs

  16. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  17. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  18. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  19. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  20. Fusion Canada issue 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Ontario Hydro`s contract for tritium supply from Germany, a CCFM update on plasma biasing, divertor operation, radiofrequency plasma current drive and the plasma heating system for the Tokamak de Varennes, and an agreement for ITER engineering design activities. 5 figs.

  1. Fusion Canada issue 26

    International Nuclear Information System (INIS)

    1994-11-01

    A short bulletin from the National Fusion Program highlighting in this issue tritium supply for Japanese research, Canada to host the 1995 IAEA Conference on Tritium, studies on the tokamak divertor and edge plasma studies, a tritium field release study, erosion studies on plasma facing materials, G. Pacher returns to CCFM and an update on CCFM/TdeV

  2. Fusion Canada issue 16

    International Nuclear Information System (INIS)

    1992-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Ontario Hydro's contract for tritium supply from Germany, a CCFM update on plasma biasing, divertor operation, radiofrequency plasma current drive and the plasma heating system for the Tokamak de Varennes, and an agreement for ITER engineering design activities. 5 figs

  3. Diagnostics for the Rijnhuizen Tokamak Project

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    The research program of the Rijnhuizen Tokamak Project is concentrated on the study of plasma transport processes. The RTP tokamak is therefore equipped with an extensive set of multichannel diagnostics, including a 19-channel FIR interferometer, a 20-channel heterodyne ECE system, an 80-channel

  4. Draft program plant for TNS: The Next Step after the tokamak fusion test reactor. Part III. Project specific RD and D needs

    International Nuclear Information System (INIS)

    1977-03-01

    Research and development needs for the TNS systems are described according to the following chapters: (1) tokamak system, (2) electrical power systems, (3) plasma heating systems, (4) tokamak support systems, (5) instrumentation, control, and data systems, and (6) program recommendations

  5. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  6. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  7. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  8. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    Science.gov (United States)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  9. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  10. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  11. Diagnostics systems for the TBR-E tokamak

    International Nuclear Information System (INIS)

    Ueda, M.; Ferreira, J.L.; Aso, Y.; Ferreira, J.G.

    1992-08-01

    A general view of the several diagnostics systems proposed for the TBR-E tokamak is given. This project is a joint undertaking of INPE, USP and UNICAMP plasma laboratories. The requirements for the measurements of the plasma produced parameters are described. Special attention is given for diagnostics used to investigate new physical issues on a low aspect ratio tokamak such as TBR-E. (author)

  12. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  13. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  14. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  15. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  16. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  17. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  18. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  19. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  20. Digital control of plasma position in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Emami, M.; Babazadeh, A.R.; Roshan, M.V.; Memarzadeh, M.; Habibi, H. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center. Plasma Physics Lab.

    2002-03-01

    Plasma position control is one of the important issues in the design and operation of tokamak fusion research device. Since a tokamak is basically an electrical system consisting of power supplies, coils, plasma and eddy currents, a model in which these components are treated as an electrical circuits is used in designing Damavand plasma position control system. This model is used for the simulation of the digital control system and its parameters have been verified experimentally. In this paper, the performance of a high-speed digital controller as well as a simulation study and its application to the Damavand tokamak is discussed. (author)

  1. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  2. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  3. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  4. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.

    1999-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  5. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  6. Some stress-related issues in tokamak fusion reactor first walls

    International Nuclear Information System (INIS)

    Majumdar, S.; Pai, B.; Ryder, R.H.

    1987-01-01

    Recent design studies of a tokamak fusion power reactor and of various blankets have envisioned surface heat fluxes on the first wall ranging from 0.1 to 1.0 MW/m 2 , and end-of-life irradiation fluences ranging from 100 dpa for the austenitic stainless steels to as high as 250 dpa for postulated vanadium alloys. Some tokamak blankets, particularly those using helium or liquid metal as coolant/breeder, may have to operate at relatively high coolant pressures so that the first wall may be subjected to high primary stress in addition to high secondary stresses such as thermal stresses or stresses due to constrained swelling. The present paper focusses on the various problems that may arise in the first wall because of stress and high neutron fluence, and discusses some of the design solutions that have been proposed to overcome these problems

  7. Compact Ignition Tokamak Program: R and D needs

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1985-01-01

    This report on the Compact Ignition Tokamak Program supplies information concerning: segmented vacuum vessel joint development; first wall tile attachments; first wall/tile development - composite materials; vacuum leak detection; high frequency rf sources; Faraday shield development; design and testing of rf launchers for high power, ling pulse operation; radiation hardened, low loss, dielectric windows for rf, IR, visible, UV and X-rays, mirrors for changing direction and focusing IR, visible and UV radiation; radiation resistant optical dielectric wave guides; radiation resistant HV insulation for diagnostic magnetic pickup coils; compact radiation and/or magnetic shielding for in-vault diagnostics that need some attenuation to reduce S/N ratio; radiation hardened line-of-sight sensors such as bolometers, UV and soft X-ray detectors, neutral particle analyzers, torus pressure gauges; special maintenance fixtures and tools; material properties - design data base - all materials; and insulation - electrical/thermal and mechanical properties

  8. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  9. The Tokamak IST-TOK

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1991-01-01

    A small tokamak is under construction at the Portuguese Technical Superior Institute. The main objective is to create a home based laboratory in which an independent scientific program might be developed. (L.C.J.A.). 14 refs, 6 figs

  10. Fusion Canada issue 13

    International Nuclear Information System (INIS)

    1991-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Canada's plans to participate in the Engineering Design Activities (EDA), bilateral meetings with Canada and the U.S., committee meeting with Canada-Europe, an update at Tokamak de Varennes on Plasma Biasing experiments and boronized graphite tests, fusion materials research at the University of Toronto using a dual beam accelerator and a review of the CFFTP and the CCFM. 2 figs

  11. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  12. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  13. HT-7U superconducting tokamak: Physics design, engineering progress and schedule

    International Nuclear Information System (INIS)

    Wan Yuanxi

    2002-01-01

    The superconducting tokamak research program begun in China in ASIPP since 1994. The program is included in existent superconducting tokamak HT-7 and the next new superconducting tokamak HT-7U which is one of national key research projects in China. With the elongation cross-section, divertor and higher plasma parameter the main objectives of HT-7U are widely investigation both of the physics and technology for steady state advanced tokamak as well as the investigation of power and particle handle under steady-state operation condition. The physics and engineering design have been completed and significant progresses on R and D and fabrication have been achieved. HT-7U will begin assembly at 2003 and possible to get first plasma around 2004. (author)

  14. The steady-state tokamak program

    International Nuclear Information System (INIS)

    Politzer, D.A.; Nevins, W.M.

    1992-01-01

    This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER

  15. DIII-D tokamak long range plan. Revision 3

    International Nuclear Information System (INIS)

    1992-08-01

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998

  16. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  17. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.

    1994-01-01

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles

  18. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  19. Joint Czechoslovak-Soviet workshop on current drive in tokamaks

    International Nuclear Information System (INIS)

    1985-10-01

    At the Joint Czechoslovak-Soviet Workshop on Current Drive in Tokamaks, five papers dealing with issues of general interest were presented. In a theoretical paper by Klima and Pavlo a one-dimensional model of the lower-hybrid current drive is described and the results of its analysis are used in a numerical simulation using T-7 tokamak parameters. In the second theoretical paper by Vojtsekhovich, Parail and Pereverzev the influence of the LH wave spectrum on the efficiency of the current drive is studied. Two papers deal with a new microwave system designed for experiments on LHCD in the T-7 tokamak. In particular, the power spectra of new four-waveguide grills are computed. In the last paper the non-inductive start-up of the discharge in the T-7 tokamak by means of electron cyclotron waves is investigated. (J.U.)

  20. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  1. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  2. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Chung, Kyoo Sun [Hanyang Univ., Seoul (Korea, Republic of); Hong, Sang Heui [Seoul National Univ., Seoul (Korea, Republic of); Kang, Heui Dong [Kyungpook National Univ., Taegu (Korea, Republic of); Lee, Jae Koo [Pohang Inst. of Science and Technology, Kyungnam (Korea, Republic of)

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the `advanced tokamak` physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs.

  3. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    International Nuclear Information System (INIS)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub; Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui; Chung, Kyoo Sun; Hong, Sang Heui; Kang, Heui Dong; Lee, Jae Koo

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the 'advanced tokamak' physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs

  4. Improvement of the tokamak concept

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L

    1994-12-31

    Improvement of the tokamak concept is highly desirable to reduce the size and capital cost of a device able to ignite to increase the plasma pressure, i.e. the power density to reduce the cost of electricity, and to increase the fraction of bootstrap current to render the tokamak compatible with continuous operation. The most important results obtained in this field are summarized, and the options are shown which are still open and explored by the various experiments. Various effects of the plasma shaping are discussed, plasma configurations with both high {beta}{sub N} and H{sub G} are explored, and the issues of stable steady state and of the plasma edge are briefly discussed. (R.P.). 65 refs., 2 tabs.

  5. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  6. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  7. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  8. U.S. NRC's generic issues program

    International Nuclear Information System (INIS)

    Kauffman, J.V.; Foster, J.W.

    2008-01-01

    The United States Nuclear Regulatory Commission (NRC) has a Generic Issues Program (GIP) to address Generic Issues (GI). A GI is defined as 'a regulatory matter involving the design, construction, operation, or decommissioning of several, or a class of, NRC licensees or certificate holders that is not sufficiently addressed by existing rules, guidance, or programs'. This rather legalistic definition has several practical corollaries: First, a GI must involve safety. Second, the issue must involve at least two plants, or it would be a plant-specific issue rather than a GI. Third, the potential safety question must not be covered by existing regulations and guidance (compliance). Thus, the effect of a GI is to potentially change the body of regulations and associated guidance (e.g., regulatory guides). The GIP was started in 1976, thus it is a relatively mature program. Approximately 850 issues have been processed by the program to date. More importantly, even after 30 years, new GIs continue to be proposed. The entire set of Generic Issues (GIs) is updated annually in NUREG-0933, 'A Prioritization of Generic Safety Issues'. GIs normally involve complex questions of safety and regulation. Efficient and effective means of addressing these issues are very important for regulatory effectiveness. If an issue proves to pose a genuine, significant safety question, then swift, effective, enforceable, and cost-effective action needs to be taken. Conversely, if an issue is of little safety significance, the issue should be dismissed in an expeditious manner, avoiding unnecessary expenditure of resources and regulatory burden or uncertainty. This paper provides a summary of the 5-stage program, from identification through the regulatory assessment stage. The paper also includes a discussion of the program's seven criteria, sources of proposed GIs, recent improvements, publicly available information, historical performance, and status of current GIs. (authors)

  9. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  10. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  11. Coherent structures in tokamak plasmas workshop: Proceedings

    International Nuclear Information System (INIS)

    Koniges, A.E.; Craddock, G.G.

    1992-08-01

    Coherent structures have the potential to impact a variety of theoretical and experimental aspects of tokamak plasma confinement. This includes the basic processes controlling plasma transport, propagation and efficiency of external mechanisms such as wave heating and the accuracy of plasma diagnostics. While the role of coherent structures in fluid dynamics is better understood, this is a new topic for consideration by plasma physicists. This informal workshop arose out of the need to identify the magnitude of structures in tokamaks and in doing so, to bring together for the first time the surprisingly large number of plasma researchers currently involved in work relating to coherent structures. The primary purpose of the workshop, in addition to the dissemination of information, was to develop formal and informal collaborations, set the stage for future formation of a coherent structures working group or focus area under the heading of the Tokamak Transport Task Force, and to evaluate the need for future workshops on coherent structures. The workshop was concentrated in four basic areas with a keynote talk in each area as well as 10 additional presentations. The issues of discussion in each of these areas was as follows: Theory - Develop a definition of structures and coherent as it applies to plasmas. Experiment - Review current experiments looking for structures in tokamaks, discuss experimental procedures for finding structures, discuss new experiments and techniques. Fluids - Determine how best to utilize the resource of information available from the fluids community both on the theoretical and experimental issues pertaining to coherent structures in plasmas. Computation - Discuss computational aspects of studying coherent structures in plasmas as they relate to both experimental detection and theoretical modeling

  12. Shielding and maintainability in an experimental tokamak

    International Nuclear Information System (INIS)

    Abdou, M.A.; Fuller, G.; Hager, E.R.; Vogelsang, W.F.

    1979-01-01

    This paper presents the results of an attempt to develop an understanding of the various factors involved. This work was performed as a part of the task assigned to one of the expert groups on the International Tokamak Reactor (INTOR). However, the results of this investigation are believed to be generally applicable to the broad class of the next generation of experimental tokamak facilities such as ETF. The shielding penalties for requiring personnel access are quantified. This is followed by a quantitative estimate of the benefits associated with personnel access. The penalties are compared to the benefits and conclusions and recommendations are developed on resolving the issue

  13. Liquid nitrogen cooling considerations of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-01-01

    An analytical procedure was developed to estimate the cooldown time between pulses of the Compact Ignition Tokamak (CIT) utilizing liquid nitrogen. Fairly good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. The cooldown time between pulses in the CIT is controlled by the energy disposition in the inner leg of the TF coil. A cooldown time of less than one hour is feasible for the CIT if fins are used in the cooling channels. An R and D experimental program is proposed to determine the actual cooldown time between pulses since this would be considered an issue in the conceptual design of the CIT

  14. Dust limit management strategy in tokamaks

    Science.gov (United States)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S. H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-06-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R&D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  15. Dust limit management strategy in tokamaks

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S.H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-01-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R and D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  16. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  17. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  18. Overview of the TCV tokamak program: scientific progress and facility upgrades

    Science.gov (United States)

    Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.; Bin, W.; Blanchard, P.; Blanken, T. C.; Boedo, J. A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F. H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I. T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B. P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J. P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.-Ph.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D. L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H. B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I. G.; Molina Cabrera, P. A.; Moret, J.-M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A. H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M. Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vijvers, W. A. J.; Vlahos, L.; Vu, N. M. T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.; the EUROfusion MST1 Team

    2017-10-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from

  19. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  20. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  1. Simulation of tokamak runaway-electron events

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.; Miyake, M.; Yamamoto, T.

    1987-08-01

    High energy runaway-electron events which can occur in tokamaks when the plasma hits the first wall are a critical issue for the materials selection of future devices. Runaway-electron events are simulated with an electron linear accelerator to better understand the observed runaway-electron damage to tokamak first wall materials and to consider the runaway-electron issue in further materials development and selection. The electron linear accelerator produces beam energies of 20 to 30 MeV at an integrated power input of up to 1.3 kW. Graphite, SiC + 2 % AlN, stainless steel, molybdenum and tungsten have been tested as bulk materials. To test the reliability of actively cooled systems under runaway-electron impact layer systems of graphite fixed to metal substrates have been tested. The irradiation resulted in damage to the metal compounds but left graphite and SiC + 2 % AlN without damage. Metal substrates of graphite - metal systems for actively cooled structures suffer severe damage unless thick graphite shielding is provided. (author)

  2. Data processing system for spectroscopy at Novillo Tokamak; Sistema de procesamiento de datos para espectroscopia en el Tokamak Novillo

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, G.; Gaytan G, E. [Instituto Tecnologico de Toluca, Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Taking as basis some proposed methodologies by software engineering it was designed and developed a data processing system coming from the diagnostic equipment by spectroscopy, for the study of plasma impurities, during the cleaning discharges. the data acquisition is realized through an electronic interface which communicates the computer with the spectroscopy system of Novillo Tokamak. The data were obtained starting from files type text and processed for their subsequently graphic presentation. For development of this system named PRODATN (Processing of Data for Spectroscopy in Novillo Tokamak) was used the LabVIEW graphic programming language. (Author)

  3. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  4. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  5. A discussion on practicable scheme for machine control system of HL-2A tokamak

    International Nuclear Information System (INIS)

    Li Qiang; Song Xianming; Jiang Chao

    2001-01-01

    This is the modified version of The Preliminary Design on the Hardware and Nets of HL-2A Tokamak. In this version, centralized control as well as the field bus communication on HL-2A Tokamak is used. The hardware components and the operational theory are introduced. The questions of practice program, extensibility, centralized control, cooperation with other subsystems and the continuous adaptation of present device are all discussed. The budget of the system is detailed. To keep the step with the overall engineering constructions of HL-2A, suggestions of the time program are presented for the system design, instrument purchases, installation, construction, user program development and the final operation processes for the machine control system of HL-2A Tokamak

  6. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  7. Program of thermonuclear reactor structure materials study at Kazakhstan tokamak KTM

    International Nuclear Information System (INIS)

    Shkolnik, V.S.; Velikhov, E.P.; Cherepnin, Yu. S.; Tikhomirov, L. N.; Tazhibaeva, I.L.; Shestacov, V.P.; Azizov, E.A.; Gostev, A.A.; Buzhinskij, O.A.

    2000-01-01

    Physical and technical capacities of KTM tokamak are basis of the project. These properties will help to perform a wide spectrum of research on the first wall materials, limiter materials, as well as on materials of divertor plates and mockups of divertor receivers including porous ones with liquid metal cooling within the range of flux loads from 0.1 to 20 MW/m 2 . In research program for the first wall materials the basic attention will be drawn to erosion resistance, recycling, permeability, heat resistance, spraying, possibility of conditioning and recovering their first wall protective properties, material influence on physical processes in hot plasma thread. In the course of limiter material studying basic efforts will be focused on these materials influence on plasma effective charge Z e ff and operation capacity of limiters in a wide spectrum of flux loads

  8. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  9. Variational formalism for kinetic-MHD instabilities in tokamaks

    International Nuclear Information System (INIS)

    Edery, D.; Garbet, X.; Roubin, J.P.; Samain, A.

    1991-07-01

    A variational formalism that includes in a consistent way the tokamak plasma fluid response to an electromagnetic field as well as the particle-field resonant interaction effects is presented. The integrability of the unperturbed motion of the particles is used to establish a general functional similar to the classical Lagrangian for the electromagnetic field, which is extremum with respect to the field potentials. This functional is the sum of fluid terms closely related to the classical MHD energy and of resonant terms describing the kinetic effects. The formalism is used to study a critical issue in tokamak confinement, namely the sawteeth stabilization by energetic particles

  10. Heat load material studies: Simulated tokamak disruptions

    International Nuclear Information System (INIS)

    Gahl, J.M.; McDonald, J.M.; Zakharov, A.; Tserevitinov, S.; Barabash, V.; Guseva, M.

    1991-01-01

    It is clear that an improved understanding of the effects of tokamak disruptions on plasma facing component materials is needed for the ITER program. very large energy fluxes are predicted to be deposited in ITER and could be very damaging to the machine. During 1991, Sandia National Laboratories and the University of New Mexico conducted cooperative tokamak disruption simulation experiments at several Soviet facilities. These facilities were located at the Efremov Institute in Leningrad, the Kurchatov Atomic Energy Institute (Troisk and Moscow) and the Institute for Physical Chemistry of the Soviet Adademy of Sciences in Moscow. Erosion of graphite from plasma stream impact is seen to be much less than that observed with laser or electron beams with similar energy fluxes. This, along with other data obtained, seem to suggest that the ''vapor shielding'' effect is a very important phenomenon in the study of graphite erosion during tokamak disruption

  11. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  12. Experimental and theoretical basis for advanced tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.

    1994-09-01

    In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments

  13. A flexible software architecture for tokamak discharge control systems

    International Nuclear Information System (INIS)

    Ferron, J.R.; Penaflor, B.; Walker, M.L.; Moller, J.; Butner, D.

    1995-01-01

    The software structure of the plasma control system in use on the DIII-D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII-D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based tokamak simulators

  14. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  15. First physics results from the MAST Mega-Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Sykes, A.; Ahn, J.-W.; Akers, R.; Arends, E.; Carolan, P.G.; Counsell, G.F.; Fielding, S. J.; Gryaznevich, M.; Martin, R.; Price, M.; Roach, C.; Shevchenko, V.; Tournianski, M.; Valovic, M.; Walsh, M.J.; Wilson, H.R.

