WorldWideScience

Sample records for tnfa-induced pre-b cell

  1. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    R. Dong

    2007-08-01

    Full Text Available The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a. To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB inhibitor aspirin while not affected by the reactive oxygen species (ROS scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

  2. C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis

    Directory of Open Access Journals (Sweden)

    Chris van Oevelen

    2015-08-01

    Full Text Available Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells.

  3. N-acetylcysteine increases the frequency of bone marrow pro-B/pre-B cells, but does not reverse cigarette smoking-induced loss of this subset.

    Directory of Open Access Journals (Sweden)

    Victoria L Palmer

    Full Text Available We previously showed that mice exposed to cigarette smoke for three weeks exhibit loss of bone marrow B cells at the Pro-B-to-pre-B cell transition, but the reason for this is unclear. The antioxidant N-acetylcysteine (NAC, a glutathione precursor, has been used as a chemopreventive agent to reduce adverse effects of cigarette smoke exposure on lung function. Here we determined whether smoke exposure impairs B cell development by inducing cell cycle arrest or apoptosis, and whether NAC treatment prevents smoking-induced loss of developing B cells.Groups of normal mice were either exposed to filtered room air or cigarette smoke with or without concomitant NAC treatment for 5 days/week for three weeks. Bone marrow B cell developmental subsets were enumerated, and sorted pro-B (B220(+CD43(+ and pre-B (B220(+CD43(- cell fractions were analyzed for cell cycle status and the percentage of apoptotic cells. We find that, compared to sham controls, smoke-exposed mice have ∼60% fewer pro-B/pre-B cells, regardless of NAC treatment. Interestingly, NAC-treated mice show a 21-38% increase in total bone marrow cellularity and lymphocyte frequency and about a 2-fold increase in the pro-B/pre-B cell subset, compared to sham-treated controls. No significant smoking- or NAC-dependent differences were detected in frequency of apoptotic cells or the percentage cells in the G1, S, or G2 phases of the cycle.The failure of NAC treatment to prevent smoking-induced loss of bone marrow pre-B cells suggests that oxidative stress is not directly responsible for this loss. The unexpected expansion of the pro-B/pre-B cell subset in response to NAC treatment suggests oxidative stress normally contributes to cell loss at this developmental stage, and also reveals a potential side effect of therapeutic administration of NAC to prevent smoking-induced loss of lung function.

  4. Protective Role of Eosinophils and TNFa after Ozone Inhalation.

    Science.gov (United States)

    Fryer, Allison D; Jacoby, David B; Wicher, Sarah A

    2017-03-01

    air for 4 hours and measured changes in cell numbers and airway responses 1 or 3 days later. They counted the numbers of eosinophils and other white blood cells (macrophages, neutrophils, and lymphocytes) in bone marrow, blood, and bronchoalveolar lung lavage fluid. The investigators also measured important physiological responses, including bronchoconstriction. Some animals were pretreated with etanercept and monoclonal anti-IL-5, which block tumor necrosis factor-a (TNFa) and IL-5, respectively. TNFa and IL-5 blockers have been used to treat patients with asthma. A key feature of the study was a technique to distinguish which white blood cells were synthesized after exposure from those that already existed, by injecting animals with bromodeoxyuridine (BrdU). BrdU is a thymidine analogue that is incorporated into the DNA of dividing cells, serving as a marker of newly produced cells. Therefore, a snapshot can be obtained of the proportion of newly synthesized (BrdU-positive) versus pre-existing (BrdU-negative) cell types. 1. Allergic and normal animals differed in the time course of bronchoconstriction and changes in cell types after ozone exposure. In normal animals, bronchoconstriction increased substantially at day 1 but decreased by day 3 after ozone exposure. In contrast, in allergic animals bronchoconstriction remained high at day 3. Ozone also increased the percentage of newly formed, BrdU2 positive eosinophils in the bone marrow and lungs of normal but not allergic animals. 2. Pretreatment with the TNFa blocker etanercept had complex effects, which differed between normal and allergic animals. In normal animals, etanercept decreased ozone-induced new synthesis of eosinophils in the bone marrow and blocked eosinophil migration to the lung; it also increased bronchoconstriction at day 3 (relative to day 1 without etanercept). In allergic animals, etanercept had no effect on any cell type in the bone marrow or lung after exposure to ozone and did not change

  5. [Effects and mechanisms of the inflammatory reaction related to NASH and induced by activation of the cholinergic anti-inflammatory pathway].

    Science.gov (United States)

    Zhou, Zhou; Chen, Xiaomei; Li, Fuqiang; Tang, Cuilan

    2015-01-01

    To investigate the effects and mechanisms of the inflammatory reaction related to nonalcoholic steatohepatitis (NASH) and induced by activation of the cholinergic anti-inflammatory pathway. A mouse model of NASH was established by feeding a high-fat and high-sugar diet.Activation of the cholinergic anti-inflammatory pathway was achieved by nicotine administration to the NASH modeled mice and normal controls. Liver biopsies were taken and the concentrations of cytokines were measured. Isolated liver primary Kupffer cells and RAw264.7 cells were cultured, pre-treated or not with lipopolysaccharide (LPS) and exposed to nicotine, after which the supernatant concentrations of IL-6 and TNFa were determined by ELISA. The protein expression levels of phosphorylated (p)-NF-kB and I k B were detected in primary cultured Kupffer cells by western blotting. The mouse model of NASH was successfully established, as evidenced by findings from liver biopsy and serum liver function tests. The degree of liver inflammation in the NASH mice decreased after nicotine administration, and the level of serum TNFa also significantly decreased. The levels of serum TNFa were 21.95+/-0.8 pg/mL in nicotine-treated mice and 38.07+/-1.7 pg/mL in the non-nicotine-treated NASH mice (P less than 0.05). The nicotine treatment also significantly reduced the concentration of TNFa in the culture supernatants of Kupffer cells after LPS stimulation; moreover, the supernatant level of TNFa decreased significantly after the nicotine treatment (Pless than 0.05). LPS stimulation of the RAw264.7 cells led to an increased level ofp-NF-kB and a reduced level ofI-kB, suggesting that the NF-kB pathway had been activated; different doses of nicotine pre-treatment led to down-regulation of the p-NF-kB level and up-regulation of the I-kB level, both in dose-dependent manners. Activating the cholinergic anti-inflammatory pathway inhibits the NASH-related inflammatory reaction, and the mechanism for this inhibition

  6. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK.

    Science.gov (United States)

    Kim, Ekaterina; Hurtz, Christian; Koehrer, Stefan; Wang, Zhiqiang; Balasubramanian, Sriram; Chang, Betty Y; Müschen, Markus; Davis, R Eric; Burger, Jan A

    2017-03-02

    Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR + B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR + ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR + ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR + ALL. Consequently, in mouse xenograft models of pre-BCR + ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR + ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR + ALL and highlight the importance of ibrutinib effects on alternative kinase targets. © 2017 by The American Society of Hematology.

  7. Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation.

    Science.gov (United States)

    Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid

    2015-01-01

    Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.

  8. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  9. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  10. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  11. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  12. Bone marrow pre-B cells and the clonal anergy theory of immunologic tolerance.

    Science.gov (United States)

    Nossal, G J

    1987-03-01

    This review begins with a summary of a decade's research from the author's own laboratory which documents the fact that B lymphocytes can receive and store negative, down-regulatory signals from an encounter with antigen, and that the sensitivity to such negative signalling depends critically on maturational status, the most immature B cells being the most susceptible. The review then examines the relationship between these experimentally-induced models of immunologic tolerance, with the pre-B to B cell transition as the critical stage for examination, and the real-life phenomenon of self-tolerance. It makes the point that no repertoire-purging mechanism to ensure self-tolerance can afford to be too effective, for fear of purging too many useful cells, given the number and variability of self-antigens. The review then examines certain dilemmas posed by recent findings in cellular and molecular immunology. These include: 1) the preferential use of particular VH gene families by B cells at different stages of the differentiation process; 2) the apparent frequency of B lymphocytes with the potential for antiself-reactivity in the B cell repertoire; and 3) the existence of a new type of B cell, the Ly-1-positive B cell, with peculiar characteristics. These findings are considered within the particular contexts of pre-B-to-B cell transition and tolerance induction through clonal anergy mechanisms.

  13. A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Brandon K. Hadland

    2017-06-01

    Full Text Available Recent evidence points to the embryonic emergence of some tissue-resident innate immune cells, such as B-1a lymphocytes, prior to and independently of hematopoietic stem cells (HSCs. However, whether the full hematopoietic repertoire of embryonic HSCs initially includes these unique lineages of innate immune cells has been difficult to assess due to lack of clonal assays that identify and assess HSC precursor (pre-HSC potential. Here, by combining index sorting of single embryonic hemogenic precursors with in vitro HSC maturation and transplantation assays, we analyze emerging pre-HSCs at the single-cell level, revealing their unique stage-specific properties and clonal lineage potential. Remarkably, clonal pre-HSCs detected between E9.5 and E11.5 contribute to the complete B cell repertoire, including B-1a lymphocytes, revealing a previously unappreciated common precursor for all B cell lineages at the pre-HSC stage and a second embryonic origin for B-1a lymphocytes.

  14. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Apolline Salama

    Full Text Available In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6 or suppressive (IL-10 cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  15. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  16. A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells.

    Science.gov (United States)

    Hadland, Brandon K; Varnum-Finney, Barbara; Mandal, Pankaj K; Rossi, Derrick J; Poulos, Michael G; Butler, Jason M; Rafii, Shahin; Yoder, Mervin C; Yoshimoto, Momoko; Bernstein, Irwin D

    2017-06-06

    Recent evidence points to the embryonic emergence of some tissue-resident innate immune cells, such as B-1a lymphocytes, prior to and independently of hematopoietic stem cells (HSCs). However, whether the full hematopoietic repertoire of embryonic HSCs initially includes these unique lineages of innate immune cells has been difficult to assess due to lack of clonal assays that identify and assess HSC precursor (pre-HSC) potential. Here, by combining index sorting of single embryonic hemogenic precursors with in vitro HSC maturation and transplantation assays, we analyze emerging pre-HSCs at the single-cell level, revealing their unique stage-specific properties and clonal lineage potential. Remarkably, clonal pre-HSCs detected between E9.5 and E11.5 contribute to the complete B cell repertoire, including B-1a lymphocytes, revealing a previously unappreciated common precursor for all B cell lineages at the pre-HSC stage and a second embryonic origin for B-1a lymphocytes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Brucella abortus-infected B cells induce osteoclastogenesis.

    Science.gov (United States)

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2016-09-01

    Brucella abortus is an intracellular bacterium that establishes lifelong infections in livestock and humans although the mechanisms of its chronicity are poorly understood. Activated B cells have long lifespan and B. abortus infection activates B cells. Our results indicate that the direct infection of B cells with B. abortus induced matrix metalloproteinase-9 (MMP-9), receptor activator for NF κB ligand (RANKL), tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion. In addition, supernatants from B. abortus-infected B cells induced bone marrow-derived monocytes to undergo osteoclastogenesis. Using osteoprotegerin, RANKL's decoy receptor, we determined that RANKL is involved in osteoclastogenesis induced by supernatants from B. abortus-infected B cells. The results presented here shed light on how the interactions of B. abortus with B cells may have a role in the pathogenesis of brucellar osteoarticular disease. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Single-nucleotide polymorphisms of TNFA and IL1 in allergic rhinitis.

    Science.gov (United States)

    Nasiri, R; Amirzargar, A Akbar; Movahedi, M; Hirbod-Mobarakeh, A; Farhadi, E; Behniafard, N; Tavakkol, M; Ansaripour, B; Moradi, B; Zare, A; Rezaei, N

    2013-01-01

    Allergic rhinitis is a complex polygenic disorder of the upper respiratory tract. Given that proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL) 1 seem to play a role in the development of allergic rhinitis, we evaluated the associations between various single-nucleotide polymorphisms (SNPs) of the TNF and IL1 genes in a case-control study. The study population comprised 98 patients with allergic rhinitis. Genotyping was performed using polymerase chain reaction with sequence-specific primers for 2 TNFA promoter variants (rs1800629 and rs361525), 1 variant in the promoter region of IL1A (rs1800587), 2 SNPs in the IL1B gene (rs16944 and rs1 143634), 1 variant in the IL1 receptor (rs2234650), and 1 in IL1RA (rs315952). Patients who were homozygous for the T allele of rs16944 in IL1B had an 8.1-fold greater risk of allergic rhinitis than those with the C allele. In TNFA, a significant relationship was also detected between rs1800629 and rs361525 and allergic rhinitis. Except for rs1800587 in IL1A and rs315952 in IL1RA, significant differences were found between the patient and control groups for all other SNPs. We found that allelic variants in the TNFA and IL1 genes were not only associated with the risk of developing allergic rhinitis, but also affected disease course and severity.

  19. Concentration of MMP-9, TNF-a and IL-6 in patients with tumors and tumor-like bone lesions

    Directory of Open Access Journals (Sweden)

    Puchinyan D.M.

    2017-09-01

    Full Text Available Aim: to determine the concentration of MMP-9, TNF-a and IL-6 in blood serum of patients with benign and malignant bone tumors and feasibility of cytokine data use for differential diagnostics of the neoplastic process nature. Material and Methods. Levels of matrix metalloproteinase-9 (MMP-9, tumor necrosis factor-a (TNF-a and interleukin-6 (IL-6 in blood serum were determined by the immunoenzyme method in 64 patients with bone tissue neoplasms (fibrous dysplasia, osteocystoma, giant-cell tumor, osteosarcoma, chondrosarcoma, bone metastases, multiple myeloma. Re-sults. MMP-9 level was heightened in patients suffered from chondrosarcoma and multiple myeloma. TNF-a and IL-6 expression was increased in cases with bone metastases. MMP-9, TNF-a and IL-6 levels were higher in cases with malignant bone neoplasms than in cases with benign bone tumors. Conclusion. MMP-9, TNF-a and IL-6 participate in the neoplastic process pathogenesis directly. Nevertheless it is too early to speak about the diagnostic value of the cytokines in cases with tumorous bone affection.

  20. Inhibition of lipopolysaccharide-induced proinflammatory responses by Buddleja officinalis extract in BV-2 microglial cells via negative regulation of NF-kB and ERK1/2 signaling.

    Science.gov (United States)

    Oh, Won-Jun; Jung, Uhee; Eom, Hyun-Soo; Shin, Hee-June; Park, Hae-Ran

    2013-07-31

    Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE) on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s) of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  1. Inhibition of Lipopolysaccharide-Induced Proinflammatory Responses by Buddleja officinalis Extract in BV-2 Microglial Cells via Negative Regulation of NF-kB and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Hae-Ran Park

    2013-07-01

    Full Text Available Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  2. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  3. Delineation of a novel pre-B cell component in plasma cell myeloma: immunochemical, immunophenotypic, genotypic, cytologic, cell culture, and kinetic features.

    Science.gov (United States)

    Grogan, T M; Durie, B G; Lomen, C; Spier, C; Wirt, D P; Nagle, R; Wilson, G S; Richter, L; Vela, E; Maxey, V

    1987-10-01

    A novel pre-B cell component in direct and cultured myeloma bone marrow material has been delineated by using immunochemistry and flow cytometry techniques. Our phenotypic studies suggest a novel hybrid expression of pre-B and plasma cell antigens with coexpression of cytoplasmic mu, common acute lymphoblastic leukemia antigen, terminal deoxynucleotidyl transferase, and plasma cell antigens (PCA-1 and PC-1). This suggests that myeloma pre-B-like cells are aberrant malignant cells and not normal pre-B lymphocytic counterparts. With the advantage of a pure and stable source of these cells from M3 culture to allow molecular characterization, we performed one- and two-dimensional gel electrophoresis and Western blotting. We found that the cytoplasmic mu in myeloma pre-B-like cells has a molecular weight of 74,000 daltons and an isoelectric point of 6.3 and that it is strikingly homogeneous and discrete in size and charge compared with standard secretory mu, which suggests an aberrant, mutant, or monoclonal form of mu. Monoclonality was further evidenced by heavy- and light-chain immunoglobulin gene rearrangements demonstrated with JH and C kappa probes. We also established that this novel myeloma pre-B component is a major proliferative element as determined by double-labeling experiments with phenotype coupled to labeling/proliferative indexes. Our stimulatory studies indicate some capacity of these cells to mature on exposure to phorbol esters. These myeloma pre-B cells may represent the stem cell or self-renewal component in myeloma. Our establishment of these cells in long-term culture offers a considerable asset in studying the immature cells, which may be critical to the immortalization of myeloma.

  4. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  5. TNF alpha induces ABCA1 through NF-kappa B in macrophages and in phagocytes ingesting apoptotic cells

    NARCIS (Netherlands)

    Gerbod-Giannone, Marie-Christine; Li, Yankun; Holleboom, Adriaan; Han, Seongah; Hsu, Li-Chung; Tabas, Ira; Tall, Alan R.

    2006-01-01

    Recent evidence suggests that tumor necrosis factor alpha (TNF alpha) signaling in vascular cells can have antiatherogenic consequences, but the mechanisms are poorly understood. TNFa is released by free cholesterol loaded apoptotic macrophages, and the clearance of these cells by phagocytic

  6. The Effects of Aloe Vera on TNF-a Levels, the Percentage of Nk Cells and Th 17 Cells in Rat That Received Izoniazid and Rifampycin.

    Science.gov (United States)

    Mawarti, Herin; Rajin, Mukhamad; Asumta, Zulfikar

    2017-10-01

    The present study was undertaken to investigate the hepatoprotective effect of Aloe vera against side effect of antituberculosis drug. Twenty-five rats will be divided into five groups, namely the control group (without any treatment), the group of rats treated with anti-tuberculosis drugs, and a group of rats were treated antituberculosis drugs and got Aloe vera extract at a dose of 40; 80; and 120 mg/kg body weight. Antituberculosis drugs are isoniazid and rifampicin a dose of 50 mg/kg body weight. Antituberculosis treated group showed significantly increase levels of TNF-a, the percentage of NK cells and the number of Th17 cells compared with the control group ( p 0.05). Aloe vera at first and the third dose lower the number of NK cells compared to the antituberculosis group, although it has not yet reached a significant difference ( p > 0.05). The first dose of Aloe vera was significantly decreased the percentage of Th17 cells compared to the antituberculosis drug group ( p 0.05). It was concluded that administration of Aloe vera can suppress the production of TNF-a and the percentage of Th17 cells as a result of antituberculosis drug administration. Thus, Aloe vera can be a useful alternative to natural materials in the successful treatment of tuberculosis through the inhibition of side effect.

  7. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    Science.gov (United States)

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  8. Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells

    Directory of Open Access Journals (Sweden)

    Peter I. Lobo

    2017-08-01

    Full Text Available Natural IgM anti-leukocyte autoantibodies (IgM-ALAs inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs.

  9. Plasma tumor necrosis factor-a (TNF-a) levels in Gaucher disease

    NARCIS (Netherlands)

    Michelakakis, H.; Spanou, C.; Kondyli, A.; Dimitriou, E.; van Weely, S.; Hollak, C. E.; van Oers, M. H.; Aerts, J. M.

    1996-01-01

    Tumor necrosis factor-a (TNF-a) levels were measured in the plasma of patients with different types of Gaucher disease (GD) and patients with other lysosomal storage diseases. The highest TNF-a levels were observed in the most severe neuronopathic type of GD, exceeding those found in healthy

  10. Interleukin-2 production by human leukemia cell lines of pre-B cell origin

    International Nuclear Information System (INIS)

    Holan, V.; Minowada, J.

    1993-01-01

    Cells of 7 tested human leukemia cell lines of pre-B cell origin (as characterized by immunophenotyping and by the expression of cytoplasmic micro chains, but not by surface immunoglobulins) produced after stimulation with bacterial lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) a lymphokine activity which supported the growth of the interleukin-2 (IL-2)-dependent CTLL-2 cell line. Three pieces of evidence indicate that the secreted lymphokine was functionally and antigenically very similar, if not identical, to human IL-2: (1) The lymphokine supported the growth of murine IL-2-dependent CTLL-2 cells, which did not respond to human lymphokines other than IL-2, but it did not stimulate the growth of murine IL-3-dependent FDC-P2 cells, (2) the biological activity of the lymphokine was was inhibited by monoclonal antibody (mAb) anti-human-IL-2, and (3) the proliferation of IL-2-dependent cells in the presence of the active materials was completely inhibited by the inclusion of the anti-mouse-IL-2 receptor (IL-2R) mAb. Since leukemia cells of immature B-cell origin also synthesize IL-2R, the human pre-B cell leukemias could represent another type of hematological malignancy where the autocrine processes of IL-2 production and utilization are involved in the expansion of the disease. (author)

  11. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B cell leukemia

    Science.gov (United States)

    Pang, Swee Heng Milon; Minnich, Martina; Gangatirkar, Pradnya; Zheng, Zhiqiang; Ebert, Anja; Song, Guangchun; Dickins, Ross A; Corcoran, Lynn M; Mullighan, Charles G.; Busslinger, Meinrad; Huntington, Nicholas D; Nutt, Stephen L; Carotta, Sebastian

    2016-01-01

    The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements (EICE). Although all three factors are expressed from the onset of B cell development, single deficiency of these factors in B cell progenitors only mildly impacts on bone marrow B-lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B cell numbers. Strikingly, all PU.1/IRF4 and approximately 50% of PU.1/IRF8 double deficient mice developed pre-B cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B cell development and to prevent pre-B-ALL formation. PMID:26932576

  12. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  13. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  14. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  15. Reprogramming of B cells into macrophages: mechanistic insights

    OpenAIRE

    Di Tullio, Alessandro, 1982-

    2012-01-01

    Our earlier work has shown that pre-B cells can be converted into macrophages by the transcription factor C/EBPα at very high frequencies and also that a clonal pre-B cell line with an inducible form of C/EBPα can be converted into macrophage-like cells. Using these systems we have performed a systematic analysis of the questions whether during transdifferentiation the cells retrodifferentiate to a precursor cell state and whether cell cycle is required for reprogramming. As for the first ...

  16. V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fanca-/- mice.

    Science.gov (United States)

    Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd

    2016-11-24

    B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca -/- mice. In this work we demonstrated that Fanca -/- animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM - to IgM + transition of the B220 low B-cell population. Pre-B cells from Fanca -/- mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca -/- mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig.

  17. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    Science.gov (United States)

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  18. Analysis of epothilone B-induced cell death in normal ovarian cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  19. Assessment of TNFA polymorphisms at positions -857 and -863 in Polish peptic ulcer patients.

    Science.gov (United States)

    Sałagacka-Kubiak, Aleksandra; Zebrowska, Marta; Jeleń, Agnieszka; Mirowski, Marek; Balcerczak, Ewa

    2016-03-01

    Peptic ulceration connected with chronic inflammation in gastrointestinal mucosa could be induced by Helicobacter pylori infection. Tumor necrosis factor alpha (TNF-α) encoded by TNFA gene is a key mediator in the inflammation process. There are several polymorphisms in the promoter of TNFA influencing its transcriptional activity. -857C>T (rs1799724) and -863C>A (rs1800630) substitutions may be responsible for increased TNFA transcription and TNF-α production. The association of these two polymorphisms with peptic ulceration and the development of H. pylori infection in peptic ulcer patients in Poles were evaluated. Polymorphisms were assessed by PCR-RFLP in 203 peptic ulcer patients. H. pylori infection was confirmed by rapid urease test. The results of genotyping were compared with those obtained for 248 healthy Polish individuals. There were no significant differences in genotype and allele frequencies for both investigated polymorphisms between peptic ulcer patients and healthy individuals. No associations between frequencies of particular genotypes and alleles for both SNPs and the presence of H. pylori infection in peptic ulcer patients and in subgroups of peptic ulcer women and men were confirmed. The investigated SNPs are not risk factors for peptic ulcer development. They are not risk factors for H. pylori infection in ulcer patients. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    Science.gov (United States)

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  1. Inhibitory Effects of Soyeum Pharmacopuncture (SPP on LPS-induced Inflammation Related Cytokine Expressions of RAW 264.7 cells

    Directory of Open Access Journals (Sweden)

    Yoon Mi-Young

    2007-12-01

    Full Text Available Aim : This study was done to investigate whether SPP has inhibitory effects on the activation of RAW 264.7 cells. Method : In tumor necrosis factor-a (TNF-a/ interleukin-1b (IL-1b and IL-6, the mRNA expression of molecular indicators related to inflammatory changes of the Reumatoid Arthritis (RA were examined using quantitative real-time PCR. Results : The treatment of SPP significantly suppressed the expression of proinflammatory cytokines and chemokines such as TNF-a, IL-1b, IL-6 compared with the control. The expression of NOS-II was considerably reduced, which was accompanied by a reduction in the production of nitric oxide (NO. It also reduced the expression of TNF-αin serum of Balb/c mice compared with control group. Conclusion : SPP is an effective herbal material for suppressing the inflammation related cytokines of RAW 264.7 cells.

  2. Human hepatocytes apoptosis induced by replication of hepatitis B virus subgenotypes F1b and F4: Role of basal core promoter and preCore mutations.

    Science.gov (United States)

    Elizalde, María Mercedes; Sevic, Ina; González López Ledesma, María Mora; Campos, Rodolfo Héctor; Barbini, Luciana; Flichman, Diego Martin

    2018-01-01

    In the context of pathogenesis of HBV infection, HBV genotypes and mutants have been shown to affect the natural course of chronic infection and treatment outcomes. In this work, we studied the induction of apoptosis by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. Both subgenotypes F1b and F4 HBV genome transfections induced cell death by apoptosis in human hepatocytes. The BCPdm (A1762T/G1764A) and preCore (G1896A) mutants induced higher levels of apoptosis than the wt virus. This increase in apoptosis was not associated with the enhanced viral replication of the variants. HBV-mediated apoptosis was independent of viral subgenotypes, and associated with the modulation of members of the regulatory Bcl-2 family proteins expression in the mitochondrial apoptotic pathway. Finally, the apoptosis induction increase observed for the preCore mutants suggests that HBeAg might have an anti-apoptotic effect in human hepatocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fanca−/− mice

    Science.gov (United States)

    Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd

    2016-01-01

    B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca−/− mice. In this work we demonstrated that Fanca−/− animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM− to IgM+ transition of the B220low B-cell population. Pre-B cells from Fanca−/− mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca−/− mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig. PMID:27883081

  4. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  5. The potential mechanism of Bursal-derived BPP-II on the antibody production and avian pre-B cell.

    Science.gov (United States)

    Feng, Xiuli; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Ke; Liu, Xiaodong; Zhang, Yuanpeng; Gu, Jinyan; Miao, Denian; Chen, Puyan

    2013-03-01

    The bursa of Fabricius is critical for the normal development of the B lymphocytes responsible for antibody production. However, the mechanism of the bursal-derived bioactive factor on B cell development is little reported. In this paper, chicks were immunized with BPP-II and AIV vaccine or AIV antigen, and antibody and IL-4 production were detected. The results showed that BPP-II played strongly inducing roles on the humoral immune responses. To investigate the gene expression at transcriptional level, avian pre-B lymphocyte DT40 cells were treated with BPP-II, and were analyzed with the gene microarray. The results proved that BPP-II treatment regulated 11 pathways, in which homologous recombination is a vital mechanism which is involved in antibody Ig gene conversion and diversification during B cell development. These results suggested Bursal-derived biological active factor BPP-II might be involved in the antibody production processes and B cell development, which is vital to the humoral central immune organ, the bursa of Fabricius. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  7. Differential Cell Sensitivity between OTA and LPS upon Releasing TNF-α

    Directory of Open Access Journals (Sweden)

    Lauy Al-Anati

    2010-06-01

    Full Text Available The release of tumor necrosis factor α (TNF-α by ochratoxin A (OTA was studied in various macrophage and non-macrophage cell lines and compared with E. coli lipopolysaccharide (LPS as a standard TNF-α release agent. Cells were exposed either to 0, 2.5 or 12.5 µmol/L OTA, or to 0.1 µg/mL LPS, for up to 24 h. OTA at 2.5 µmol/L and LPS at 0.1 µg/mL were not toxic to the tested cells as indicated by viability markers. TNF-a was detected in the incubated cell medium of rat Kupffer cells, peritoneal rat macrophages, and the mouse monocyte macrophage cell line J774A.1: TNF-a concentrations were 1,000 pg/mL, 1,560 pg/mL, and 650 pg/mL, respectively, for 2.5 µmol/L OTA exposure and 3,000 pg/mL, 2,600 pg/mL, and 2,115 pg/mL, respectively, for LPS exposure. Rat liver sinusoidal endothelial cells, rat hepatocytes, human HepG2 cells, and mouse L929 cells lacked any cytokine response to OTA, but showed a significant release of TNF-a after LPS exposure, with the exception of HepG2 cells. In non-responsive cell lines, OTA lacked both any activation of NF-κB or the translocation of activated NF-κB to the cell nucleus, i.e., in mouse L929 cells. In J774A.1 cells, OTA mediated TNF-a release via the pRaf/MEK 1/2–NF-κB and p38-NF-κB pathways, whereas LPS used pRaf/MEK 1/2-NF-κB, but not p38-NF-κB pathways. In contrast, in L929 cells, LPS used other pathways to activate NF-κB. Our data indicate that only macrophages and macrophage derived cells respond to OTA and are considered as sources for TNF-a release upon OTA exposure.

  8. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    Science.gov (United States)

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  9. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    Science.gov (United States)

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  11. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  12. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  13. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients.

    Science.gov (United States)

    Nasifah, Isri; Soeharto, Setyawati; Nooryanto, Mukhamad

    Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO) in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG) at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (pgranatum extract. The level of NO was insignificant (p>0.05) between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  14. PP042. Anti-hypertensive drugs hydralazine, clonidine and labetalol improve trophoblast integration into endothelial cellular networks in vitro.

    Science.gov (United States)

    Xu, B; Charlton, F; Makris, A; Hennessy, A

    2012-07-01

    cell integration into all endothelial cellular networks (with TNF-a and TNF-a plus sFlt-1 treatment). There was no effect of any drug on the trophoblast invasion in the absence of TNF-a. In the conditioned medium, sFlt-1 was down-regulated by hydralazine and clonidine but not by labetalol. A decrease in PLGF was seen in normal endothelial cell groups but not seen in pre-TNF-a or pre-TNF-a plus sFlt-1 endothelial cell groups. VEGF was not changed in all treatment groups. Some anti-hypertensive drugs may improve the cellular interaction between trophoblast and endothelial cells during pregnancy. An increase in sFlt-1 seen in human preeclampsia may deteriorate this effect. Hydralazine and clonidine can reduce the sFlt-1 concentration in the medium. Labetalol could increase trophoblast integration without decreasing sFlt-1, suggesting a mechanism independent of sFlt-1. Our in-vitrodata show that there is a potential effect of these agents on placental maternal arterial modelling. The drug effect on arterial/trophoblast interactions can be related to altered production of sFlt-1. Copyright © 2010. Published by Elsevier B.V.

  15. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  16. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not...... does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1a seems however to impair the acute TNFa response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients....

  17. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yinghao [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Wu, Depei, E-mail: wudepei@medmail.com.cn [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Wang, Jishi, E-mail: lgylhlyh@aliyun.com [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Li, Yan; Chai, Xiao; Kang, Qian [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China)

    2016-05-13

    Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibited tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy. -- Highlights: •Expression of miR-320a in MM cell induces apoptosis in vitro. •miR-320a represses PBX3 via targeting specific sequences in the 3′UTR region. •Exogenous expression of PBX3 reverses the effects of miR-320a in inhibiting MM cell growth and promoting apoptosis. •Overexpression of miR-320a inhibits tumor growth and increases apoptosis in vivo.

  18. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    Science.gov (United States)

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor-induced

  19. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  20. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death

    Science.gov (United States)

    Choudhury, Arnab; Kar, Sudeshna; Tabassum, Heena

    2017-01-01

    Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of

  1. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Mohammad Waseem

    Full Text Available Oxaliplatin (Oxa treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel, could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm, resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin's protective effects may prove successful in eliciting pathways to further alter the neurotoxic

  2. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    Science.gov (United States)

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  3. Food Additive Sodium Benzoate (NaB Activates NFκB and Induces Apoptosis in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Betul Yilmaz

    2018-03-01

    Full Text Available NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM–50 mM treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.

  4. Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin's Lymphoma Risk and Survival.

    Directory of Open Access Journals (Sweden)

    Kaspar René Nielsen

    Full Text Available Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL samples encompassing 216 diffuse large B cell lymphoma (DLBCL and 139 follicular lymphoma (FL and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes. Since interaction between risk genes can have a large impact on phenotype, two-way gene-gene interaction analysis was included.We found inherited SNPs in genes critical for inflammatory pathways; TLR9, IL4, TAP2, IL2RA, FCGR2A, TNFA, IL10RB, GALNT12, IL12A and IL1B were significantly associated with disease risk and SELE, IL1RN, TNFA, TAP2, MBL2, IL5, CX3CR1, CHI3L1 and IL12A were, associated with overall survival (OS in specific diagnostic entities of B-NHL. We discovered noteworthy interactions between DLBCL risk alleles on IL10 and IL4RA and FL risk alleles on IL4RA and IL4. In relation to OS, a highly significant interaction was observed in DLBCL for IL4RA (rs1805010 * IL10 (rs1800890 (HR = 0.11 (0.02-0.50. Finally, we explored the expression of risk genes from the gene-gene interaction analysis in normal B-cell subtypes showing a different expression of IL4RA, IL10, IL10RB genes supporting a pathogenetic effect of these interactions in the germinal center.The present findings support the importance of inflammatory genes in B-cell lymphomas. We found association between polymorphic sites in inflammatory response genes and risk as well as outcome in B-NHL and suggest an effect of gene-gene interactions during the stepwise oncogenesis.

  5. Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression

    Directory of Open Access Journals (Sweden)

    Wiebe Thomas

    2008-08-01

    Full Text Available Abstract Background Childhood pre-B acute lymphoblastic leukemia (ALL is a bone marrow (BM derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB. Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. Results Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. Conclusion The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts.

  6. Regulatory role for the memory B cell as suppressor-inducer of feedback control

    International Nuclear Information System (INIS)

    Kennedy, M.W.; Thomas, D.B.

    1983-01-01

    A regulatory role is proposed for the antigen-responsive B cell, as suppressor-inducer of feedback control during the secondary response in vivo. In a double adoptive transfer of memory cells primed to a thymus-dependent antigen from one irradiated host to another, antigen-specific suppressors are generated after a critical time in the primary recipient, able to entirely ablate a secondary anti-hapten response. Positive cell selection in the fluorescence-activated cell sorter confirmed that suppression was mediated by an Lyt-2+ T cell; however, positively selected B cells were also inhibitory and able to induce suppressors in a carrier-specific manner: B hapten induced suppressors in a carrier-primed population, and B carrier induced suppressors in a hapten-carrier population. At the peak of the antibody response in the primary host, memory B cells and their progeny were unable to differentiate further to plasma cells due to their intrinsic suppressor-inducer activity, but this autoregulatory circuit could be severed by adoptive transfer to carrier-primed, X-irradiated recipients

  7. TNFA-863 polymorphism is associated with a reduced risk of Chronic Obstructive Pulmonary Disease: A replication study

    Directory of Open Access Journals (Sweden)

    Medina-Coello Chaxiraxi

    2011-10-01

    Full Text Available Background TNF-α mediated inflammation is thought to play a key role in the respiratory and systemic features of Chronic Obstructive Pulmonary Disease. The aim of the present study was to replicate and extend recent findings in Taiwanese and Caucasian populations of associations between COPD susceptibility and variants of the TNFA gene in a Spanish cohort. Methods The 3 reported SNPs were complemented with nine tag single nucleotide polymorphisms (SNP of the TNFA and LTA genes and genotyped in 724 individuals (202 COPD patients, 90 smokers without COPD and 432 healthy controls. Pulmonary function parameters and serum inflammatory markers were also measured in COPD patients. Results The TNFA rs1800630 (-863C/A SNP was associated with a lower COPD susceptibility (ORadj = 0.50, 95% CI = 0.33-0.77, p = 0.001. The -863A allele was also associated with less severe forms of the disease (GOLD stages I and II (ORadj = 0.303, 95%CI = 0.14-0.65, p = 0.014 and with lower scores of the BODE index (1 percent predicted (p = 0.004 and a lower BODE index (p = 0.003 over a 2 yrs follow-up period. None of the TNFA or LTA gene variants correlated with the serum inflammatory markers in COPD patients (p > 0.05. Conclusions We replicated the previously reported association between the TNFA -863 SNP and COPD. TNFA -863A allele may confer a protective effect to the susceptibility to the disease in the Spanish population.

  8. Macrophages are related to goblet cell hyperplasia and induce MUC5B but not MUC5AC in human bronchus epithelial cells.

    Science.gov (United States)

    Silva, Manuel A; Bercik, Premysl

    2012-06-01

    Airway goblet cell hyperplasia (GCH)--detectable by mucin staining--and abnormal macrophage infiltrate are pathological features present in many chronic respiratory disorders. However, it is unknown if both factors are associated. Using in-vivo and in-vitro models, we investigated whether macrophages are related with GCH and changes in mucin immunophenotypes. Lung sections from Sprague-Dawley rats treated for 48 h with one intra-tracheal dose of PBS or LPS (n=4-6 per group) were immunophenotyped for rat-goblet cells, immune, and proliferation markers. Human monocyte-derived macrophages (MDM) were pre-treated with or without LPS, immunophenotyped, and their supernatant, as well as cytokines at levels equivalent to supernatant were used to challenge primary culture of normal human bronchus epithelial cells (HBEC) in air-liquid interface, followed by MUC5B and MUC5AC mucin immunostaining. An association between increased bronchiolar goblet cells and terminal-bronchiolar proliferative epithelial cells confirmed the presence of GCH in our LPS rat model, which was related with augmented bronchiolar CD68 macrophage infiltration. The in-vitro experiments have shown that MUC5AC phenotype was inhibited when HBEC were challenged with supernatant from MDM pre-treated with or without LPS. In contrast, TNF-α and interleukin-1β at levels equivalent to supernatant from LPS-treated MDM increased MUC5AC. MUC5B was induced by LPS, supernatant from LPS-treated MDM, a mix of cytokines including TNF-α and TNF-α alone at levels present in supernatant from LPS-treated MDM. We demonstrated that macrophages are related with bronchiolar GCH, and that they induced MUC5B and inhibited MUC5AC in HBEC, suggesting a role for them in the pathogenesis of airway MUC5B-related GCH.

  9. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  10. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  11. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Ray, Ratan Singh; Hans, Rajendra K. [Photobiology Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Prasad, Sahdeo [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Shukla, Yogeshwer, E-mail: yogeshwer_shukla@hotmail.com [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India)

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  12. Polymorphisms in the TNFA and IL6 genes represent risk factors for autoimmune thyroid disease.

    Directory of Open Access Journals (Sweden)

    Cecília Durães

    Full Text Available Autoimmune thyroid disease (AITD comprises diseases including Hashimoto's thyroiditis and Graves' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD.Polymorphisms in the IL6-174 G/C (rs1800795, TNFA-308 G/A (rs1800629, IL1B-511 C/T (rs16944, and IFNGR1-56 T/C (rs2234711 genes were assessed in a case-control study comprising 420 Hashimoto's thyroiditis patients, 111 Graves' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays.A significant association was found between the allele A in TNFA-308 G/A and Hashimoto's thyroiditis, both in the dominant (OR = 1.82, CI = 1.37-2.43, p-value = 4.4×10(-5 and log-additive (OR = 1.64, CI = 1.28-2.10, p-value = 8.2×10(-5 models. The allele C in IL6-174 G/C is also associated with Hashimoto's thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06-1.54, p-value = 8.9×10(-3. The group with Graves' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19-2.87, p-value = 7.0×10(-3 and log-additive (OR = 1.69, CI = 1.17-2.44, p-value = 6.6×10(-3 models. The risk for Hashimoto's thyroiditis and Graves' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59.This study reports significant associations of genetic variants in TNFA and IL6 with the risk for AITD, highlighting the

  13. Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yao Fong

    2012-05-01

    Full Text Available Caffeic acid (CA, a natural phenolic compound, is abundant in medicinal plants. CA possesses multiple biological effects such as anti-bacterial and anti-cancer growth. CA was also reported to induce fore stomach and kidney tumors in a mouse model. Here we used two human lung cancer cell lines, A549 and H1299, to clarify the role of CA in cancer cell proliferation. The growth assay showed that CA moderately promoted the proliferation of the lung cancer cells. Furthermore, pre-treatment of CA rescues the proliferation inhibition induced by a sub-IC50 dose of paclitaxel (PTX, an anticancer drug. Western blot showed that CA up-regulated the pro-survival proteins survivin and Bcl-2, the down-stream targets of NF-κB. This is consistent with the observation that CA induced nuclear translocation of NF-κB p65. Our study suggested that the pro-survival effect of CA on PTX-treated lung cancer cells is mediated through a NF-κB signaling pathway. This may provide mechanistic insights into the chemoresistance of cancer calls.

  14. Rnd3 induces stress fibres in endothelial cells through RhoB

    Directory of Open Access Journals (Sweden)

    Undine Gottesbühren

    2012-12-01

    Rnd proteins are atypical Rho family proteins that do not hydrolyse GTP and are instead regulated by expression levels and post-translational modifications. Rnd1 and Rnd3/RhoE induce loss of actin stress fibres and cell rounding in multiple cell types, whereas responses to Rnd2 are more variable. Here we report the responses of endothelial cells to Rnd proteins. Rnd3 induces a very transient decrease in stress fibres but subsequently stimulates a strong increase in stress fibres, in contrast to the reduction observed in other cell types. Rnd2 also increases stress fibres whereas Rnd1 induces a loss of stress fibres and weakening of cell–cell junctions. Rnd3 does not act through any of its known signalling partners and does not need to associate with membranes to increase stress fibres. Instead, it acts by increasing RhoB expression, which is then required for Rnd3-induced stress fibre assembly. Rnd2 also increases RhoB levels. These data indicate that the cytoskeletal response to Rnd3 expression is dependent on cell type and context, and identify regulation of RhoB as a new mechanism for Rnd proteins to affect the actin cytoskeleton.

  15. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  16. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  17. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-κB pathway in human epidermoid carcinoma A431 cells

    International Nuclear Information System (INIS)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-01-01

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm 2 ) and resveratrol (60 μM) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-κB) pathway by blocking phosphorylation of serine 536 and inactivating NF-κB and subsequent degradation of IκBα, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  18. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  19. DNA-dependent protein kinase participates in the radiation activation of NF-kB

    International Nuclear Information System (INIS)

    Rosenzweig, Kenneth E.; Youmell, Matthew B.; Price, Brendan D.

    1997-01-01

    The NF-kB transcription factor is maintained in an inactive state by binding to the lkBa inhibitory protein. Activation requires phosphorylation and degradation of lkBa, releasing active NF-kB. NF-kB can be activated by cytokines, antigens, free radicals and X-ray irradiation. The protein kinase responsible for phosphorylation of lkBa in vivo has not been fully characterized. Here, we have examined the role of the DNA-dependent protein kinases (DNA-PK) in the radiation-activation of NF-kB. Wortmannin is an inhibitor of DNA-PK and related kinases. Exposure of SW480 cells to wortmannin inhibited the radioactivation of NF-kB DNA-binding. Analysis of lkBa levels by western blotting indicated that wortmannin blocked the radiation induced degradation of lkBa. In in vitro experiments, purified DNA-PK was able to efficiently phosphorylate lkBa, and this phosphorylation was inhibited by wortmannin. In contrast, the induction of NF-kB activity by TNFa was unaffected by wortmannin. The results suggest that DNA-PK may phosphorylate lkBa following irradiation, leading to degradation of lkBa and the release of active NF-kB. The inability of wortmannin to block TNFa activation of NF-kB indicates there may be more than one pathway for the activation of NF-kB

  20. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    Science.gov (United States)

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  1. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    Science.gov (United States)

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  2. Tumor Necrosis Factor-α Induced Apoptosis in U937 Cells Promotes Cathepsin D-Independent Stefin B Degradation.

    Science.gov (United States)

    Bidovec, Katja; Božič, Janja; Dolenc, Iztok; Turk, Boris; Turk, Vito; Stoka, Veronika

    2017-12-01

    Lysosomal cathepsins were previously found to be involved in tumor necrosis factor-α (TNFα)-induced apoptosis. However, there are opposing views regarding their role as either initiators or amplifiers of the signaling cascade as well as the order of molecular events during this process. In this study, we investigated the role of cathepsin D (catD) in TNFα/cycloheximide-induced apoptosis in U937 human monocytic cells. TNFα-induced apoptosis proceeds through caspase-8 activation, processing of the pro-apoptotic molecule Bid, mitochondrial membrane permeabilization, and caspase-3 activation. The translocation of lysosomal catD into the cytosol was a late event, suggesting that lysosomal membrane permeabilization and the release of cathepsins are not required for the induction of apoptosis, but rather amplifies the process through the generation of reactive oxygen species. For the first time, we show that apoptosis is accompanied by degradation of the cysteine cathepsin inhibitor stefin B (StfB). CatD did not exhibit a crucial role in this step. However, this degradation was partially prevented through pre-incubation with the antioxidant N-acetyl cysteine, although it did not prevent apoptosis and its progression. These results suggest that the degradation of StfB, as a response to TNFα, could induce a cell death amplification effect as a result of progressive damage to lysosomes during TNFα treatment. J. Cell. Biochem. 118: 4813-4820, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Emodin Protects Against Concanavalin A-Induced Hepatitis in Mice Through Inhibiting Activation of the p38 MAPK-NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jihua Xue

    2015-03-01

    Full Text Available Background/Aims: To investigate the effects of emodin on concanavalin A (Con A-induced hepatitis in mice and to elucidate its underlying molecular mechanisms. Methods: A fulminant hepatitis model was established successfully by the intravenous administration of Con A (20 mg/kg to male Balb/c mice. Emodin was administered to the mice by gavage before and after Con A injection. The levels of pro-inflammatory cytokines and chemokines, numbers of CD4+ and F4/80+ cells infiltrated into the liver, and amounts of phosphorylated p38 MAPK and NF-γB in mouse livers and RAW264.7 and EL4 cells were measured. Results: Pretreatment with emodin significantly protected the animals from T cell-mediated hepatitis, as shown by the decreased elevations of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST, as well as reduced hepatic necrosis. In addition, emodin pretreatment markedly reduced the intrahepatic expression of pro-inflammatory cytokines and chemokines, including tumor necrosis factor (TNF-a, interferon (IFN-γ, interleukin (IL-1ß, IL-6, IL-12, inducible nitric oxide synthase (iNOS, integrin alpha M (ITGAM, chemokine (C-C motif ligand 2 (CCL2, macrophage inflammatory protein 2 (MIP-2 and chemokine (CXC motif receptor 2 (CXCR2. Furthermore, emodin pretreatment dramatically suppressed the numbers of CD4+ and F4/80+ cells infiltrating into the liver as well as the activation of p38 MAPK and NF-γB in Con A-treated mouse livers and RAW264.7 and EL4 cells. Conclusion: The results indicate that emodin pretreatment protects against Con A-induced liver injury in mice; these beneficial effects may occur partially through inhibition of both the infiltration of CD4+ and F4/80+ cells and the activation of the p38 MAPK-NF-γB pathway in CD4+ T cells and macrophages.

  4. A Flexible Label-Free Biosensor Sensitive and Selective to TNF-a: Application for Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Abdoullatif BARAKET

    2014-05-01

    Full Text Available Tumor necrosis factor-a (TNF-a is a key pro-inflammatory cytokine that is characterized by elevated circulating levels for chronic heart failure (CHF and left ventricular assisted device (LVAD implantation patients, respectively. Therefore, a rapid and ease-of-use diagnostic tool is required to monitor LVAD patients at a high risk of mortality during early expression of an inflammatory storm. In this paper, we report on the quantitative electrochemical detection of human TNF-a with its corresponding antibody (Ab immobilized onto the functionalized biosensor surface. The label-free biosensor was fabricated on a gold surface that was deposited on a flexible polyimide (PI substrate. The interfacial properties of the functionalized flexible gold electrodes were evaluated by cyclic voltammetry (CV in the presence of Fe(CN64-/3- as the redox-active species. Afterwards, the electrochemical impedance spectroscopy (EIS technique was used to determine the TNF-a concentrations. EIS results confirmed that the developed flexible biosensor can accurately detect TNF-a with a good sensitivity in the dynamic range of 0.1 pg/mL to 0.5 ng/mL. Overall, the developed flexible biosensor was easy to fabricate and the results demonstrate a good selectivity in the presence of other cytokines such as interleukin: (IL-10 and (IL-1.