    2001-01-01

    First physics results are presented from MAST (Mega-Amp Spherical Tokamak), one of the new generation of purpose built spherical tokamaks (STs) now commencing operation. Some of these results demonstrate, for the first time, the novel effects of low aspect ratio, for example, the enhancement of resistivity due to neo-classical effects. H-mode is achieved and the transition to H-mode is accompanied by a tenfold steepening of the edge density gradient which may enable the successful application of electron Bernstein wave heating in STs. Studies of halo currents show that these less than expected from conventional tokamak results, and measurements of divertor power loading confirm that most of the power flows to the outer strike points, easing the power handling on the inner points (a critical issue for STs)

  16. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  17. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  18. Data processing system for spectroscopy at Novillo Tokamak

    International Nuclear Information System (INIS)

    Ortega C, G.; Gaytan G, E.

    1998-01-01

    Taking as basis some proposed methodologies by software engineering it was designed and developed a data processing system coming from the diagnostic equipment by spectroscopy, for the study of plasma impurities, during the cleaning discharges. the data acquisition is realized through an electronic interface which communicates the computer with the spectroscopy system of Novillo Tokamak. The data were obtained starting from files type text and processed for their subsequently graphic presentation. For development of this system named PRODATN (Processing of Data for Spectroscopy in Novillo Tokamak) was used the LabVIEW graphic programming language. (Author)

  19. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  20. Fusion-product ash buildup in tokamak with radial electric field

    International Nuclear Information System (INIS)

    Downum, W.B.; Choi, C.K.; Miley, G.H.

    1979-01-01

    The buildup of thermalized fusion products (ash) in a tokamak can seriously limit burn times. Prior studies have concentrated on deposition profile effects on alpha particle transport in tokamaks but have not considered the effect on ash of radial electric fields (either created internally, e.g. due to high-energy alpha leakage, or generated externally). The present study focuses on this issue since it appears that electric fields might offer one approach to control of the ash. Approximate field and source profiles are used, based on prior calculations

  1. The design of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.; Kim, J.; Hwang, S.M.

    1999-01-01

    The Korea superconducting tokamak advanced research (KSTAR) project is the major effort of the Korean national fusion program (KNFP) to develop a steady-state-capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. Major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 Tesla, and plasma current 2 MA with a strongly shaped plasma cross-section and double-null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beam, ion cyclotron waves, lower hybrid waves, and electron-cyclotron waves for flexible profile control. A comprehensive set of diagnostics is planned for plasma control and performance evaluation and physics understanding. The project has completed its conceptual design phase and moved to the engineering design phase. The target date of the first plasma is set for year 2002. (orig.)

  2. Library system for a one dimensional tokamak transport code: (LIBJT60), 1

    International Nuclear Information System (INIS)

    Hirayama, Toshio

    1982-12-01

    A library system is developed to control and manage huge programs in terms of FORTRAN source. It is applied to widely used one dimensional tokamak transport codes (LIBJT60), which have been developed in the Division of Large Tokamak Development. The structure of data and program in the transport code turn out to be flexible enough to respond to various demands and this gigantic code frame work can be decomposed into groups of a compact code with a specific function. Some editing support tools for programming and debugging are also developed to save programming work. By applying this library system, users can obtain a code whose functions can be efficiently developed. (author)

  3. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  4. Conceptual design of Remote Control System for EAST tokamak

    International Nuclear Information System (INIS)

    Sun, X.Y.; Wang, F.; Wang, Y.; Li, S.

    2014-01-01

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication

  5. Conceptual design of Remote Control System for EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.Y., E-mail: xysun@ipp.ac.cn; Wang, F.; Wang, Y.; Li, S.

    2014-05-15

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication.

  6. Tritium Experience in Large Tokamaks: Application to ITER

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.; Hosea, J.; Mueller, D; Gentile, C.; Federici, G.; Haanges, R.

    1998-05-01

    Recent experience with the use of tritium fuel in the Tokamak Fusion Test Reactor and the Joint European Torus, together with progress in developing the technical design of the International Thermonuclear Experimental Reactor has expanded the technical knowledge base for tritium issues in fusion. This paper reports on an IEA workshop that brought together scientists and engineers to share experience and expertise on all fusion-related tritium issues. Extensive discussion periods were devoted to exploring outstanding issues and identifying potential R ampersand D avenues to address them. This paper summarizes the presentations, discussions, and recommendations

  7. Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Wanderley Pires de

    1996-12-31

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.

  8. A generic data structure for integrated modelling of tokamak physics and subsystems

    International Nuclear Information System (INIS)

    Imbeaux, F.; Huysmans, G.T.A.; Airaj, M.; Guillerminet, B.; Ottaviani, M.; Peysson, Y.; Signoret, J.; Basiuk, V.; Lister, J.B.; Sauter, O.; Zwingmann, W.; Eriksson, L.G.; Appel, L.; Coster, D.; Konz, C.; Pereverzev, G.; Kalupin, D.; Manduchi, G.; Strand, P.

    2010-01-01

    The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and work-flow organisation, which are described for the first time in this paper The backbone of the system is a physics- and work-flow-oriented data structure which allows for the deployment of a fully modular and flexible work-flow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues. (authors)

  9. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  10. Finite element and node point generation computer programs used for the design of toroidal field coils in tokamak fusion devices

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-06-01

    The structural analysis of toroidal field coils in Tokamak fusion machines can be performed with the finite element method. This technique has been employed for design evaluations of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The application of the finite element method can be simplified with computer programs that are used to generate the input data for the finite element code. There are three areas of data input where significant automation can be provided by supplementary computer codes. These concern the definition of geometry by a node point mesh, the definition of the finite elements from the geometric node points, and the definition of the node point force/displacement boundary conditions. The node point forces in a model of a toroidal field coil are computed from the vector cross product of the coil current and the magnetic field. The computer programs named PDXNODE and ELEMENT are described. The program PDXNODE generates the geometric node points of a finite element model for a toroidal field coil. The program ELEMENT defines the finite elements of the model from the node points and from material property considerations. The program descriptions include input requirements, the output, the program logic, the methods of generating complex geometries with multiple runs, computational time and computer compatibility. The output format of PDXNODE and ELEMENT make them compatible with PDXFORC and two general purpose finite element computer codes: (ANSYS) the Engineering Analysis System written by the Swanson Analysis Systems, Inc., and (WECAN) the Westinghouse Electric Computer Analysis general purpose finite element program. The Fortran listings of PDXNODE and ELEMENT are provided

  11. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  12. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  13. EDITORIAL: Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010) Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010)

    Science.gov (United States)

    Thomas, Paul

    2011-09-01

    -U tokamak in China. Other MCF Overview of results from the Large Helical Device; Overview of TJ-II experiments; Overview of the RFX fusion science program. ICF Progress toward ignition on the National Ignition Facility; Studying ignition schemes on European laser facilities; Cross device or cross programme topical overviews Effects of 3D magnetic perturbations on toroidal plasmas; Toroidal momentum transport. We trust that, as usual, this issue will be a useful resource for the community and we thank all of the authors and referees for their hard work in preparing the papers for publication. Whilst the number of overview reports is the same as for the Geneva FEC special issue (2009 Nucl. Fusion 49 100201), we are pleased to note that we have a complete set of summaries in this issue.

  14. Open Issues in Object-Oriented Programming

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    1995-01-01

    We discuss a number of open issues within object-oriented programming. The central mechanisms of object-oriented programming appeared with Simula, developed more than 30 years ago; these include class, subclass, virtual function, active object and the first application framework, Class Simulation....... The core parts of object-oriented programming should be well understood, but there are still a large number of issues where there is no consensus. The term object-orientation has been applied to many subjects, such as analysis, design implementation, data modeling in databases, and distribution...

  15. Radiation transport effects in divertor plasmas generated during a tokamak reactor disruption

    International Nuclear Information System (INIS)

    Peterson, R.R.; MacFarlane, J.J.; Wang, P.

    1994-01-01

    Vaporization of material from tokamak divertors during disruptions is a critical issue for tokamak reactors from ITER to commercial power plants. Radiation transport from the vaporized material onto the remaining divertor surface plays an important role in the total mass loss to the divertor. Radiation transport in such a vapor is very difficult to calculate in full detail, and this paper quantifies the sensitivity of the divertor mass loss to uncertainties in the radiation transport. Specifically, the paper presents the results of computer simulations of the vaporization of a graphite coated divertor during a tokamak disruption with ITER CDA parameters. The results show that a factor of 100 change in the radiation conductivity changes the mass loss by more than a factor of two

  16. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  17. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  18. Control of plasma poloidal shape and position in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walker, M.L.; Humphreys, D.A.; Ferron, J.R.

    1997-11-01

    Historically, tokamak control design has been a combination of theory driving an initial control design and empirical tuning of controllers to achieve satisfactory performance. This approach was in line with the focus of past experiments on simply obtaining sufficient control to study many of the basic physics issues of plasma behavior. However, in recent years existing experimental devices have required increasingly accurate control. New tokamaks such as ITER or the eventual fusion power plant must achieve and confine burning fusion plasmas, placing unprecedented demands on regulation of plasma shape and position, heat flux, and burn characteristics. Control designs for such tokamaks must also function well during initial device operation with minimal empirical optimization required. All of these design requirements imply a heavy reliance on plasma modeling and simulation. Thus, plasma control design has begun to use increasingly modern and sophisticated control design methods. This paper describes some of the history of plasma control for the DIII-D tokamak as well as the recent effort to implement modern controllers. This effort improves the control so that one may obtain better physics experiments and simultaneously develop the technology for designing controllers for next-generation tokamaks

  19. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  20. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  1. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  2. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  3. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  4. Present status of VDEs (Vertical Displacement Events) avoidance studies in tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu

    2001-01-01

    Present knowledge on the consequences of tokamak disruption and disruption-related effects are reviewed from a viewpoint of disruption mitigation and/or avoidance. The Vertical Displacement Events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are described in detail with an emphasis on the close relationships between the generation of halo currents and runaway electrons. The newly found 'neutral point', at which VDEs hardly occur, is also addressed. Finally, VDE-related issues remaining to be addressed in future works are discussed. (author)

  5. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  6. Tokamak poloidal-field systems. Progress report, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-03-01

    Work on the superconducting tokamak poloidal field system (TPFS) program is being redirected. The development of the 20 MJ, 50 kA, 7.5 T superconducting programmed energy storage coil is being terminated. The superconductor for the 20 MJ coil is being processed only to an intermediate state, and manufacture of the epoxy fiberglass dewar is being stopped. Further, development of the TPFS test facility is in abeyance. Change in program emphasis arises from prospective rf plasma current driven or beam heated tokamaks with programmed coil characteristics for the poloidal field being different from those to have been simulated by the 20 MJ coil and from budgetary constraints. Work is reported on the development of the coil, conductor, nonconducting dewar, and test facility to the recent time when the program change was instigated. Work in support of the Large Coil Test Facility (LCTF) and the Fusion Engineering Design (FED) Center is given. Analysis of the experiments on the 400 kJ METS coil test was completed

  7. Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

    International Nuclear Information System (INIS)

    Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Jun-ichi; Ishige, Youichi; Suzuki, Hiroaki; Komuro, Kenichi; Sakasai, Akira; Ikeda, Yoshitaka

    2014-03-01

    The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the welded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device. (author)

  8. [Fusion research/tokamak]. Final report, 1 May 1988 - 30 April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves

  9. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  10. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  11. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  12. Experimental results from the TUMAN 3 tokamak

    International Nuclear Information System (INIS)

    Golant, V.E.; Andrejko, M.V.; Askinazi, L.G.; Korneev, V.A.; Krikunov, S.V.; Lipin, B.M.; Lebedev, S.V.; Levin, L.S.; Podushnikova, K.A.; Razdobarin, G.T.; Rozhansky, V.A.; Rozhdestvensky, V.V.; Tendler, M.; Tukachinsky, A.S.; Jaroshevich, S.P.

    1995-01-01

    The open-quote open-quote TUMAN-3 close-quote close-quote Tokamak programme concentrates on issues of improved confinement. In 1989 the transition from an ordinary Ohmic regime into an improved confinement mode was achieved. The signatures of the H-mode in auxiliary heated tokamaks have been observed in this regime. The crucial role of the boundary radial electric field was found in the experiments with internal bias probe. Other techniques were demonstrated to disturb the boundary plasma which led to H-mode triggering: short increase of working gas puffing, minor radius magnetic compression and pellet injection. The role scaling of the energy confinement time in the Ohmic H-mode was obtained, which differs dramatically from the scaling for the ordinary Ohmic regime. There were found a strong dependence of τ E on plasma current and a weak dependence on density. The maximum value of τ E was 10 times longer than in the ordinary Ohmic region. The τ E scaling for the Ohmic H-mode is consistent with the scaling proposed for devices with powerful auxiliary heating. The results shows that H-mode physics is universal in tokamaks with different geometries and heating methods. (AIP) copyright 1995 American Institute of Physics

  13. Update of ZTH physics and design issues and physics goals of ZTH and role in the Fusion Program

    International Nuclear Information System (INIS)

    DiMarco, J.N.

    1990-01-01

    The ZTH construction program is scheduled for completion in December of 1992. Some design features are still amenable to changes directed by new physics or computational information. Numerical results for the ZTH tapered poloidal field gap show that a relatively simple linear taper results in substantial reduction in field error. This design is simpler to manufacture compared with the compound curve predicted by analytical calculations. Also, ongoing analysis of ZT-40M data indicates that the fluctuation levels of magnetic fields and x-rays at high θ (1.7), can be reduced to the fluctuation levels at ''standard'' operational θ (1.4) by changing the winding configuration of the toroidal field (TF) coils. The effect is thought to depend on the shell-like action of the TF coils when they consist of many turns in parallel. Magnetic-field effects, such as field errors, at the unshielded toroidal-field butt-joint gap in the shell can be reduced by this effective external shell. Design implications for installing a second low-current TF coil on ZTH are presented. ZTH has the capability of operating at 4 MA with the addition of power supplies. The projected parameters of ZTH are discussed in the context of various conceptual design. The sensitivity of the conceptual design to the physics results from machines like RFX and ZTH is reviewed. It is shown that the 4 MA ZTH physics results will make a significant advance for the RFP program toward the programmatic RFP fusion goals. Finally, the influence of RFP and tokamak physics on the conceptual design of high mass-power-density (MPD) fusion reactors is investigated through the TITAN and ARIES studies. The confinement characteristics required of these conceptual designs are compared; physics issues are identified that are required to bring the MPD and fusion-power-core of the tokamak designs into coincidence with the RFP designs

  14. Development of a visualized software for tokamak experiment data processing

    International Nuclear Information System (INIS)

    Cao Jianyong; Ding Xuantong; Luo Cuiwen

    2004-01-01

    With the VBA programming in Microsoft Excel, the authors have developed a post-processing software of experimental data in tokamak. The standard formal data in the HL-1M and HL-2A tokamaks can be read, displayed in Excel, and transmitted directly into the MATLAB workspace, for displaying pictures in MATLAB with the software. The authors have also developed data post-processing software in MATLAB environment, which can read standard format data, display picture, supply visual graphical user interface and provide part of advanced signal processing ability

  15. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  16. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  17. High-heat tank safety issue resolution program plan

    International Nuclear Information System (INIS)

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  18. Equilibrium reconstruction in the TCA/Br tokamak

    International Nuclear Information System (INIS)

    Sa, Wanderley Pires de

    1996-01-01

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author)

  19. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  20. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  1. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  2. Facility approach to tokamak operation

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Gabbard, W.A.

    1981-01-01

    In anticipation of the appearance of more advanced tokamaks and other fusion relevant experiments, program has been established at ORNL to systemically identify the requirements of an effective machine operations group. This program is presently applied to the ISX-B experiment. With its continuing development, it is expected to provide major support in the identification of potential problem areas and to assist in the generation of the necessary procedures for forthcoming devices. The present and future generations of large plasma devices will function as facilities, operated by an operations group as service to the plasma physicists and diagnosticians. The purpose of the program discussed here is to develop and to encourage an orderly transition to the facility-like style of operation

  3. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  4. Recent developments in the role of atomic processes in future tokamaks

    International Nuclear Information System (INIS)

    Post, D.

    1996-01-01

    Since the beginning of magnetic fusion research, reducing the impurity level in experiments has been strongly correlated with successful achievement of high performance plasmas. One of the most important examples of this was the recognition that the use of tungsten as a plasma facing material and the associated high radiative losses were responsible for the poor performance of the ORMAK and PLT tokamaks. Tungsten was replaced with graphite and the central plasma temperature in PLT increased a factor of ten. The magnetic fusion program is now planning on constructing an ignited fusion experiment. One of the major design issues is the reduction of the peak heat loads on the plasma facing components. It appears that the carefully controlled introduction of impurities can lead to a solution of the problem. copyright 1996 American Institute of Physics

  5. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-β toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E x B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs

  6. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    1999-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  7. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    2001-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  8. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 ≤ Z ≤ 28) and neonlike (34 ≤ Z ≤ 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs

  9. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  10. Technology Issues of Burning Plasma Diagnostics

    International Nuclear Information System (INIS)

    Kaye, A. S.

    2008-01-01

    The ITER Tokamak will require many diagnostics both for safe and reliable operation of the machine and for understanding of the physics underlying the performance. The design of these diagnostics raises many challenging technical issues not faced on smaller machines. These arise partly from the increase demands on established diagnostics arising from the increased size, higher magnetic field, large heating power, and in particular the dramatically longer pulse duration of ITER, which make issue such as power loading on first wall components more challenging. The demands on reliability and availability of the machine in order to achieve the objectives within the agreed time schedule also place severe additional demands on the design, quality assurance and maintainability of diagnostics. ITER will produce many orders of magnitude more neutrons than previous Tokamaks and will be a licensed nuclear facility. This has important implications for the traceability, quality assurance and availability of safety critical diagnostics, and for the control of the design and procurement of all diagnostics. The high neutron flux/fluence also constrains the design of diagnostics, which must offer shielding consistent with the allowable dose rates on critical components of the Tokamak, and themselves be tolerant of the radiation level at the diagnostic. This paper presents an overview of the more critical issues for ITER diagnostics

  11. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  12. Science Court on ICRH [ion cyclotron resonance heating] modeling of tokamak plasmas

    International Nuclear Information System (INIS)

    Hively, L.M.; Sadowski, W.L.

    1987-10-01

    The Applied Plasma Physics (APP) Theory program in the Office of Fusion Energy is charged with supporting the development of advanced physics models for fusion research. One such effort is ion cyclotron resonance heating (ICRH), which has seen substantial progress recently. However, due to serious questions about the adequacy of present models for CIT (Compact Ignition Tokamak), a Science Court was formed to assess ICRH models, including: validity of theoretical and computational approximations; underlying physics assumptions and corresponding limits on the results; self-consistency; any subsidiary issues needing resolution (e.g., new computer tools); adequacy of the models in simulating experiments (especially CIT); and new or improved experiments to validate and refine the models. The Court did not review work by specific individuals, institutions, or programs, thereby avoiding any biases along these lines. Rather, the Science Court was carefully structured as a technical review of ICRH theory and modeling in the US. This paper discusses the Science Court process, findings, and conclusions

  13. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  14. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  15. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    International Nuclear Information System (INIS)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P

    2004-01-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z eff . Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values

  16. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2004-09-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z{sub eff}. Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values.

  17. Potential off-normal events and associated radiological source terms for the compact ignition tokamak: Fusion Safety Program

    International Nuclear Information System (INIS)

    Holland, D.F.; Lyon, R.E.