  5. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  6. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    Science.gov (United States)

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  8. Polymorphisms in the TNFA and IL6 Genes Represent Risk Factors for Autoimmune Thyroid Disease

    Science.gov (United States)

    Alvelos, Inês; Mendes, Adélia; Santos, Liliana R.; Machado, José Carlos; Melo, Miguel; Esteves, César; Neves, Celestino; Sobrinho-Simões, Manuel; Soares, Paula

    2014-01-01

    Background Autoimmune thyroid disease (AITD) comprises diseases including Hashimoto's thyroiditis and Graves' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD. Methods Polymorphisms in the IL6-174 G/C (rs1800795), TNFA-308 G/A (rs1800629), IL1B-511 C/T (rs16944), and IFNGR1-56 T/C (rs2234711) genes were assessed in a case-control study comprising 420 Hashimoto's thyroiditis patients, 111 Graves' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays. Results A significant association was found between the allele A in TNFA-308 G/A and Hashimoto's thyroiditis, both in the dominant (OR = 1.82, CI = 1.37–2.43, p-value = 4.4×10−5) and log-additive (OR = 1.64, CI = 1.28–2.10, p-value = 8.2×10−5) models. The allele C in IL6-174 G/C is also associated with Hashimoto's thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06–1.54, p-value = 8.9×10−3). The group with Graves' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19–2.87, p-value = 7.0×10−3) and log-additive (OR = 1.69, CI = 1.17–2.44, p-value = 6.6×10−3) models. The risk for Hashimoto's thyroiditis and Graves' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59). Conclusions This study reports significant associations of genetic variants in TNFA and

  9. Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells

    Directory of Open Access Journals (Sweden)

    Chunwa Jiang

    2017-02-01

    Full Text Available Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB and signal transducer and activator of transcription 3 (STAT3 play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.

  10. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways

    Directory of Open Access Journals (Sweden)

    Yang Yao-Jong

    2012-03-01

    Full Text Available Abstract Background H. pylori infection may trigger Smad7 and NFκB expression in the stomach, whereas probiotics promote gastrointestinal health and improve intestinal inflammation caused by pathogens. This study examines if probiotics can improve H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. Results Challenge with H. pylori increased IL-8 and TNF-α expressions but not TGF-β1 in MKN45 cells. The RNA levels of Smad7 in AGS cells increased after H. pylori infection in a dose-dependent manner. A higher dose (MOI 100 of L. acidophilus pre-treatment attenuated the H. pylori-induced IL-8 expressions, but not TGF-β1. Such anti-inflammatory effect was mediated via increased cytoplasmic IκBα and depletion of nuclear NFκB. L. acidophilus also inhibited H. pylori-induced Smad7 transcription by inactivating the Jak1 and Stat1 pathways, which might activate the TGF-β1/Smad pathway. L. acidophilus pre-treatment ameliorated IFN-γ-induced Smad7 translation level and subsequently reduced nuclear NF-κB production, as detected by western blotting. Conclusions H. pylori infection induces Smad7, NFκB, IL-8, and TNF-α production in vitro. Higher doses of L. acidophilus pre-treatment reduce H. pylori-induced inflammation through the inactivation of the Smad7 and NFκB pathways.

  11. Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-κB

    International Nuclear Information System (INIS)

    Leung, Kin Chung; Li, Ming-Yue; Leung, Billy C.S.; Hsin, Michael K.Y.; Mok, Tony S.K.; Underwood, Malcolm J.; Chen, George G.

    2010-01-01

    Accumulating evidence shows that the inhibition of thromboxane synthase (TXS) induced apoptosis in cancer cells. TXS inhibitor 1-Benzylimidzole (1-BI) can trigger apoptosis in lung cancer cells but the mechanism is not fully defined. In this study, lung cancer cells were treated with 1-BI. In this study, the level of reactive oxygen species (ROS) was measured and NF-κB activity was determined in human lung cancer cells. The roles of ROS and NF-κB in 1-BI-mediated cell death were analyzed. The results showed that 1-BI induced ROS generation but decreased the activity of NF-κB by reducing phosphorylated IκBα (p-IκBα) and inhibiting the translocation of p65 into the nucleus. In contrast to 1-BI, antioxidant N-acetyl cysteine (NAC) stimulated cell proliferation and significantly protected the cells from 1-BI-mediated cell death by neutralizing ROS. Collectively, apoptosis induced by 1-BI is associated with the over-production of ROS and the reduction of NF-κB. Antioxidants can significantly block the inhibitory effect of 1-BI.

  12. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  13. Demyelinating Disease following Anti-TNFa Treatment: A Causal or Coincidental Association? Report of Four Cases and Review of the Literature

    Directory of Open Access Journals (Sweden)

    E. Andreadou

    2013-01-01

    Full Text Available Tumor necrosis factor antagonists (anti-TNFa are an established therapeutic option for several autoimmune and inflammatory bowel diseases. Despite their clinical effectiveness, neurological adverse events have been reported and literature data suggest a potential role of anti-TNFa in the induction of demyelination of the CNS. We present four patients treated with anti-TNFa who developed symptoms suggestive of CNS demyelination. The first patient, a 17-year-old male who received etanercept for psoriatic arthritis for eight months, presented with dysesthesias up to T4 level. The second patient, a 30-year-old male treated with adalimumab for three years due to ankylosing spondylitis, presented with right unilateral tinnitus. The third case, a 47-year-old female, received etanercept for four years because of psoriatic arthritis and developed persistent headache and left-sided face and head numbness. Finally, the fourth patient, a 57-years-old female treated with etanercept for six years due to ankylosing spondylitis, presented with difficulty in speech, swallowing, and ptosis of the right corner of the mouth. In all cases, brain MRI showed lesions suggestive of demyelination, while positive oligoclonal bands were detected in the CSF. Anti-TNFa treatments were discontinued and patients showed clinical improvement with pulsed intravenous corticosteroid therapy. CNS demyelination following anti-TNFa treatment represents a relatively rare but potential serious complication. Close follow-up and MRI monitoring of these patients is mandatory to elucidate whether the clinical manifestations represent adverse events occurring during anti-TNFa therapy or a first demyelinating episode.

  14. Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells

    International Nuclear Information System (INIS)

    Pereira, Renata M.S.; Calegari-Silva, Teresa Cristina; Hernandez, Maristela O.; Saliba, Alessandra M.; Redner, Paulo; Pessolani, Maria Cristina V.; Sarno, Euzenir N.; Sampaio, Elizabeth P.; Lopes, Ulisses G.

    2005-01-01

    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-κB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-κB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-κB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IκB-α degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-κB-driven transcription induced by TNF-α. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-κB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-κB activation in Schwann cells and thalidomide is able to modulate this activation

  15. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  16. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Lagirand-Cantaloube, Julie; Laud, Karine; Lilienbaum, Alain; Tirode, Franck; Delattre, Olivier; Auclair, Christian; Kryszke, Marie-Helene

    2010-01-01

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  17. Effect of the Total Extract of Averrhoacarambola (Oxalidaceae Root on the Expression Levels of TLR4 and NF-κB in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2015-07-01

    Full Text Available Background: Averrhoacarambola L., which is a folk medicine used in diabetes mellitus (DM in ancient China, has been reported to have anti-diabetic efficacy. Aims: The aim of this study was to evaluate the hypoglycemic effect of the extract of Averrhoacarambola L. root (EACR on the regulation of the Toll-like receptor 4 (TLR4-Nuclear-factor kappa B (NF-κB pathway in B pathway in streptozotocin (STZ-induced diabetic mice. Methods: the mice were injected with STZ (120 mg/kg body weight via a tail vein. After 72 h, the mice with FBG = 11.1 mmol/L were confirmed as having diabetes. Subsequently, the mice were treated intragastrically with EACR (300, 600, 1200 mg/kg body weight/d and metformin (320 mg/kg body weight/d for 14 days. Results: As a result the serum fasting blood glucose (FBG, interleukin-6 (IL-6 and tumor necrosis factor-a (TNF-a levels were decreased following EACR administration. Immunohistochemical analysis revealed that the pancreatic tissue expression levels of TLR4 and NF-κB were downregulated after EACR administration. EACR suppressed pancreatic mRNA expression level of TLR4 and blocked the downstream NF-κB pathway in the pancreas. According to Western blot analysis EACR suppressed pancreatic TLR4 and NF-κB protein expression levels. Histopathological examination of the pancreas showed that STZ-induced pancreas lesions were alleviated by the EACR treatment. Conclusion: These findings suggest that the modulation of the IL-6 and TNF-a inflammatory cytokines and the suppression of the TLR4-NF-κB pathway are most likely involved in the anti-hyperglycemic effect of EACR in STZ-induced diabetic mice.

  18. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  19. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsrud, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Solhaug, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Dendelé, B. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Sandberg, W.J. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Ivanova, L. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Kocbach Bølling, A. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Lagadic-Gossmann, D. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Refsnes, M.; Becher, R. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Eriksen, G. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Holme, J.A., E-mail: jorn.holme@fhi.no [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  20. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    International Nuclear Information System (INIS)

    Gammelsrud, A.; Solhaug, A.; Dendelé, B.; Sandberg, W.J.; Ivanova, L.; Kocbach Bølling, A.; Lagadic-Gossmann, D.; Refsnes, M.; Becher, R.; Eriksen, G.; Holme, J.A.

    2012-01-01

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  1. Study on Anti-Allergic Effecst of Ganoderma lucidum Herbal Acupuncture and Ganoderma lucidum Extract

    Directory of Open Access Journals (Sweden)

    Kang Kyung-Hwa

    2007-12-01

    Full Text Available Objectives : We studied on anti-allergic effects of Ganoderma lucidum herbal acupuncture(GHA and Ganoderma lucidum extract(GE. Methods : in vivo, Animals were herbal-acupunctured GHA at both B13s three times for 5 days. Then, we investigated compound 48/80-induced active systemic anaphylatic shock using ICR mice and anti-DNP IgE-induced passive cutaneous anaphylaxis using Sprague Dawley rat. In vitro, we measured cell viability, b-hexosaminidase release, IL-4 and TNF-a from RBL-2H3 cells, and nitric oxide from Raw264.7 cell after treatment of GE of various concentrations. Results : In vivo, GHA pretreatments at both B13s inhibited compound 48/80-induced active systemic anaphylatic shock. Passive cutaneous anaphylaxis were inhibited by GHA10 and OP. In vitro, 0.1 ~ 2% GE treatments were not affect on cell viability and inhibited b-hexosaminidase release, IL-4, TNF-a and nitric oxide. Conclusions : These results suggest that GHA and GE may be beneficial in the inhibition of allergic inflammatory response.

  2. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-10-01

    The massive uptake of compatible osmolytes is a self-protective response shared by lens exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet B-induced cytotoxicity in the lens epithelial cells. Real-time PCR was used to measure osmolytes transport. Radioimmunoassay was used to measure osmolytes uptake. Cell counting kit-8 assays were used to measure cellular viability. Flow cytometry analysis was used to measure apoptosis level. Compared with normotonic stress, hypertonic stress-induced osmolytes uptake into the lens epithelial cells such as betaine, myoinositol and taurine. UVB exposure increased osmolytes transporter mRNA expression together with osmolytes uptake. Moreover, taurine suppressed UVB-induced cell apoptosis in the lens epithelial cells significantly. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  3. Emamectin benzoate induces ROS-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cells.

    Science.gov (United States)

    Luan, Shaorong; Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Xu, Zhikang; Lang, Jialin; Huang, Qingchun

    2017-08-01

    Emamectin benzoate (EMB), a novel macrocyclic lactone insecticide, possesses high efficacy and beneficial selective toxicity in agriculture, but so far the EMB-induced cytotoxic action in arthropod insect remains unclear. The present studies were carried out to characterize the property of EMB on the induction of reactive oxygen species (ROS)-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cell model. Following the exposure to EMB at 2.5, 5, 10 or 15 μM, the cells changed to be round, suspended and aggregated, and the decline of cell proliferating ability and cell viability was positively related with the exposure time. Median inhibitory concentration (IC 50 ) of EMB on cell viability was 3.72 μM during 72 h exposure. Apoptosis was induced in 29.8% (24 h) and 39.5% (48 h) of the cells by EMB at 15 μM, showing chromatin condensation in nuclei. The content of ROS in the cells increased rapidly as the concentration of EMB increased, and the pre-incubation of the cells with vitamin E significantly reduced the ROS accumulation. In the treatment of 15 μM EMB, the migrated cell nucleus with DNA strand breaks appeared a teardrop, pear-shaped, or large fan-like tail, and 63.1% of γH2AX-positive cells contained more than four foci, accompanying with high expression level of caspase-3 in time-dependent manner, which consequently led to cell apoptotic death. These evidences in ROS-mediated DNA damage and cell apoptosis induced by EMB may be helpful for deep understanding the cytotoxic action of EMB based on cell model. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Generation of memory B cells and their reactivation.

    Science.gov (United States)

    Inoue, Takeshi; Moran, Imogen; Shinnakasu, Ryo; Phan, Tri Giang; Kurosaki, Tomohiro

    2018-05-01

    The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Kyoung [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Sae-Gwang; Choi, Il-Whan [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Soo-Woong [Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Sang Min [Department of Internal Medicine, Division of Hematology/Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Choi, Inhak, E-mail: miccih@inje.ac.kr [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  6. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-κB-mediated survival signaling

    International Nuclear Information System (INIS)

    Leskinen, Markus J.; Heikkilae, Hanna M.; Speer, Mei Y.; Hakala, Jukka K.; Laine, Mika; Kovanen, Petri T.; Lindstedt, Ken A.

    2006-01-01

    Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-κB-mediated survival signaling. Following chymase treatment, the translocation of active NF-κB/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1β-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-κB-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-κB-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques

  7. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    Science.gov (United States)

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  8. Investigation of -308G>A and -1031T>C polymorphisms in the TNFA promoter region in Polish peptic ulcer patients.

    Science.gov (United States)

    Sałagacka, Aleksandra; Żebrowska, Marta; Jeleń, Agnieszka; Mirowski, Marek; Balcerczak, Ewa

    2014-11-01

    Tumor necrosis factor α (TNF-α) encoded by TNFA is a key mediator in inflammation, a precursor condition for peptic ulceration. Promoter polymorphisms of TNFA that influence its transcriptional activity and TNF-α production are known. TNFA-308G>A (rs1800629) and TNFA-1031T>C (rs1799964), which are responsible for increased TNFA transcription, could influence the risk of peptic ulceration. This study aimed to investigate these polymorphisms and to evaluate their association with peptic ulcer disease and Helicobacter pylori infection in the Polish population. Gastric mucosa specimens obtained from 177 Polish peptic ulcer patients were used to conduct rapid urease tests and to assess the investigated polymorphisms by polymerase chain reaction-restriction fragment length polymorphism. Genotyping data were compared with the results obtained from healthy individuals of Polish origin. There were no significant differences in genotype and allele frequency of the investigated polymorphisms between peptic ulcer patients and healthy individuals. No associations between the frequencies of particular genotypes and alleles for both single-nucleotide polymorphisms (SNPs) and the presence of H. pylori infection in peptic ulcer patients and in subgroups of men and women with peptic ulcer disease were found. The investigated SNPs are not risk factors for either peptic ulcer or H. pylori infection development in the Polish population. The results require verification in a larger cohort.

  9. The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation

    Science.gov (United States)

    Blutt, Sarah E.; Crawford, Sue E.; Warfield, Kelly L.; Lewis, Dorothy E.; Estes, Mary K.; Conner, Margaret E.

    2004-01-01

    The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection. PMID:15194774

  10. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  11. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  12. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  13. Circulating regulatory Tfh cells are enriched in patients with chronic hepatitis B infection and induce the differentiation of regulatory B cells.

    Science.gov (United States)

    Wang, Rongxin; Xie, Ruiling; Song, Zongchang

    2018-04-15

    Chronic hepatitis B virus (HBV) infection is a complex disease with dysregulations in the immune system. Follicular helper T (Tfh) cells are professional B helper cells that are crucial to the development of antibody responses and are involved in a variety of diseases. In this study, we examined the circulating Tfh cells in patients with chronic HBV infection. We observed that CD3 + CD4 + CXCR5 + circulating Tfh cells contained a CD25 + Foxp3 + Treg-like subset that was significantly enriched in patients with chronic HBV infections. The CD25 + Tfh subset presented distinctive cytokine secretion profile, such as lower interferon (IFN)-γ and interleukin (IL)-17, and higher transforming growth factor (TGF)-β secretion, compared to the CD25 - Tfh subset. When incubated with autologous naive CD10 - CD27 - CD19 + B cells, the CD25 + Tfh subset was less capable of mediating CD20 -/lo CD38 + plasmablast differentiation than the CD25 - Tfh subset. In terms of Ig production, CD25 + Tfh cells were more potent at inducing IgM but less potent at inducing IgG and IgA than CD25 - Tfh cells. Interestingly, B cells following incubation with CD25 + Tfh cells presented elevated regulatory function, with higher production of IL-10 and enhanced capacity of suppressing autologous CD8 + T cell inflammation. In the chronic HBV-infected patients, the frequency of IL-10 + B cells and the HBV viral load were positively correlated with the frequency of CD25 + Foxp3 + CD4 + CXCR5 + Tfh cells. Together, this study presented that CD25 + Foxp3 + Treg-like Tfh cells were enriched in chronic HBV-infected patients and could promote regulatory B cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Kinowaki, Yuko; Kurata, Morito; Ishibashi, Sachiko; Ikeda, Masumi; Tatsuzawa, Anna; Yamamoto, Masahide; Miura, Osamu; Kitagawa, Masanobu; Yamamoto, Kouhei

    2018-02-20

    Regulation of oxidative stress and redox systems has important roles in carcinogenesis and cancer progression, and for this reason has attracted much attention as a new area of cancer therapeutic targets. Glutathione peroxidase 4 (GPX4), an antioxidant enzyme, has biological important functions such as signaling cell death by suppressing peroxidation of membrane phospholipids. However, few studies exist on the expression and clinical relevance of GPX4 in malignant lymphomas such as diffuse large B-cell lymphoma. In this study, we assessed the expression of GPX4 immunohistochemically. GPX4 was expressed in 35.5% (33/93) cases of diffuse large B-cell lymphoma. The GPX4-positive group had poor overall survival (P = 0.0032) and progression-free survival (P = 0.0004) compared with those of the GPX4-negative group. In a combined analysis of GPX4 and 8-hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, there was a negative correlation between GPX4 and 8-hydroxydeoxyguanosine (P = 0.0009). The GPX4-positive and 8-hydroxydeoxyguanosine-negative groups had a significantly worse prognosis than the other groups in both overall survival (P = 0.0170) and progression-free survival (P = 0.0005). These results suggest that the overexpression of GPX4 is an independent prognostic predictor in diffuse large B-cell lymphoma. Furthermore, in vitro analysis demonstrated that GPX4-overexpressing cells were resistant to reactive oxygen species-induced cell death (P = 0.0360). Conversely, GPX4-knockdown cells were sensitive to reactive oxygen species-induced cell death (P = 0.0111). From these data, we conclude that GPX4 regulates reactive oxygen species-induced cell death. Our results suggest a novel therapeutic strategy using the mechanism of ferroptosis, as well as a novel prognostic predictor of diffuse large B-cell lymphoma.

  15. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Yi Yang

    2013-01-01

    Full Text Available Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.

  16. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-01-01

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition

  17. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@kanazawa-med.ac.jp [Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan); Usui, Yuki [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  18. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    Science.gov (United States)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  19. Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease.

    Science.gov (United States)

    Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko

    2017-04-01

    Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.

  20. Epothilone B induces extrinsic pathway of apoptosis in human SKOV-3 ovarian cancer cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2014-06-01

    The molecular mechanisms underlying epothilone B (EpoB) induced apoptosis were investigated in SKOV-3 human ovarian cancer cells. The aim of this research was to compare EpoB's, which belongs to the new class of anticancer drugs, with paclitaxel's (PTX) ability to induce apoptosis. The mode of cell death was assessed colorimetrically, fluorimetrically and by immunoblot analyses through measuring DNA fragmentation, the level of intracellular calcium, the level of cytochrome c, TRAIL, the cleavage of poly(ADP-ribose) polymerase (PARP) and the activation of caspase-9, -8 and -3. EpoB leads to an increase of the cytosolic level of cytochrome c after 4 h of cell treatment. After 24 and 48 h of cell treatment the level of intracellular calcium also increased by about 21% and 24% respectively. Moreover, EpoB, similarly to PTX, promoted the expression of TRAIL in lymphocytes, although high TRAIL expression on tumor cells was detected only after adding EpoB to SKOV-3 cells. EpoB mediates caspases-8 and -3 activation, which is independent of the reduction in the amount of caspase-9. Epitope-specific monoclonal and polyclonal antibodies revealed characteristic apoptotic changes that included cleavage of the 116 kDa PARP polypeptide to 25 kDa fragments. The results of our study show that EpoB induces mainly the extrinsic pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis.

    Science.gov (United States)

    Kazemi, Ahmad; Safa, Majid; Shahbazi, Atefeh

    2011-07-01

    The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.

  2. Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Arroyo-Jousse, Viviana; Garcia-Diaz, Diego F; Codner, Ethel; Pérez-Bravo, Francisco

    2016-12-01

    TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.

  3. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells.

    Science.gov (United States)

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-06-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.

  4. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  5. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  6. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    International Nuclear Information System (INIS)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.; Xu, C. Wilson

    2011-01-01

    Research highlights: → Resveratrol induces cellular senescence in glioma cell. → Resveratrol inhibits mono-ubiquitination of histone H2B at K120. → Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. → Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. → RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are

  7. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  8. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  9. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  10. Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Oh, Yoojung; Kim, Eun Young; Kim, Yeonghwan; Jin, Jizi; Jin, Byung Kwan; Jahng, Geon-Ho; Jung, Min Hyung; Park, Chan; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2011-08-15

    Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ(25-35) mediates apoptotic cell death. Aβ(25-35)-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ(25-35) toxicity. We showed that Aβ(25-35)-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ(25-35)-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  12. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes.

    Science.gov (United States)

    Holzinger, Andreas; Albert, Andreas; Aigner, Siegfried; Uhl, Jenny; Schmitt-Kopplin, Philippe; Trumhová, Kateřina; Pichrtová, Martina

    2018-02-22

    Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m -2  s -1 ) in combination with experimental UV-A (315-400 nm, 5.7 W m -2 , no UV-B), designated as PA, or UV-A (10.1 W m -2 ) + UV-B (280-315 nm, 1.0 W m -2 ), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p UV-absorbing phenolic compounds was significantly higher (p UV-B stress than pre-akinetes.

  13. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  14. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    Science.gov (United States)

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells.

    Science.gov (United States)

    Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena

    2016-09-29

    The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are

  16. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    Science.gov (United States)

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng

    1993-01-01

    The cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice were studied. The results of this study showed that human lymphocytes in vitro and mouse marrow cells in vivo can become adapted to low-level irradiation from 3 H-TdR or exposure to a low dose of X-or γ-irradiation, so that they become less sensitive to the chromosomal damage effects of subsequent exposures. (4 tabs.)

  18. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    Science.gov (United States)

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  19. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    Science.gov (United States)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  20. Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Jaworski

    Full Text Available Our central hypothesis is that protection against HIV infection will be powerfully influenced by the magnitude and quality of the B cell response. Although sterilizing immunity, mediated by pre-formed abundant and potent antibodies is the ultimate goal for B cell-targeted HIV vaccine strategies, scenarios that fall short of this may still confer beneficial defenses against viremia and disease progression. We evaluated the impact of sub-sterilizing pre-existing neutralizing antibody on the B cell response to SHIV infection. Adult male rhesus macaques received passive transfer of a sub-sterilizing amount of polyclonal neutralizing immunoglobulin (Ig purified from previously infected animals (SHIVIG or control Ig prior to intra-rectal challenge with SHIVSF162P4 and extensive longitudinal sampling was performed. SHIVIG treated animals exhibited significantly reduced viral load and increased de novo Env-specific plasma antibody. Dysregulation of the B cell profile was grossly apparent soon after infection in untreated animals; exemplified by a ≈50% decrease in total B cells in the blood evident 2-3 weeks post-infection which was not apparent in SHIVIG treated animals. IgD+CD5+CD21+ B cells phenotypically similar to marginal zone-like B cells were highly sensitive to SHIV infection, becoming significantly decreased as early as 3 days post-infection in control animals, while being maintained in SHIVIG treated animals, and were highly correlated with the induction of Env-specific plasma antibody. These results suggest that B cell dysregulation during the early stages of infection likely contributes to suboptimal Env-specific B cell and antibody responses, and strategies that limit this dysregulation may enhance the host's ability to eliminate HIV.

  1. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  2. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells.

    Science.gov (United States)

    Huang, Hsiu-Chin; Lin, Hsuan; Huang, Min-Chuan

    2017-03-01

    Lactoferricin B (LfcinB), a peptide of bovine lactoferrin (LfB), exhibits multiple biological functions, including antimicrobial, antiviral, antioxidant and immunomodulatory activities. However, the role of LfcinB-related peptides in melanogenesis remains unclear. In this study, a set of five LfcinB-related peptides was examined. We found that LfB17‑34, an 18-mer LfcinB-derived peptide, increased melanogenesis in B16F10 melanoma cells without significantly affecting cell viability. LfB17‑34 increased in vitro tyrosinase activity and melanin content in a dose-dependent manner. The results of RT-qPCR and western blot analyses showed that LfB17‑34 increased the mRNA and protein expression of tyrosinase and tyrosinase-related protein 1 (Trp1). Moreover, LfB17‑34 inhibited the phosphorylation of MAPK/Erk, but not p38 and Akt, and constitutively active MEK was able to reverse the LfB17-34-enhanced pigmentation, melanin content, and tyrosinase activity, suggesting a role of Erk signaling in the process of LfB17‑34-mediated pigmentation. Taken together, these results suggest that LfB17‑34 induces melanogenesis in B16F10 cells primarily through increased tyrosinase expression and activity and that LfB17‑34 could be further developed for the treatment of hypopigmentation disorders.

  3. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    International Nuclear Information System (INIS)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa; Nedergaard, Jan

    2010-01-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G i -protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  4. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients

    Directory of Open Access Journals (Sweden)

    Isri Nasifah

    2017-10-01

    Full Text Available Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP, endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP, endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (p0.05 between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients.

  5. Inhibitory effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation

    International Nuclear Information System (INIS)

    Shi Jianhui; Niu Yuhong; Ge Junbo; Xu Xiaoping; Cheng Wenying; Feng Xiao; Zhang Zongliang

    2002-01-01

    Objective: To explore effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation. Methods: Apoptosis in P388 cells induced by radiation treatment was detected by TUNEL assay. EMSA was used to detect the activation of NF-κB . Results: The apoptosis and activation of NF-κB in P388 cells could be induced by radiation. Dexamethasone (DXM) which could suppress activation of NF-κB of P388 cells increased significantly the apoptosis induced by radiation. Apoptosis rates in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure increased by 60%, 100%, 129% and 67%, respectively. Activation rates of NF-κB in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure decreased by 25%, 45%, 52% and 40%, respectively. Conclusion: Radiation induces apoptosis and activation of NF-κB in P388 cells simultaneously. Glucocorticoid enhances apoptosis in leukemic cells, which may be by means of suppressing activation of NF-κB

  6. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    Science.gov (United States)

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of 24-epibrassinolide pre-treatment on UV-B-induced changes in the pigment content of pea leaves

    International Nuclear Information System (INIS)

    Dobrikova, A.; Vladkova, R.; Stanoeva, D.; Popova, A.; Velitchkova, M.

    2013-01-01

    In the present work, the effects of 24-epibrassinolide (EBR) on the UV-B-induced changes in the pigment content of pea leaves were studied. Control (non-EBR-treated) and EBR-treated plants were irradiated with UV-B for 3 h and pigment analysis was performed after 24 and 48 h. The results show that EBR spraying of plants 48 h prior to UV-B exposure alleviates its detrimental effect on chlorophyll a and b (Chl a and Chl b) content in comparison with control pea leaves. An increase in carotenoids (Car) and UV-B absorbing compounds was also observed at low dose of UV-B radiation. For the first time, it is shown that UV-B damage effect on control leaves is accompanied by a significant (more than 50%) increase in their pheophytin a (Pheo a) content 48 h after the UV-B exposure and that the EBR pre-treatment prevents the increase of Pheo a content in UV-B irradiated leaves. In addition, it is demonstrated that EBR application modifies UV-B-induced alterations of energy distribution between the main pigment-protein complexes in pea thylakoid membranes

  8. MiR-146a regulates PM1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells.

    Science.gov (United States)

    Liu, Limin; Wan, Chong; Zhang, Wei; Guan, Longfei; Tian, Guoxiong; Zhang, Fang; Ding, Wenjun

    2018-04-18

    Exposure to particulate matter (PM) leads to kinds of cardiopulmonary diseases, such as asthma, COPD, arrhythmias, lung cancer, etc., which are related to PM-induced inflammation. We have found that PM 2.5 (aerodynamics diameter <2.5 µm) exposure induces inflammatory response both in vivo and in vitro. Since the toxicity of PM is tightly associated with its size and components, PM 1 (aerodynamics diameter <1.0 µm) is supposed to be more toxic than PM 2.5 . However, the mechanism of PM 1 -induced inflammation is not clear. Recently, emerging evidences prove that microRNAs play a vital role in regulating inflammation. Therefore, we studied the regulation of miR-146a in PM 1 -induced inflammation in human lung bronchial epithelial BEAS-2B cells. The results show that PM 1 induces the increase of IL-6 and IL-8 in BEAS-2B cells and up-regulates the miR-146a expression by activating NF-κB signaling pathway. Overexpressed miR-146a prevents the nuclear translocation of p65 through inhibiting the IRAK1/TRAF6 expression, and downregulates the expression of IL-6 and IL-8. Taken together, these results demonstrate that miR-146a can negatively feedback regulate PM 1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. © 2018 Wiley Periodicals, Inc.

  9. V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fanca ?/? mice

    OpenAIRE

    Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Sa?d

    2016-01-01

    B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-...

  10. FcγRIIb on myeloid cells rather than on B cells protects from collagen-induced arthritis.

    Science.gov (United States)

    Yilmaz-Elis, A Seda; Ramirez, Javier Martin; Asmawidjaja, Patrick; van der Kaa, Jos; Mus, Anne-Marie; Brem, Maarten D; Claassens, Jill W C; Breukel, Cor; Brouwers, Conny; Mangsbo, Sara M; Boross, Peter; Lubberts, Erik; Verbeek, J Sjef

    2014-06-15

    Extensive analysis of a variety of arthritis models in germline KO mice has revealed that all four receptors for the Fc part of IgG (FcγR) play a role in the disease process. However, their precise cell type-specific contribution is still unclear. In this study, we analyzed the specific role of the inhibiting FcγRIIb on B lymphocytes (using CD19Cre mice) and in the myeloid cell compartment (using C/EBPαCre mice) in the development of arthritis induced by immunization with either bovine or chicken collagen type II. Despite their comparable anti-mouse collagen autoantibody titers, full FcγRIIb knockout (KO), but not B cell-specific FcγRIIb KO, mice showed a significantly increased incidence and severity of disease compared with wild-type control mice when immunized with bovine collagen. When immunized with chicken collagen, disease incidence was significantly increased in pan-myeloid and full FcγRIIb KO mice, but not in B cell-specific KO mice, whereas disease severity was only significantly increased in full FcγRIIb KO mice compared with incidence and severity in wild-type control mice. We conclude that, although anti-mouse collagen autoantibodies are a prerequisite for the development of collagen-induced arthritis, their presence is insufficient for disease development. FcγRIIb on myeloid effector cells, as a modulator of the threshold for downstream Ab effector pathways, plays a dominant role in the susceptibility to collagen-induced arthritis, whereas FcγRIIb on B cells, as a regulator of Ab production, has a minor effect on disease susceptibility. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations.

    Science.gov (United States)

    Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T

    1993-10-01

    A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.

  12. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  13. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    pre-adapted to cold stress revealed induction of amino acid homeostasis and energy ... substrate, thereby reducing yeast and mould ..... spontaneous mutation of llmg_1816 (gdpp) induced by .... species to UV-B-induced damage in bacteria. J.

  14. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  15. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jukka Luukkonen

    Full Text Available BACKGROUND: Extremely low frequency (ELF magnetic fields (MF are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS. Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. CONCLUSIONS: The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  16. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  17. Associations of vascular endothelial growth factor (VEGF gene and cytokine (IL-1B, IL-4, IL-6, IL-10, TNFA genes combinations with type 2 diabetes mellitus in women

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-09-01

    Full Text Available Aim. To study the association between vascular endothelial growth factor (VEGF and cytokine (IL1B, IL4, IL6, IL10 and TNFAgene polymorphism combinations with type 2 diabetes mellitus (T2DM in women. Materials and methods. 374 Caucasian women without carbohydrate metabolism disorders from 23 to 68 years of age and 212 womenwith T2DM from 28 to 69 years of age were included in the study. The combinations of polymorphism А-2578С, С+936Т in VEGFgene with polymorphism in IL1B С-31Т, IL4 С-590Т, IL6 G-174C, IL10 A-592C and А-1082G, TNFA А-238G, A-308G and A-863Cwere studied. Results. Analysis revealed 52 combined genetic variations with different rate of occurrence between diabetic and control groups(р

  18. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  19. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells

    Directory of Open Access Journals (Sweden)

    Marina Gomzikova

    2018-01-01

    Full Text Available Extracellular vesicles (EV represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.

  20. ONC201 selectively induces apoptosis in cutaneous T-cell lymphoma cells via activating pro-apoptotic integrated stress response and inactivating JAK/STAT and NF-κB pathways.

    Science.gov (United States)

    Ni, Xiao; Zhang, Xiang; Hu, Cheng-Hui; Langridge, Timothy; Tarapore, Rohinton S; Allen, Joshua E; Oster, Wolfgang; Duvic, Madeleine

    2017-09-22

    Cutaneous T-cell lymphomas (CTCLs) are extremely symptomatic and still incurable, and more effective and less toxic therapies are urgently needed. ONC201, an imipridone compound, has shown efficacy in pre-clinical studies in multiple advanced cancers. This study was to evaluate the anti-tumor activity of ONC201 on CTCL cells. The effect of ONC201 on the cell growth and apoptosis were evaluated in CTCL cell lines (n=8) and primary CD4 + malignant T cells isolated from CTCL patients (n=5). ONC201 showed a time-dependent cell growth inhibition in all treated cell lines with a concentration range of 1.25-10.0 μM. ONC201 also induced apoptosis in tested cells with a narrow concentration range of 2.5-10.0 μM, evidenced by increased Annexin V + cells, accompanied by accumulated sub-G1 portions. ONC201 only induced apoptosis in CD4 + malignant T cells, not in normal CD4 + T cells. The activating transcription factor 4 (ATF4), a hallmark of integrated stress response, was upregulated in response to ONC201 whereas Akt was downregulated. In addition, molecules in JAK/STAT and NF-κB pathways, as well as IL-32β, were downregulated following ONC201 treatment. Thus, ONC201 exerts a potent and selective anti-tumor effect on CTCL cells. Its efficacy may involve activating integrated stress response through ATF4 and inactivating JAK/STAT and NF-κB pathways.

  1. Blockage of NOX2/MAPK/NF-κB Pathway Protects Photoreceptors against Glucose Deprivation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Bin Fan

    2017-01-01

    Full Text Available Acute energy failure is one of the critical factors contributing to the pathogenic mechanisms of retinal ischemia. Our previous study demonstrated that glucose deprivation can lead to a caspase-dependent cell death of photoreceptors. The aim of this study was to decipher the upstream signal pathway in glucose deprivation- (GD- induced cell death. We mimicked acute energy failure by using glucose deprivation in photoreceptor cells (661W cells. GD-induced oxidative stress was evaluated by measuring ROS with the DCFH-DA assay and HO-1 expression by Western blot analysis. The activation of NOX2/MAPK/NF-κB signal was assessed by Western blot and immunohistochemical assays. The roles of these signals in GD-induced cell death were measured by using their specific inhibitors. Inhibition of Rac-1 and NOX2 suppressed GD-induced oxidative stress and protected photoreceptors against GD-induced cell death. NOX2 was an upstream signal in the caspase-dependent cell death cascade, yet the downstream MAPK pathways were activated and blocking MAPK signals rescued 661W cells from GD-induced death. In addition, GD caused the activation of NF-κB signal and inhibiting NF-κB significantly protected 661W cells. These observations may provide insights for treating retinal ischemic diseases and protecting retinal neurons from ischemia-induced cell death.

  2. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  3. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  4. Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts.

    Science.gov (United States)

    Furlong, Suzanne J; Mader, Jamie S; Hoskin, David W

    2010-06-01

    Although current treatments based on the use of B-cell-specific anti-CD20 monoclonal antibodies and aggressive combinatorial chemotherapy have improved the survival of patients suffering from B-cell non-Hodgkin's lymphoma (NHL), some individuals fail to respond to treatment and relapses remain common. New and more effective treatments for B-cell NHL are therefore required. Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that is cytotoxic for several human tumor cell lines but does not harm healthy cells. Here we show that in vitro treatment with LfcinB caused Raji and Ramos human B-lymphoma cells to die by apoptosis, as indicated by DNA fragmentation, chromatin condensation, and nuclear disintegration. LfcinB killed B-lymphoma cells more efficiently at low serum concentrations and was inhibited in the presence of exogenous bovine serum albumin, suggesting partial neutralization of cationic LfcinB by anionic serum components. LfcinB-induced apoptosis in B-lymphoma cells was caspase-independent since caspase-3 activation was not detected by Western blotting and the general caspase inhibitor z-VAD-fmk did not prevent LfcinB-induced DNA fragmentation. Importantly, immune-deficient SCID/beige mice that were inoculated intravenously with Ramos B-lymphoma cells in order to model B-cell NHL exhibited extended survival following systemic administration of LfcinB, indicating that LfcinB warrants further investigation as a novel therapeutic agent for the possible treatment of B-cell NHL. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  6. APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation

    International Nuclear Information System (INIS)

    Iseki, Masanori; Kubo-Akashi, Chiyomi; Kwon, Sang-Mo; Yamaguchi, Akiko; Takatsu, Kiyoshi; Takaki, Satoshi

    2005-01-01

    Adaptor molecule containing PH and SH2 domains (APS) is an intracellular adaptor protein that forms part of an adaptor family along with Lnk and SH2-B. APS transcripts are expressed in various tissues including brain, kidney, and muscle, as well as in splenic B cells but not in T cells. We investigated the functions of APS in B cell development and activation by generating APS-transgenic (APS-Tg) mice that overexpressed APS in lymphocytes. The number of B-1 cells in the peritoneal cavity was reduced in APS-Tg mice, as were B-2 cells in the spleen. B cell development in the bone marrow was partially impaired at the transition stage from proliferating large pre-B to small pre-B cells. B cell proliferation induced by B cell receptor (BCR) crosslinking but not by other B cell mitogens was also impaired in APS-Tg mice. APS co-localized with BCR complexes and filamentous actin in activated APS-Tg B cells. Thus, APS appears to play novel negative regulatory roles in BCR signaling, actin reorganization pathways, and control of compartment sizes of B-lineage cells

  7. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    Directory of Open Access Journals (Sweden)

    Honami Takada

    Full Text Available Epstein-Barr virus (EBV has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV. However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  8. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    Science.gov (United States)

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.

  9. Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice.

    Science.gov (United States)

    Liu, Z Q; Wu, Y; Song, J P; Liu, X; Liu, Z; Zheng, P Y; Yang, P C

    2013-10-01

    B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Akt-dependent NF-κB activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis

    International Nuclear Information System (INIS)

    Shant, Jasleen; Cheng, Kunrong; Marasa, Bernard S.; Wang Jianying; Raufman, Jean-Pierre

    2009-01-01

    Conjugated secondary bile acids promote human colon cancer cell proliferation by activating EGF receptors (EGFR). We hypothesized that bile acid-induced EGFR activation also mediates cell survival by downstream Akt-regulated activation of NF-κB. Deoxycholyltaurine (DCT) treatment attenuated TNF-α-induced colon cancer cell apoptosis, and stimulated rapid and sustained NF-κB nuclear translocation and transcriptional activity (detected by NF-κB binding to an oligonucleotide consensus sequence and by activation of luciferase reporter gene constructs). Both DCT-induced NF-κB nuclear translocation and attenuation of TNF-α-stimulated apoptosis were dependent on EGFR activation. Inhibitors of nuclear translocation, proteosome activity, and IκBα kinase attenuated NF-κB transcriptional activity. Cell transfection with adenoviral vectors encoding a non-degradable IκBα 'super-repressor' blocked the actions of DCT on both NF-κB activation and TNF-α-induced apoptosis. Likewise, transfection with mutant akt and treatment with a chemical inhibitor of Akt attenuated effects of DCT on NF-κB transcriptional activity and TNF-α-induced apoptosis. Chemical inhibitors of Akt and NF-κB activation also attenuated DCT-induced rescue of H508 cells from ultraviolet radiation-induced apoptosis. Collectively, these observations indicate that, downstream of EGFR, bile acid-induced colon cancer cell survival is mediated by Akt-dependent NF-κB activation. These findings provide a mechanism whereby bile acids increase resistance of colon cancer to chemotherapy and radiation

  11. Microcystin-LR Induces Apoptosis via NF-κB /iNOS Pathway in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Kai Shen

    2011-07-01

    Full Text Available Cyanobacterial toxins, especially the microcystins, are found in eutrophied waters throughout the world, and their potential to impact on human and animal health is a cause for concern. Microcystin-LR (MC-LR is one of the common toxic microcystin congeners and occurs frequently in diverse water systems. Recent work suggested that apoptosis plays a major role in the toxic effects induced by MC-LR in hepatocytes. However, the roles of MC-LR in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of MC-LR on cell apoptosis in the rat insulinoma cell line, INS-1. Our results demonstrated that MC-LR promoted selectively activation of NF-κB (increasing nuclear p50/p65 translocation and increased the mRNA and protein levels of induced nitric oxide synthase (iNOS. The chronic treatment with MC-LR stimulated nitric oxide (NO production derived from iNOS and induced apoptosis in a dose dependent manner in INS-1 cells. Meanwhile, this effect was inhibited by the NF-κB inhibitor PDTC, which reversed the apoptosis induced by MC-LR. Our observations indicate that MC-LR induced cell apoptosis via an iNOS-dependent pathway. A well-known nuclear transcription factor, NF-κB, is activated and mediates intracellular nitric oxide synthesis. We suggest that the apoptosis induced by chronic MC-LR in vivo presents a possible cause of β-cell dysfunction, as a key environmental factor in the development of diabetes mellitus.

  12. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    Science.gov (United States)

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  13. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  14. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    International Nuclear Information System (INIS)

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  15. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  16. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways

    International Nuclear Information System (INIS)

    Wang Xia; Chen Wenshu; Lin Yong

    2007-01-01

    Blockage of either nuclear factor-κB (NF-κB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-κB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-κB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-κB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-κB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-κB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-κB and Akt, which may be applied in lung cancer therapy

  18. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Tabata, Osamu [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2011-01-14

    Research highlights: {yields} Single B-lymphoma living cells were imaged by AFM with the assistance of microfabricated pillars. {yields} The apoptosis of B-lymphoma cells triggered by rituximab without cross-linking was observed by AO/EB double fluorescent staining. {yields} The B-lymphoma cells became dramatically softer after adding rituximab. -- Abstract: The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.

  19. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells. PMID:27226226

  20. Alpha-Tocopherol alters transcription activities that modulate tumor necrosis factor alpha (TNF-¿)-induced inflammatory response in bovine cells

    Science.gov (United States)

    To further investigate the potential role of '-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-a as an immuno-stimulant to simulate inflammation response in cells with and without '...

  1. Nontranscriptional regulation of SYK by the coactivator OCA-B is required at multiple stages of B cell development.

    Science.gov (United States)

    Siegel, Rachael; Kim, Unkyu; Patke, Alina; Yu, Xin; Ren, Xiaodi; Tarakhovsky, Alexander; Roeder, Robert G

    2006-05-19

    OCA-B was originally identified as a nuclear transcriptional coactivator that is essential for antigen-driven immune responses. The later identification of a membrane bound, myristoylated form of OCA-B suggested additional, unique functions in B cell signaling pathways. This study has shown that OCA-B also functions in the pre-B1-to-pre-B2 cell transition and, most surprisingly, that it directly interacts with SYK, a tyrosine kinase critical for pre-BCR and BCR signaling. This unprecedented type of interaction-a transcriptional coactivator with a signaling kinase-occurs in the cytoplasm and directly regulates SYK stability. This study indicates that OCA-B is required for pre-BCR and BCR signaling at multiple stages of B cell development through its nontranscriptional regulation of SYK. Combined with the deregulation of OCA-B target genes, this may help explain the multitude of defects observed in B cell development and immune responses of Oca-b-/- mice.

  2. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Ha

    2016-04-01

    Full Text Available Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose polymerase, without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2 gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  3. MiR-125b Inhibits LPS-Induced Inflammatory Injury via Targeting MIP-1α in Chondrogenic Cell ATDC5

    Directory of Open Access Journals (Sweden)

    Jinling Jia

    2018-03-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is largely responsible for cartilage degeneration in osteoarthritis (OA. MicroRNAs (miRNAs play an important role in chondrogenesis and cartilage remodeling. This study explored the effect of miR-125b on inflammatory injury in chondrogenic cells. Methods: LPS was used to simulate inflammatory injury in murine chondrogenic ATDC5 cell lines. Targeting effect of miR-125b on MIP-1α 3’UTR was assessed by dual luciferase activity assay. Regulatory effect of miR-125b on MIP-1α expression and the potential regulatory mechanism on inflammatory injury were assessed by Western blot. Results: miR-125b expression was decreased in LPS-induced ATDC5 cells and overexpression of miR-125b inhibited LPS-induced cell viability decline, the rise of apoptosis and inflammatory factors’ productions. MIP-1α expression was negatively related to miR-125b, and miR-125b directly targeted with 3’UTR of MIP-1α. Knockdown of miR-125b promoted LPS-induced inflammatory response via upregulation of MIP-1α. miR-125b expression in LPS-induced ATDC5 cells was negatively related with activations of NF-κB and JNK signaling pathways. Overexpression of miR-125b inhibited LPS-induced inflammation injury via suppressing MIP-1α expression and inhibiting activations of NF-κB and JNK signaling pathways. Conclusion: miR-125b could play an important role in inflammatory injury of chondrogenic cells and miR-125b affected inflammatory injury of ATDC5 cells via regulating expression of MIP-1α and regulating NF-κB and JNK signaling pathways.