    1987-10-01

    The Compact Ignition Tokamak (CIT), the latest step in the United States program to develop the commercial application of fusion power, is designed as the first fusion device to achieve ignition conditions. It is to be constructed near Princeton, New Jersey on the site of the existing Tokamak Fusion Test Reactor (TFTR). To address the environmental impact and public safety concerns, a preliminary analysis was performed of potential off-normal radiological releases. Operational occurrences, natural phenomena, accidents with external origins, and accidents external to the PPPL site were considered as potential sources for off-normal events. Based on an initial screening, events were selected for preliminary analysis. Included in these events were tritium releases from the tritium delivery and recovery system, tritium releases from the torus, releases of activated nitrogen from the test cell or cryostat, seismic events, and shipping accidents. In each case, the design considerations related to the event were reviewed and the release scenarios discussed. Because of the complexity of some of the proposed safety systems, in some cases event trees were used to describe the accident scenarios. For each scenario, the probability was estimated as well as the release magnitude, isotope, chemical form, and release mode. 10 refs., 17 figs., 5 tabs

  18. Surface temperature measurement of plasma facing components in tokamaks

    International Nuclear Information System (INIS)

    Amiel, Stephane

    2014-01-01

    During this PhD, the challenges on the non-intrusive surface temperature measurements of metallic plasma facing components in tokamaks are reported. Indeed, a precise material emissivity value is needed for classical infrared methods and the environment contribution has to be known particularly for low emissivities materials. Although methods have been developed to overcome these issues, they have been implemented solely for dedicated experiments. In any case, none of these methods are suitable for surface temperature measurement in tokamaks.The active pyrometry introduced in this study allows surface temperature measurements independently of reflected flux and emissivities using pulsed and modulated photothermal effect. This method has been validated in laboratory on metallic materials with reflected fluxes for pulsed and modulated modes. This experimental validation is coupled with a surface temperature variation induced by photothermal effect and temporal signal evolvement modelling in order to optimize both the heating source characteristics and the data acquisition and treatment. The experimental results have been used to determine the application range in temperature and detection wavelengths. In this context, the design of an active pyrometry system on tokamak has been completed, based on a bicolor camera for a thermography application in metallic (or low emissivity) environment.The active pyrometry method introduced in this study is a complementary technique of classical infrared methods used for thermography in tokamak environment which allows performing local and 2D surface temperature measurements independently of reflected fluxes and emissivities. (author) [fr

  19. Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD

    International Nuclear Information System (INIS)

    Fukumoto, N.; Hanada, K.; Kawakami, S.

    2008-10-01

    In previous Compact Toroid (CT) injection experiments on several tokamaks, although CT fuelling had been successfully demonstrated, the CT fuelling process has been not clear yet. We have thus conducted CT injection into simple toroidal or vertical vacuum magnetic fields to investigate quantitatively dynamics of CT plasmoid in the penetration process on a spherical tokamak (ST) device. Understanding the process allows us to address appropriately one of the critical issues for practical application of CT injection on reactor-grade tokamaks. In the experiment, the CT shift amount of about 0.26 m in a vertical magnetic field has been observed by using a fast camera. In addition to toroidal magnetic field, vertical one appears to affect CT trajectory in not conventional tokamak but ST devices operated at rather low toroidal fields. We have also observed CT attacks on the target plate with an IR camera. The IR image has indicated that CT shifts 39 mm at the toroidal field of 261 G. From the calorimetric measurement, an input energy due to CT impact in vacuum without magnetic fields is also estimated to be 530 J, which agrees with the initial CT kinetic energy. (author)

  20. Overview of the TCV tokamak program: scientific progress and facility upgrades.

    Czech Academy of Sciences Publication Activity Database

    Coda, S.; Ficker, Ondřej; Horáček, Jan; Papřok, Richard

    2017-01-01

    Roč. 57, October (2017), č. článku 102011. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : TCV * tokamak * overview Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  1. D-D tokamak reactor assessment

    International Nuclear Information System (INIS)

    Baxter, D.C.; Dabiri, A.E.

    1983-01-01

    A quantitative comparison of the physics and technology requirements, and the cost and safety performance of a d-d tokamak relative to a d-t tokamak has been performed. The first wall/blanket and energy recovery cycle for the d-d tokamak is simpler, and has a higher efficiency than the d-t tokamak. In most other technology areas (such as magnets, RF, vacuum, etc.) d-d requirements are more severe and the systems are more complex, expensive and may involve higher technical risk than d-t tokamak systems. Tritium technology for processing the plasma exhaust, and tritium refueling technology are required for d-d reactors, but no tritium containment around the blanket or heat transport system is needed. Cost studies show that for high plasma beta and high magnetic field the cost of electricity from d-d and d-t tokamaks is comparable. Safety analysis shows less radioactivity in a d-d reactor but larger amounts of stored energy and thus higher potential for energy release. Consequences of all postulated d-d accidents are significantly smaller than those from d-t reactor tritium releases

  2. Shielding and maintainability in an experimental tokamak

    International Nuclear Information System (INIS)

    Abdou, M.A.; Fuller, G.; Hager, E.R.; Vogelsang, W.F.

    1979-01-01

    This paper presents the results of an attempt to develop an understanding of the various factors involved. This work was performed as a part of the task assigned to one of the expert groups on the International Tokamak Reactor (INTOR). The shielding penalties for requiring personnel access are quantified. This is followed by a quantitative estimate of the benefits associated with personnel access. The penalties to the benefits and conclusions and recommendations on resolving the issue are discussed

  3. International service learning programs: ethical issues and recommendations.

    Science.gov (United States)

    Reisch, Rebecca A

    2011-08-01

    Inequities in global health are increasingly of interest to health care providers in developed countries. In response, many academic healthcare programs have begun to offer international service learning programs. Participants in these programs are motivated by ethical principles, but this type of work presents significant ethical challenges, and no formalized ethical guidelines for these activities exist. In this paper the ethical issues presented by international service learning programs are described and recommendations are made for how academic healthcare programs can carry out international service learning programs in a way that minimizes ethical conflicts and maximizes benefits for all stakeholders. Issues related to project sustainability and community involvement are emphasized. © 2011 Blackwell Publishing Ltd.

  4. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z. Y.; Jin, W.; Huang, D. W.; Ding, Y. H.; Li, J. C.; Zhang, X. Q.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-01-01

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase

  5. Intelligence Community Programs, Management, and Enduring Issues

    Science.gov (United States)

    2016-11-08

    books, journal papers, conference presentations, working papers, and other electronic and print publications. Intelligence Community Programs... Intelligence Community Programs, Management, and Enduring Issues Anne Daugherty Miles Analyst in Intelligence and National Security Policy...

  6. Development of high thermal flux components for continuous operation in Tokamaks

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Coston, J.F.; Deschamps, P.; Lipa, M.

    1991-01-01

    High heat flux plasma facing components are under development and appropriate experimental evaluations have been carried out in order to operate during cycles of several hundred seconds. In Tore Supra, a large tokamak with a plasma nominal duration in excess of 30 seconds, solutions are tested that could be later applied to the NET/ITER tokamak, where peaked heat flux values of 15 MW/m 2 on the divertor plates are foreseen. The proposed concept is a swirl square tube design protected with brazed CFC flat tiles. Development programs and validation tests are presented. The tests results are compared with calculations

  7. Control, pressure perturbations, displacements, and disruptions in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hofmann, F.; Tonetti, G.; Jardin, S.C.; Noll, P.

    1989-06-01

    The control and evolution of highly elongated tokamak plasmas with large growth rates are simulated with the axisymmetric, resistive MHD code TSC in the geometry of the TCV tokamak. Pressure perturbations such as sawteeth and externally programmed displacements create initial velocity perturbations which may be stabilized by low power, rapid response coils inside the passively stabilizing vacuum vessel, together with slower shaping coils outside the vessel. Vertical disruption induced voltages and forces on the rapid coils and vessel are investigated, and a model is proposed for an additional vertical force due to poloidal currents. (author) 6 figs., 1 tab., 26 refs

  8. Progress of the ECH·ECCD experiments. Research progress of the ECH·ECCD experiments in tokamaks and spherical tokamaks

    International Nuclear Information System (INIS)

    Isayama, Akihiko; Tanaka, Hitoshi

    2009-01-01

    Recent progress in the ECH·ECCD study in tokamak and spherical tokamak devices is described. As for the tokamak study, results on the control of neoclassical tearing modes and sawtooth oscillations, the current profile, the internal transport barrier, the plasma start-up and the discharge cleaning are given. As for the spherical tokamak study, the plasma start-up by ECH·ECCD and the electron-Bernstein-wave heating and the current drive are described. (T.I.)

  9. Impact of major design parameters on the economics of Tokamak power plants

    International Nuclear Information System (INIS)

    Abdou, M.A.; Ehst, D.; Maroni, V.; Stacey, W.M. Jr.

    1977-11-01

    A parametric systems studies program is now in an active stage at Argonne National Laboratory. This paper presents a summary of results from this systems analysis effort. The impact of major design parameters on the economics of tokamak power plants is examined. The major parameters considered are: (1) the plant power rating; (2) toroidal-field strength; (3) plasma β/sub t/; (4) aspect ratio; (5) plasma elongation; (6) inner blanket/shield thickness; and (7) neutron wall load. The performance characteristics and economics of tokamak power plants are also compared for two structural materials

  10. Preliminary Design of Alborz Tokamak

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.; Saramad, S.

    2012-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. The most important part of the tokamak design is the design of TF coils. In this paper a refined design of the TF coil system for the Alborz tokamak is presented. This design is based on cooper cable conductor with 5 cm width and 6 mm thickness. The TF coil system is consist of 16 rectangular shape coils, that makes the magnetic field of 0.7 T at the plasma center. The stored energy in total is 160 kJ, and the power supply used in this system is a capacitor bank with capacity of C = 1.32 mF and V max = 14 kV.

  11. Resistive MHD studies of high-β-tokamak plasmas

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.

    1981-01-01

    Numerical calculations have been performed to study the MHD activity in high-β tokamaks such as ISX-B. These initial value calculations built on earlier low β techniques, but the β effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low β to predominantly pressure driven modes at high β is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment

  12. Results from deuterium-tritium tokamak confinement experiments

    International Nuclear Information System (INIS)

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues

  13. Moving Divertor Plates in a Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Zhang, H.

    2009-01-01

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions

  14. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  15. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    International Nuclear Information System (INIS)

    Maurer, D A; Bialek, J; Byrne, P J; De Bono, B; Levesque, J P; Li, B Q; Mauel, M E; Navratil, G A; Pedersen, T S; Rath, N; Shiraki, D

    2011-01-01

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15 0 , spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  16. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  17. Effect of generic issues program on improving safety

    International Nuclear Information System (INIS)

    Fard, M. R.; Kauffman, J. V.

    2010-01-01

    The U.S. Nuclear Regulatory Commission (NRC) identifies (by its assessment of plant operation) certain issues involving public health and safety, the common defense and security, or the environment that could affect multiple entities under NRC jurisdiction. The Generic Issues Program (GIP) addresses the resolution of these Generic Issues (GIs). The resolution of these issues may involve new or revised rules, new or revised guidance, or revised interpretation of rules or guidance that affect nuclear power plant licensees, nuclear material certificate holders, or holders of other regulatory approvals. U.S. NRC provides information related to the past and ongoing GIP activities to the general public by the use of three main resources, namely NUREG-0933, 'Resolution of Generic Safety Issues, ' Generic Issues Management Control System (GIMCS), and GIP public web page. GIP information resources provide information such as historical information on resolved GIs, current status of the open GIs, policy documents, program procedures, GIP annual and quarterly reports and the process to contact GIP and propose a GI This paper provides an overview of the GIP and several examples of safety improvements resulting from the resolution of GIs. In addition, the paper provides a brief discussion of a few recent GIs to illustrate how the program functions to improve safety. (authors)

  18. Summary report on tokamak confinement experiments

    International Nuclear Information System (INIS)

    1982-03-01

    There are currently five major US tokamaks being operated and one being constructed under the auspices of the Division of Toroidal Confinement Systems. The currently operating tokamaks include: Alcator C at the Massachusetts Institute of Technology, Doublet III at the General Atomic Company, the Impurity Studies Experiment (ISX-B) at the Oak Ridge National Laboratory, and the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) at the Princeton Plasma Physics Laboratory. The Tokamak Fusion Test Reactor (TFTR) is under construction at Princeton and should be completed by December 1982. There is one major tokamak being funded by the Division of Applied Plasma Physics. The Texas Experimental Tokamak (TEXT) is being operated as a user facility by the University of Texas. The TEXT facility includes a complete set of standard diagnostics and a data acquisition system available to all users

  19. Handbook of critical issues in goal programming

    CERN Document Server

    Romero, C

    1991-01-01

    Goal Programming (GP) is perhaps the oldest and most widely used approach within the Multiple Criteria Decision Making (MCDM) paradigm. GP combines the logic of optimisation in mathematical programming with the decision maker's desire to satisfy several goals. The primary purpose of this book is to identify the critical issues in GP and to demonstrate different procedures capable of avoiding or mitigating the inherent pitfalls associated with these issues. The outcome of a search of the literature shows many instances where GP models produced misleading or even erroneous results simply because

  20. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  1. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  2. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  3. Evolution of the DINA-CH tokamak full discharge simulator

    International Nuclear Information System (INIS)

    Lister, J.B.; Dokouka, V.N.; Khayrutdinov, R.R.; Lukash, V.E.; Duval, B.P.; Moret, J.-M.; Artaud, J.-F.; Baziuk, V.; Cavinato, M.

    2005-01-01

    This paper summarises the approach taken to develop an open architecture full tokamak discharge simulator - DINA-CH - based on the DINA code and implemented under graphical programming control using Matlab-SIMULINK. The evolution path and present status are presented, with applications to ITER and TCV. The future evolution combining DINA-CH with Cronos, is discussed

  4. Maintenance concept development for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs

  5. START: the creation of a spherical tokamak

    International Nuclear Information System (INIS)

    Sykes, Alan

    1992-01-01

    The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)

  6. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  7. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  8. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  9. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  10. Recent results and near-term expectations in Tokamak fusion research in the U.S., Europe, and Japan

    International Nuclear Information System (INIS)

    Meade, D.

    1993-01-01

    The development of fusion is often thought about in terms of three different activities: scientific feasibility, engineering feasibility, and economic feasibility. This paper discusses the scientific feasibility of fusion. Reactor temperatures, reactor densities and confinement, particle control, plasma power handling, and self-heating are some of the issues examined. Collaboration and results from research at the Tokamak Fusion Test Reactor (TFTR) at Princeton, the JT-60U in Japan, and JET, the Joint European Torus Tokamak in Oxford are presented

  11. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  12. Microwave Tokamak Experiment: Overview and status

    International Nuclear Information System (INIS)

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs

  13. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-01-01

    This paper is an expository introduction to advanced statistics and scaling laws and their application to tokamak devices. Topics of discussion are as follows: implicit assumptions in the standard analysis; advanced regression techniques; specialized tools in statistics and their applications in fusion physics; and improved datasets for transport studies

  14. Magnetic ''islandography'' in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Waddell, B.V.; Hicks, H.R.

    1978-09-01

    Tearing modes are shown to be responsible for most of the experimentally observed macroscopic behavior of tokamak discharges. The effects of these collective magnetic perturbations on magnetic topology and plasma transport in tokamaks are shown to provide plausible explanations for: internal disruptions (m/n = 1); Mirnov oscillations (m/n = 2,3...); and major disruptions (coupling of 2/1-3/2 modes). The nonlinear evolution of the tearing modes is followed with fully three-dimensional computer codes. The effects on plasma confinement of the magnetic islands or stochastic field lines induced by the macroscopic tearing modes are discussed and compared with experiment. Finally, microscopic magnetic perturbations are shown to provide a natural model for the microscopic anomalous transport processes in tokamaks

  15. Scrape-off layer flows in the Tore Supra tokamak

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Boucher, C.; Dionne, M.; Ďuran, Ivan; Fuchs, Vladimír; Loarer, T.; Pánek, Radomír; Saint Laurent, F.; Stöckel, Jan; Adámek, Jiří; Bucalossi, J.; Dejarnac, Renaud; Devynck, P.; Hertout, P.; Hron, Martin; Nanobashvili, I.; Rimini, F.G.; Sarkissian, A.

    2006-01-01

    Roč. 812, - (2006), s. 27-34 ISSN 0094-243X. [AIP Conference Proceedings. Opole-Turawa, 06.09.2006-09.09.2006] R&D Projects: GA ČR GP202/03/P062 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * scrape-off layer * plasma flow * radial transport * Mach probe Subject RIV: BL - Plasma and Gas Discharge Physics http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=812&Issue=1

  16. An advanced computational algorithm for systems analysis of tokamak power plants

    International Nuclear Information System (INIS)

    Dragojlovic, Zoran; Rene Raffray, A.; Najmabadi, Farrokh; Kessel, Charles; Waganer, Lester; El-Guebaly, Laila; Bromberg, Leslie

    2010-01-01

    A new computational algorithm for tokamak power plant system analysis is being developed for the ARIES project. The objective of this algorithm is to explore the most influential parameters in the physical, technological and economic trade space related to the developmental transition from experimental facilities to viable commercial power plants. This endeavor is being pursued as a new approach to tokamak systems studies, which examines an expansive, multi-dimensional trade space as opposed to traditional sensitivity analyses about a baseline design point. The new ARIES systems code consists of adaptable modules which are built from a custom-made software toolbox using object-oriented programming. The physics module captures the current tokamak physics knowledge database including modeling of the most-current proposed burning plasma experiment design (FIRE). The engineering model accurately reflects the intent and design detail of the power core elements including accurate and adjustable 3D tokamak geometry and complete modeling of all the power core and ancillary systems. Existing physics and engineering models reflect both near-term as well as advanced technology solutions that have higher performance potential. To fully assess the impact of the range of physics and engineering implementations, the plant cost accounts have been revised to reflect a more functional cost structure, supported by an updated set of costing algorithms for the direct, indirect, and financial cost accounts. All of these features have been validated against the existing ARIES-AT baseline case. The present results demonstrate visualization techniques that provide an insight into trade space assessment of attractive steady-state tokamaks for commercial use.

  17. Current drive by spheromak injection into a tokamak

    International Nuclear Information System (INIS)

    Brown, M.R.; Bellan, P.M.

    1990-01-01

    The authors report the first observation of current drive by spheromak injection into a tokamak due to the process of helicity injection. Current drive is observed in Caltech's ENCORE tokamak (30% increase, ΔI > 1 kA) only when both the tokamak and injected spheromak have the same sign of helicity (where helicity is defined as positive if current flows parallel to magnetic field lines and negative if anti-parallel). The initial increase (decrease) in current is accompanied by a sharp decrease (increase) in loop voltage and the increase in tokamak helicity is consistent with the helicity content of the injected spheromak. In addition, the injection of the spheromak raises the tokamak central density by a factor of six. The introduction of cold spheromak plasma causes sudden cooling of the tokamak discharge from 12 eV to 4 eV which results in a gradual decline in tokamak plasma current by a factor of three. In a second experiment, the authors inject spheromaks into the magnetized toroidal vacuum vessel (with no tokamak plasma). An m = 1 magnetic structure forms in the vessel after the spheromak undergoes a double tilt; once in the cylindrical entrance between gun and tokamak, then again in the tokamak vessel. A horizontal shift of the spheromak equilibrium is observed in the direction opposite that of the static toroidal field. In the absence of net toroidal flux, the structure develops a helical pitch as predicted by theory. Experiments with a number of refractory metal coatings have shown that tungsten and chrome coatings provide some improvement in spheromak parameters. They have also designed and will soon construct a larger, higher current spheromak gun with a new accelerator section for injection experiments on the Phaedrus-T tokamak

  18. A need for non-tokamak approaches to magnetic fusion energy

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1992-01-01

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested

  19. High-heat tank safety issue resolution program plan. Revision 2

    International Nuclear Information System (INIS)

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  20. The ARIES-I high-field-tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Miller, R.L.

    1989-01-01

    The multi-institutional ARIES study has examined the physics, technology, safety, and economic issues associated with the conceptual design of a tokamak magnetic-fusion reactor. The ARIES-I variant envisions a DT-fueled device based on advanced superconducting coil, blanket, and power-conversion technologies and a modest extrapolation of existing tokamak physics. A comprehensive systems and trade study has been conducted as an integral and ongoing part of the reactor assessment in order to identify an acceptable design point to be subjected to detailed analysis and integration as well as to characterize the ARIES-I operating space. Results of parametric studies leading to the identification of such a design point are presented. 15 refs., 6 figs., 2 tabs

  1. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  2. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  3. MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems

    International Nuclear Information System (INIS)

    Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.