  4. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  5. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    International Nuclear Information System (INIS)

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-01-01

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  6. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    Science.gov (United States)

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence

    International Nuclear Information System (INIS)

    Hernandez-Flores, Georgina; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose Manuel; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana del C; Celis-Carrillo, Ruth de; Toro-Arreola, Susana del; Castellanos-Esparza, Yessica C

    2011-01-01

    Worldwide, cervical cancer is the second most common causes of cancer in women and represents an important mortality rate. Cisplatin (CIS) is a very important antitumoral agent and can lead tumor cells toward two important cellular states: apoptosis and senescence. In some types of cancers pentoxifylline (PTX) sensitizes these cells to the toxic action of chemotherapeutics drugs such as adriamycin, inducing apoptosis. In the present work, we studied in vitro whether PTX alone or in combination with CIS induces apoptosis and/or senescence in cervix cancer HeLa and SiHa cell lines infected with HPV types 16 and 18, respectively, as well as in immortalized keratinocytyes HaCaT cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, CIS or both. The cellular toxicity and survival fraction of PTX and CIS were determinate by WST-1 and clonogenic assays respectively. Apoptosis, caspase activation and phosphorylation of ERK1/2, p38, p65 (NF-κB), Bcl-2 and Bcl-XL anti-apoptotic proteins were determinated by flow cytometry. Senescence by microscopy. Phosphorylation of IκBα and IκB total were measured by ELISA. Pro-apoptotic, anti-apoptotic and senescence genes, as well as HPV-E6/7 mRNA expression, were detected by RT-PCR. Our results show that after 24 hours of incubation PTX per se is toxic for cancer cells affecting cell viability and inducing apoptosis. The toxicity in HaCaT cells was minimal. CIS induces apoptosis in HeLa and SiHa cells and its effect was significantly increases when the cells were treated with PTX + CIS. In all studies there was a direct correlation with levels of caspases (-3, -6, -7, -9 and -8) activity and apoptosis. CIS induces important levels of senescence and phosphorylation of ERK1/2, p38, p65/RELA, and IκBα, and decreased the expression of anti-apoptotic protein Bcl-XL. Surprisingly these levels were significantly reduced by PTX in tumor cells, and at the same

  8. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Won, E-mail: maestro97@hanmail.net; Kim, Sun Chul, E-mail: linefe99@hanmail.net; Ko, Yoon Sook, E-mail: rainboweyes@hanmail.net; Lee, Hee Young, E-mail: cell1023@hanmail.net; Cho, Eunjung, E-mail: icdej@naver.com; Kim, Myung-Gyu, E-mail: gyu219@hanmail.net; Jo, Sang-Kyung, E-mail: sang-kyung@korea.ac.kr; Cho, Won Yong, E-mail: wonyong@korea.ac.kr; Kim, Hyoung Kyu, E-mail: hyoung@korea.ac.kr

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  9. Induction of the nuclear IκB protein IκB-ζ upon stimulation of B cell antigen receptor

    International Nuclear Information System (INIS)

    Hijioka, Kuniaki; Matsuo, Susumu; Eto-Kimura, Akiko; Takeshige, Koichiro; Muta, Tatsushi

    2007-01-01

    The nuclear IκB protein IκB-ζ is barely detectable in resting cells and is induced in macrophages and fibroblasts following stimulation of innate immunity via Toll-like receptors. The inducedB-ζ associates with nuclear factor (NF)-κB in the nucleus and plays crucial roles in its transcriptional regulation. Here, we examined the induction of IκB-ζ in B lymphocytes, one of the major players in adaptive immunity. Upon crosslinking of the surface immunoglobulin complex, IκB-ζ mRNA was robustly induced in murine B-lymphoma cell line A20 cells. While the crosslinking activated NF-κB and induced its target gene, IκB-α, co-crosslinking of Fcγ receptor IIB to the surface immunoglobulin complex inhibited NF-κB activation and the induction of IκB-ζ and IκB-α, suggesting critical roles for NF-κB in the induction. These results indicate that IκB-ζ is also induced by stimulation of B cell antigen receptor, suggesting that IκB-ζ is involved in the regulation of adaptive immune responses

  10. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  11. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  12. CD21+ (B2 antigen+) cell decrement and CD4+CD29+ (helper-inducer) cell increment suggest an activation of cell immune reactivity in multiple sclerosis.

    Science.gov (United States)

    Gambi, D; Porrini, A M; Giampietro, A; Macor, S

    1991-08-01

    Two-color flow cytometric analysis on peripheral blood lymphocytes of 35 untreated multiple sclerosis (MS) patients, 17 other medical disease (OMD) patients and 14 healthy control (HC) subjects was performed to evaluate the levels of different T and B cell subpopulations. In MS patients we observed an increase in CD4+CD29+ helper-inducer cells but this increase was not related to the different phases of the disease. We hypothesize that this change is related to the reduction of CD21+ cells expressing B2 antigen, a 140 kDa molecule disappearing after B cell activation. An increased level of CD4+CD45RA- (helper-inducer-like cells) and a reduction of CD4+CD29- (suppressor-inducer-like cells) were also present in our patients. These findings demonstrate an immune 'disequilibrium' in MS, which is linked with an increased level of CD25+ cells expressing the interleukin-2 (IL-2) receptor. IL-2, besides being a T cell growth factor, is also a B cell growth factor. These data let us hypothesize that an activation of the immune response is present in MS.

  13. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    Science.gov (United States)

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  14. Investigation of the Cry4B-prohibitin interaction in Aedes aegypti cells.

    Science.gov (United States)

    Kuadkitkan, Atichat; Smith, Duncan R; Berry, Colin

    2012-10-01

    Bacillus thuringiensis (Bt) produces insecticidal toxins active against insects. Cry4B, one of the major insecticidal toxins produced by Bt subsp. israelensis, is highly toxic to mosquitoes in the genus Aedes: the major vectors of dengue, yellow fever, and chikungunya. Previous work has shown that Cry4B binds to several mid-gut membrane proteins in Aedes aegypti larvae including prohibitin, a protein recently identified as a receptor that also mediates entry of dengue virus into Aedes cells. This study confirms the interaction between Cry4B and prohibitin by co-immunoprecipitation analysis and demonstrates colocalization of prohibitin and Cry4B by confocal microscopy. While activated Cry4B toxin showed high larvicidal activity, it was not cytotoxic to two Aedes cell lines, allowing determination of its effect on dengue virus infectivity in the absence of Cry4B-induced cell lysis. Pre-exposure of Aedes cells to Cry4B resulted in a significant reduction in the number of infected cells compared to untreated cells.

  15. Human T Cell Leukemia Virus Type I Tax-InducedB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells

    Directory of Open Access Journals (Sweden)

    Ryuichiro Kimura

    2013-09-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I is the etiologic agent of adult T cell leukemia (ATL and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB, cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1. Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκBinduced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3, guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases.

  16. Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinocytes: epithelial models of differentiation therapy.

    Science.gov (United States)

    Staiano-Coico, L; Steinberg, M; Higgins, P J

    1990-10-15

    Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.

  17. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells

    International Nuclear Information System (INIS)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-01-01

    Highlights: ► Cisplatin increases acetylation of NF-κB p65 subunit in HK2 cells. ► SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. ► Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  18. Anti-pre-S responses and viral clearance in chronic hepatitis B virus infection.

    Science.gov (United States)

    Budkowska, A; Dubreuil, P; Poynard, T; Marcellin, P; Loriot, M A; Maillard, P; Pillot, J

    1992-01-01

    Serial sera were collected prospectively during the clinical course of 13 HBsAg carriers with chronic liver disease and analyzed for ALT levels, pre-S1 and pre-S2 antigens and corresponding antibodies and other serological hepatitis B virus markers. In five patients, anti-pre-S1 and anti-pre-S2 antibodies became detectable in multiple serum samples, whereas in eight patients anti-pre-S was never detected or only appeared transiently during the follow-up. The first pattern was associated with normalization of ALT levels and undetectable pre-S antigens and viral DNA by the polymerase chain reaction assay at final follow-up. HBsAg clearance occurred in two of the five patients. The second pattern was one of persistence of HBsAg and pre-S antigens, associated with the presence of serum HBV DNA detectable by spot hybridization or polymerase chain reaction regardless of clinical outcome. These findings demonstrate the occurrence of anti-pre-S antibodies in chronic hepatitis B virus-induced liver disease and associate anti-pre-S appearance with the clearance of hepatitis B virus from serum.

  19. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanlu [Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province (China); Tang, Zhuqi; Zhu, Xiaohui [Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province (China); Xia, Nana; Zhao, Yun; Wang, Suxin [Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province (China); Cui, Shiwei, E-mail: neifenmicui@163.com [Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province (China); Wang, Cuifang, E-mail: binghuodinghuo@163.com [Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province (China)

    2015-11-20

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion of TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.

  20. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    International Nuclear Information System (INIS)

    Zhang, Wanlu; Tang, Zhuqi; Zhu, Xiaohui; Xia, Nana; Zhao, Yun; Wang, Suxin; Cui, Shiwei; Wang, Cuifang

    2015-01-01

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion of TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.

  1. Novel 1,3,4-Oxadiazole Induces Anticancer Activity by Targeting NF-κB in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chakrabhavi Dhananjaya Mohan

    2018-03-01

    Full Text Available Aberrant activation of NF-κB is linked with the progression of human malignancies including hepatocellular carcinoma (HCC, and blockade of NF-κB signaling could be a potential target in the treatment of several cancers. Therefore, designing of novel small molecule inhibitors that target NF-κB activation is of prime importance in the treatment of several cancers. In the present work, we report the synthesis of series of 1,3,4-oxadiazoles, investigated their anticancer potential against HCC cells, and identified 2-(3-chlorobenzo[b]thiophen-2-yl-5-(3-methoxyphenyl-1,3,4-oxadiazole (CMO as the lead compound. Further, we examined the effect of CMO on cell cycle distribution (flow cytometry, apoptosis (annexin V-propidium iodide-FITC staining, and phosphorylation of NF-κB signaling pathway proteins (IκB and p65 in HCC cells. We found that CMO induced antiproliferative effect in dose- and time-dependent manner. Also, CMO significantly increased the percentage of sub-G1 cell population and induced apoptosis. Furthermore, CMO found to decrease the phosphorylation of IκB (Ser 32 in the cytoplasmic extract and p65 (Ser 536 in the nuclear extract of HCC cells. It also abrogated the DNA binding ability and transcriptional activity of NF-κB. CMO induced the cleavage of PARP and caspase-3 in a time-dependent manner. In addition, transfection with p65 small interfering RNA blocks CMO-induced caspase-3/7 activation. Molecular docking analysis revealed that CMO interacts with the hydrophobic region of p65 protein. Thus, we are reporting CMO as an inhibitor of NF-κB signaling pathway.

  2. SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA Splicing

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-12-01

    Full Text Available Dysregulated alternative splicing events have been implicated in many types of cancer, but the underlying molecular mechanisms remain unclear. Here, we observe that the splicing factor SRSF1 regulates DBF4B exon6 splicing by specifically binding and promoting its inclusion. Knockdown of the exon6-containing isoform (DBF4B-FL significantly inhibits the tumorigenic potential of colon cancer cells in vitro and in mice, and SRSF1 inactivation phenocopies DBF4B-FL depletion. DBF4B-FL and SRSF1 are required for cancer cell proliferation and for the maintenance of genomic stability. Overexpression of DBF4B-FL can protect against DNA damage induced by SRSF1 knockdown and rescues growth defects in SRSF1-depleted cells. Increased DBF4B exon6 inclusion parallels SRSF1 upregulation in clinical colorectal cancer samples. Taken together, our findings identify SRSF1 as a key regulator of DBF4B pre-mRNA splicing dysregulation in colon cancer, with possible clinical implications as candidate prognostic factors in cancer patients.

  3. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2010-05-01

    Full Text Available Abstract In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.

  4. DMPD: Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin-1during B-cell development. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14962188 Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokin...ng) (.svg) (.html) (.csml) Show Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin...-1during B-cell development. PubmedID 14962188 Title Mechanisms of selection medi

  5. CD137 is induced by the CD40 signal on chronic lymphocytic leukemia B cells and transduces the survival signal via NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Yukana Nakaima

    Full Text Available CD137 is a member of the tumor necrosis factor receptor family that is expressed on activated T cells. This molecule provides a co-stimulatory signal that enhances the survival, and differentiation of cells, and has a crucial role in the development of CD8 cytotoxic T cells and anti-tumor immunity. Here we report that CD137 expression is also induced on normal or malignant human B cells by CD40 ligation by its ligand CD154. This CD137 induction was more prominent in chronic lymphocytic leukemia (CLL cells than in other types of B cells. CD137 stimulation on B cells by its ligand induced the nuclear translocation of p52 (a non-canonical NF-κB factor. In agreement with this finding, expression of the survival factor BCL-XL was upregulated. Consequently, the CD137 signal augmented the survival of CD154-stimulated CLL B cells in vitro. This unexpected induction of CD137 on B cells by CD40 signal may influence the clinical course of CLL.

  6. Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available The goals of this study were to investigate the effects of hypoxia on cochlear hair cell damage, and to explore the role of sirtuin1 in hypoxia-induced hair cell damage. Cochlear organotypic cultures from postnatal day 4 rats were used in this study. Hypoxia was induced by treating cochlear explants with CoCl2. Cochlear cultures were treated with CoCl2 alone or in combination with the sirtuin1 activator resveratrol and the sirtuin1 inhibitor sirtinol. Hair cell damage was identified by phalloidin staining and imaged using scanning electron microscopy. RT-PCR and Western blot analyses were used to detect the expression of sirtuin1 and acetylated nuclear factor-κB (NF-κB. Low concentrations of CoCl2 (100-200 μM did not cause an obvious change in the number and morphology of hair cells, whereas higher concentrations of CoCl2 (300-400 μM induced swelling of hair cells, accompanied by cell loss. Increased sirtuin1 expression was induced by CoCl2 at 100 to 200 μM, but not at 400 μM. NF-κB acetylation was significantly increased in explants treated with 400 μM CoCl2. Pretreatment with resveratrol prevented CoCl2-induced hair cell loss and acetylation of NF-κB. The protective effect of resveratrol was significantly reduced by sirtinol. CoCl2 induces hair cell damage in organotypic cochleae cultures. Resveratrol attenuates CoCl2-induced cochlear hair cell damage possibly via activation of sirtuin1, which deacetylates NF-κB.

  7. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan; Perkins, Jordan T. [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536 (United States); Petriello, Michael C. [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Hennig, Bernhard, E-mail: bhennig@uky.edu [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536 (United States)

    2015-12-15

    Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications. - Highlights: • Coplanar PCBs significantly induced histone demethylase JMJD2B expression. • Coplanar PCBs activated NF-κB through p65 up-regulation and nuclear translocation. • Histone H3K4 and K9 modifications were mediated by ER-α/JMJD2B/MLL2 complex.

  8. Antigen presenting cells costimulatory signaling during pre-implantation pregnancy 

    Directory of Open Access Journals (Sweden)

    Anna Sławek

    2012-09-01

    Full Text Available  Success of pregnancy depends on many factors. Three phenomena inducing immune tolerance against semi-allogeneic conceptus may play a crucial role in the pre-implantation period of pregnancy: influence of sex hormones in sex cycle, presence of oocyte or embryo and the presence of semen in the female reproductive tract. On the other hand dendritic cells are the most effective antigen-presenting cells in regulation of immune phenomena and also are considered as potent participants in inducing immune tolerance in the pregnancy. They communicate with T cells in cell contact-dependent manner or via cytokines. During cell-cell contacts, costimulatory molecules play a key role and their expression is often dependent on cytokines milieu. Both costimulatory molecules and cytokines influence generation of T regulatory cells. Interactions of these molecules are closely related. In this paper we would like to pay attention to the importance of antigen presenting cells costimulatory potency in immune regulation during a pre-implantation period of pregnancy.

  9. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  10. Effects of anti-CD40 mAb on inducing malignant B cells proliferation arrest and apoptosis and its mechanism

    International Nuclear Information System (INIS)

    Tang Lin; Zhuang Yumei; Zhou Zhaohua; Yu Gehua; Pan Jianzhong; Zhang Xueguang

    2002-01-01

    Objective: To study the expression of CD 40 molecule and the biological effects mediated by CD 40 molecules on malignant B cells. Methods: Agonistic anti-human CD 40 monoclonal antibody (clone 5C11) was added to cell culture system. Cell counting, PI staining, Annexin-V staining and flow cytometric analysis were used to study the behavior of malignant B cell lines after treatment with mAb clone 5C11. Results: 5C11 induced homotypic aggregation and proliferation arrest and mediated apoptosis in multiple myeloma cell line XG2 that expressed CD 40 strongly; 5C11 induced B lymphoma cell line Daudi homotypic aggregation and proliferation arrest and apoptosis, the apoptosis of XG2 and Daudi by CD40 activation was not mediated by TNF. Conclusion: Agonistic anti-CD 40 mAb 5C11 can inhibit the proliferation of malignant B cells by inducing them to die apoplectically

  11. Human T Cell Leukemia Virus Type I Tax-InducedB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    Science.gov (United States)

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκBinduced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  12. Diesel exhaust particles increase IL-1β-induced human β-defensin expression via NF-κB-mediated pathway in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Lee Chun

    2006-05-01

    Full Text Available Abstract Background Human β-defensin (hBD-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8 expression to DEP exposure in interleukin-1 beta (IL-1β-stimulated A549 cells. Results IL-1β markedly up-regulated the hBD-2 promoter activity, and the subsequent DEP exposure increased dose-dependently the expression of hBD-2 and inflammatory cytokine IL-8 at the transcriptional level. In addition, DEP further induced the NF-κB activation in IL-1β-stimulated A549 cells more rapidly than in unstimulated control cells, which was showed by nuclear translocation of p65 NF-κB and degradation of IκB-α. The experiment using two NF-κB inhibitors, PDTC and MG132, confirmed that this increase of hBD-2 expression following DEP exposure was regulated through NF-κB-mediated pathway. Conclusion These results demonstrated that DEP exposure increases the expression of antimicrobial peptide and inflammatory cytokine at the transcriptional level in IL-1β-primed A549 epithelial cells and suggested that the increase is mediated at least partially through NF-κB activation. Therefore, DEP exposure may contribute to enhance the airway-responsiveness especially on the patients suffering from chronic respiratory disease.

  13. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  14. Type i CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B cells

    DEFF Research Database (Denmark)

    Engelberts, P. J.; Voorhorst, M.; Schuurman, J.

    2016-01-01

    . We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship...... between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells...... isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC...

  15. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  16. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  17. MicroRNA miR-125b induces senescence in human melanoma cells.

    Science.gov (United States)

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  18. Applications of human hepatitis B virus preS domain in bio- and nanotechnology.

    Science.gov (United States)

    Toita, Riki; Kawano, Takahito; Kang, Jeong-Hun; Murata, Masaharu

    2015-06-28

    Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.

  19. Excessive amounts of mu heavy chain block B-cell development.

    Science.gov (United States)

    Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley

    2011-09-01

    Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.

  20. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells

    NARCIS (Netherlands)

    Staszewski, Ori; Baker, Richard E.; Ucher, Anna J.; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E. J.

    2011-01-01

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading

  1. Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils

    International Nuclear Information System (INIS)

    Fujihara, Satoko; Jaffray, Ellis; Farrow, Stuart N.; Rossi, Adriano G.; Haslett, Christopher; Hay, Ronald T.

    2005-01-01

    An 11 amino acid HIV-TAT peptide can deliver target proteins into a variety of cells in a receptor-independent manner. To generate a highly specific inhibitor of the transcription factor NF-κB, we have fused the TAT-peptide to a version of IκBα that is resistant to signal-induced degradation. TAT-IκBα(S32A, S36A) inhibited NF-κB-dependent transcription in HeLa and A549 cells by retaining NF-κB p65 in the cytoplasm. Introduction of TAT-IκBα(S32A, S36A) into human eosinophils inhibited the nuclear translocation of NF-κB and induced apoptosis. Thus, continuous NF-κB-dependent transcription is important for eosinophil survival. While eosinophils are normally refractive to standard methods of gene delivery, the ability of TAT fusion proteins to be taken up by these cells should enable a detailed molecular analysis of survival pathways in these cells

  2. The role of NF-κB signaling in the maintenance of pluripotency of human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Osamu Takase

    Full Text Available NF-κB signaling plays an essential role in maintaining the undifferentiated state of embryonic stem (ES cells. However, opposing roles of NF-κB have been reported in mouse and human ES cells, and the role of NF-κB in human induced pluripotent stem (iPS cells has not yet been clarified. Here, we report the role of NF-κB signaling in maintaining the undifferentiated state of human iPS cells. Compared with differentiated cells, undifferentiated human iPS cells showed an augmentation of NF-κB activity. During differentiation induced by the removal of feeder cells and FGF2, we observed a reduction in NF-κB activity, the expression of the undifferentiation markers Oct3/4 and Nanog, and the up-regulation of the differentiated markers WT-1 and Pax-2. The specific knockdown of NF-κB signaling using p65 siRNA also reduced the expression of Oct3/4 and Nanog and up-regulated WT-1 and Pax-2 but did not change the ES-like colony formation. Our results show that the augmentation of NF-κB signaling maintains the undifferentiated state of human iPS and suggest the importance of this signaling pathway in maintenance of human iPS cells.

  3. Trichomonas vaginalis Induces SiHa Cell Apoptosis by NF-κB Inactivation via Reactive Oxygen Species

    Science.gov (United States)

    Quan, Juan-Hua; Kang, Byung-Hun; Yang, Jung-Bo; Rhee, Yun-Ee; Noh, Heung-Tae; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min

    2017-01-01

    Trichomonas vaginalis induces apoptosis in host cells through various mechanisms; however, little is known about the relationship between apoptosis, reactive oxygen species (ROS), and NF-κB signaling pathways in the cervical mucosal epithelium. Here, we evaluated apoptotic events, ROS production, and NF-κB activity in T. vaginalis-treated cervical mucosal epithelial SiHa cells, with or without specific inhibitors, using fluorescence microscopy, DNA fragmentation assays, subcellular fractionation, western blotting, and luciferase reporter assay. SiHa cells treated with live T. vaginalis at a multiplicity of infection of 5 (MOI 5) for 4 h produced intracellular and mitochondrial ROS in a parasite-load-dependent manner. Incubation with T. vaginalis caused DNA fragmentation, cleavage of caspase 3 and PARP, and release of cytochrome c into the cytoplasm. T. vaginalis-treated SiHa cells showed transient early NF-κB p65 nuclear translocation, which dramatically dropped at 4 h after treatment. Suppression of NF-κB activity was dependent on parasite burden. However, treatment with the ROS scavenger, N-acetyl-C-cysteine (NAC), reversed the effect of T. vaginalis on apoptosis and NF-κB inactivation in SiHa cells. Taken together, T. vaginalis induces apoptosis in human cervical mucosal epithelial cells by parasite-dose-dependent ROS production through an NF-κB-regulated, mitochondria-mediated pathway. PMID:29410962

  4. Trichomonas vaginalis Induces SiHa Cell Apoptosis by NF-κB Inactivation via Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Juan-Hua Quan

    2017-01-01

    Full Text Available Trichomonas vaginalis induces apoptosis in host cells through various mechanisms; however, little is known about the relationship between apoptosis, reactive oxygen species (ROS, and NF-κB signaling pathways in the cervical mucosal epithelium. Here, we evaluated apoptotic events, ROS production, and NF-κB activity in T. vaginalis-treated cervical mucosal epithelial SiHa cells, with or without specific inhibitors, using fluorescence microscopy, DNA fragmentation assays, subcellular fractionation, western blotting, and luciferase reporter assay. SiHa cells treated with live T. vaginalis at a multiplicity of infection of 5 (MOI 5 for 4 h produced intracellular and mitochondrial ROS in a parasite-load-dependent manner. Incubation with T. vaginalis caused DNA fragmentation, cleavage of caspase 3 and PARP, and release of cytochrome c into the cytoplasm. T. vaginalis-treated SiHa cells showed transient early NF-κB p65 nuclear translocation, which dramatically dropped at 4 h after treatment. Suppression of NF-κB activity was dependent on parasite burden. However, treatment with the ROS scavenger, N-acetyl-C-cysteine (NAC, reversed the effect of T. vaginalis on apoptosis and NF-κB inactivation in SiHa cells. Taken together, T. vaginalis induces apoptosis in human cervical mucosal epithelial cells by parasite-dose-dependent ROS production through an NF-κB-regulated, mitochondria-mediated pathway.

  5. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  6. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase.