    1986-01-01

    1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real

  4. DIII-D Advanced Tokamak Research Overview

    International Nuclear Information System (INIS)

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-01-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously β N H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues

  5. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  6. Computational studies of tokamak plasmas

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji

    1981-02-01

    Computational studies of tokamak plasmas are extensively advanced. Many computational codes have been developed by using several kinds of models, i.e., the finite element formulation of MHD equations, the time dependent multidimensional fluid model, and the particle model with the Monte-Carlo method. These codes are applied to the analyses of the equilibrium of an axisymmetric toroidal plasma (SELENE), the time evolution of the high-beta tokamak plasma (APOLLO), the low-n MHD stability (ERATO-J) and high-n ballooning mode stability (BOREAS) in the INTOR tokamak, the nonlinear MHD stability, such as the positional instability (AEOLUS-P), resistive internal mode (AEOLUS-I) etc., and the divertor functions. (author)

  7. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  8. Combined confinement system applied to tokamaks

    International Nuclear Information System (INIS)

    Ohkawa, Tihiro

    1986-01-01

    From particle orbit point of view, a tokamak is a combined confinement configuration where a closed toroidal volume is surrounded by an open confinement system like a magnetic mirror. By eliminating a cold halo plasma, the energy loss from the plasma becomes convective. The H-mode in diverted tokamaks is an example. Because of the favorable scaling of the energy confinement time with temperature, the performance of the tokamak may be significantly improved by taking advantage of this effect. (author)

  9. Laser cleaning of diagnostic mirrors from tokamak-like carbon contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Maffini, A., E-mail: alessandro.maffini@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Uccello, A. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Russo, V. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Perissinotto, S. [Center for Nano Science and Technology @ Polimi, Istituto Italiano di Tecnologia, Milan (Italy); Passoni, M. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2015-08-15

    This paper presents a laboratory-scale experimental investigation of laser cleaning of diagnostic First Mirrors (FMs). Redeposition of contaminants sputtered from tokamak first wall onto FMs surface could dramatically decrease their reflectivity in an unacceptable way for the functioning of the plasma diagnostic systems. Laser cleaning is a promising solution to tackle this issue. In this work, pulsed laser deposition was exploited to produce rhodium films functional as FMs and to deposit onto them carbon contaminants with tailored features, resembling those found in tokamaks. The same laser system was also used to perform laser cleaning experiments by means of a sample handling procedure that allows to clean some cm{sup 2} in few minutes. The cleaning effectiveness was evaluated in terms of specular reflectivity recovery and mirror surface integrity. The effect of different laser wavelengths (λ = 1064, 266 nm) on the cleaning process is also addressed.

  10. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  11. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  12. Research into controlled fusion in tokamaks

    International Nuclear Information System (INIS)

    Zacek, F.

    1992-01-01

    During the thirty years of tokamak research, physicists have been approaching step by step the reactor breakeven condition defined by the Lawson criterion. JET, the European Community tokamak is probably the first candidate among the world largest tokamaks to reach the ignition threshold and thus to demonstrate the physical feasibility of thermonuclear reaction. The record plasma parameters achieved in JET at H plasma modes due to powerful additional plasma heating and due to substantial reduction of plasma impurities, opened the door to the first experiment with a deuterium-tritium plasma. In the paper, the conditions and results of these tritium experiments are described in detail. The prospects of the world tokamak research and of the participation of Czechoslovak physicists are also discussed. (J.U.) 3 figs., 6 refs

  13. Physics issues of a proposed program, SPIRIT

    International Nuclear Information System (INIS)

    Ji, Hantao; Yamada, Masaaki

    2000-01-01

    Physics issues of the proposed program, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Induction Techniques) are discussed. The main purpose of this program is to explore the physics of global stability and sustainment of compact toroids, including FRC (field reversed configuration) as well as low-aspect-ratio RFP (reversed field pinch), spheromak and spherical torus. (author)

  14. The density limit in Tokamaks

    International Nuclear Information System (INIS)

    Alladio, F.

    1985-01-01

    A short summary of the present status of experimental observations, theoretical ideas and understanding of the density limit in tokamaks is presented. It is the result of the discussion that was held on this topic at the 4th European Tokamak Workshop in Copenhagen (December 4th to 6th, 1985). 610 refs

  15. Effectiveness of Mentoring Program Practices. Research in Action. Issue 2

    Science.gov (United States)

    DuBois, David L.

    2007-01-01

    This article focuses on mentoring program practices in relation to issues of effectiveness, while recognizing that implications for program quality conceptualized more broadly is a key concern in need of greater investigation. The author provides an overview of selected conceptual and methodological issues involved with identification of…

  16. ACHP | News | ACHP Issues Program Comment to Streamline Communication

    Science.gov (United States)

    Program Comment to Streamline Communication Facilities Construction and Modification ACHP Issues Program Comment to Streamline Communication Facilities Construction and Modification The Advisory Council on

  17. Development of Operation Scenario for Spherical Tokamak at SNU

    International Nuclear Information System (INIS)

    Sung, C. K.; Park, Y. S.; Lee, H. Y.; Kang, J.; Hwang, Y. S.

    2009-01-01

    Several concepts for nuclear fusion plant exist. In these concepts, tokamak is the most promising one to realize nuclear fusion plant. Though tokamak has leading concept, and this has world record in fusion heating power, tokamak has the critical drawback: low heating efficiency. That is the reason why we need another alternative concept which compensates tokamak's disadvantage. Spherical Torus(ST) is one of these kinds of concepts. ST is a kind of tokamak which has low aspect ratio. This feature gives ST advantages compared to conventional tokamak: high efficiency, compactness, low cost. However, ST lacks central region for solenoid that is needed to start-up and sustain. Since it is the most efficient that initializing and sustaining by using solenoid, this is ST's intrinsic limitation. To overcome this, a new device which can start-up and sustain ST plasmas by means of continuous tokamak plasma injection has been designed

  18. Development and Operational Experiences of the JT-60U Tokamak and Power Supplies

    International Nuclear Information System (INIS)

    Hosogane, N.; Ninomiya, H.; Matsukawa, M.; Ando, T.; Neyatani, Y.; Horiike, H.; Sakurai, S.; Masaki, K.; Yamamoto, M.; Kodama, K.; Sasajima, T.; Terakado, T.; Ohmori, S.; Ohmori, Y.; Okano, J.

    2002-01-01

    The design of the JT-60U tokamak, the configuration of the coil power supplies, and the operational experiences gained to date are reviewed. JT-60U is a large tokamak upgraded from the original JT-60 in order to obtain high plasma current, large plasma volume, and highly elongated divertor configurations. All components inside the toroidal magnetic field coils, such as vacuum vessel, poloidal magnetic field coils, divertor, etc., were modified. Various technologies and ideas were introduced to develop these components; for example, a multi-arc double skin wall structure for the vacuum vessel and a functional poloidal magnetic field coil system with taps for obtaining various plasma configurations. Furthermore, boron-carbide coated carbon fiber composite (CFC) tiles were used as divertor tiles to reduce erosion of carbon-base tiles. Later, a semiclosed divertor with pumps, for which cryo-panels originally used for NBI units were converted, was installed in the replacement of the open divertor. These development and operational results provide data for future tokamaks. Major failures experienced in the long operational period of JT-60U, such as water leakage from the toroidal magnetic field coil, fracture of carbon tiles, and breakdown of a filter capacitor, are described. As a maintenance issue for tokamaks using deuterium fueling gas, a method for reducing radiation exposure of in-vessel workers is described

  19. Economic considerations of commercial tokamak options

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-05-01

    Systems studies have been performed to assess commercial tokamak options. Superconducting, as well as normal, magnet coils in either first or second stability regimes have been considered. A spherical torus (ST), as well as an elongated tokamak (ET), is included in the study. The cost of electricity (COE) is selected as the figure of merit, and beta and first-wall neutron wall loads are selected to represent the physics and technology characteristics of various options. The results indicate that an economical optimum for tokamaks is predicted to require a beta of around 10%, as predicted to be achieved in the second stability regime, and a wall load of about 5 MW/m 2 , which is assumed to be optimum technologically. This tokamak is expected to be competitive with fission plants if efficient, noninductive current drive is developed. However, if this regime cannot be attained, all other tokamaks operating in the first stability regime, including spherical torus and elongated tokamak and assuming a limiting wall load of 5 MW/m 2 , will compete with one another with a COE of about 50 mill/kWh. This 40% higher than the COE for the optimum reactor in the second stability regime with fast-wave current drive. The above conclusions pertain to a 1200-MW(e) net electric power plant. A comparison was also made between ST, ET, and superconducting magnets in the second stability regime with fast-wave current drive at 600 MW(e)

  20. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  1. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    Stangeby, P.C.

    1989-06-01

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  2. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  3. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  4. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  5. Mercier criterion for high-β tokamaks

    International Nuclear Information System (INIS)

    Galvao, R.M.O.

    1984-01-01

    An expression, for the application of the Mercier criterion to numerical studies of diffuse high-β tokamaks (β approximatelly Σ,q approximatelly 1), which contains only leading order contributions in the high-β tokamak approximation is derived. (L.C.) [pt

  6. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  7. The issue resolution process in the Civilian Radioactive Waste Transportation Program

    International Nuclear Information System (INIS)

    Holm, J.A.; Denny, S.

    1987-01-01

    The Civilian Radioactive Waste Management (OCRWM) Program consists of various technical and institutional program activities which engender concern from the general public and from policymakers at federal, state, and local levels. Most familiar are the concerns centered around selection of a site for a repository; however, the transportation portion of the OCRWM program also engenders similar concerns for safety, efficiency and effectiveness. The major Transportation institutional issues were detailed in the Institutional Plan, issued in 1986, and include topics such as liability, defense waste, routing, emergency response, risk identification and mitigation, cash integrity, inspection and enforcement of high-level waste shipments and use of overweight trucks as part of the modal mix. This paper will define the process being used to identify and resolve institutional issues, show how the technical and institutional issues interface and are addressed, and briefly describe four specific activities which illustrate the process of resolving institutional issues in the Transportation program

  8. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    Casati, A.

    2009-10-01

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  9. Design considerations of modular pump limiters for large tokamaks

    International Nuclear Information System (INIS)

    Uckan, T.; Klepper, C.C.; Mioduszewski, P.K.

    1987-11-01

    Long-pulse (>10-s) and high-power (>10-MW) operation of large tokamaks requires multiple limiter modules for particle and heat removal, and the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The relationship between individual modules must also be considered from the standpoint of flux coverage and shadowing effects. This paper addresses these issues and provides design guidelines. Parameters of the individual modules are then determined from the system requirements for particle and power removal. Long-pulse operation of large tokamaks requires that the limiter modules be equipped with active cooling. At the leading edge of a module, the cooling channel determines the thickness of the limiter blade (or head). A model has been developed for estimating the system exhaust efficiency in terms of the parameters of the leading edge (i.e., its thickness and the design heat flux) in terms of given device parameters and the power load that must be removed. The impact on module design of state-of-the-art engineering technology for high heat removal is discussed. The choice of locations for the modules is also investigated, and the effects of shadowing between modules on particle and power removal are examined. The results are applied to the Tore Supra tokamak. Conceptual design parameters of the modular pump limiter system are given. 10 refs., 5 figs

  10. Summary of the 1982 small tokamak users meeting

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1982-11-01

    On November 1, 1982, the sixth in a series of approximately annual meetings of the users of small tokamaks was held in conjunction with the APS Division of Plasma Physics meeting at New Orleans. The meeting lasted three hours, with 34 people attending. The interest was on strengthening the ties between the small tokamaks and the large tokamaks. Accordingly, the latest meeting was dedicated to this theme, and in contrast to previous meetings, a few representatives from the large tokamaks were invited to attend and make presentations. Summaries of the various talks are included

  11. Magnetic confinement by Tokamak: physical aspects

    International Nuclear Information System (INIS)

    Tachon, J.

    1980-01-01

    After describing the Tokamak configuration concept, the author provides an analysis of the principal physical aspects of this type of installation and concludes by estimating that the Tokamak concept is a 'plausible candidate' as a means of producing controlled thermonuclear fusion [fr

  12. On the simulation of the tokamak longitUdinal field

    International Nuclear Information System (INIS)

    Simakov, A.S.

    1978-01-01

    The problem of imitation of tokamak longitudinal field with a limited number of coils of a toroidal solenoid is considered in connection with construction of the bench-mark facility for the tokamak superconductive magnetic system. These coils should satisfactorily imitate the fields of the absent twenty three coils in the region of the twenty fourth. Fields and forces are calculated by the Tokat program. The analysis of the variants considered showed that with refuse from limitations on the cryostat sizes with acceptable accuracy the longitudinal field by means of 7-8 coils is possible. With the given sizes of the cryostat (d=4.1 m) it is hardly possible to obtain acceptable field imitation because of great current densities in the neighbouring coils. But on the bench of four coils one can obtain data, which, probably, will be useful during the evaluation of attaining the project parameters of the toroidal solenoid

  13. Tore-Supra: a Tokamak with superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Turck, B.

    1987-07-01

    Tore Supra is a tokamak under construction on the site of Cen Cadarache by the Euratom-CEA Association. The machine technology integrates all problems related to the fabrication and the operation of large superconducting coils and of the associated cryogenic system. Tore Supra will provide a significant experience to prepare the next generation of machines for plasma physics and controlled fusion. Tore Supra is specially designed to implement a large physics program. The superconducting coils make possible the study of plasma confinement in long pulses (more than 60s), the impurities and the stability, and the efficiency of additional heating sources (neutral particle beams and radio frequency heating). The opportunity is taken to recall the particular features and requirements of the superconducting coils of the large future tokamaks in order to point out the problems that have to be faced by any new material (superconducting or not)

  14. Tokamak research in the Soviet Union

    International Nuclear Information System (INIS)

    Strelkov, V.S.

    1981-01-01

    Important milestones on the way to the tokamak fusion reactor are recapitulated. Soviet tokamak research concentrated at the I.V. Kurchatov Institute in Moscow, the A.F. Ioffe Institute in Leningrad and the Physical-Technical Institute in Sukhumi successfully provides necessary scientific and technological data for reactor design. Achievments include, the successful operation of the first tokamak with superconducting windings (T-7) and the gyrotron set for microwave plasma heating in the T-10 tokamak. The following problems have intensively been studied: Various methods of additional plasma heating, heat and particle transport, and impurity control. The efficiency of electron-cyclotron resonance heating was demonstrated. In the Joule heating regime, both the heat conduction and diffusion rates are anomalously high, but the electron heat conduction rate decreases with increasing plasma density. Progress in impurity control makes it possible to obtain a plasma with effective charge approaching unity. (J.U.)

  15. Neutral beam in ALVAND IIC tokamak

    International Nuclear Information System (INIS)

    Ghrannevisse, M.; Moradshahi, M.; Avakian, M.

    1992-01-01

    Neutral beams have a wide application in tokamak experiments. It used to heat; fuel; adjust electric potentials in plasmas and diagnose particles densities and momentum distributions. It may be used to sustain currents in tokamaks to extend the pulse length. A 5 KV; 500 mA ion source has been constructed by plasma physics group, AEOI and it used to produce plasma and study the plasma parameters. Recently this ion source has been neutralized and it adapted to a neutral beam source; and it used to heat a cylindrical DC plasma and the plasma of ALVAND IIC Tokamak which is a small research tokamak with a minor radius of 12.6 cm, and a major radius of 45.5 cm. In this paper we report the neutralization of the ion beam and the results obtained by injection of this neutral beam into plasmas. (author) 2 refs., 4 figs

  16. Summer Food Service Program. Nourishing News. Volume 3, Issue 8

    Science.gov (United States)

    Idaho State Department of Education, 2009

    2009-01-01

    The primary goal of the Summer Food Service Program (SFSP) is to provide nutritious meals to children in low-income areas when school is not in session. This issue of "Nourishing News" focuses on SFSPs. The articles contained in this issue are: (1) Is Your Summer Food Program Financially Fit? (Jean Zaske); (2) Keeping the…

  17. Heavy-Section Steel Technology program fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1989-10-01

    Large scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL. 24 refs., 18 figs

  18. Heavy-section steel technology program: Fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Large-scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low-strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring-forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL

  19. Plasma position control in TCABR Tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu. K.; Nascimento, I.C.; Fonseca, A.M.M.; Silva, R.P. da; Ruchko, L.F.; Tuszel, A.G.; Reis, A.P. dos; Sanada, E.K.

    1998-01-01

    The plasma control position in the TCABR tokamak is described. The TCA tokamak was transferred from the Centre de Recherches en Physique des Plasmas, Lausanne, to the Institute of Physics of University of Sao Paulo, renamed TCABR (α=0.18 m, R = 0.62 m, B = 1 T,I p = 100 kA). The control system was reconstructed using mainly components obtained from the TCA tokamak. A new method of plasma position determination is used in TCABR to improve its accuracy. A more detailed theoretical analysis of the feed forward and feedback control is performed as compared with. (author)

  20. Global gyrokinetic simulation of tokamak transport

    International Nuclear Information System (INIS)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T.

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or η i (η i ≡ ∂ ell nT i /∂ ell n n i ) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling

  1. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo

    2001-01-01

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  2. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  3. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  4. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs

  5. Ethical Issues in Parent Training Programs.

    Science.gov (United States)

    Sapon-Shevin, Mara

    1982-01-01

    Four areas of ethical concern are voiced in the training of parents of handicapped children: (1) selection of program goals, (2) problems involved with both positive reinforcement and punishment, (3) conflicts between experimentation and therapeutic intervention, and (4) level of parent training. Consideration of ethical issues at each step of…

  6. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  7. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  8. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  9. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  10. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  11. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described

  12. Three novel tokamak plasma regimes in TFTR

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-10-01

    Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region

  13. Physics of the Tokamak Pedestal, and Implications for Magnetic Fusion Energy

    Science.gov (United States)

    Snyder, Philip

    2017-10-01

    High performance in tokamaks is achieved via the spontaneous formation of a transport barrier in the outer few percent of the confined plasma. This narrow insulating layer, referred to as a ``pedestal,'' typically results in a >30x increase in pressure across a 0.4-5cm layer. Predicted fusion power scales with the square of the pedestal top pressure (or ``pedestal height''), hence a fusion reactor strongly benefits from a high pedestal, provided this can be attained without large Edge Localized Modes (ELMs), which may erode plasma facing materials. The overlap of drift orbit, turbulence, and equilibrium scales across this narrow layer leads to rich and complex physics, and challenges traditional analytic and computational approaches. We review studies employing gyrokinetic, neoclassical, MHD, and other methods, which have explored how a range of instabilities, influenced by complex geometry, and strong ExB flows and bootstrap current, drive transport across the pedestal and guide its structure and dynamics. Development of high resolution diagnostics, and coordinated experiments on several tokamaks, have validated understanding of important aspects of the physics, while highlighting open issues. A predictive model (EPED) has proven capable of predicting the pedestal height and width to 20-25% accuracy in large statistical studies. This model was used to predict a new, high pedestal ``Super H-Mode'' regime, which was subsequently discovered on DIII-D, and motivated experiments on Alcator C-Mod which achieved world record, reactor relevant pedestal pressure. We review open issues including improved formalism, particle and momentum transport, the role of neutrals and impurities, ELM control, and pedestal formation. Finally we discuss coupling pedestal and core predictive models to enable more comprehensive optimization of the tokamak fusion concept. Supported by the US DOE under DE-FG02-95ER54309, FC02-06ER54873, DE-FC02-04ER54698, DE-FC02-99ER54512.