    Science.gov (United States)

    Cingolani, Francesca; Simbari, Fabio; Abad, Jose Luis; Casasampere, Mireia; Fabrias, Gemma; Futerman, Anthony H; Casas, Josefina

    2017-08-01

    Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer

    International Nuclear Information System (INIS)

    Sáenz-López, Pablo; Carretero, Rafael; Cózar, José Manuel; Romero, José Maria; Canton, Julia; Vilchez, José Ramón; Tallada, Miguel; Garrido, Federico; Ruiz-Cabello, Francisco

    2008-01-01

    Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk. A case-control study design was used to test the association between prostate cancer risk and the polymorphisms TNF-A-308 A/G (rs 1800629), RANTES-403 G/A (rs 2107538), IL1-A-889 C/T (rs 1800587) and MCP-1 2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area. Diagnosis of prostate cancer was significantly associated with TNF-A GA + AA genotype (OR, 1.61; 95% CI, 1.09–2.64) and RANTES GA + AA genotype (OR, 1.44; 95% CI, 1.09–2.38). A alleles in TNF-A and RANTES influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and IL1-A or MCP-1 polymorphisms. Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development

  8. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    International Nuclear Information System (INIS)

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Sakaguchi, Nobuo

    2006-01-01

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM lo IgD hi B-cells but not in AICD susceptible immature IgM hi IgD lo B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23 hi B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack of G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells

  9. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells.

    Science.gov (United States)

    Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung

    2013-09-06

    Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.

  10. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  11. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    Science.gov (United States)

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  12. Catalase Induced by All-Trans Retinoic Acid Is Involved in Antiproliferation of 36B10 Cells

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Yu, Jae Ran

    2010-01-01

    All-trans retinoic acid (ATRA) has antiproliferative effects against brain tumor cells. Recently, ATRA has been reported to induce catalase. We investigated whether catalase induction by ATRA is associated with its antiproliferative effects. 36B10 cells were exposed to 0-50μM ATRA for 24 or 48 hours and mRNA, protein, and activity of catalase were measured. Reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate. A clonogenic assay was used to confirm the cytotoxic effect. The mRNA, protein, and activity of catalase were found to increase in a concentration- and incubation- time-dependent manner. The increase in catalase activity induced by ATRA was decreased by the addition of 3-amino-1,2,4-triazole (ATZ). ROS was also increased with ATRA and decreased by the addition of ATZ. The decrease in cell survival induced by ATRA was partly rescued by ATZ. Catalase induction by ATRA is involved in ROS overproduction and thus inhibits the proliferation of 36B10 cells.

  13. Microcystin-LR induces anoikis resistance to the hepatocyte uptake transporter OATP1B3-expressing cell lines

    International Nuclear Information System (INIS)

    Takano, Hiroyuki; Takumi, Shota; Ikema, Satoshi; Mizoue, Nozomi; Hotta, Yuki; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2014-01-01

    Microcystin-LR is a cyclic peptide released by several bloom-forming cyanobacteria. Understanding the mechanism of microcystin-LR toxicity is important, because of the both potencies of its acute cytotoxicity and tumor-promoting activity in hepatocytes of animals and humans. Recently, we have reported that the expression of human hepatocyte uptake transporter OATP1B3 was critical for the selective uptake of microcystin-LR into hepatocytes and for induction of its fatal cytotoxicity. In this study, we demonstrated a novel function of microcystin-LR which induced bipotential changes including anoikis resistance and cytoskeleton reorganization to OATP1B3-transfected HEK293 cells (HEK293-OATP1B3). After exposure to microcystin-LR, HEK293-OATP1B3 cells were divided to the floating cells and remaining adherent cells. After collection and reseeding the floating cells into a fresh flask, cells were confluently proliferated (HEK293-OATP1B3-FL) under the microcystin-LR-free condition. Both the proliferated HEK293-OATP1B3-FL and remaining adherent HEK293-OATP1B3-AD cells changed the character with down- and up-regulation of E-cadherin, respectively. Additionally, these cells acquired resistance to microcystin-LR. These results suggest that microcystin-LR could be associated with not only tumor promotion, but also epithelial–mesenchymal transition-mediated cancer metastasis. Furthermore, microcystin-LR might induce the cytoskeleton reorganization be accompanied epithelial–mesenchymal transition

  14. TNFA gene variants related to the inflammatory status and its association with cellular aging: From the CORDIOPREV study

    Science.gov (United States)

    Background: Several single nucleotide polymorphisms have been proposed as potential predictors of the development of age-related diseases. Objective: To explore whether Tumor Necrosis Factor Alpha (TNFA) gene variants were associated with inflammatory status, thus facilitating the rate of telomere s...

  15. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Jin Chul; Min, Jung Sun; Kim, Mi-Jee; Kim, Ji Ae; Kor, Myung Ho; Yoo, Hwa Seung; Ahn, Jeong Keun

    2011-06-14

    A medicinal herb Tribulus terrestris Linn has been used to treat various diseases including hepatocellular carcinoma. The aim of the present study was to investigate the anticancer activity of Tribulus terrestris Linn (TT) in liver cancer cells. The antitumor activity of aqueous TT extract was analyzed by testing the cytotoxicity and the effect on clonogenecity in HepG2 cells. Apoptosis and cell cycle arrest induced by TT were dissected by flow cytometry and its inhibitory effect on NF-κB activity was determined by analyzing the expression levels of NF-κB/IκB subunit proteins. The suppression of NF-κB-regulated gene expression by TT was assessed by RT-PCR. TT extract repressed clonogenecity and proliferation, induced apoptosis, and enhanced accumulation in the G0/G1 phase of liver cancer cells. It also turned out that TT extract inhibited NF-κB-dependent reporter gene expression and NF-κB subunit p50 expression, while it enhanced the cellular level of IκBα by inhibiting the phosphorylation and degradation of IκBα. In addition, IKK activity was inhibited in a dose-dependent manner. Furthermore, TT extract suppressed the transcription of genes associated with cell cycle regulation, anti-apoptosis, and invasion. These data showed that TT extract blocks proliferation and induces apoptosis in human liver cancer cells through the inhibition of NF-κB signaling. Aqueous TT extract can be used as an anticancer drug for hepatocellular carcinoma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells

    International Nuclear Information System (INIS)

    Lee, J.-C.; Won, S.-J.; Chao, C.-L.; Wu, F.-L.; Liu, H.-S.; Ling Pin; Lin, C.-N.; Su, C.-L.

    2008-01-01

    Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G 1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB

  17. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Nault, Rance, E-mail: naultran@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2017-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712

  18. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  19. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  20. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    International Nuclear Information System (INIS)

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik

    2007-01-01

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells

  1. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  2. Examining the protective role of ErbB2 modulation in human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Eldridge, Sandy; Guo, Liang; Mussio, Jodie; Furniss, Mike; Hamre, John; Davis, Myrtle

    2014-10-01

    Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as an in vitro model system in cardiac biology and in drug discovery (e.g., cardiotoxicity testing). Qualification of these cells for use in mechanistic investigations will require detailed evaluations of cardiomyocyte signaling pathways and cellular responses. ErbB signaling and the ligand neuregulin play critical roles in survival and functional integrity of cardiac myocytes. As such, we sought to characterize the expression and activity of the ErbB family of receptors. Antibody microarray analysis performed on cell lysates derived from maturing hiPSC-CMs detected expression of ∼570 signaling proteins. EGFR/ErbB1, HER2/ErbB2, and ErbB4, but not ErbB3 receptors, of the epidermal growth factor receptor family were confirmed by Western blot. Activation of ErbB signaling by neuregulin-1β (NRG, a natural ligand for ErbB4) and its modulation by trastuzumab (a monoclonal anti-ErbB2 antibody) and lapatinib (a small molecule ErbB2 tyrosine kinase inhibitor) were evaluated through assessing phosphorylation of AKT and Erk1/2, two major downstream kinases of ErbB signaling, using nanofluidic proteomic immunoassay. Downregulation of ErbB2 expression by siRNA silencing attenuated NRG-induced AKT and Erk1/2 phosphorylation. Activation of ErbB signaling with NRG, or inhibition with trastuzumab, alleviated or aggravated doxorubicin-induced cardiomyocyte damage, respectively, as assessed by a real-time cellular impedance analysis and ATP measurement. Collectively, these results support the expanded use of hiPSC-CMs to examine mechanisms of cardiotoxicity and support the value of using these cells in early assessments of cardiotoxicity or efficacy. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. [The character of the morphological changes of the mucous membrane of the large intestine and the genetic polymorphism of IL-1RA, IL-1B, IL-4 TNFA in patient with irritable bowel syndrome].

    Science.gov (United States)

    Sarsenbaeva, A S; Ivanova, E L; Burmistrova, A L; Drozdov, I V

    2013-01-01

    The aim of this study was to evaluate the presence or absence of a relationship between the variants of the course of IBS and their association with genetic polymorphisms of genes and intergenic interaction of cytokines. The sample consisted of 81 patients, the diagnosis was verified according to the criteria of the Rome III, were isolated psychopathological, morphological complications, extra-intestinal symptoms. Polymorphism genotyping IL-1Ra, IL-b, IL-4, TNFa performed by PCR. Statistical treatment are a non-parametric analysis of multiple comparisons, hierarchical log-linear analysis. It is found out the relation between the clinical variants with morphological changes of the mucous membrane of the large intestine, the association between gender characteristics of patients with IBS is established and with genetic polymorphisms of cytokines.

  4. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells

    OpenAIRE

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-01-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB...

  5. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death.

    Science.gov (United States)

    Kumar, Amrendra; Gordy, Laura E; Bezbradica, Jelena S; Stanic, Aleksandar K; Hill, Timothy M; Boothby, Mark R; Van Kaer, Luc; Joyce, Sebastian

    2017-11-15

    Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-x L -coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.

  6. Brevenal inhibits pacific ciguatoxin-1B-induced neurosecretion from bovine chromaffin cells.

    Directory of Open Access Journals (Sweden)

    César Mattei

    Full Text Available Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and beta-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera.

  7. Brevenal inhibits pacific ciguatoxin-1B-induced neurosecretion from bovine chromaffin cells.

    Science.gov (United States)

    Mattei, César; Wen, Peter J; Nguyen-Huu, Truong D; Alvarez, Martha; Benoit, Evelyne; Bourdelais, Andrea J; Lewis, Richard J; Baden, Daniel G; Molgó, Jordi; Meunier, Frédéric A

    2008-01-01

    Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and beta-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera.

  8. Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms

    DEFF Research Database (Denmark)

    Sigurðsson, Haraldur H; Olesen, Christina Wilkens; Dybboe, Rie

    2015-01-01

    cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin...

  9. Inhibition of apoptic cell death induced by Pseudomonas syringae pv. Tabaci and mycotoxin fumonisin B1

    NARCIS (Netherlands)

    Iakimova, E.T.; Batchvorova, R.; Kapchina, V.; Popov, T.; Atanassov, A.; Woltering, E.J.

    2004-01-01

    The impact of programmed cell death (PCD) inhibitors on lesion formation and biochemical events in transgenic (ttr line) and non-transgenic (Nevrokop 1164) tobacco infected with Pseudomonas syringae pv. tabaci was tested. Programmed cell death in tomato cell culture was induced by Fumonisin B1 (FUM)

  10. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  11. Human parvovirus B19-induced anaemia in pre-school children in Ilorin, Nigeria

    Science.gov (United States)

    Agbede, Olajide O.; Omoare, Adesuyi A.; Ernest, Samuel K.

    2018-01-01

    Sera collected from 57 anaemic and 115 non-anaemic age-matched pre-school children in Ilorin, Nigeria, between November 2014 and December 2015 were assayed for human parvovirus B19-specific IgM antibodies by using the enzyme linked immunosorbent assay technique. A total of 17 (29.8%) anaemic children and 18 (15.7%) non-anaemic children were positive for parvovirus B19 infection. Infection with parvovirus B19 is common in this population, and screening for the virus during differential diagnosis is recommended. PMID:29850435

  12. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  13. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  14. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  15. 1Autoreactive pre-plasma cells break tolerance in the absence of regulation by dendritic cells and macrophages

    Science.gov (United States)

    Gilbert, Mileka R.; Wagner, Nikki J.; Jones, Shannon Z.; Wisz, Amanda B.; Roques, Jose R.; Krum, Kristen N.; Lee, Sang-Ryul; Nickeleit, Volker; Hulbert, Chrys; Thomas, James W.; Gauld, Stephen B.; Vilen, Barbara J.

    2012-01-01

    The ability to induce antibody responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of Toll-like receptor-4 (TLR4), dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to antigen, but not naïve cells, suggesting a means to maintain tolerance during TLR4 stimulation, yet allow immunity. In this study, we identify TNFα as a third repressive factor, which together with IL-6 and CD40L, account for nearly all the repression conferred by DCs and MFs. Like IL-6 and sCD40L, TNFα did not alter B cell proliferation or survival. Rather, it reduced the number of antibody secreting cells. To address whether the soluble mediators secreted by DCs and MFs functioned in vivo, we generated mice lacking IL-6, CD40L and TNFα. Compared to wildtype mice, these mice showed prolonged anti-nuclear antibody responses following TLR4 stimulation. Further, adoptive transfer of autoreactive B cells into chimeric IL-6-/- × CD40L-/- × TNFα-/- mice showed that pre-plasma cells secreted autoantibodies independent of germinal center formation or extrafollicular foci. These data indicate that in the absence of genetic predisposition to autoimmunity, loss of endogenous IL-6, CD40L, and TNFα promotes autoantibody secretion during TLR4 stimulation. PMID:22675201

  16. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    Science.gov (United States)

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  17. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells.

    Science.gov (United States)

    Raja, Srikumar M; Clubb, Robert J; Bhattacharyya, Mitra; Dimri, Manjari; Cheng, Hao; Pan, Wei; Ortega-Cava, Cesar; Lakku-Reddi, Alagarsamy; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2008-10-01

    ErbB2 (or Her2/Neu) overexpression in breast cancer signifies poorer prognosis, yet it has provided an avenue for targeted therapy as demonstrated by the success of the humanized monoclonal antibody Trastuzumab (Herceptin). Resistance to Trastuzumab and eventual failure in most cases, however, necessitate alternate ErbB2-targeted therapies. HSP90 inhibitors such as 17-allylaminodemethoxygeldanamycin (17-AAG), potently downregulate the cell surface ErbB2. While the precise mechanisms of Trastuzumab or 17-AAG action remain unclear, ubiquitinylation-dependent proteasomal or lysosomal degradation of ErbB2 appears to play a substantial role. As Trastuzumab and 17-AAG induce the recruitment of distinct E3 ubiquitin ligases, Cbl and CHIP respectively, to ErbB2, we hypothesized that 17-AAG and Trastuzumab combination could induce a higher level of ubiquitinylation and downregulation of ErbB2 as compared to single drug treatments. We present biochemical and cell biological evidence that combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2. Importantly, combined 17-AAG and Trastuzumab treatment induced synergistic growth arrest and cell death specifically in ErbB2-overexpressing but not in ErbB2-low breast cancer cells. Our results suggest the 17-AAG and Trastuzumab combination as a mechanism-based combinatorial targeted therapy for ErbB2-overexpressing breast cancer patients.

  18. PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Raida, Martin Kristian; Holten-Andersen, Lars

    2011-01-01

    ) on the surface of the invader. Phagocytic cells are known to initiate a respiratory burst following an exposure to the pathogen, but the underlying and associated specific elements are poorly elucidated in fish. The present study describes the differential response of head kidney leukocytes from rainbow trout...... (Oncorhynchus mykiss) to different PAMPs mimicking viral (poly I:C), bacterial (flagellin and LPS) and fungal infections (zymosan and ß-glucan). Transcript of cytokines related to inflammation (IL-1ß, IL-6, IL-10 and TNF-a) was highly up-regulated following LPS exposure whereas flagellin or poly I:C induced...... merely moderate reactions. In contrast, IFN-¿ expression was significantly higher in the poly I:C stimulated group compared to the LPS group. When head kidney cells were exposed to zymosan or ß-glucan, genes encoding IL-1ß, TNF-a, IL-6 and IL-10 became up-regulated. Their level of up...

  19. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2018-03-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play a crucial role in erythropoiesis. MiR-23a∼27a∼24-2 clusters have been proven to take part in erythropoiesis via some proteins. CDC25B (cell division control Cdc2 phosphostase B is also the target of mir-27a; whether it regulates erythropoiesis and its mechanism are unknown. Methods: To evaluate the potential role of miR-27a during erythroid differentiation, we performed miR-27a gain- and loss-of-function experiments on hemin-induced K562 cells. We detected miR-27a expression after hemin stimulation at different time points. At the same time, the γ-globin gene also was measured via real-time PCR. According to the results of the chips, we screened the target protein of miR-27a through a dual-luciferase reporter assay and identified it via Western blot analyses. To evaluate the function of CDC25B, benzidine staining and flow cytometry were employed to detect the cell differentiation and cell cycle. Results: We found that miR-27a promotes hemin-induced erythroid differentiation of human K562 cells by targeting cell division cycle 25 B (CDC25B. Overexpression of miR-27a promotes the differentiation of hemin-induced K562 cells, as demonstrated by γ-globin overexpression. The inhibition of miR-27a expression suppresses erythroid differentiation, thus leading to a reduction in the γ-globin gene. CDC25B was identified as a new target of miR-27a during erythroid differentiation. Overexpression of miR-27a led to decreased CDC25B expression after hemin treatment, and CDC25B was up-regulated when miR-27a expression was inhibited. Moreover, the inhibition of CDC25B affected erythroid differentiation, as assessed by γ-globin expression. Conclusion: This study is the first report of the interaction between miR-27a and CDC25B, and it improves the understanding of miRNA functions during erythroid differentiation.

  20. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  1. Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-κB Activity

    International Nuclear Information System (INIS)

    Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.; Pabon, Ana Maria B.S.; Shentu, Shujun; Guha, Sushovan; Aggarwal, Bharat B.; Krishnan, Sunil

    2009-01-01

    Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-κB (NF-κB) activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-κB activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-κB activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of κB alpha, inhibition of inhibitor of κB kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-κB-regulated gene products (Bcl-2, Bcl-x L , inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-κB activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.

  2. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    Science.gov (United States)

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  3. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  4. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma.

    Science.gov (United States)

    Harhaj, Edward William; Giam, Chou-Zen

    2018-05-03

    The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4+ malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1 infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and independent mechanisms of NF-κB activation during the multi-step process leading to ATLL. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  6. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  7. CCR3 expression induced by IL-2 and IL-4 functioning as a death receptor for B cells

    DEFF Research Database (Denmark)

    Jinquan, Tan; Jacobi, Henrik H; Jing, Chen

    2003-01-01

    We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (approximately 98% CCR3(+)). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19......-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant....... Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests...

  8. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    Science.gov (United States)

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  9. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M before stimulation with free fatty acid (palmitic and oleic acids; 1 mM. Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF-a and interleukin (IL-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK and mammalian target of rapamycin (mTOR were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD group in vivo and free fatty acid (FFA group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.

  10. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    International Nuclear Information System (INIS)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-01-01

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  11. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-07-15

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  12. TNFa-based isolated limb perfusion in the rat : development of a model and analysis of efficacy determining factors

    NARCIS (Netherlands)

    E.R. Manusama (Eric)

    1998-01-01

    textabstractIsolated limb perfusion (lLP) with high dose TNFa in combination with IFNr and melphalan in patients with melanoma in transit metastases confined to the limb has recently been reported to result in much higher complete tumor response rates than after the standard therapy of ILP with

  13. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  14. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  16. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    International Nuclear Information System (INIS)

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation

  17. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo.

    Directory of Open Access Journals (Sweden)

    Yorifumi Satou

    2011-02-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL, and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (T(reg. Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for T(reg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ, which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ T(reg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased T(reg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ T(reg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of T(reg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases.

  18. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-a induced gene expression

    NARCIS (Netherlands)

    Boesten, R.J.; Vos, de W.M.; Schuren, F.H.J.; Willemsen, L.E.M.; Knol, J.

    2011-01-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory

  19. Bifidobacterium breve-HT-29 cell line interaction: Modulation of TNF-a induced gene expression

    NARCIS (Netherlands)

    Boesten, R.J.; Schuren, F.H.J.; Willemsen, L.E.M.; Vriesema, A.; Knol, J.; Vos, W.M. de

    2011-01-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory

  20. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    Science.gov (United States)

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  1. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    Science.gov (United States)

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  2. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Isaac Maximiliano Bugueno

    Full Text Available Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg, one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved.Human umbilical vein ECs (HUVECs were infected with Pg (MOI 100 or stimulated by its lipopolysaccharide (Pg-LPS (1μg/ml for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results.Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level.This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.

  3. The effect of solar irradiated Vibrio cholera on the secretion of pro-inflammatory cytokines and chemokines by the JAWS II dendritic cell line in vitro

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2015-06-01

    Full Text Available 70, IL-15, MIP-1a, MIP-1ß, MIP-2, RANTES, TNF-a, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison...

  4. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression

    Directory of Open Access Journals (Sweden)

    Li Min

    2011-08-01

    Full Text Available Abstract Background Previous studies showed that mesothelin (MSLN plays important roles in survival of pancreatic cancer (PC cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN, stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75 BAD, and activated (p-Ser70 Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis

  5. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells

    OpenAIRE

    JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE

    2015-01-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, ...

  6. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism.

    Science.gov (United States)

    Sadeghi, Asie; Seyyed Ebrahimi, Shadi Sadat; Golestani, Abolfazl; Meshkani, Reza

    2017-09-01

    Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    Science.gov (United States)

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  8. Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wu

    Full Text Available Greater than 75% of all hematologic malignancies derive from germinal center (GC or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID, GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR. Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.

  9. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2016-03-01

    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  10. The acquisition of cytokine responsiveness by murine B cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    chains and mRNA to levels comparable to those seen in activated T cells. Anti-mu-stimulated B cells responded to IL-2 by incorporation of [3H]thymidine and high rate immunoglobulin (Ig) secretion. Both IL-5 (at optimal concentration) and suboptimal lipopolysaccharide (LPS; 20 ng/ml) induced surface...... expression of IL-2R alpha. The level of expression induced by IL-5 was equivalent to that on anti-Ig-activated B cells. Neither stimulus induced detectable expression of IL-2R beta, and neither induced B cells to respond to IL-2. IL-2R alpha expression was strongly enhanced, and low levels of IL-2R beta...

  11. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.

    Science.gov (United States)

    Yan, C; Han, R

    1998-07-03

    Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.

  13. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  14. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Kang, Ki Sung [College of Korean Medicine, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yong Kee, E-mail: yksnbk@sm.ac.kr [College of Pharmacy, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Kim, Su-Nam, E-mail: snkim@kist.re.kr [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  15. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  16. Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Tsai, Jai-Jen; Pan, Po-Jung; Hsu, Fei-Ting

    2017-02-01

    The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells.

  17. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  18. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  19. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Science.gov (United States)

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  20. Sulforaphane protects against cytokine- and streptozotocin-induced β-cell damage by suppressing the NF-κB pathway

    International Nuclear Information System (INIS)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung; Park, Jin-Woo; Kim, Hyung-Jin; So, Hong-Seob; Park, Raekil; Kwon, Kang-Beom; Park, Byung-Hyun

    2009-01-01

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced β-cell damage. Treatment of RIN cells with IL-1β and IFN-γ induced β-cell damage through a NF-κB-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokine toxicity. The mechanism by which Nrf2 activation inhibited NF-κB-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H 2 O 2 production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice

  1. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage.