  14. Interlock System for the COMPASS Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hron, M.; Adamek, J.; Pisacka, J.; Panek, R. [Institute of Plasma Physics AS CR, Association EURATOM/IPP.CR, Prague (Czech Republic); Sova, J.; Siba, J.; Kovarj, J. [Department of Control Engineering, Faculty of Electrical Engineering, Prague (Czech Republic)

    2009-07-01

    Full text of publication follows: The COMPASS tokamak (R=0.56 m, a=0.18 - 0.23 m) is starting operation presently at Institute of Plasma Physics AS CR in Prague. An important issue of the operation is the safety of the personnel and machine protection against faults, presented in this contribution. The personnel protection is based on a restricted access into the experimental hall during the operation of potentially dangerous systems. A tokamak hall access system, based on Honeywell WIN-PAK (tm) 2005, allows to set the status of the experimental area (open/closed) and to control the in and out movement of persons using access cards. On top of this, a check of the whole experimental area by the operator is enforced before the hall enclosure. A hardware interlock then interprets the experimental hall status and controls the operation of key systems accordingly. The permit for operation is granted and the real status of the systems is reported by hard wired potential less contacts. The control procedure is based on a PLC MicroPEL M66. This PLC provides HW interface between Actuators (Relays and switches) and it is connected on PESNET bus. Its programming is done using language Simple v.2 in Winstudio IDE. Second site of personnel protection system is created on PC where runs a .NET application on MSWindows XP or 2000. This PC is connected with PLC via PESNET bus (on RS485 layer) and it generates all control signals to PLC from the operator. Simultaneously, the PC receives all warning and alarm signals from the PLC. This signals are displayed on a screen of the PC in real-time, this way the GUI provides visualization of the controlled process. Except for this fact the operator is informed about the status of the system and individual subsystems on a PC via an operator's panel. Further we will describe the machine protection which uses similar system for checking conditions for the start of a shot. Fast key processes which have to be checked during the shot are

  15. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  16. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  17. Research tokamak system with multi-mode discharges using inverter power supply

    International Nuclear Information System (INIS)

    Kojima, Hiroki; Kobayashi, Masahiro; Takagi, Makoto; Takamura, Shuichi; Tashiro, Kenji

    1999-01-01

    In Current Sustaining Tokamak in Nagoya university (CSTN)-IV research tokamak system using a compact 40kHz pulse width modulation (PWM) inverter power supply, which is controlled through LabVIEW program, we construct a new tokamak discharge system with multi-mode including a stable alternating current discharge and a high-repetition high-duty one. These discharge modes can be operated continuously for as long as 60sec. The continuous discharge with long duration is able to simulate the important physical and chemical processes of long time discharges in fusion devices, in which the heat load to the wall and the particle balance in the plasma-wall system are crucial topics in order to realize a long pulse fusion reactor, like ITER. Employing ergodic divertor (ED) is one of tools to control the particle balance and the heat load to the wall. In addition, we installed another inverter power supply to generate a rotating magnetic perturbation for dynamic ergodic divertor (DED) with the appropriate measurement system so that we may carry out experiments on heat and particle control with DED at long time operation. (author)

  18. Engineering parameters for four ignition TNS tokamak reactor systems

    International Nuclear Information System (INIS)

    Varljen, T.C.; Gibson, G.; French, J.W.; Heck, F.M.

    1977-01-01

    The ORNL/Westinghouse program for The Next Step (TNS) tokamak beyond TFTR has examined a large number of potential configurations for D-T burning ignition tokamak systems. An objective of this work has been to quantify the trade-offs associated with the assumption of certain plasma physics criteria and toroidal field coil technologies. Four tokamak system point designs are described, each representative of the TF coil technologies considered, to illustrate the engineering features associated with each concept. Point designs, such as the ones discussed herein, have been used to develop component size, performance and cost scaling relationships which have been incorporated in a digital computer code to facilitate an examination of the total design and cost impact of candidate design approaches. The point designs which are described are typical, however, they have not been individually optimized. The options are distinguished by the TF coil technology chosen and include: (1) a high field water-cooled copper TF system, (2) a moderate field NbTi superconducting TF system, (3) a high field Nb 3 Sn superconducting TF system, and (4) a high field hybrid TF system with outer NbTi superconducting windings and inner water-cooled copper windings. Descriptions are provided for the major device components and all major support systems including power supplies, vacuum systems, fuel systems, heat transport and facility systems

  19. Project and analysis of the toroidal magnetic field production circuits and the plasma formation of the ETE (Spherical Tokamak Experiment) tokamak; Projeto e analise dos circuitos de producao de campo magnetico toroidal e de formacao do plasma do Tokamak ETE (Experimento Tokamak Esferico)

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Filipe F.P.W.; Bosco, Edson del

    1994-12-31

    This report presents the project and analysis of the circuit for production of the toroidal magnetic field in the Tokamak ETE (Spherical Tokamak Experiment). The ETE is a Tokamak with a small-aspect-ratio parameter to be used for studying the plasma physics for the research on thermonuclear fusion. This machine is being constructed at the Laboratorio Associado de Plasma (LAP) of the Instituto Nacional de Pesquisas Espaciais (INPE) in Sao Jose dos Campos, SP, Brazil. (author). 20 refs., 39 figs., 4 tabs.

  20. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  1. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  2. Estimation of Zeff in Novillo Tokamak

    International Nuclear Information System (INIS)

    Valencia, R.; Olayo, G.; Cruz, G.; Lopez, R.; Chavez, E.; Melendez, L.; Flores, A.; Gaytan, E.

    1996-01-01

    We estimated the Z eff in the Novillo Tokamak after having applied a HeGDC process through two different methods: anomaly factor and mass spectrometry. The first one gave a Z eff value of 2.07 for a tokamak discharge of 4350 A plasma current and 3 V of loop voltage. By mass spectrometry 30 s after the discharge had finished a Z eff of 4.19 was obtained for the same discharge. By mass spectrometry we observed that the Z eff value is a time function. Furthermore this method is helpful for evaluating the level of impurities after many discharges in Novillo Tokamak. (orig.)

  3. Numerical Tokamak Project code comparison

    International Nuclear Information System (INIS)

    Waltz, R.E.; Cohen, B.I.; Beer, M.A.

    1994-01-01

    The Numerical Tokamak Project undertook a code comparison using a set of TFTR tokamak parameters. Local radial annulus codes of both gyrokinetic and gyrofluid types were compared for both slab and toroidal case limits assuming ion temperature gradient mode turbulence in a pure plasma with adiabatic electrons. The heat diffusivities were found to be in good internal agreement within ± 50% of the group average over five codes

  4. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  5. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  6. Numerical studies of edge localized instabilities in tokamaks

    International Nuclear Information System (INIS)

    Wilson, H.R.; Snyder, P.B.; Huysmans, G.T.A.; Miller, R.L.

    2002-01-01

    A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code

  7. An overview on plasma disruption mitigation and avoidance in tokamak

    International Nuclear Information System (INIS)

    He Kaihui; Pan Chuanhong; Feng Kaiming

    2002-01-01

    Plasma disruption, which seems to be unavoidable in Tokamak operation, occurs very fast and uncontrolled. In order to keep Tokamak plasma from disruption and mitigate the disruption frequency, the research on Tokamak plasma major disruption constitutes one of the main topics in plasma physics. The phenomena and processes of the precursor, thermal quench, current quench, VDE, halo current and runaway electrons generation during plasma disruption are analyzed in detail and systematically based on the data obtained from current Tokamaks such as TFTR, JET, JT-60U and ASDEX-U, etc. The methods to mitigate and avoid disruption in Tokamak are also highlighted schematically. Therefore, it is helpful and instructive for plasma disruption research in next generation large Tokamak such as ITER-FEAT

  8. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  9. Tokamak COMPASS

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan; Křenek, Petr

    2011-01-01

    Roč. 17, č. 1 (2011), s. 32-34 ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * tokamak * Compass * Golem * Institute of Plasma Physics AVCR v.v * NBI * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  10. Stability at high performance in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Buttery, R.J.; Akers, R.; Arends, E. =

    2003-01-01

    The development of reliable H-modes on MAST, together with advances in heating power and a range of powerful diagnostics, has provided a platform to enable MAST to address some of he most important issues of tokamak stability. In particular the high β potential of the ST is highlighted with stable operation at β N ∼5-6 , β T ∼ 16% and β p as high as 1.9, confirmed by a range of profile diagnostics. Calculations indicate that β N levels are in the vicinity of no-wall stability limits. Studies have provided the first identification of the Neoclassical Tearing Mode (NTM) in the ST, using its behaviour to quantitatively validate predictions of NTM theory, previously only applied to conventional tokamaks. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs - by avoiding large sawteeth much higher β N can, and has, been reached. Further studies have confirmed the NTM's significance, with large islands observed using the 300 point Thomson diagnostic, and locking of large n=1 modes frequently leading to disruptions. H-mode plasmas are also limited by ELMs, with confinement degraded as ELM frequency rises. However, unlike the conventional tokamak, the ELMs in high performing regimes on MAST (H IPB98Y2 ∼1) appear to be type III in nature. Modelling identifies instability to peeling modes, consistent with a type III interpretation, and shows considerable scope to raise pressure gradients (despite n=∞ ballooning theory predictions of instability) before ballooning type modes (perhaps associated with type I ELMs) occur. Finally sawteeth are shown not to remove the q=1 surface in the ST - other promising models are being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels, and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER. (author)

  11. An enhanced tokamak startup model

    Science.gov (United States)

    Goswami, Rajiv; Artaud, Jean-François

    2017-01-01

    The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.

  12. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-01-01

    The analysis begins by identifying a hypothetical model of tokamak confinement that is designed to take into account the conflict between Tsub(e)(r)-profile shapes arising from microscopic transport and J(r)-profile shapes required for gross stability. On the basis of this model, a number of hypothetical lines of advance are developed. Some TFTR experiments that may point the way to a particularly attractive type of tokamak reactor regime are discussed. (author)

  13. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Sigmar, D.J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  14. Tokamak startup: problems and scenarios related to the transient phases of ignited tokamak operations

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    During recent years improvements have been made to tokamak startup procedures, which are important to the optimization of ignited tokamaks. The use of rf-assisted startup and noninductive current drive has led to substantial reduction and even complete elimination of the volt-seconds used during startup, relaxing constraints on poloidal coil, vacuum vessel, and structure design. This paper reviews these and other improvements and discusses the various bulk heating techniques that may be used to ignite a D-T plasma

  15. TNS Program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The fusion program plan is briefly reviewed and the role of the prototype experimental power reactor, thought of as The Next Step (TNS), is discussed. The required device capabilities and basic reactor concepts for a TNS fusion electric plant are given. A detailed discussion of the physics considerations for the Power Generating Fusion Reactor (PGFR), including plasma heating, MHD equilibrium and stability, burn control resulting from toroidal field ripple, fueling, and boundary effects, is presented. Engineering considerations of the major PGFR systems, as well as diagnostics, instrumentation, control, and programmatic issues are also considered in detail. It is concluded that TNS design studies have established the existence of a technical basis for constructing a long pulse, D-T burning tokamak to be operational prior to 1990

  16. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  17. MAST: a Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.

    1995-01-01

    The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)

  18. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  19. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  20. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  1. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  2. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    International Nuclear Information System (INIS)

    Azizov, E A

    2012-01-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined. (conferences and symposia)

  3. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  4. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  5. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  6. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1998-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  7. Understanding L-H transition in tokamak fusion plasmas

    Science.gov (United States)

    Xu, Guosheng; Wu, Xingquan

    2017-03-01

    This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.

  8. Analysis of tokamak plasma confinement modes using the fast

    Indian Academy of Sciences (India)

    The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and ...

  9. Interim report on the assessment of engineering issues for compact high-field ignition devices

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing

  10. Empirical scaling for present Ohmically heated tokamaks

    International Nuclear Information System (INIS)

    Daughney, C.

    1975-01-01

    Experimental results from the Adiabatic Toroidal Compressor (ATC) tokamak are used to obtain empirical scaling laws for the average electron temperature and electron energy confinement time as functions of the average electron density, the effective ion charge, and the plasma current. These scaling laws are extended to include dependence upon minor and major plasma radius and toroidal field strength through a comparison of the various tokamaks described in the literature. Electron thermal conductivity is the dominant loss process for the ATC tokamak. The parametric dependences of the observed electron thermal conductivity are not explained by present theoretical considerations. The electron temperature obtained with Ohmic heating is shown to be a function of current density - which will not be increased in the next generation of large tokamaks. However, the temperature dependence of the electron energy confinement time suggests that significant improvement in confinement time will be obtained with supplementary electron heating. (author)

  11. Physics issues in the design of a high β quasi-axisymmetric stellarator

    International Nuclear Information System (INIS)

    Reiman, A.; Ku, L.; Monticello, D.

    2001-01-01

    Present days stellarators have aspect ratios large compared to those of tokamaks. We have been pursuing the design of compact stellarator configurations with aspect ratios comparable to those of tokamaks and good transport and stability properties. To provide good drift trajectories, we focus on configurations that are close to quasi-symmetric (QA), an approach that is well suited to lower aspect ratios. In this paper the physics issues and configuration design of QA stellarators are presented

  12. Current drive and profile control in low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.; Chiu, S.C.; Lin-Liu, Y.R.; Miller, R.L.; Turnbull, A.D.

    1995-07-01

    The key to the theoretically predicted high performance of a low aspect ratio tokamak (LAT) is its ability to operate at very large plasma current*I p . The plasma current at low aspect ratios follows the approximate formula: I p ∼ (5a 2 B t /Rqψ) [(1 + κ 2 )/2] [A/(A - 1)] where A quadruple-bond R/a which was derived from equilibrium studies. For constant qψ and B t , I p can increase by an order of magnitude over the case of tokamaks with A approx-gt 2.5. The large current results in a significantly enhanced β t (quadruple-bond β N I p /aB t ) possibly of order unity. It also compensates for the reduction in A to maintain the same confinement performance assuming the confinement time τ follows the generic form ∼ HI p P -1 / 2 R 3 / 2 κ 1 / 2 . The initiation and maintenance of such a large current is therefore a key issue for LATs

  13. CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak

    Science.gov (United States)

    Serov, S. V.; Tugarinov, S. N.; Klyuchnikov, L. A.; Krupin, V. A.; von Hellermann, M.

    2017-12-01

    The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.

  14. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  15. Auxiliary radiofrequency heating of tokamaks, Task 3

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1991-07-01

    The research performed under this grant during the past three years has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling and heating issues: efficient coupling during the L- to H-mode transition by analysis and computer simulation of ICRF antennas edge plasma profiles; analysis of both dielectric-filled waveguide and coil ICRF antenna coupling to plasma edge profiles; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results; ICRF full-wave field solutions, power conservation and heating analyses; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report. 15 refs

  16. Simulation of a major tokamak disruption

    International Nuclear Information System (INIS)

    White, R.B.; Monticello, D.A.; Rosenbluth, M.N.

    1977-08-01

    It is known that the internal tokamak disruption leads to a current profile which is flattened inside the surface where the safety factor equals unity. It is shown that such a profile can lead to m = 2 magnetic islands which grow to fill a substantial part of the tokamak cross section in a time consistent with the observations of the major disruption

  17. Edge plasma diagnostics on Tore Supra tokamak

    International Nuclear Information System (INIS)

    Fujita, Junji

    1991-01-01

    From 1988 to 1991, the international scientific research 'Diagnosis of peripheral plasma in Tore Supra tokamak' was carried out as a three-year plan receiving the support of the scientific research expense of the Ministry of Education. This is to apply the method of measuring electron density distribution by neutral lithium beam probe spectroscopy to the measurement of the electron density distribution in the peripheral plasma in Tore Supra Tokamak in France. Among many tokamaks in operation doing respective characteristics researches, the Tore Supra generates the toroidal magnetic field by using superconducting coils, and aims at the long time discharge for 30 sec. for the time being, and for 300 sec. in future. In the plasma generators for long time discharge like this, the technology of particle control is a large problem. For this purpose, a divertor was added to the Tore Supra. In order to advance the research on particle control, it is necessary to examine the behavior of plasma in the peripheral part in detail. The measurement of peripheral plasma in tokamaks, beam probe spectroscopy, the Tore Supra tokamak, the progress of the joint research, the problems in the joint research and the perspective of hereafter are reported. (K.I.)

  18. Heavy Neutral Beam Probe for edge plasma analysis in tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The Heavy Neutral Beam Probe project presented in this document is part of an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadian de Fusion Magnetique. The overall objective of the effort is to apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes facility in Montreal, Canada. To achieve this goal, a research and development project was started in December, 1990 to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present, satisfactory progress has been achieved. The ion gun is fully operational with the neutralizer in the final assembly stage in preparation for testing. The beam diagnostics have been completed and mounted in the computer automated test stand. The analyzer design and detailed trajectory calculations are nearing completion to allow for the vacuum interface construction. The CAMAC based data acquisition system hardware was integrated into the test stand. Part of this hardware is a component of the Tokamak de Varennes' contribution to the collaboration. Next steps on the critical path include the beginning of the neutralization tests and the start of the analyzer construction. Anticipated installation of the diagnostic on the tokamak is Spring 1992

  19. Integral torque balance in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2011-01-01

    The study is aimed at clarifying the balance between the sinks and sources in the problem of intrinsic plasma rotation in tokamaks reviewed recently by deGrassie (2009 Plasma Phys. Control. Fusion 51 124047). The integral torque on the toroidal plasma is calculated analytically using the most general magnetohydrodynamic (MHD) plasma model taking account of plasma anisotropy and viscosity. The contributions due to several mechanisms are separated and compared. It is shown that some of them, though, possibly, important in establishing the rotation velocity profile in the plasma, may give small input into the integral torque, but an important contribution can come from the magnetic field breaking the axial symmetry of the configuration. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field-induced electromagnetic torque show that the amplitude of this torque is comparable to the typical values of torques introduced into the plasma by neutral beam injection. The obtained relations allow us to quantify the effect that can be produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments to study the origin and physics of intrinsic rotation in tokamaks. Several problems are proposed for theoretical studies and experimental tests.

  20. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  1. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  2. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  3. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  4. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    HUMPHREYS, D.A.; FERRON, J.R.; JOHNSON, R.D; LEUER, J.A.; PENAFLOR, B.G.; WALKER, M.L.; WELANDER, A.S.; KHAYRUTDINOV, R.R; DOKOUKA, V.; EDGELL, D.H.; FRANSSON, C.M.

    2004-03-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  5. Internet-Mediated Learning in Public Affairs Programs: Issues and Implications.

    Science.gov (United States)

    Rahm, Dianne; Reed, B. J.; Rydl, Teri L.

    1999-01-01

    An overview of Internet-mediated learning in public affairs programs identifies issues for faculty, students, and administrators, including intellectual property rights, instructional issues, learning approaches, student expectations, logistics and support, complexity of coordination, and organizational control. (DB)

  6. Computational model for superconducting toroidal-field magnets for a tokamak reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Abdou, M.A.

    1978-01-01

    A computational model for predicting the performance characteristics and cost of superconducting toroidal-field (TF) magnets in tokamak reactors is presented. The model can be used to compare the technical and economic merits of different approaches to the design of TF magnets for a reactor system. The model has been integrated into the ANL Systems Analysis Program. Samples of results obtainable with the model are presented

  7. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  8. A DESIGN RETROSPECTIVE OF THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    LUXON, J.L

    2001-06-01

    OAK-B135 The DIII-D tokamak evolved from the earlier Doublet III device in 1986. Since then, the facility has undergone a number of changes including the installation of divertor baffles and pumping chambers in the vacuum vessel, the addition of a radiation shield, the development of extensive neutral beam and rf heating systems, and the addition of a comprehensive plasma control system. The facility has become the focus of a broad fusion plasma science research program. This paper gives an integrated picture of the facility and its capabilities

  9. Full power in the European tokamak

    International Nuclear Information System (INIS)

    Lallia, P.P.; Hugon, M.

    1987-01-01

    A new research campaign begins at Jet (Abingdon, UK). At this occasion, authors review and compare the performances of the three big Tokamaks that are currently in competition: Jet, JT60 and TFTR, insisting upon the European one. Conditions of ignition are reviewed together and energy losses are specified. Magnetic configurations used in tokamaks are shown, together with the technological responses brought these last years

  10. Compact Ignition Tokamak conventional facilities optimization

    International Nuclear Information System (INIS)

    Commander, J.C.; Spang, N.W.

    1987-01-01

    A high-field ignition machine with liquid-nitrogen-cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed for the next phase of the United States magnetically confined fusion program. A team of national laboratory, university, and industrial participants completed the conceptual design for the CIT machine, support systems and conventional facilities. Following conceptual design, optimization studies were conducted with the goal of improving machine performance, support systems design, and conventional facilities configuration. This paper deals primarily with the conceptual design configuration of the CIT conventional facilities, the changes that evolved during optimization studies, and the revised changes resulting from functional and operational requirements (F and ORs). The CIT conventional facilities conceptual design is based on two premises: (1) satisfaction of the F and ORs developed in the CIT building and utilities requirements document, and (2) the assumption that the CIT project will be sited at the Princeton Plasma Physics Laboratory (PPPL) in order that maximum utilization can be made of existing Tokamak Fusion Test Reactor (TFTR) buildings and utilities. The optimization studies required reevaluation of the F and ORs and a second look at TFTR buildings and utilities. Some of the high-cost-impact optimization studies are discussed, including the evaluation criteria for a change from the conceptual design baseline configuration. The revised conventional facilities configuration are described and the estimated cost impact is summarized

  11. Improvement of tokamak performance by injection of electrons

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas

  12. Neutronic analysis of fusion tokamak devices by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  13. Multi-mode remote participation on the GOLEM tokamak

    International Nuclear Information System (INIS)

    Svoboda, V.; Huang, B.; Mlynar, J.; Pokol, G.I.; Stoeckel, J.; Vondrasek, G.