    Science.gov (United States)

    Nayak, Guruprasad; Honguntikar, Sachin D; Kalthur, Sneha Guruprasad; D'Souza, Antony Sylvan; Mutalik, Srinivas; Setty, Manjunath M; Kalyankumar, Raksha; Krishnamurthy, Hanumanthappa; Kalthur, Guruprasad; Adiga, Satish Kumar

    2016-04-22

    Moringa oleifera Lam. is widely cultivated in Asian and African countries for its medicinal and dietary significance. The leaves are highly nutritious and are known to possess various biological activities. Pre-pubertal Swiss albino male mice were injected with single dose of cyclophosphamide (CP, 200mg/kg body weight) or ethanolic extract of Moringa oleifera leaves (MOE, 100mg/kg body weight) intraperitoneally. In combination group, MOE was administered 24h prior to CP injection. CP induced a significant decrease in testicular weight (p<0.01) and depletion of germ cells (p<0.001) and higher level of DNA damage (p<0.001) compared to control. The expression of P53, Bax, Cytochrome C (Cyt C) was increased while there was a decrease in the expression of Bcl2, c-Kit and Oct4. Administration of MOE 24h prior to CP treatment ameliorated the depletion (p<0.001), DNA damage (p<0.001) and apoptosis (p<0.01) of germ cells induced by CP. The mitigating effect of MOE appears to be mediated by up-regulating the expression of c-Kit and Oct4 transcripts in P53-independent manner. MOE protects the spermatogonial cells from CP-induced damage by modulating the apoptotic response elicited by CP and therefore can be considered as an efficient method of male fertility preservation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Mariem Ben-Abdallah

    Full Text Available Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB, a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of

  3. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As-induced

  4. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    Science.gov (United States)

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  5. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Blix Egil S

    2012-10-01

    Full Text Available Abstract Background Knowledge about signaling pathways in malignant cells may provide prognostic and diagnostic information in addition to identify potential molecular targets for therapy. B-cell receptor (BCR and co-receptor CD40 signaling is essential for normal B cells, and there is increasing evidence that signaling via BCR and CD40 plays an important role in the pathogenesis of B-cell lymphoma. The aim of this study was to investigate basal and induced signaling in lymphoma B cells and infiltrating T cells in single-cell suspensions of biopsies from small cell lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL and marginal zone lymphoma (MZL patients. Methods Samples from untreated SLL/CLL and MZL patients were examined for basal and activation induced signaling by phospho-specific flow cytometry. A panel of 9 stimulation conditions targeting B and T cells, including crosslinking of the B cell receptor (BCR, CD40 ligand and interleukins in combination with 12 matching phospho-protein readouts was used to study signaling. Results Malignant B cells from SLL/CLL patients had higher basal levels of phosphorylated (p-SFKs, p-PLCγ, p-ERK, p-p38, p-p65 (NF-κB, p-STAT5 and p-STAT6, compared to healthy donor B cells. In contrast, anti-BCR induced signaling was highly impaired in SLL/CLL and MZL B cells as determined by low p-SFK, p-SYK and p-PLCγ levels. Impaired anti-BCR-induced p-PLCγ was associated with reduced surface expression of IgM and CD79b. Similarly, CD40L-induced p-ERK and p-p38 were also significantly reduced in lymphoma B cells, whereas p-p65 (NF-κB was equal to that of normal B cells. In contrast, IL-2, IL-7 and IL-15 induced p-STAT5 in tumor-infiltrating T cells were not different from normal T cells. Conclusions BCR signaling and CD40L-induced p-p38 was suppressed in malignant B cells from SLL/CLL and MZL patients. Single-cell phospho-specific flow cytometry for detection of basal as well as activation-induced

  6. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    International Nuclear Information System (INIS)

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-01-01

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-inducedB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN

  7. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1β expression.

    Directory of Open Access Journals (Sweden)

    Shian-Chin Ko

    Full Text Available The expression of cytokines, such as IL-1β, and the activation of the epidermal growth factor receptor (EGFR are crucial regulators in the process of carcinogenesis. The correlation between growth factor and activated cytokine signals in the control of tumor development is a critical issue to be clarified. In our study, we found that the IL-1β gene and protein expression were induced by EGF in squamous cell carcinoma. To clarify the mechanism involved in EGF-regulated IL-1β expression, we examined the transcriptional activity and mRNA stability of IL-1β in EGF-treated cells. We found that EGF induced the expression of IL-1β and was mediated through transcriptional activation, but not through mRNA stability. The involvement of Akt and NF-κB signaling pathways in the EGF-induced IL-1β gene expression was confirmed by knockdown of RelA and Akt in cells or treating cells with Akt and NF-κB inhibitors, LY294002 and parthenolide, respectively. The expression of dominant negative IκB also repressed the activation of NF-κB and inhibited EGF-induced IL-1β expression. Using immunofluorescence staining assay, the EGF-stimulated nuclear translocation of NF-κB (p65 was inhibited by pre-treating cells with LY294002 and parthenolide. Furthermore, EGF increased the binding of NF-κB to the NF-κB binding site of the IL-1β promoter through the activation of the Akt/NF-κB pathway, which resulted in activating IL-1β promoter activity. The expression and secretion of IL-1β induced by EGF considerably reduced chemotherapeutic drug cisplatin-induced cell death. These results showed that EGF enhanced the expression of IL-1β, which was mediated by the Akt/NF-κB pathway. The activation of EGF signaling and increase of IL-1β contributed to chemotherapeutic resistance of cancer cells, suggesting that the expression of IL-1β may be used as a biomarker to evaluate successful cancer treatment.

  8. Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity

    NARCIS (Netherlands)

    S. Middendorp; G.M. Dingjan (Gemma); A. Maas (Alex); K. Dahlenborg; R.W. Hendriks (Rudi)

    2003-01-01

    textabstractThe Tec family member Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase that transduces signals from the pre-B and B cell receptor (BCR). Btk is involved in pre-B cell maturation by regulating IL-7 responsiveness, cell surface phenotype changes,

  9. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Shogo [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nakatani, Fumi [Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502 Japan (Japan); Masuko, Kazue; Tsuchihashi, Kenji [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueda, Shiho; Masuko, Takashi [Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502 Japan (Japan); Saya, Hideyuki [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nagano, Osamu, E-mail: osmna@sb3.so-net.ne.jp [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2016-01-29

    The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-based cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.

  10. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells

    International Nuclear Information System (INIS)

    Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue; Tsuchihashi, Kenji; Ueda, Shiho; Masuko, Takashi; Saya, Hideyuki; Nagano, Osamu

    2016-01-01

    The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-based cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.

  11. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hong Sam-Pyo

    2009-02-01

    Full Text Available Abstract Background The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC. Akt-induced epithelial-to-mesenchymal transition (EMT involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38. Methods We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis. Results Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling

  12. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium – Identification of the responsible medium components

    Directory of Open Access Journals (Sweden)

    Pless-Petig Gesine

    2012-10-01

    Full Text Available Abstract Background In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Results Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199. Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM, a high concentration of inorganic phosphate (5.6 mM, and glucose (11.1 mM; i.e. concentrations as in RPMI 1640 evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. Conclusion These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.

  13. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    Science.gov (United States)

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  14. ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-κB-dependent and Notch-independent mechanism.

    Science.gov (United States)

    Yao, Jun; Qian, Cui-Juan; Ye, Bei; Zhang, Xin; Liang, Yong

    2012-09-04

    To analyze the combined impact of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) and the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 on gastric cancer (GC) cell line SGC7901 growth. SGC7901 cells were treated with TSA, PD98059 or with a TSA-PD98059 combination. Effects of drug treatment on tumor cell proliferation, apoptosis, cell cycle progression, and cell signaling pathways were investigated by MTS assay, flow cytometry, Western blotting, chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA), and luciferase reporter assay, respectively. PD98059 enhanced TSA-induced cell growth arrest, apoptosis and activation of p21(WAF1/CIP1), but reversed TSA-induced activation of ERK1/2 and nuclear factor-κB (NF-κB). TSA alone up-regulated Notch1 and Hes1, and down-regulated Notch2, but PD98059 did not affect the trends of Notch1 and Notch2 induced by TSA. Particularly, PD98059 did potentiate the ability of TSA to down-regulate phospho-histone H3 protein, but increased levels of the acetylated forms of histone H3 bound to the p21(WAF1/CIP1) promoter, leading to enhanced expression of p21(WAF1/CIP1) in SGC7901 cells. PD98059 synergistically potentiates TSA-induced GC growth arrest and apoptosis by manipulating NF-κB and p21(WAF1/CIP1) independent of Notch. Therefore, concomitant administration of HDACIs and ERK1/2 inhibitors may be a promising treatment strategy for individuals with GC. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr

    2004-01-01

    stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression...... in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation...

  16. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  17. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  18. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  19. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  20. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Heni [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Okamura, Hirohiko [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Hirota, Katsuhiko, E-mail: hirota@dent.tokushima-u.ac.jp [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Shono, Masayuki [Support Center for Advanced Medical Sciences, The University of Tokushima, Tokushima 770-8504 (Japan); Yoshida, Kaya [Department of Fundamental Oral Health Science, School of Oral Health and Welfare, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Murakami, Keiji [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Tabata, Atsushi; Nagamune, Hideaki [Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Haneji, Tatsuji [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Miyake, Yoichiro [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan)

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  1. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    International Nuclear Information System (INIS)

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-01

    Research highlights: → ILY leads to the accumulation of [Ca 2+ ]i in the nucleus in HuCCT1 cells. → ILY induced activation of NFAT1 through a calcineurin-dependent pathway. → Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca 2+ ]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca 2+ ]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  2. Immunophenotypic analysis of the Kaposi sarcoma herpesvirus (KSHV; HHV-8)-infected B cells in HIV+ multicentric Castleman disease (MCD).

    Science.gov (United States)

    Chadburn, A; Hyjek, E M; Tam, W; Liu, Y; Rengifo, T; Cesarman, E; Knowles, D M

    2008-11-01

    Kaposi sarcoma herpesvirus (KSHV) is aetiologically related to Kaposi sarcoma, classical and extracavitary primary effusion lymphoma (PEL; EC-PEL) and multicentric Castleman disease (MCD), entities preferentially occurring in HIV-infected individuals. Characterization of HIV-associated PELs/EC-PELs suggests that the KSHV-infected malignant cells originate from a pre-terminal stage of B-cell differentiation. However, only limited phenotypic studies have been performed on HIV+ MCD, including for PR domain containing 1 with zinc finger domain/B lymphocyte-induced maturation protein 1 (PRDM1/BLIMP1), a key regulator of terminal B-cell differentiation. The aim was to characterize KSHV-infected cells in 17 cases of HIV+ MCD. Double immunohistochemistry and immunohistochemistry-in situ hybridization were used to characterize the KSHV-infected cells in MCD; the results were compared with the phenotypic profiles of 39 PELs/EC-PELs and seven PEL cell lines. Whereas the immunophenotype of KSHV-infected cells in MCD and malignant KSHV+ PEL cells was similar (PAX5, Bcl-6-; PRDM1/BLIMP1, IRF4/MUM1+; Ki67+), the MCD KSHV-infected cells differed, as they expressed OCT2, cytoplasmic lambda immunoglobulin; variably expressed CD27; lacked CD138; and were Epstein-Barr virus negative. Although both PEL and MCD originate from KSHV-infected pre-terminally differentiated B cells, these findings, with previously reported genetic studies, indicate HIV+ MCD may arise from extrafollicular B cells, whereas PELs may originate from cells that have traversed the germinal centre.

  3. Modification of radiation response of E. coli B/r cells by phenothiazines

    International Nuclear Information System (INIS)

    Maniar, H.S.; Singh, B.B.

    1983-01-01

    Promethazine and trimeprazine sensitized anoxic E. coli B/r cells to 60 Co gamma-rays, but both drugs showed a radioprotective effect under euoxic conditions. Their radiosensitizing effect was found to be due to the reaction of radiolytically induced hydroxyl radicals with the sensitizers. The radioprotective effect of these drugs is attributed to changes in the membrane structure conducive with chemical repair of the damaged sites in the gel region of the cellular membrane by intracellular sulphydryl compounds. Pre-irradiation depletion of sulphydryls from E. coli B/r by treatment with N-ethyl maleimide abolished the radioprotective effect of these drugs under euoxic conditions. (author)

  4. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ping-Lung Chan

    Full Text Available Although diverse functions of different toll-like receptors (TLR on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4(hiCD25(+ regulatory T cells from naïve CD4(+CD25(- T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4(hiCD25(+ regulatory T cells. It was found that induced CD4(hiCD25(+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4(hiCD25(+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4(hiCD25(+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4(hiCD25(+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4(hiCD25(+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.

  5. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  6. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion.

    Science.gov (United States)

    Frommer, Friederike; Heinen, Tobias J A J; Wunderlich, F Thomas; Yogev, Nir; Buch, Thorsten; Roers, Axel; Bettelli, Estelle; Müller, Werner; Anderton, Stephen M; Waisman, Ari

    2008-10-15

    B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells.

  7. HBV X Protein induces overexpression of HERV-W env through NF-κB in HepG2 cells.

    Science.gov (United States)

    Liu, Cong; Liu, Lijuan; Wang, Xiuling; Liu, Youyi; Wang, Miao; Zhu, Fan

    2017-12-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) at chromosome 7 is highly expressed in the placenta and possesses fusogenic activity in trophoblast development. HERV-W env has been found to be overexpressed in some cancers and immune diseases. Viral transactivators can induce the overexpression of HERV-W env in human cell lines. Hepatitis B virus X protein (HBx) is believed to be a multifunctional oncogenic protein. Here, we reported that HBx could increase the promoter activity of HERV-W env and upregulate the mRNA levels of non-spliced and spliced HERV-W env and also its protein in human hepatoma HepG2 cells. Interestingly, we found that the inhibition of nuclear factor κB (NF-κB) using shRNA targeting NF-κB/p65 or PDTC (an inhibitor of NF-κB) could attenuate the upregulation of HERV-W env induced by HBx. These suggested that HBx might upregulate the expression of HERV-W env through NF-κB in HepG2 cells. This study might provide a new insight in HBV-associated liver diseases including HCC.

  8. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    International Nuclear Information System (INIS)

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua; Zhou Rongjia

    2006-01-01

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-κB was up-regulated. Interference analysis of NF-κB in A549 cells showed that knock down of NF-κB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-κB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer

  9. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    Science.gov (United States)

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  10. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies.

    Science.gov (United States)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau; Kubale, Valentina; Kovalchuk, Alexander L; Daugvilaite, Viktorija; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Egerod, Kristoffer L; Bassi, Maria R; Spiess, Katja; Schwartz, Thue W; Wang, Hongsheng; Morse, Herbert C; Holst, Peter J; Rosenkilde, Mette M

    2017-02-16

    Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5 + B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 ( EBI2 or GPR183 ) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5 + B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.

  11. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  12. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu Hanzhou; Yu Ming; Deng Bo; Li Linfan; Jiang Haiqing; Li Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA). - Highlights: → Acrylonitrile is grafted onto pre-irradiated polyethylene (PE) nonwoven fabrics. → Emulsion system is applied, for the graft polymerization avoids organic solvent. → Kinetic of the pre-irradiation induced graft polymerization is studied. → Optimal condition is determined at the temperature below the b.p. of acrylonitrile.

  13. Pacific ciguatoxin 1B-induced modulation of inflammatory mediators in a murine macrophage cell line.

    Science.gov (United States)

    Matsui, Mariko; Kumar-Roine, Shilpa; Darius, H Taiana; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2010-10-01

    Ciguatoxins, potent marine neurotoxins responsible for ciguatera, exert their numerous damaging effects through primary binding to the voltage-sensitive sodium channels of excitable cells. Using RAW 264.7 murine macrophages, we report the first experimental study presenting evidence that P-CTX-1B (the most potent congener from the Pacific) could modulate mRNA expression of pro- and anti-inflammatory cytokines as well as of inducible nitric oxide synthase (iNOS). P-CTX-1B, unlike other less potent marine polyether toxins, P-CTX-3C and PbTx-3, induced the overexpression of interleukin (IL)-1beta, IL-6, IL-10, tumor necrosis factor-alpha and iNOS with different magnitude and kinetic profiles, as compared to bacterial lipopolysaccharide (LPS). Unlike LPS, P-CTX-1B did not modulate IL-11 expression. In this report, we provide new evidence of the P-CTX-1B iNOS- and cytokines-inducing ability and shed new light on host response to potent neurotoxins. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells

    Science.gov (United States)

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-01-01

    Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s. PMID:29581812

  15. Cigarette smoke-induced emphysema : A role for the B cell?

    NARCIS (Netherlands)

    van der Strate, BWA; Postma, DS; Brandsma, CA; Melgert, BN; Luinge, MA; Geerlings, M; Hylkema, MN; van den Berg, Anke; Timens, W; Kerstjens, HAM

    2006-01-01

    Rationale: Little is known about what drives the inflammatory reaction in the development of chronic obstructive lung disease. B cells have been found. Objective: To study the involvement of B cells in the development of emphysema. Methods: The presence of B-cell follicles and their interaction with

  16. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  17. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway.

    Science.gov (United States)

    Shi, Meiyan; He, Xiaodan; Wei, Wei; Wang, Juan; Zhang, Ti; Shen, Xiaohong

    2015-06-01

    As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic

  18. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    International Nuclear Information System (INIS)

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  19. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection.

    Science.gov (United States)

    Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh

    2017-07-01

    Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.

  20. WNT16B from Ovarian Fibroblasts Induces Differentiation of Regulatory T Cells through β-Catenin Signal in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Cong-Cong Shen

    2014-07-01

    Full Text Available Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus integration site 16B (WNT16B is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation. We also demonstrated that fibroblast-derived WNT16B could result in accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10 and transforming growth factor beta (TGF-β, which contributed to the differentiation of regulatory T cells in a co-culture environment. These results shed light on the roles of WNT16B in immune regulation, especially in regard to cancer treatment.

  1. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  2. Monoclonal antibody studies in B(non-T)-cell malignancies.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Hirose, M

    1983-09-01

    Tumor cells suspensions prepared from 129 B- or non-T cell malignancies were investigated with a panel of 10 monoclonal antibodies and conventional surface marker techniques. Surface immunoglobulin (sIg) and B1 antigen proved to be the most useful markers for B-cell lineage. Six major subtypes of acute lymphoblastic leukemia (ALL) of non-T cell nature are now recognized by these immunological techniques, including null-ALL, Ia-ALL, lymphoid stem cell ALL, pre-pre-B ALL, pre-B ALL and B-ALL. In cases of chronic leukemias and lymphomas of non-T cell nature, 80% of the tumor was defined by sIg and 88% by B1 antigen as definitely of B-cell lineage. The clonal character was also defined in 68% of the tumor on the basis of the detection of predominant single light chain in sIg. Ia-like antigen was detected in almost all cases (96%). Leukemic cells from all cases of chronic lymphocytic leukemia (CLL), chronic lymphosarcoma cell leukemia (CLsCL) and hairy cell leukemia (HCL) reacted with OKIa1 and anti-B1, and leukemic cells from most of them with anti-pan T monoclonal antibody (10.2). In more than half of CLL and CLsCL, leukemic cells were reactive with J5, OKM1, 9.6 and OKT8, but not with OKT3, OKT4 and OKT6. HCL cells had almost the same reactivity with these monoclonal antibodies as CLL and CLsCL cells except that J5 remained unreactive. These results indicated that Japanese CLL, CLsCL and HCL were different from Western ones at least with respect to surface marker characteristics. In cases of lymphomas, heavy chains of sIg were expressed in polyclonal fashion, especially in follicular lymphoma and diffuse lymphomas of medium sized cell type and large cell type, indicating that lymphomas of these types may originate from follicular center cells of the heavy chain switching stage. Anti-T monoclonals were also reactive with lymphoma cells. In about half of follicular lymphomas and diffuse lymphomas of the medium sized cell type, lymphoma cells reacted with 10.2, and less

  3. Small kinetochore associated protein (SKAP promotes UV-induced cell apoptosis through negatively regulating pre-mRNA processing factor 19 (Prp19.

    Directory of Open Access Journals (Sweden)

    Shan Lu

    Full Text Available Apoptosis is a regulated cellular suicide program that is critical for the development and maintenance of healthy tissues. Previous studies have shown that small kinetochore associated protein (SKAP cooperates with kinetochore and mitotic spindle proteins to regulate mitosis. However, the role of SKAP in apoptosis has not been investigated. We have identified a new interaction involving SKAP, and we propose a mechanism through which SKAP regulates cell apoptosis. Our experiments demonstrate that both overexpression and knockdown of SKAP sensitize cells to UV-induced apoptosis. Further study has revealed that SKAP interacts with Pre-mRNA processing Factor 19 (Prp19. We find that UV-induced apoptosis can be inhibited by ectopic expression of Prp19, whereas silencing Prp19 has the opposite effect. Additionally, SKAP negatively regulates the protein levels of Prp19, whereas Prp19 does not alter SKAP expression. Finally, rescue experiments demonstrate that the pro-apoptotic role of SKAP is executed through Prp19. Taken together, these findings suggest that SKAP promotes UV-induced cell apoptosis by negatively regulating the anti-apoptotic protein Prp19.

  4. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    International Nuclear Information System (INIS)

    Chan, Nelson L.S.; Wang Huan; Wang Yun; Leung, H.Y.; Leung, Lai K.

    2006-01-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 μM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis

  5. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells

    International Nuclear Information System (INIS)

    Atluru, D.; Goodwin, J.S.

    1984-01-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4

  6. Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Zhuo-Xin Cheng

    Full Text Available Epithelial to mesenchymal transition (EMT induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.

  7. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  8. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  9. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  10. Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation.

    Science.gov (United States)

    Son, Minsik; Kim, Aeyung; Lee, Jaewoo; Park, Chul-Hong; Heo, Jin-Chul; Lee, Hyun-Jin; Lee, Sang-Han

    2010-08-01

    Some active alkaloids isolated from Lycoris, a bulbous perennial herb, was shown to possess various anti-tumor and anti-inflammatory activities. In this study, we evaluated the in vitro apoptotic effect of ethanol extract from Lycoris radiata (LRE) and further probed the underlying molecular mechanisms of LRE effects. The survival rate of B16F10 melanoma cells exposed to LRE was decreased in a dose-dependent manner, cell growth was retarded by arresting cell cycle at G1 phase and apoptotic appearance such as caspase-3 activation as well as DNA fragmentation was observed by LRE treatment. In addition, LRE induced p38 and c-Jun phosphorylation, followed by activation of transcription factor AP-1. Pretreatment with the p38 inhibitor (SB203580) blocked LRE-induced AP-1 transcriptional activity, and curcumin, AP-1 inhibitor, dramatically inhibited LRE-induced apoptosis in B16F10 melanoma cells. Our results collectively indicate that LRE-mediated apoptosis occurs through the activation of p38 and AP-1 pathway and potentially LRE exhibits anti-cancer activity against B16F10 melanoma cells.

  11. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  12. Prognostic impact of pre-transplantation computed tomography and 67gallium scanning in chemosensitive diffuse large B cell lymphoma patients undergoing hematopoietic stem-cell transplantation

    International Nuclear Information System (INIS)

    Escobar, Ignacio G.; Alonso, Pilar T.; Barrigon, Dolores C.; Perez-Simon, Jose A.; Mateos Manteca, Maria V.; San Miguel Izquierdo, Jesus F.

    2008-01-01

    In the present study, we evaluated computed tomography (CT) and 67 gallium scanning ( 67 Ga scan) pre-transplant as prognostic factors for overall survival (OS) and event-free survival (EFS) in patients with diffuse large B cell lymphoma, undergoing high-dose chemotherapy and stem-cell transplantation. Forty-two patients were included. Of these, 9 (21%) had both positive CT and 67 Ga scans, 17 (41%) negative results with both techniques, and 16 (38%) positive CT/negative 67 Ga scan. Whole-body planar imaging and single-photon emission computed tomography (SPECT) were performed 72 h after an intravenous administration of 67 Ga citrate measuring between 7 mCi and 10 mCi (259-370 MBq). Patients with positive CT/positive 67 Ga scan had a significantly worse EFS and OS at 5 years than those with negative 67 Ga scan regardless of whether it was associated with a positive or a negative CT scan (29% and 16% vs. 81% and 93% vs. 88% and 100%, respectively, P 67 Ga scan and those with positive CT/negative 67 Ga scan, with an EFS and OS at 5 years of 88% versus 81% and 100% versus 93%, respectively. In multivariate analysis, the presence of a pre-transplant positive CT/ 67 Ga scans adversely influenced both EFS and OS [HR 8, 95% confidence interval (CI) (1.4-38), P=0.03 and HR 2; 95% CI (1.3-8), P=0.02, respectively]. 67 Ga scan helps to identify, in the pre-transplant evaluation, two groups with a different outcome: one group of patients with positive CT and negative 67 Ga scans pre-transplant, who showed a favorable outcome with a low rate of relapse, and the other group of patients with both positive CT and 67 Ga scans pre-transplant, who showed a poor prognosis and did not benefit from autologous stem-cell transplantation. They should have been offered other therapeutic strategies. (author)

  13. Activation of NF-κB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant

    International Nuclear Information System (INIS)

    Park, Seong H.; Choi, Won-Seok; Yoon, So-Young; Ahn, Young Soo; Oh, Young J.