    2011-01-01

    The GOLEM tokamak (formerly CASTOR) at Czech Technical University is demonstrated as an educational tokamak device for domestic and foreign students. Remote participation of several foreign universities (in Hungary, Belgium, Poland and Costa Rica) has been successfully performed. A unique feature of the GOLEM device is functionality which enables complete remote participation and control, solely through Internet access. Basic remote control is possible either in online mode via WWW/SSH interface or offline mode using batch processing code. Discharge parameters are set in each case to configure the tokamak for a plasma discharge. Using the X11 protocol it is possible to control in an advanced mode many technological aspects of the tokamak operation, including: i) vacuum pump initialization, ii) chamber baking, iii) charging of power supplies, iv) plasma discharge scenario, v) data acquisition system.

  14. Tokamak Physics Experiment (TPX) power supply design and development

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes

  15. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  16. Computational study of axisymmetric modes in noncircular cross section tokamaks

    International Nuclear Information System (INIS)

    Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.

    1976-09-01

    A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth

  17. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  18. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.

    2001-01-01

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  19. Simulations of finite beta turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Jenko, F.

    2002-01-01

    One of the central open questions in our attempt to understand microturbulence in fusion plasmas concerns the role of finite beta effects. Nonlinear codes trying to investigate this issue must go beyond the commonly used adiabatic electron approximation - a task which turns out to be a serious computational challenge. This step is necessary because the electrons are the prime contributor to the parallel currents which in turn produce the magnetic field fluctuations. Results at both ion and electron space-time scales from gyrokinetic and gyrofluid models are presented which shed light on the character of finite beta turbulence in tokamaks and stellarators. (author)

  20. Interpretation of heat and density pulse propagation in tokamaks

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Costley, A.E.; O'Rourke, J.O.

    1991-01-01

    This paper addresses two key issues in current research on sawtooth induced heat and density pulse measurements in Tokamaks and their interpretation. First, heat and density pulses in JET and TXT show different qualitative behaviour implying substantially different transport coefficients. Second, a new description of the heat pulse has been used to describe measurements cannot be simulated with the widely used diffusive model. In this paper, we show that consistency between all these measurements can be obtained assuming a diffusive propagation for the heat and density pulses and using linearised coupled transport equations. (author) 6 refs., 5 figs

  1. Project and analysis of the toroidal magnetic field production circuits and the plasma formation of the ETE (Spherical Tokamak Experiment) tokamak

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe F.P.W.; Bosco, Edson del.

    1994-01-01

    This report presents the project and analysis of the circuit for production of the toroidal magnetic field in the Tokamak ETE (Spherical Tokamak Experiment). The ETE is a Tokamak with a small-aspect-ratio parameter to be used for studying the plasma physics for the research on thermonuclear fusion. This machine is being constructed at the Laboratorio Associado de Plasma (LAP) of the Instituto Nacional de Pesquisas Espaciais (INPE) in Sao Jose dos Campos, SP, Brazil. (author). 20 refs., 39 figs., 4 tabs

  2. Issues facing the U. S. mirror program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.V.

    1978-07-01

    Some of the current issues associated with the U.S. Magnetic Mirror Program are analyzed. They are presented as five separate papers entitled: (1) Relevant Issues Broughtup by the Mirror Reactor Design Studies. (2) An Assessment of the Design Study of the 1 MeV Neutral Beam Injector Required for a Tandem Mirror Reactor. (3) The Significance of the Radial Plasma Size Measured in Units of Ion Gyroradii in Tandem Mirrors and Field Reversed Mirrors. (4) Producing Field Reversed Mirror Plasmas by Methods used in Field Reversed Theta Pinch. (5) RF Stoppering of Mirror Confined Plasma.

  3. LHCD experiments on tokamak CASTOR

    International Nuclear Information System (INIS)

    Zacek, F.; Badalec, J.; Jakubka, J.; Kryska, L.; Preinhaelter, J.; Stoeckel, J.; Valovic, M.; Nanobashvili, S.; Weixelbaum, L.; Wenzel, U.; Spineanu, F.; Vlad, M.

    1990-10-01

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR. They concern primarily the LH current drive using multijunction waveguide grills as launching antennae. During two last years the, efforts were focused on a study of the electrostatic and magnetic fluctuations under conditions of combined inductive/LHCD regimes and of the relation of the level of these fluctuations to the anomalous particles transport in tokamak CASTOR. Results of the study are discussed in some detail. (author). 24 figs., 51 refs

  4. Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges

    International Nuclear Information System (INIS)

    Langley, R.A.; Rowan, W.L.; Bravenec, R.V.; Nelin, K.

    1986-10-01

    The global recombination rate coefficient k/sub r/ for hydrogen has been measured in the TEXT tokamak vacuum vessel for various surface conditions. An attempt was made to correlate the measured values of k/sub r/ with residual gas analyzer (RGA) data taken before each measurement of k/sub r/ and with the power radiated during tokamak discharges produced after each measurement of k/sub r/. The results show that k/sub r/ increases during a series of tokamak discharges, k/sub r/ is relatively insensitive to power radiated during tokamak discharges, and k/sub r/ increases with the RGA measurements of mass 28 and 40 but not with those of mass 18. In addition, it was found that the mass 18 (H 2 O) signal decreases as glow discharge experiments with hydrogen were performed

  5. Behavior of oxygen impurities in tokamak. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Beket, A H [Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    Impurity transport in tokamak plasma is a subject of great importance in present day tokamak experiments. The transport of oxygen as an impurity element in small tokamak was studied theoretically. The viscosity coefficient of oxygen has been calculated in different approximation 13 and 21 moment approximation, taking into consideration {chi}>>1,{chi}{omega}{sub c} {tau}. It was found that in 21 moment approximation additional terms added to the perturbation from equilibrium leads to increase in viscosity coefficients than in 13 moments approximation. 9 figs.

  6. Transient electromagnetic analysis in tokamaks using TYPHOON code

    International Nuclear Information System (INIS)

    Belov, A.V.; Duke, A.E.; Korolkov, M.D.; Kotov, V.L.; Kukhtin, V.P.; Lamzin, E.A.; Sytchevsky, S.E.

    1996-01-01

    The transient electromagnetic analysis of conducting structures in tokamaks is presented. This analysis is based on a three-dimensional thin conducting shell model. The finite element method has been used to solve the corresponding integrodifferential equation. The code TYPHOON has been developed to calculate transient processes in tokamaks. Calculation tests and the code verification have been carried out. The calculation results of eddy current and force distibution and a.c. losses for different construction elements for both ITER and TEXTOR tokamaks magnetic systems are presented. (orig.)

  7. Tokamak Plasmas : Mirnov coil data analysis for tokamak ADITYA

    Indian Academy of Sciences (India)

    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as ...

  8. Comparative studies of stellarator and tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Burhenn, R; Geiger, J; Giannone, L.; Hartfuss, H J; Kuehner, G; Ledl, L; Simmet, E E; Walter, H [Max-Planck-Inst. fuer Plasmaphysik, IPP-Euratom Association, Garching (Germany); ECRH Team; W7-AS Team

    1997-09-01

    Transport properties in the W7-AS stellarator and in tokamaks are compared. The parameter dependences and the absolute values of the energy confinement time are similar. Indications are found that the density dependence, which is usually observed in stellarator confinement, can vanish above a critical density. The density dependence in stellarators seems to be similar to that in the linear ohmic confinement regime, which, in small tokamaks, extends to high density values, too. Because of the similarity in the gross confinement properties, transport in stellarators and tokamaks should not be dominated by the parameters which are very different in the two concepts, i.e. magnetic shear, major rational values of the rotational transform and plasma current. A difference in confinement is that there exists evidence for pinches in the particle and, possibly, energy transport channels in tokamaks whereas in stellarators no pinches have been observed, so far. In order to study the effect of plasma current and toroidal electric fields, stellarator discharges were carried out with an increasing amount of plasma current. From these experiments, no clear evidence of a connection of pinches with these parameters is found. The transient response in W7-AS plasmas can be described in terms of a non-local model. As in tokamaks, also cold pulse experiments in W7-AS indicate the importance of non-local transport. (author). 8 refs, 5 figs.

  9. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  10. Tokamak residual zonal flow level in near-separatrix region

    International Nuclear Information System (INIS)

    Bing-Ren, Shi

    2010-01-01

    Residual zonal flow level is calculated for tokamak plasmas in the near-separatrix region of a diverted tokamak. A recently developed method is used to construct an analytic divertor tokamak configuration. It is shown that the residual zonal flow level becomes smaller but still keeps finite near the separatrix because the neoclassical polarisation mostly due to the trapped particles goes larger in this region. (fluids, plasmas and electric discharges)

  11. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    Pankratov, I.M.; Jaspers, R.

    2000-01-01

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  12. Second regime tokamak operation at large aspect ratio

    International Nuclear Information System (INIS)

    Navratil, G.A.

    1989-01-01

    This paper reviews the need for high beta in economic tokamak reactors and summarizes recent results on the scaling of the second regime beta limit for high-n ballooning modes using optimized pressure profiles as well as results on low-n mode stability at the first regime beta limit from the Columbia HBT tokamak. While several experiments have studied ballooning limits using high εβ p plasmas, the most important question for the use of the second stability regime for tokamak reactor improvement is how to achieve these high values of εβ p while at the same time increasing the value of beta to several times the Troyon beta limit. An approach to the study of this key question on beta limits using modest sized, large aspect ratio tokamaks is described. (author). 28 refs, 7 figs, 1 tab

  13. Hard X-ray studies on the Castor tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.

    1990-04-01

    The electron runaway processes in tokamaks are discussed with regard to hard X radiation measurements. The origin and confinement of runaway electrons, their bremsstrahlung spectra and the influence of lower hybrid current drive on the distribution of high-energy electrons are analyzed for the case of the Castor tokamak. The hard X-ray spectrometer designed for the Castor tokamak is also described and preliminary qualitative results of hard X-ray measurements are presented. The first series of integral measurements made it possible to map the azimuthal dependence of the hard X radiation

  14. Real-time horizontal position control for Aditya-upgrade tokamak

    International Nuclear Information System (INIS)

    Kumar, Rohit; Ghosh, Joydeep; Tanna, Rakesh L.

    2015-01-01

    Position of plasma column is required to be controlled in real time for improved operation of any tokamak. A PID based system for real-time horizontal plasma position control has been designed for Aditya Upgrade tokamak. Modelling of transfer functions of actuators, plasma and diagnostic system are carried out for ADITYA-U tokamak. The PID controller is optimized using MATLAB-SIMULINK for horizontal position control. Further feed-forward loop is implemented where disturbance due to density variation is suppressed, which results in improved performance as compared to conventional PID operation. In this paper the detailed design of the whole system for real time control of plasma horizontal position in Aditya Upgrade tokamak is presented. (author)

  15. Interfaith Program for Public Awareness of Nuclear Issues

    International Nuclear Information System (INIS)

    1985-11-01

    Planning for the Interfaith Progam for Public Awareness of Nuclear Issues (IPPANI) began at the time of the Falkland Islands crisis. At that time representatives of certain of the faith groups in Toronto became concerned about the moral and ethical implications of Canada's export of fuel for a CANDU nuclear generating plant in Argentina. In order to accomplish its goals, the Planning Committee devised a program to provide unbiased input to the faith groups' deliberations on the ethical and moral issues involved in the nuclear debate. The development of a fair set of questions was aided by obtaining advice from the Canadian Nuclear Association (CNA), and from Energy Probe and others. The work of preparing a suitable agenda was completed early in 1984. Its result was embodied in appendices to the public document promoting the program, which is appended to this report. Invitations were sent to over six hundred individuals and organizations to appear before the panelists as 'presenters'. The resulting invitation list included spokespeople for both 'pro' and 'anti' nuclear positions on each of the three topics, as well as some who were found to be 'in the middle'. The three major topics were domestic nuclear issues, international trade and military uses of nuclear materials and technology. The next task of the Planning Committee is that of embodying the process and its results in an educational program for the supplementary and parochial school systems. The production of this book is the first step in that task

  16. Tokamak WEST připraven ke startu!

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    Květen (2017) ISSN 2464-7888 Institutional support: RVO:61389021 Keywords : fusion * ITER * tokamak * WEST * Tora Supra * divertor Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.3pol.cz/cz/rubriky/jaderna-fyzika-a-energetika/2014-tokamak-west-pripraven-ke- start u

  17. PISCES Program: Summary of research, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    This paper discusses the research of the PISCES Program. Topics discussed are: deuterium pumping by C-C composites and graphites; reduced particle recycling from grooved graphite surfaces; surface analysis of graphite tiles exposed in tokamaks; erosion behavior of redeposition layers from tokamaks (tokamakium); high temperature erosion of graphite; collaboration on TFTR probe measurements of implanted D; spectroscopic studies of carbon containing molecules; presheath profile measurements; biased limiter/divertor experiments; particle transport in the CCT tokamak edge plasma; and experimental studies of biased divertors and limiters. 26 refs., 23 figs

  18. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  19. Time - resolved thermography at Tokamak T-10

    International Nuclear Information System (INIS)

    Grunow, C.; Guenther, K.; Lingertat, J.; Chicherov, V.M.; Evstigneev, S.A.; Zvonkov, S.N.

    1987-01-01

    Thermographic experiments were performed at T-10 tokamak to investigate the thermic coupling of plasma and the limiter. The limiter is an internal equipment of the vacuum vessel of tokamak-type fusion devices and the interaction of plasma with limiter results a high thermal load of limiter for short time. In according to improve the limiter design the temperature distribution on the limiter surface was measured by a time-resolved thermographic method. Typical isotherms and temperature increment curves are presented. This measurement can be used as a systematic plasma diagnostic method because the limiter is installed in the tokamak whereas special additional probes often disturb the plasma discharge. (D.Gy.) 3 refs.; 7 figs

  20. Study on assembly techniques and procedures for ITER tokamak device

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Shibanuma, Kiyoshi; Sago, Hiromi; Ue, Koichi; Shimizu, Katsusuke; Onozuka, Masanori

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) tokamak is mainly composed of a doughnut-shaped vacuum vessel (VV), four types of superconducting coils such as toroidal field coils (TF coils) arranged around the VV, and in-vessel components, such as blanket and divertor. The dimensions and weight of the respective components are around a few ten-meters and several hundred-tons. In addition, the whole tokamak assembly, which are composed of these components, are roughly estimated, 26 m in diameter, 18 m in height and over 16,500 tons in total weight. On the other hand, as for positioning and assembly tolerances of the VV and the TF coil are required to be a high accuracy of ±3 mm in spite of large size and heavy weight. The assembly procedures and techniques of the ITER tokamak are therefore studied, taking account of the tolerance requirements as well as the configuration of the tokamak with large size and heavy weight. Based on the above backgrounds, the assembly procedures and techniques, which are able to assemble the tokamak with high accuracy, are described in the present report. The tokamak assembly operations are categorized into six work break down structures (WBS), i.e., (1) preparation for assembly operations, (2) sub-assembly of the 40deg sector composed of 40deg VV sector, two TF coils and thermal shield between VV and TF coil at the assembly hall, (3) completion of the doughnut-shaped tokamak assembly composed of nine 40deg sectors in the cryostat at the tokamak pit, (4) measurement of positioning and accuracy after the completion of the tokamak assembly, (5) installation of the ex-vessel components, and (6) installation of in-vessel components. In the present report, two assembly operations of (2) and (3) in the above six WBS, which are the most critical in the tokamak assembly, are mainly described. The report describes the following newly developed tokamak assembly procedures and techniques, jigs and tools for assembly and metrology

  1. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  2. Trajectory planning of tokamak flexible in-vessel inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Lai, Yinping; He, Tao [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China)

    2015-10-15

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  3. Trajectory planning of tokamak flexible in-vessel inspection robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Lai, Yinping; He, Tao

    2015-01-01

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  4. Structural features of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Citrolo, J.; Brown, G.; Rogoff, P.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is undergoing preliminary structural design and definitions. It will be relatively inexpensive with ignition capabilities. During the definition phase it was concluded that the TF coil should be assembled from the laminate copper-Inconel plates since copper alone cannot sustain the expected magnetic and thermal loads. An extensive test program is being initiated to investigate the various materials, and their elastic and inelastic response and to develop the constitutive equations required for the selection of design criteria and for the stress analysis of this device. Finite element analysis nonlinear material capabilities are being used to study, predict and correlate the machine behavior

  5. Plasma boundary experiments on DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Brooks, N.; Jackson, G.L.; Langhorn, A.; Leikind, B.; Lippmann, S.; Luxon, J.; Petersen, P.; Petrie, P.; Stambaugh, R.D.; Simonen, T.C.; Staebler, G.; Buchenauer, D.; Futch, A.; Hill, D.N.; Rensink, M.; Hogan, J.; Menon, M.; Mioduszewski, P.K.; Owen, L.; Matthews, G.

    1990-01-01

    A survey of the boundary physics research on the DIII-D tokamak and an outline of the DIII-D Advanced Divertor Program (ADP) is presented. We will present results of experiments on impurity control, impurity transport, neutral particle transport, and particle effects on core confinement over a wide range of plasma parameters, I p T < or approx.10.7%, P(auxiliary)< or approx.20 MW. Based on the understanding gained in these studies, we in collaboration with a number of other laboratories have devised a series of experiments (ADP) to modify the core plasma conditions through changes in the edge electric field, neutral recycling, and plasma-surface interactions. (orig.)

  6. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  7. An overview of the DIII-D program

    International Nuclear Information System (INIS)

    Luxon, J.L.

    1996-10-01

    The DIII-D program focuses on developing fusion physics in an integrated program of tokamak concept improvement. The intent is both to support the present ITER physics R and D and to develop more efficient concepts for the later phases of ITER and eventual power plants. Progress in this effort can be best summarized by recent results for a diverted deuterium discharge with negative central shear which reached a performance level of Q DT = 0.32. The ongoing development of the tools needed to carry out this program of understanding and optimization continues to be crucial to its success. Control of the plasma cross-sectional shape and the internal distributions of plasma current, density, and rotation has been essential to optimizing plasma performance. Advanced divertor concepts provide edge power and particle control for future devices such as ITER and provide techniques to help manage the edge power and particle flows for advanced tokamak concepts. New divertor diagnostics and improved modeling are developing excellent divertor understanding. Many of the plasma physics issues being posed by ITER are being addressed. Scrapeoff layer power flow is being characterized to provide an accurate basis for the design of reactor devices. Ongoing studies of the density limit focus on identifying ways in which ITER can achieve the required densities in excess of the Greenwald limit. Better understanding of disruptions is crucial to the design of future reactors

  8. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    International Nuclear Information System (INIS)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model's on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy's theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support

  9. A generic access to shot-based data for European Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Signoret, J.; Imbeaux, F. [Association EURATOM-CEA, CEA / DSM / Institut de Recherche sur la Fusion par confinement Magnetique, CEA-Cadarache, 13 - ST-Paul-Lez-Durance (France)

    2009-07-01

    The EFDA Integrated Tokamak Modeling Task Force has defined a data structure offering a generic representation of the properties of physics problems and tokamak subsystem characteristics. It gathers the hardware description, modeling results and data measured during experiments, structured in terms of Consistent Physical Objects (CPOs). A generic tool has been developed to retrieve shot-based data from the various European tokamak databases: Exp2ITM. A tokamak specific XML 'mapping file' is used to map the local data formats to the ITM (Integrated Tokamak Modeling) data format. Exp2ITM is then dynamically generated from the ITM data structure and uses generic procedures to import the shot-based data. Successful tests show we have managed to import into the ITM DB experimental data from Jet and Tore-Supra. This document is a poster. (authors)

  10. Multi-channel control circuit for real-time control of events in Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edappala, Praveenlal, E-mail: praveen@ipr.res.in; Shah, Minsha; Rajpal, Rachana; Tanna, R.L.; Ghosh, Joydeep; Chattopadhyay, P.K.; Jha, R.

    2016-11-15

    Highlights: • Low cost microcontroller based control circuit. • The control hardware can be programmed/configured very easily for different applications. • Microcontroller programming is done in assembly language so that precise timing can be achieved with micro seconds resolution. • Successful implementation of this circuit in noisy tokamak environment. • Efficient noise and burst elimination. • Can be integrated in to the other subsystems. • Low cost solution for implementing feedback control in small and medium size tokamaks and other experiments requiring feedback control. - Abstract: Tokamak plasma is prone to many random events having potential for causing severe damages to the machine, such as disruptions, production and elimination of high-energy runaway electrons etc. These events can be mitigated by obtaining pre-cursor signal leading to these events and then taking proper measures just before their onset to avoid their happenings, like disruptions can be mitigated by massive gas injection or putting a bias voltage on an electrode placed inside the plasma, the runaways can be mitigated by gas injection and by applying specific magnetic fields. Hence for real time control of these events, the pre-cursors should be electronically recorded and the mitigation techniques should be initiated by sending triggers to their individual operational systems. To implement these methodologies of real-time controlling of events in Aditya Tokamak, a low cost multi-channel Micro-Controller based timing circuit is designed and developed in-house. This circuit first compares the precursor signals fed into it with the pre-set values and gives a trigger output whenever the signals overshoot the pre-set values. The circuit readies itself for operation along with start of the tokamak discharge and waits up to an initial pre-determined delay and then initiates a trigger at the time of overshooting of precursor signal. The circuit is fully integrated and assembled in

  11. On the HL-1M tokamak plasma confinement time

    International Nuclear Information System (INIS)

    Qin Yunwen

    2001-01-01

    Emphasizing that the tokamak plasma confinement time is the plasma particle or thermal energy loss characteristic time, the relevant physical concept and HL-1M tokamak experimental data analyses are reviewed

  12. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  13. 3He functions in tokamak-pumped laser systems

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-10-01

    3 He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3 He(n,p)T reaction, and thereby excite gaseous lasants mixed with the 3 He while simultaneously breeding tritium. The total 3 He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak

  14. Analysis of EAST tokamak cryostat anti-seismic performance

    International Nuclear Information System (INIS)

    Chen Wei; Kong Xiaoling; Liu Sumei; Ni Xiaojun; Wang Zhongwei

    2014-01-01

    A 3-D finite element model for EAST tokamak cryostat is established by using ANSYS. On the basis of the modal analysis, the seismic response of the EAST tokamak cryostat structure is calculated according to an input of the design seismic response spectrum referring to code for seismic design of nuclear power plants. Calculation results show that EAST cryostat displacement and stress response is small under the action of earthquake. According to the standards, EAST tokamak cryostat structure under the action of design seismic can meet the requirements of anti-seismic design intensity, and ensure the anti-seismic safety of equipment. (authors)

  15. Characterization of the Tokamak Novillo in cleaning regime

    International Nuclear Information System (INIS)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E.

    1992-02-01

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip t like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I (p) t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  16. Advanced tokamak physics in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Luce, T.C.; Politzer, P.A.; Bray, B.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Gohil, P.; Greenfield, C.M.; Hsieh, C.-L.; Hyatt, A.W.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lin-Liu, Y.R.; Lohr, J.; Mahdavi, M.A.; Petrie, T.W.; Pinsker, R.I.; Prater, R.; Scoville, J.T.; Staebler, G.M.; Strait, E.J.; Taylor, T.S.; West, W.P. [General Atomics, PO Box 85608, San Diego, CA (United States); Wade, M.R.; Lazarus, E.A.; Murakami, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, S.L.; Casper, T.A.; Jayakumar, R.; Lasnier, C.J.; Makowski, M.A.; Rice, B.W.; Wolf, N.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Austin, M.E. [University of Texas, Austin, TX (United States); Fredrickson, E.D.; Gorelov, I.; Johnson, L.C.; Okabayashi, M.; Wong, K.-L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Garofalo, A.M.; Navratil, G.A. [Columbia University, New York (United States); Heidbrink, W. [University of California, Irvine, CA (United States); Kinsey, J.E. [Leheigh University, Bethlehem, PA (United States); McKee, G.R. [University of Wisconsin, Madison, WI (United States); Rettig, C.L.; Rhodes, T.L. [University of California, Los Angeles, CA (United States); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States)

    2000-12-01

    Advanced tokamaks seek to achieve a high bootstrap current fraction without sacrificing fusion power density or fusion gain. Good progress has been made towards the DIII-D research goal of demonstrating a high-{beta} advanced tokamak plasma in steady state with a relaxed, fully non-inductive current profile and a bootstrap current fraction greater than 50%. The limiting factors for transport, stability, and current profile control in advanced operating modes are discussed in this paper. (author)

  17. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  18. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  19. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    International Nuclear Information System (INIS)

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-01-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses

  20. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  1. Operating tokamaks with steady-state toroidal current

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  2. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  3. Ripple induced trapped particle loss in tokamaks

    International Nuclear Information System (INIS)

    White, R.B.

    1996-05-01

    The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetric orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor and International Thermonuclear Experimental Reactor equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks

  4. Internal transport barriers: critical physics issues?

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, DSM, Departement de Recherches sur La Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2006-05-15

    Plasmas regimes with improved core energy confinement properties, i.e. with internal transport barriers (ITB), provide a possible route towards simultaneous high fusion performance and continuous tokamak reactor operation in a non-inductive current drive state. High core confinement regimes should be made compatible with a dominant fraction of the plasma current self-generated (pressure-driven) by the bootstrap effect while operating at high normalized pressure and moderate current. Furthermore, ITB regimes with 'non-stiff' plasma core pressure break the link observed in standard inductive operation between fusion performances and plasma pressure at the edge, thus offering a new degree of freedom in the tokamak operational space. Prospects and critical issues for using plasmas with enhanced thermal core insulation as a basis for steady tokamak reactor operation are reviewed in the light of the encouraging experimental and modelling results obtained recently (typically in the last two years). An extensive set of data from experiments carried out worldwide has been gathered on ITB regimes covering a wide range of parameters (q-profile, T{sub i}/T{sub e}, gradient length, shaping, normalized toroidal Larmor radius, collisionality, Mach number, etc). In the light of the progress made recently, the following critical physics issues relevant to the extrapolation of ITB regimes to next-step experiments, such as ITER, are addressed: 1. conditions for ITB formation and existence of a power threshold,; 2. ITB sustainment at T{sub i} {approx} T{sub e}, with low toroidal torque injection, low central particle fuelling but at high density and low impurity concentration,; 3. control of confinement for sustaining wide ITBs that encompass a large volume at high {beta}{sub N},; 4. real time profile control (q and pressure) with high bootstrap current and large fraction of alpha-heating and; 5. compatibility of core with edge transport barriers or with external core

  5. Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas

    NARCIS (Netherlands)

    J.W. Haverkort (Willem)

    2013-01-01

    htmlabstractOne of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma

  6. Simulations of finite β turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Jenko, F.; Scott, B.; Kendl, A.; Strintzi, D.; Dorland, W.

    2003-01-01

    One of the central open questions in our attempt to understand microturbulence in fusion plasmas concerns the role of finite β effects. Nonlinear codes trying to investigate this issue must go beyond the commonly used adiabatic electron approximation - a task which turns out to be a serious computational challenge. This step is necessary because the passing electrons are the prime contributor to the parallel currents which in turn produce the magnetic field fluctuations. Results at both ion and electron space-time scales from gyrokinetic and gyro fluid models are presented which shed light on the character of finite β turbulence in tokamaks and stellarators. (author)

  7. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  8. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  9. Realizing steady-state tokamak operation for fusion energy

    International Nuclear Information System (INIS)

    Luce, T. C.

    2011-01-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  10. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  11. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  12. Physics objectives of PI3 spherical tokamak program

    Science.gov (United States)

    Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly

    2017-10-01

    Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.

  13. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-08-01

    Dynamic control of the plasma position within the torus of a TOKAMAK fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. (auth)

  14. Employee Assistance Program Issues

    Science.gov (United States)

    Gettleman, Alan G.; McGuire, William

    1999-01-01

    Employee Assistance Program (EAP) officers, as well as personnel in other disciplines from eight NASA Centers, attended this breakout session. Ms. Brenda Blair, MA, CEAP, a guest speaker at the conference, also attended as a consultant. Representatives from the NASA Centers introduced themselves and spoke briefly about their programs. In a discussion related to the conference theme on benchmarking, quality control issues within the EAP community and adequate documentation of cases were addressed. Disposition and provision for quality assurance checks for EAP providers in single person offices were also discussed. Ms. Blair presented methods for consulting with other NASA personnel in single person EAP offices as a quality control measure. EAP intervention in critical incidents was discussed. The question of whether EAP assistance is an asset or a potential liability in those situations was addressed. Suggestions were made of topics for future EAP video-teleconference topics. A program on EAP ethics was planned for a September video teleconference. Each person was asked to provide intake forms they use to Mr. Gettleman or Ms. Blair. Ms. Blair said she would review the forms to ensure that adequate notification is provided to the client for confidentiality. She would also review them to ensure they have adequate limits of confidentiality--a topic for future video teleconferencing. Mr. Gettleman described the NASA initiative to reduce stresses in the workplace, and the activities of an ad-hoc EAP group that will make recommendations to NASA senior management. Alternative training methods were discussed for reaching target audiences such as employees at risk, supervisors, and others. Pfc. David A. Pendleton, Victim Assistance Coordinator, U.S. Capitol Police. U.S. House of Representatives made a special presentation. Pfc. Pendleton was on duty during the tragic shooting of two Federal guards at the U.S. Capitol. He related the events immediately after the incident. He

  15. Overview of recent experimental results from the DIII-D advanced tokamak program

    International Nuclear Information System (INIS)

    Allen, S.L.

    2001-01-01

    The goals of DIII-D Advanced Tokamak (AT) experiments are to investigate and optimize the upper limits of energy confinement and MHD stability in a tokamak plasma, and to simultaneously maximize the fraction of non-inductive current drive. Significant overall progress has been made in the past 2 years, as the performance figure of merit β N H 89P of 9 has been achieved in ELMing H-mode for over 16 τ E without sawteeth. We also operated at β N ∼7 for over 35 τ E or 3 τ R , with the duration limited by hardware. Real-time feedback control of β (at 95% of the stability boundary), optimizing the plasma shape (e.g., δ, divertor strike- and X-point, double/single null balance), and particle control (n e /n GW ∼0.3, Z eff N H 89P of 7. The QDB regime has been obtained to date only with counter neutral beam injection. Further modification and control of internal transport barriers (ITBs) has also been demonstrated with impurity injection (broader barrier), pellets, and ECH (strong electron barrier). The new Divertor-2000, a key ingredient in all these discharges, provides effective density, impurity and heat flux control in the high-triangularity plasma shapes. Discharges at n e /n GW ∼1.4 have been obtained with gas puffing by maintaining the edge pedestal pressure; this operation is easier with Divertor-2000. We are developing several other tools required for AT operation, including real-time feedback control of resistive wall modes (RWMs) with external coils, and control of neoclassical tearing modes (NTMs) with electron cyclotron current drive (ECCD). (author)

  16. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  17. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  18. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  19. System studies for quasi-steady-state advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated

  20. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1990-04-01

    This paper discusses the following work on the text tokamak: data systems; particle confinement; impurity transport; plasma rotation; runaway electrons; electron cyclotron heating; FIR system; transient transport; internal turbulence; edge turbulence; ion temperature; EML experiments; impurity pellet experiments; MHD experiments and analysis; TEXT Upgrade; and Upgrade diagnostics

  1. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    International Nuclear Information System (INIS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.

    2016-01-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  2. Relativistic runaway electrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Jaspers, R.E.

    1995-01-01

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)

  3. The ICRH tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1976-01-01

    A Tokamak Fusion Test Reactor where the ion are maintained at Tsub(i) approximately 20keV>Tsub(e) approximately 7keV by ion-cyclotron resonance heating is shown to produce an energy amplification of Q>2 provided the principal ion energy loss channel is via collisional transfer to the electrons. Such a reactor produces 19MW of fusion power to the electrons. Such a reactor produces 19MW of fusion power and requires a 50MHz radio-frequency generator capable of 50MW peak power; it is otherwise compatible with the conceptual design for the Princeton TFTR. The required n tausub(E) values for electrons and ions are respectively ntausub(Ee)>1.5.10 13 cm -3 -sec and ntausub(Ei)>4.10 13 cm -3 -sec. The principal areas where research is needed to establish this concept are: tokamak transport calculations, ICRH physics, trapped-particle instability energy losses, tokamak equilibria with high values of βsub(theta), and, of course, impurities

  4. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    International Nuclear Information System (INIS)

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory

  5. Recent results from the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petersen, P.I.

    1998-02-01

    The DIII-D national fusion research program focuses on establishing the scientific basis for optimization of the tokamak approach to fusion energy production. The symbiotic development of research, theory, and hardware continues to fuel the success of the DIII-D program. During the last year, a radiative divertor and a second cryopump were installed in the DIII-D vacuum vessel, an array of central and boundary diagnostics were added, and more sophisticated computer models were developed. These new tools have led to substantial progress in the understanding of the plasma. The authors now have a better understanding of the divertor as a means to manage the heat, particle, and impurity transport pumping of the plasma edge using the in situ divertor cryopumps effectively controls the plasma density. The evolution of diagnostics that probe the interior of the plasma, particularly the motional Stark effect diagnostic, has led to a better understanding of the core of the plasma. This understanding, together with tools to control the profiles, including electron cyclotron waves, pellet injection, and neutral beam injection, has allowed them to progress in making plasma configurations that give rise to both low energy transport and improved stability. Most significant here is the use of transport barriers to improve ion confinement to neoclassical values. Commissioning of the first high power (890 kW) 110 GHz gyrotron validates an important tool for managing the plasma current profile, key to maintaining the transport barriers. An upgraded plasma control system, ''isoflux control,'' which exploits real time MHD equilibrium calculations to determine magnetic flux at specified locations within the tokamak vessel and provides the means for precisely controlling the plasma shape and, in conjunction with other heating and fueling systems, internal profiles

  6. The insulation irradiation test program for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1990-01-01

    The electrical insulation for the toroidal field coils of the Compact Ignition Tokamak (CIT) is expected to be exposed to radiation doses on the order of 10 10 rad with ∼90% of the dose from neutrons. The coils are cooled to liquid nitrogen temperature and then heated during the pulse to a peak temperature >300 K. In a program to evaluate the effects of radiation exposure on the insulators, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1, and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to approximately 5 x 10 9 rad and 3 x 10 10 rad with 35 to 40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was done by cycling the shear load for up to 30,000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths on the order of 120 MPa were measured. The behavior of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed nearly identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. 9 refs., 5 figs

  7. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  8. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak.

  9. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    International Nuclear Information System (INIS)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak

  10. The control system position to the electric probe in the Tokamak Novillo

    International Nuclear Information System (INIS)

    Sanchez Garcia, A.M.

    1993-01-01

    The electric probe are used to determine the parameters of electronic temperatures, the electron density and the plasma potential in Tokamak machines. On this machines the electric probes are used only in the plasma edge due to the intensive flow of high energy particles. This is the region in which the plasma density and temperature are relatively low. It is showed, in this work, the design and construction of an electro mechanic system which is used to control the position of the probe into the discharge chamber. This system is called T he control system position to the electric probe in the tokamak Novillo . This controller is a minimum system that is in charge , by a programming, to rule a step motor by a logic sequence commutation. This is done with the purpose of slide the probe in a radial way with a milli metric precision into the discharge chamber. To this purpose it is used a step motor, due it is principal characteristic is the control of the end element position without a feedback needing of the wrong signal. The system function consist on reading, through a board, the corresponding data to the position where it is wanted to place the probe, it also displays by a numeric indicator the position in which the probe is located (in an interval from 0 to 100 mm), and provide the logic sequence commutation for the step motor. The minimum system is constituted by the micro controller 8748-8 that gives with all precision the control of the electric probe position in the Tokamak Novillo, by programming, associated circuits, amplification unit bi phase unipolar and switching power (they supply the power to the control circuit and to the step motor too), avoiding the destruction of the electric probe. (Author). 17 refs, 29 figs

  11. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  12. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  13. Particle injection into the Castor tokamak by electric arcs

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Juettner, B.; Pursch, H.; Jakubka, K.; Stoeckel, J.; Zacek, F.

    1989-01-01

    The influence of arcing on the tokamak discharge was investigated in the Castor tokamak. A special calibrated gun which emitted tantalum by artificially ignited electric arcs, was used to study the transport of the injected tantalum ions, neutrals and droplets. The injection of tantalum led to an increase in electron density and to a change of plasma position only if the transported charge was higher than 0.01 C. As the naturally occurring arcs are well below this limit, the arcing in tokamaks is rather the consequence than the reason of instabilities. (J.U.)

  14. The residual zonal dynamics in a toroidally rotating tokamak

    International Nuclear Information System (INIS)

    Zhou Deng

    2015-01-01

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows with arbitrary rotating velocity. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the previous simulation result for high aspect ratio tokamaks. (author)

  15. Plasma boundary experiments on DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Brooks, N.; Jackson, G.L.; Langhorn, A.; Leikind, B.; Lippmann, S.; Luxon, J.; Petersen, P.; Petrie, T.; Stambaugh, R.D.; Simonen, T.C.; Staebler, G.; Buchenauer, D.; Futch, A.; Hill, D.N.; Rensink, M.; Hogan, J.; Menon, M.; Mioduszewski, P.; Owen, L.; Matthews, G.

    1990-06-01

    A survey of the boundary physics research on the DIII-D tokamak and an outline of the DIII-D Advanced Divertor Program (ADP) is presented. We will present results of experiments on impurity control, impurity transport, neutral particle transport, and particle effects on core confinement over a wide range of plasma parameters, I p approx-lt 3 MA, β T approx-lt 10.7%, P(auxiliary) approx-lt 20 MW. Based on the understanding gained in these studies, we in collaboration with a number of other laboratories have devised a series of experiments (ADP) to modify the core plasma conditions through changes in the edge electric field, neutral recycling, and plasma surface interactions. 41 refs., 8 figs., 1 tab

  16. Physics analysis database for the DIII-D tokamak

    International Nuclear Information System (INIS)

    Schissel, D.P.; Bramson, G.; DeBoo, J.C.

    1986-01-01

    The authors report on a centralized database for handling reduced data for physics analysis implemented for the DIII-D tokamak. Each database record corresponds to a specific snapshot in time for a selected discharge. Features of the database environment include automatic updating, data integrity checks, and data traceability. Reduced data from each diagnostic comprises a dedicated data bank (a subset of the database) with quality assurance provided by a physicist. These data banks will be used to create profile banks which will be input to a transport code to create a transport bank. Access to the database is initially through FORTRAN programs. One user interface, PLOTN, is a command driven program to select and display data subsets. Another user interface, PROF, compares and displays profiles. The database is implemented on a Digital Equipment Corporation VAX 8600 running VMS

  17. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  18. Transport in the tokamak plasma edge

    International Nuclear Information System (INIS)

    Vold, E.L.

    1989-01-01

    Experimental observations characterize the edge plasma or boundary layer in magnetically confined plasmas as a region of great complexity. Evidence suggests the edge physics plays a key role in plasma confinement although the mechanism remains unresolved. This study focuses on issues in two areas: observed poloidal asymmetries in the Scrape Off Layer (SOL) edge plasma and the physical nature of the plasma-neutral recycling. A computational model solves the coupled two dimensional partial differential equations governing the plasma fluid density, parallel and radial velocities, electron and ion temperatures and neutral density under assumptions of toroidal symmetry, ambipolarity, anomalous diffusive radial flux, and neutral-ion thermal equilibrium. Drift flow and plasma potential are calculated as dependent quantities. Computational results are compared to experimental data for the CCT and TEXTOR:ALT-II tokamak limiter cases. Comparisons show drift flux is a major component of the poloidal flow in the SOL along the tangency/separatrix. Plasma-neutral recycling is characterized in several tokamak divertors, including the C-MOD device using magnetic flux surface coordinates. Recycling is characterized by time constant, τ rc , on the order of tens of milliseconds. Heat flux transients from the core into the edge on shorter time scales significantly increase the plasma temperatures at the target and may increase sputtering. Recycling conditions in divertors vary considerably depending on recycled flux to the core. The high density, low temperature solution requires that the neutral mean free path be small compared to the divertor target to x-point distance. The simulations and analysis support H-mode confinement and transition models based on the recycling divertor solution bifurcation

  19. Prospects for steady-state tokamak reactor operation through feedback control of the current density profile

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D

    1994-12-31

    A brief overview of the most relevant experiments on current profile modifications, strong improvements with respect to the usual L-mode scaling laws and Troyon beta limit is presented, as relevant issues for most tokamaks. Practical means and scenarios for producing and maintaining the optimum current profiles in the various phases of the thermonuclear discharge (profile formation, current ramp-up, burn phase) are proposed. (author). 34 refs., 3 figs.

  20. Studies of non-inductive current drive in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1993-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges, dc-helicity injection and internally-generated pressure-driven currents, have been developed on the CDX-U tokamak. To study the equilibrium and transport of these plasmas, a full set of magnetic diagnostics was installed. By applying a finite element method and a least squares error fitting technique, internal plasma current distributions are reconstructed from the measurements. Electron density distributions were obtained from 2 mm interferometer measurements by a similar least squares error technique utilizing magnetic flux configurations obtained by the magnetic analysis. Neoclassical pressure-driven currents in ECH plasmas are modeled with the reconstructed magnetic structure, using the electron density distribution and the electron temperature profile measured by a Langmuir probe. In the dc-helicity injection scheme, the need to increase injection current and maintain plasma equilibrium restricts possible arrangements. Several injection configurations were investigated, with the best found to be outside injection with a single divertor configuration, where the cathode is placed at the low field side of the x-point. Both pressure-driven and dc-helicity injected tokamaks show the importance of plasma equilibrium in obtaining high plasma current. Programmed vertical field operation has proven to be very important in achieving high plasma current. These non-inductive current drive techniques show great potential as efficient current drive methods for future steady-state and/or long-pulse fusion reactors

  1. Configuration studies for a small-aspect-ratio tokamak stellarator hybrid

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.; Ware, A.

    1996-08-01

    The use of modulated toroidal coils offers a new path to the tokamak-stellarator hybrids. Low-aspect-ratio configurations can be found with robust vacuum flux surfaces and rotational transform close to the transform of a reverse-shear tokamak. These configurations have clear advantages in minimizing disruptions and their effect and in reducing tokamak current drive needs. They also allow the study of low-aspect-ratio effects on stellarator confinement in small devices

  2. Compact fusion energy based on the spherical tokamak

    Science.gov (United States)

    Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.

    2018-01-01

    Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

  3. Department of Energy Office of Energy Research Programs: Fiscal year 1996 authorization testimony presented before the Subcommittee on Energy and Environment Committee on Science

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1995-01-01

    Fusion energy is not as mature as the other energy options. However, in recent years fusion research has focused on its energy mission, and the progress has been impressive. Ten years ago, many observers questioned whether fusion in the laboratory was scientifically feasible. Today, few question fusion's basic feasibility, and the issues have shifted to its economic and environmental aspects. This is a measure of the progress the program has made. For the reasons outlined here, the author requests Congress to support at a minimum the Administration's FY96 budget request of $366 Million for fusion energy. This level permits the program to continue developing the tokamak as its principal fusion concept. The level is, however, insufficient to pursue meaningful development of specialized materials and non-tokamak alternatives which are sure to play important roles in enabling fusion to reach its highest potential attractiveness

  4. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  5. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2004-01-01

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  6. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  7. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-12

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.

  8. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    International Nuclear Information System (INIS)

    1995-01-01

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development

  9. Compact tokamak reactors. Part 1 (analytic results)

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1996-01-01

    We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model

  10. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. DREAM (DRastically EAsy Maintenance) tokamak

    International Nuclear Information System (INIS)

    Nishio, Satoshi

    1998-01-01

    If the major part of the electric power demand will be supplied by tokamak fusion power plants, a suitable tokamak reactor must be an ultimate goal, i.e., the reactor must be excellent both in terms of construction cost and safety aspects including operation availability (maintainability and reliability). In attaining this goal, an approach focusing on both safety and availability (including reliability and maintainability) issues is the most promising strategy. The tokamak reactor concept with a very high aspect ratio configuration and SiC/SiC composite structural materials is compatible with this approach, which is called the DREAM (DRastically EAsy Maintenance) approach. The SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to good accessibility for the maintenance of machines. As an intermediate steps between an experimental reactor such as ITER and the ultimate goal, the development of prototype reactor which demonstrates electric power generation and an initial-phase commercial reactor which demonstrates for COE (cost of electricity) competitiveness has been investigated. Especially for the prototype reactor, material and technological immaturity must be considered. (J.P.N.)

  11. Tokamak power systems studies, FY 1985

    International Nuclear Information System (INIS)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs

  12. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  13. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  14. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  15. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  16. Tokamak Engineering Technology Facility scoping study

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR

  17. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  18. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  19. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)

  20. Plasma diagnostics for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10 21 m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs

  1. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2002-01-01

    OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  2. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  3. Total magnetic reconnection during a tokamak major disruption

    International Nuclear Information System (INIS)

    Goetz, J.A.

    1990-09-01

    Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface

  4. Commissioning and preliminary operation of HL-2A tokamak

    International Nuclear Information System (INIS)

    Liu Dequan; Liu Yong; Yan Jianchen; Cao Zeng; Yang Qingwei; Zhou Caipin; Li Xiaodong

    2005-01-01

    HL-2A is a divertor tokamak located at new site of Southwestern Institute of Physics (SWIP), Chengdu, China. It can be operated in double-null and single-null divertor with closed configurations. The effects of the divertor on impurity behaviors, MHD instabilities, transport, wall conditioning and divertor physics are key issues to be studied during the first step operation on HL-2A. Preliminary experiments with limiter and single null divertor configurations were carried out in 2003. Main parameters achieved are the plasma current 168 KA, duration time of 920 ms and plasma linear-averaged density of 1.7 x 10 19 m -3 . The impurities, especially of low Z, are clearly decreased during the divertor experiments

  5. Federal Tax Issues Raised by International Study Abroad Programs.

    Science.gov (United States)

    Harding, Bertrand M., Jr.

    2000-01-01

    Identifies and describes tax issues raised by study abroad programs and suggests steps that a college or university can take to minimize or eliminate adverse U.S. and foreign tax exposure to both itself and its employees. (EV)

  6. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  7. /sup 3/He functions in tokamak-pumped laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  8. Multi scale study of carbon deposits collected in Tore-Supra and TEXTOR tokamaks; Etude multi echelle des depots carbones collectes dans les tokamaks Tore Supra et TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M

    2007-06-15

    Tokamaks are devices aimed at studying magnetic fusion. They operate with high temperature plasmas containing hydrogen, deuterium or tritium. One of the major issue is to control the plasma-wall interaction. The plasma facing components are most often in carbon. The major drawback of carbon is the existence of carbon deposits and dust, due to erosion. Dust is potentially reactive in case of an accidental opening of the device. These deposits also contain H, D or T and induce major safety problems when tritium is used, which will be the case in ITER. Therefore, the understanding of the deposit formation and structure has become a main issue for fusion researches. To clarify the role of the deposits in the retention phenomenon, we have done different complementary characterizations for deposits collected on similar places (neutralizers) in tokamaks Tore Supra (France) and TEXTOR (Germany). Accessible microporous volume and pore size distribution of deposits has been determined with the analysis of nitrogen and methane adsorption isotherms using the BET, Dubinin-Radushkevich and {alpha}{sub s} methods and the Density Functional Theory (DFT). To understand growth mechanisms, we have studied the deposit structure and morphology. We have shown using Transmission Electron Microscopy (TEM) and Raman micro-spectrometry that these deposits are non amorphous and disordered. We have also shown the presence of nano-particles (diameter between 4 and 70 nm) which are similar to carbon blacks: nano-particle growth occurs in homogeneous phase in the edge plasma. We have emphasised a dual growth process: a homogenous and a heterogeneous one. (author)

  9. Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science

    International Nuclear Information System (INIS)

    Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.

    2012-01-01

    Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system

  10. Starfire: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1979-01-01

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor. The STARFIRE Project was initiated in May 1979, with the goal of completing the design study by October 1980. The purpose of this paper is to present an overview of the major parameters and design features that have been tentatively selected for STARFIRE

  11. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  12. The spheric tokamak programme at Culham

    International Nuclear Information System (INIS)

    Sykes, A.

    1999-01-01

    The Spherical Tokamak (ST) is the low aspect ratio limit of the conventional tokamak, and appears to offer attractive physics properties in a simpler device. The START (Small Tight Aspect Ratio Tokamak) experiment provided the world's first demonstration of the properties of hot plasmas in an ST configuration, and was operational at Culham from January 1991 to March 1998, obtaining plasma current of up to 300 kA and pulse durations of ∼ 50 ms. Its successor, MAST is scheduled to obtain first plasma in Autumn 1998 and is a purpose built, high vacuum machine designed to have a tenfold increase in plasma volume with plasma currents up to 2 MA. Current drive and heating will be by a combination of induction-compression as on START, a high-performance central solenoid, 1.5 MW ECRH and 5 MW of Neutral Beam Injection. The promising results from START are reviewed, and the many challenges posed for the next generation of purpose-built STs (such as MAST) are described. (author)

  13. Accessibility of high β tokamak states

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1978-05-01

    Encouraging results with neutral beam heating and adiabatic compression of tokamak plasmas have prompted new experiments which will study the approach to high β states. As projected tokamak β values become nonnegligible (average β of 4% is the goal), the models previously used for transport calculations will become inadequate. These models will be required to account for the evolution of the magnetic geometry, along with the change in plasma parameters. We present an axisymmetric transport model which should be useful for studying the approach to higher β values in tokamak experiments. Results from transport calculations with this model allow us to draw a parallel between observed behavior in seemingly unrelated experiments: electron heating by neutral injection in the ORMAK device and adiabatic compression in the ATC experiment. Finally, we find that the nature of cross-field transport may be expected to change as significant β values are reached. Enhanced transport from ballooning instabilities is likely to play a role as important as that now played by sawtooth (m = 1) and saturated (m = 2) instabilities. New techniques for describing this transport are required

  14. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  15. Rotating shield ceiling for the compact ignition tokamak test cell

    International Nuclear Information System (INIS)

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  16. Potential CERCLA reauthorization issues relevant to US DOE's Environmental Restoration Program

    International Nuclear Information System (INIS)

    Siegel, M.R.; McKinney, M.D.; Jaksch, J.A.; Dailey, R.L.

    1993-02-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is currently scheduled to be reauthorized in 1994. The US Department of Energy (DOE) has a significant stake in CERCLA reauthorization. CERCLA, along with its implementing regulation, the National Contingency Plan (NCP), is the principal legal authority governing DOE's environmental restoration program. The manner in which CERCLA-related issues are identified, evaluated, and dispatched may have a substantial impact on DOE's ability to conduct its environmental restoration program. A number of issues that impact DOE's environmental restoration program could be addressed through CERCLA reauthorization. These issues include the need to (1) address how the National Environmental Policy Act (NEPA) should be integrated into DOE CERCLA actions, (2) facilitate the streamlining of the Superfund process at DOE sites, (3) address the conflicts between the requirements of CERCLA and the Resource Conservation and Recovery Act (RCRA) that are especially relevant to DOE, (4) examine the criteria for waiving applicable or relevant and appropriate requirements (ARARs) at DOE sites, and (5) delineate the appropriate use of institutional controls at DOE sites

  17. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    Science.gov (United States)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  18. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  19. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  20. Recent progress on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule

  1. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  2. A study on the Fusion Reactor - Development of charge exchange recombination spectroscopy for tokamak diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tong Nyong; Kim, Dong Eon; Kim, Dae Sung; Kim, Seong Ho [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    1996-09-01

    This project has been carried to train people and accumulate the knowledge and techniques related to the measurement of the profiles of ion temperature, toroidal rotation velocity, and fully-stripped ion density in a fusion tokamak plasma by the development of plasma diagnostics using charge exchange recombination (CER) spectroscopy. Daring the 1 st year, the basic study and review on the charge exchange process and the conceptual design and review of the diagnostics have been conducted. In addition, the various atomic data centers around the world have been surveyed and atomic data related to CER have been constructed. The results of this project can be used to the construction and tokamak machine installation of a CER plasma diagnostic to a new superconducting supported by National Fusion Program. 42 refs., 3 tabs., 16 figs. (author)

  3. Electric conductivity and bootstrap current in tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Wang Maoquan

    1996-12-01

    A modified Ohm's law for the electric conductivity calculation is presented, where the modified ohmic current can be compensated by the bootstrap current. A comparison of TEXT tokamak experiment with the theories shows that the modified Ohm's law is a more close approximation to the tokamak experiments than the classical and neoclassical theories and can not lead to the absurd result of Z eff <1, and the extended neoclassical theory would be not necessary. (3 figs.)

  4. Preliminary results of the TBR small tokamak

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Fagundes, A.N.; Da Silva, R.P.; Galvao, R.M.O.; Del Bosco, E.; Vuolo, J.H.; Sanada, E.K.; Dellaqua, R.

    1982-01-01

    The paper gives a short description of the TBR - small Brazilian tokamak and the first results obtained for plasma formation and equilibrium. Measured breakdown curves for hydrogen are shown to be confined within analytically calculated limits and to depend strongly on stray vertical magnetic fields. Time profiles of plasma current in equilibrium are shown and compared with the predictions of a simple analytical model for tokamak discharges. Reasonable agreement is obtained taking Zsub(eff) as a free parameter. (author)

  5. Plasma diagnostics using synchrotron radiation in tokamaks

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Granata, G.

    1995-09-01

    This report deal with the use of synchrotron radiation in tokamaks. The main advantage of this new method is that it enables to overcome several deficiencies, caused by cut-off, refraction, and harmonic overlap. It also makes it possible to enhance the informative contents of the familiar low harmonic scheme. The basic theory of the method is presented and illustrated by numerical applications, for plasma parameters of relevance in present and next step tokamaks. (TEC). 10 refs., 13 figs

  6. From use cases of the Joint European Torus towards integrated commissioning requirements of the ITER tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A.C. [Fusion for Energy, 08019 Barcelona (Spain); Stephen, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, F.; Cavinato, M. [Fusion for Energy, 08019 Barcelona (Spain); Farthing, J.W. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ranz, R.; Saibene, G. [Fusion for Energy, 08019 Barcelona (Spain); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arnoux, G. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, D. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Blackman, T.; Boboc, A.; Card, P.J.; Dalley, S.; Day, I.E. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Drewelow, P.; Elsmore, C.; Ivings, E.; Felton, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    The Joint European Torus (JET) is the largest tokamak currently in operation in the world. One of the greatest challenges of JET is the integrated commissioning of all its major plant systems. This is driven, partially, by the size and complexity of its operational infrastructure and also by the fact that, being an international environment, it has to address the issues of integrating, commissioning and maintaining plant systems developed by third parties. The ITER tokamak, now in construction, is a fusion device twice the size of JET and, being a joint effort between the European Union, China, India, Japan, South Korea, the Russian Federation and the USA, it will share on a wider scale all of the JET challenges regarding integration and integrated commissioning of very large and complex plant systems. With the scope of taking advantage from the history and experience of JET, Fusion for Energy (F4E) has worked together with the Culham Centre for Fusion Energy (CCFE), the host and operator of JET, for the provision of ITER relevant user experiences related to the integrated commissioning of the tokamak. This work presents and discusses the main results and the methods that were used to extract and translate the commissioning experience information into ITER requirements.

  7. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  8. Tokamak impurity-control techniques

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1980-01-01

    A brief review is given of the impurity-control functions in tokamaks, their relative merits and disadvantages and some prominent edge-interaction-control techniques, and there is a discussion of a new proposal, the particle scraper, and its potential advantages. (author)

  9. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  10. Program plan for the resolution of tank vapor issues

    International Nuclear Information System (INIS)

    Osborne, J.W.

    1992-09-01

    The purpose of this document is to provide a detailed description of the priorities, logic, work breakdown structure (WBS), task descriptions, and program milestones required for the resolution of tank vapor issues associated with the single-shell tanks (SST) and double-shell tanks (DST). The primary objective of this plan is to determine whether a health (personnel exposure) and/or safety (flammability) hazard exists. This plan is focused upon one waste tank, 241-C-103, but contains all elements required to bring the vapor issues to resolution

  11. Economic trends of tokamak power plants independent of physics scaling models

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1978-01-01

    This study examines the effects of plasma radius, field on axis, plasma impurity level, and aspect ratio on power level and unit capital cost, $/kW/sub e/, of tokamak power plants sized independent of plasma physics scaling models. It is noted that tokamaks sized in this manner are thermally unstable based on trapped particle scaling relationships. It is observed that there is an economic advantage for larger power level tokamaks achieved by physics independent sizing; however, the incentive for increased power levels is less than that for fission reactors. It is further observed that the economic advantage of these larger power level tokamaks is decreased when plasma thermal stability measures are incorporated, such as by increasing the plasma impurity concentration. This trend of economy with size obtained by physics independent sizing is opposite to that observed when the tokamak designs are constrained to obey the trapped particle and empirical scaling relationships

  12. Two-ion ICRF heating in Tokamaks

    International Nuclear Information System (INIS)

    Tennfors, E.

    1985-03-01

    The practical consequences for tokamak plasma heating in the ion cyclotron frequency regime of the two-dimensional treatment of the two-ion mode conversion layer are analyzed. The problem of evaluation of the condition for fast wave resonance is analyzed, as well as the limitations imposed by warm plasma effects. Simple ways to find the mode conversion surfaces when they exist are presented. Also for large tokamaks, it is possible to obtain mode conversion conditions for realistic antenna spectra provided species concentration and frequency are chosen such that the surface Epsilon = 0 intersects the plasma midplane just outside of the magnetic axis. (Author)

  13. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  14. Effects of isotropic alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-12-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependences have been examined

  15. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  16. Intervening: Managerial Issues and Challenges in an Educational Management Development Program.

    Science.gov (United States)

    Barrilleaux, Louis E.; Schermerhorn, John R., Jr.

    The literature on intervention theory tends to overlook the pragmatic managerial issues and challenges of intervening. This paper analyzes the formative period of a school management development program to establish crucial differences between the program director's espoused theory and the actual experience of the intervention. These differences…

  17. Automated Fault Detection for DIII-D Tokamak Experiments

    International Nuclear Information System (INIS)

    Walker, M.L.; Scoville, J.T.; Johnson, R.D.; Hyatt, A.W.; Lee, J.

    1999-01-01

    An automated fault detection software system has been developed and was used during 1999 DIII-D plasma operations. The Fault Identification and Communication System (FICS) executes automatically after every plasma discharge to check dozens of subsystems for proper operation and communicates the test results to the tokamak operator. This system is now used routinely during DIII-D operations and has led to an increase in tokamak productivity

  18. Erosion of the first wall of Tokamaks

    International Nuclear Information System (INIS)

    Guseva, M.I.; Ionova, E.S.; Martynenko, Yu.V.

    1980-01-01

    An estimate of the rate of erosion of the wall due to sputtering and blistering requires knowledge of the fluxes and energies of the particles which go from the plasma to the wall, of the sputtering coefficients S, and of the erosion coefficients S* for blistering. The overall erosion coefficient is equal to the sum of the sputtering coefficient and the erosion coefficient for blistering. Here the T-20 Tokamak is examined as an example of a large-scale Tokamak. 18 refs

  19. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    Johner, J.

    1989-04-01

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aB t x of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  20. New directions in tokamak reactors

    International Nuclear Information System (INIS)

    Baker, C.C.

    1985-01-01

    New directions for tokamak research are briefly mentioned. Some of the areas for new considerations are the following: reactor size, beta ratio, current drivers, blankets, impurity control, and modular designs