    2004-01-01

    The nuclear factor-kappaB (NF-κB) family plays an important role in the control of the apoptotic response. Its activation has been demonstrated in both neurons and glial cells in many neurological disorders. In the present study, we specifically examined whether and to what extent NF-κB activation is involved in culture models of Parkinson's disease following exposure of MN9D dopaminergic neuronal cells to 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP + ). Both analysis by immunocytochemistry and of immunoblots revealed that NF-κB-p65 was translocated into the nuclei following 6-OHDA but not MPP + -treatment. A time-dependent activation of NF-κB induced by 6-OHDA but not MPP + was also demonstrated by an electrophoretic mobility shift assay. A competition assay indicated that not only NF-κB-p65 but also -p50 is involved in 6-OHDA-induced NF-κB activity. Co-treatment with an antioxidant, N-acetyl-L-cysteine, blocked 6-OHDA-induced activation of NF-κB signaling. In the presence of an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), 6-OHDA-induced cell death was accelerated while PDTC did not affect MPP + -induced cell death. Our data may point to a drug-specific activation of NF-κB as a survival determinant for dopaminergic neurons

  14. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  15. Corruption of human follicular B-lymphocyte trafficking by a B-cell superantigen.

    Science.gov (United States)

    Borhis, Gwenoline; Viau, Muriel; Badr, Gamal; Richard, Yolande; Zouali, Moncef

    2012-05-09

    Protein A (SpA) of Staphylococcus aureus is known to target the paratope of immunoglobulins expressing V(H)3 genes, and to delete marginal zone B cells and B-1a in vivo. We have discovered that SpA endows S. aureus with the potential to subvert B-cell trafficking in the host. We found that SpA, whose Fc-binding site has been inactivated, binds essentially to naïve B cells and induces a long-lasting decrease in CXCR4 expression and in B-cell chemotaxis to CXCL12. Competition experiments indicated that SpA does not interfere with binding of CXCR4 ligands and does not directly bind to CXCR4. This conclusion is strongly supported by the inability of SpA to modulate clathrin-mediated CXCR4 internalization, which contrasts with the potent effect of anti-immunoglobin M (IgM) antibodies. Microscopy and biochemical experiments confirmed that SpA binds to the surface IgM/IgD complex and induces its clathrin-dependent internalization. Concomitantly, the SpA-induced signaling leads to protein kinase C-dependent CXCR4 downmodulation, suggesting that SpA impairs the recycling of CXCR4, a postclathrin process that leads to either degradation into lysozomes or de novo expression at the cell surface. In addition to providing novel insight into disruption of B-cell trafficking by an infectious agent, our findings may have therapeutic implications. Because CXCR4 has been associated with cancer metastasis and with certain autoimmune diseases, SpA behaves as an evolutionary tailored highly specific, chemokine receptor inhibitor that may have value in addition to conventional cytotoxic therapy in patients with various malignancies and immune-mediated diseases.

  16. Human Parvovirus B19 Induced Apoptotic Bodies Contain Altered Self-Antigens that are Phagocytosed by Antigen Presenting Cells

    Science.gov (United States)

    Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona

    2013-01-01

    Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709

  17. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  18. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  19. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  20. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  1. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells.

    Science.gov (United States)

    Kang, Liang; Yang, Cao; Yin, Huipeng; Zhao, Kangcheng; Liu, Wei; Hua, Wenbin; Wang, Kun; Song, Yu; Tu, Ji; Li, Shuai; Luo, Rongjin; Zhang, Yukun

    2017-04-01

    To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.

  2. Mechanism of altered B-cell response induced by changes in dietary protein type in mice

    International Nuclear Information System (INIS)

    Bounous, G.; Shenouda, N.; Kongshavn, P.A.; Osmond, D.G.

    1985-01-01

    The effect of 20 g/100 g dietary lactalbumin (L) or casein (C) diets or a nonpurified (NP) diet on the immune responsiveness of C57Bl/6J, C3H/HeJ and BALB/cJ mice has been investigated by measuring the response to the T cell-independent antigen, TNP-Ficoll. To investigate the possible influence of dietary protein type on the supply of B lymphocytes, bone marrow lymphocyte production has been examined by a radioautographic assay of small lymphocyte renewal and an immunofluorescent stathmokinetic assay of pre-B cells and their proliferation. The humoral response of all mice fed the L diet was found to be higher than that of mice fed the C diet or nonpurified diet. A similar pattern of dietary protein effect in (CBA/N X DBA/2J) F1 mice carrying the xid defect was observed following challenge with sheep red blood cells (SRBC). An even greater enhancing effect of dietary L was noted in normal (DBA/2J X CBA/N) F1 mice after immunization with SRBC, but in contrast, the normal large-scale production of B lymphocytes in mouse bone marrow was independent of the type of dietary protein. Dietary protein type did not affect blood level of minerals and trace metals. The free plasma amino acid profile essentially conformed to the amino acid composition of the ingested protein, suggesting that the changes in plasma amino acid profile might be a crucial factor in diet-dependent enhancement or depression of the B-cell response

  3. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells.

    Science.gov (United States)

    Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae

    2015-06-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.

  4. Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines

    Directory of Open Access Journals (Sweden)

    Sunitha M. Chacko

    2015-01-01

    Full Text Available Doxorubicin (Dox has been used for more than four decades to treat cancer, particularly solid tumours and haematological malignancies. However, the administration of this drug is a matter of concern in the clinical community, since Dox therapy is commonly associated with dose-dependent cardiotoxicity. Attempts at alleviating drug generated cardiac damage using naturally occurring compounds with radical scavenging property are a promising area of research. p-Coumaric acid (pCA is one such compound which has significant antiradical scavenging effect. This study aims to investigate the effect of pre and co-administration of pCA on mitigating or preventing Dox induced cardiotoxicity in vitro using H9c2 cardiomyoblast cell lines. Addition of pCA and Dox were performed for both treatment and control sets on H9c2 cells. Sulphorhodamine B assay was used to study the cytotoxic effect of pCA and Dox. The effect of the drug on cell morphology, cell viability and nuclear damage was studied using AO/EB and DAPI staining. ROS production was studied using DCFH-DA staining. Mitochondrial membrane potential and intracellular calcium levels were assessed by rhodamine 123 and Fura 2AM staining. pCA showed strong ABTS cation radical scavenging activity and FRAP activity in a dose dependent manner. The results showed that Dox has significant cytotoxic effect in a dose dependent manner while pCA, even at higher concentrations did not display any significant cytotoxicity on H9c2 cells. Both pre treatment and co- administration of pCA reduced the drug induced toxic effects on cell morphology and enhanced the number of viable cells in comparison to the Dox treated cells as evident from the AO/EB and DAPI staining images. The Dox induced ROS production was found to be significantly reduced in pCA pre-treated and co-administered cells. Dox induced changes in mitochondrial membrane potential and intracellular calcium levels were remarkably improved following pre and co

  5. Inhibition of PTP1B disrupts cell?cell adhesion and induces anoikis in breast epithelial cells

    OpenAIRE

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, S?var; Gustafsdottir, Sigrun; M?landsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells a...

  6. Interplay between cell cycle and autophagy induced by boswellic acid analog

    Science.gov (United States)

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  7. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  8. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    International Nuclear Information System (INIS)

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  9. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction.

    Directory of Open Access Journals (Sweden)

    Peter V Usatyuk

    Full Text Available Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs with the bioactive lipid, sphingosine-1-phosphate (S1P rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA targeting coronin 1B (∼36%, PLD2 (∼45% or Rac1 (∼50% compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.

  10. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Cao, ChengJian [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Zhang, HuiPing [Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan (China); Zhao, Li [Department of Medical Laboratory, Ningxia Medical University, Yinchuan (China); Zhou, Longxia [Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Zhang, Minghao; Xu, Hua [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Han, Xuebo [Department of Medical Laboratory, Ningxia Medical University, Yinchuan (China); Li, Guizhong; Yang, Xiaoling [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China); Jiang, YiDeng, E-mail: jyjcyxy@yeah.net [Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan (China); Department of Basic Medicine, Ningxia Medical University, Yinchuan (China)

    2016-09-10

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  11. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    International Nuclear Information System (INIS)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li; Zhou, Longxia; Zhang, Minghao; Xu, Hua; Han, Xuebo; Li, Guizhong; Yang, Xiaoling; Jiang, YiDeng

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  12. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-01-15

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  13. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    International Nuclear Information System (INIS)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  14. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  15. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  16. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  17. Epigenetics of peripheral B cell differentiation and the antibody response

    Directory of Open Access Journals (Sweden)

    Hong eZan

    2015-12-01

    Full Text Available Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs and long non-coding RNAs (lncRNAs, are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin class switch DNA recombination (CSR and somatic hypermutation (SHM, as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens

  18. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells.

    Directory of Open Access Journals (Sweden)

    Udaya S Rangaswamy

    2014-01-01

    Full Text Available Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV, Kaposi's sarcoma-associated herpesvirus (KSHV and murine gammaherpesvirus 68 (MHV68 from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner--leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4. Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- -mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4--a key player in plasma cell differentiation--which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation.

  19. Co-stimulation by anti-immunoglobulin is required for B cell activation by CD40Llow T cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    cell Ag specificity by using anti-CD3/T cell receptor (TcR) monoclonal antibodies (mAb) to activate T cells. To study the role of sIg engagement in the responsiveness of B cells to T help, we pre-treated small resting B cells with soluble anti-kappa mAb prior to contact with an activated Th1 clone...... strongly. Low buoyant density B cells also responded to CD40Llow Th cells. There was no B cell response to resting Th cells. mAb against CD54/intercellular adhesion molecule-1 or major histocompatibility complex (MHC) class II completely inhibited B cell responses to CD40Llow Th1 cells, equivalent...

  20. The autophagy induced by curcumin via MEK/ERK pathway plays an early anti-leukemia role in human Philadelphia chromosome-positive acute lymphoblastic leukemia SUP-B15 cells

    Directory of Open Access Journals (Sweden)

    Yong Guo

    2018-01-01

    Conclusions: Curcumin induce autophagic cell death in SUP-B15 cells via activating RAF/MEK/ERK pathway. These findings suggest that autophagic mechanism contribute to the curcumin-induced early SUP-B15 cell death, and autophagy is another anti-leukemia mechanism of curcumin.

  1. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    Science.gov (United States)

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  2. B1 Cell IgE Impedes Mast Cell-Mediated Enhancement of Parasite Expulsion through B2 IgE Blockade

    Directory of Open Access Journals (Sweden)

    Rebecca K. Martin

    2018-02-01

    Full Text Available Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1−/− mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth.

  3. Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-κB pathway: New lessons from endotoxin and ribotoxic deoxynivalenol

    International Nuclear Information System (INIS)

    Moon, Yuseok; Yang, Hyun; Park, Seung-Hwan

    2008-01-01

    Mucosal epithelium senses external toxic insults and transmits the danger signals into the epithelial cells in order to activate a broad range of inflammatory responses. However, pre-exposure to the commensal endotoxins can induce inflammatory tolerance and maintain the homeostasis without excessive immune responses. We recently reported that ribotoxin deoxynivalenol (DON) and its derivatives elicited the pro-inflammatory response as the mucosal insults in human epithelial cells. Taking the knowledge into consideration, we tested the hypothesis that endotoxin pre-exposure can attenuate ribotoxin-induced epithelial interleukin-8 (IL-8) production via a tolerance mechanism. Pre-exposure to endotoxin repressed IL-8 release and its gene expression. However, inflammatory tolerance was not mediated by the attenuated NF-κB activation which has been generally recognized as the major mediator of LPS-mediated toll-like receptor (TLR) signaling pathway. Instead, pre-exposure to endotoxin was observed to trigger the delayed induction of peroxisome proliferator-activated receptor gamma (PPAR-γ) which contributed to the diminished IL-8 production in the human epithelial cells. Moreover, endogenous PPAR-γ agonist suppressed toxicant-mediated interleukin-8 production and IL-8 mRNA stability. Taken together, endotoxin induced hypo-production of pro-inflammatory cytokine IL-8 in the human epithelial cells, which was associated with the delayed activation of PPAR-γ expression by pre-existing endotoxin

  4. Differentiation of B and T lymphocytes from precursor cells resident in the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, C; Press, O W

    1978-01-01

    A series of experiments in guinea pigs and mice established that proliferating progenitor cells for B and T lymphocytes are a resident population in the bone marrow. It was shown by the combined use of /sup 3/H-TdR radioautography and fluorescent-antibody staining of B and T cells that the majority of bone marrow (BM) lymphocytes are rapidly renewed (RR) B cells and null cells, whereas the thymus (THY) consists overwhelming of RR T lymphocytes; in spleen (SPL) and lymph node (LN) slowly renewed (SR) T and B cells predominate. The rate of B cell turnover in guinea pig bone marrow exceeds that in the SPL or LN, and the appearance of newly generated B cells in the SPL lags behind that in the BM. When systematically administered /sup 3/H-TdR was excluded by tourniquets from tibial and femoral BM no labeled B cells appeared in tibial or femoral marrow over 72 h. When tibial and femoral BM was labeled selectively with /sup 3/H-TdR, labeled B cells appeared in the SPL and LN over 72 h. (It was found in CBA mice that BM cell fractions enriched in lymphocytes (BML) responded to the T cell mitogen PHA in a manner qualitatively different from the response of SPL and LN cells. Experiments with athymic nude mice and with complement-mediated lysis of T and B cells established that PHA responsive cells in SPL and LN were T cells but in BML they were null lymphocytes. Target cells of PHA in BML responded to the mitogen by the generation of T-cell surface markers and blastogenesis; therefore they were identified as pre-T cells. BM pre-T cells are rapidly renewed and, in contrast to PHA responsive cells of SPL and LN, do not recirculate from blood to lymph. Both B and pre-T cells in the BM are division products of transitional cells. Among transitional cells of the marrow are included the progenitors of B and T lmyphhocytes and of all other types of hemopoietic cells.

  5. Characterization of Regulatory B Cells in Graves' Disease and Hashimoto's Thyroiditis

    DEFF Research Database (Denmark)

    Kristensen, Birte; Hegedüs, Laszlo; Lundy, Steven K

    2015-01-01

    A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves' disease (GD), Hashimoto's thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT...... patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors...... and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did...

  6. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    Science.gov (United States)

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  7. Detrimental effects of rat mesenchymal stromal cell pre-treatment in a model of acute kidney rejection

    Directory of Open Access Journals (Sweden)

    Martina eSeifert

    2012-07-01

    Full Text Available Mesenchymal stromal cells (MSC have shown immunomodulatory and tissue repair potential including partial tolerance induction by pre-treatment of donor-specific cells in a rat heart transplantation model. Very recently, we could show that autologous MSC attenuated ischemia reperfusion injury in a highly mismatched donor-recipient rat kidney transplant model. Therefore, we investigated donor-specific MSC pre-treatment in this rat kidney transplantation model to study whether graft function could be improved, or if tolerance could be induced.Donor- and recipient-type MSC or PBS as a control were injected i.v. four days before kidney transplantation. Mycophenolate mofetil (MMF immunosuppression (20 mg/kg body weight was applied for 7 days. Kidney grafts and spleens were harvested between days 8-10 and analyzed by quantitative RT-PCR and immunohistology. In addition, creatinine levels in the blood were measured and serum was screened for the presence of donor-specific antibodies.Surprisingly, application of both donor- and recipient-specific MSC resulted in enhanced humoral immune responses verified by intragraft B cell infiltration and complement factor C4d deposits. Moreover, signs of inflammation and rejection were generally enhanced in both MSC-treated groups relative to PBS control group. Additionally, pre-treatment with donor-specific MSC significantly enhanced the level of donor-specific antibody formation when compared with PBS- or recipient-MSC-treated groups. Pre-treatment with both MSC types resulted in a higher degree of kidney cortex tissue damage and elevated creatinine levels at the time point of rejection. Thus, MSC pre-sensitization in this model impairs the allograft outcome.Our data from this pre-clinical kidney transplantation model indicate that pre-operative MSC administration may not be optimal in kidney transplantation and caution must be exerted before moving forward with clinical studies in order to avoid adverse effects.

  8. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    Science.gov (United States)

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research

  9. Antidepressant Imipramine Protects Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Coactivation of TrkA and TrkB.

    Science.gov (United States)

    Guo, Jianrong; Wang, Huan; Tao, Qiang; Sun, Shiyu; Liu, Li; Zhang, Jianping; Yang, Dawei

    2017-11-01

    In our work, we used an in vitro culture model to investigate whether antidepressant imipramine (Ip) may protect bupivacaine (Bv)-induced neurotoxicity in mouse dorsal root ganglion (DRG). Adult mouse DRG was treated with 5 mM Bv in vitro to induce neurotoxicity. DRG was then pre-treated with Ip, prior to Bv, to examine its effects on protecting Bv-induced DRG apoptosis and neurite degeneration. Ip-induced dynamic changes in Trk receptors, including TrkA/B/C and phosphor (p-)TrkA/B/C, were examined by qPCR and Western blot. TrkA and TrkB were inhibited by siRNAs to further investigate their functional role in Ip- and Bv-treated DRG. Ip protected Bv-induced apoptosis and neurite loss in DRG. Ip did not alter TrkA/B/C expressions, whereas significantly augmented protein productions of p-TrkA and p-TrkB, but not p-TrkC. SiRNA-mediated TrkA or TrkB downregulation inhibited Trk receptors, and reduced p-TrkA and p-TrkB in DRG. TrkA or TrkB downregulation alone had no effect on Ip-induced protection in Bv-injured DRG. However, co-inhibition of TrkA and TrkB significantly ameliorated the protective effect of Ip on Bv-induced apoptosis and neurite loss in DRG. Imipramine protected bupivacaine-induced neurotoxicity in DRG, likely via the co-activation of TrkA and TrkB signaling pathways. J. Cell. Biochem. 118: 3960-3967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. B cell activation by outer membrane vesicles--a novel virulence mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Laura A Perez Vidakovics

    2010-01-01

    Full Text Available Secretion of outer membrane vesicles (OMV is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR clustering and Ca(2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19(+ IgD(+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86, whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys.

  11. Aborted germinal center reactions and B cell memory by follicular T cells specific for a B cell receptor V region peptide.

    Science.gov (United States)

    Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J

    2011-07-01

    A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.

  12. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1.

    Science.gov (United States)

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping

    2016-01-01

    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2017-03-01

    Full Text Available Human parvovirus B19 (B19V infection of primary human erythroid progenitor cells (EPCs arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2 within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest.

  14. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    Science.gov (United States)

    Versleijen, Michelle W J; van Esterik, Joantine C J; Roelofs, Hennie M J; van Emst-de Vries, Sjenet E; Willems, Peter H G M; Wanten, Geert J A

    2009-02-01

    Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.

  15. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  16. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus

    International Nuclear Information System (INIS)

    Ma Shiliang; Sorensen, Annette Balle; Kunder, Sandra; Sorensen, Karina Dalsgaard; Quintanilla-Martinez, Leticia; Morris, David W.; Schmidt, Joerg; Pedersen, Finn Skou

    2006-01-01

    ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas

  17. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  18. Requirement for noncognate interaction with T cells for the activation of B cell immunoglobulin secretion by IL-2

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    23.1+ TH1 clone E9.D4 in F23.1 (anti-T cell receptor V-beta 8)-coated microwells. This induced polyclonal B cell activation to enter cell cycle (thymidine incorporation) at 2 days and to secrete immunoglobulin at 5 days. An anti-IL-2 mAb (S4B6) inhibited antibody production completely. Anti-IL-2 did......The mechanism whereby noncognate contact with activated IL-2-producing Type 1 helper T cells (TH1) induces B cell activation was examined. Small resting B cells from C57B1/6 mice were cultured, in the absence of any ligand for surface Ig, with irradiated cells of the hapten-specific, CBA-derived, F...... not inhibit either LPS-induced B cell responses, or T cell activation (measured as IL-3 secretion). Anti-IL-2 receptor (anti-Tac) mAbs also inhibited T-dependent B cell responses, without affecting LPS responses. An anti-IFN-gamma mAb partially inhibited Ig secretion, without affecting entry into cycle. LPS...

  19. A role for adhesion molecules in contact-dependent T help for B cells

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    The role of cell contact in T-dependent B cell activation was examined. Small resting B cells from C57BL/6 mice were cultured with CBA-derived, non-alloreactive cloned T helper cells in anti-T cell receptor V beta 8-coated microwells. This induced polyclonal B cell activation to enter cell cycle...... that continued cell contact involving adhesion/accessory molecules induces B cells to proliferate and to respond to T cell lymphokines. A signaling role for cell interaction molecules on B cells is proposed, similar to the role of these and analogous molecules on T cells....

  20. Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dong-Sung Lee

    2014-07-01

    Full Text Available Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2 and increased the promoter activity of antioxidant response elements (ARE in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease.

  1. Upregulation of CD19⁺CD24(hi)CD38(hi) regulatory B cells is associated with a reduced risk of acute lung injury in elderly pneumonia patients.

    Science.gov (United States)

    Song, Haihan; Xi, Jianjun; Li, Guang-Gang; Xu, Shumin; Wang, Chunmei; Cheng, Tingting; Li, Hongqiang; Zhang, Ying; Liu, Xiandong; Bai, Jianwen

    2016-04-01

    Acute lung injury (ALI) is a common complication in elderly pneumonia patients who have a rapid progression, and is accompanied by a high mortality rate. Because the treatment options of ALI are limited to supportive care, identifying pneumonia patients who are at higher risk of ALI development is the emphasis of many studies. Here, we approach this problem from an immunological perspective by examining CD19(+)CD24(hi)CD38(hi) B cells, an important participant in acute and chronic inflammation. We find that elderly pneumonia patients have elevated CD19(+)CD24(hi)CD38(hi) B cell frequency compared to healthy individuals. This B cell population may express a higher level of IL-10, which has been was shown to suppress CD4(+) T cell-mediated proinflammatory cytokine interferon gamma (IFNg) and tumor necrosis factor alpha (TNFa) production, through an IL-10-dependent mechanism. We also observe that the frequency of CD19(+)CD24(hi)CD38(hi) B cell is positively correlated with the frequency of CD4(+)CD25(+)Foxp3(+)Tregs in peripheral blood. Moreover, consistent with CD19(+)CD24(hi)CD38(hi) B cell's anti-inflammatory role, we find that pneumonia patients who later developed ALI have reduced level of CD19(+)CD24(hi)CD38(hi) B cells. Together, our results demonstrated that CD19(+)CD24(hi)CD38(hi) B cells in pneumonia patients possess regulatory function in vivo, and are associated with a reduced ALI risk.

  2. LKB1 inhibition of NF-κB in B cells prevents T follicular helper cell differentiation and germinal center formation.

    Science.gov (United States)

    Walsh, Nicole C; Waters, Lynnea R; Fowler, Jessica A; Lin, Mark; Cunningham, Cameron R; Brooks, David G; Rehg, Jerold E; Morse, Herbert C; Teitell, Michael A

    2015-06-01

    T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH ) cell differentiation and expansion to support a ~100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH -cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH -cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity. © 2015 The Authors.

  3. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  4. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Veronicastrum axillare Alleviates Ethanol-Induced Injury on Gastric Epithelial Cells via Downregulation of the NF-kB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Wei-chun Zhao

    2017-01-01

    Full Text Available We used human gastric epithelial cells (GES-1 line in an ethanol-induced cell damage model to study the protective effect of Veronicastrum axillare and its modulation to NF-κB signal pathway. The goal was to probe the molecular mechanism of V. axillare decoction in the prevention of gastric ulcer and therefore provide guidance in the clinical application of V. axillare on treating injuries from chronic nephritis, pleural effusion, gastric ulcer, and other ailments. The effects of V. axillare-loaded serums on cell viability were detected by MTT assays. Enzyme-linked immunosorbent assay (ELISA and Real-Time PCR methods were used to analyze the protein and mRNA expression of TNF-α, NF-κB, IκBα, and IKKβ. The results showed that V. axillare-loaded serum partially reversed the damaging effects of ethanol and NF-κB activator (phorbol-12-myristate-13-acetate: PMA and increased cell viability. The protein and mRNA expressions of TNF-α, NF-κB, IκBα, and IKKβ were significantly upregulated by ethanol and PMA while they were downregulated by V. axillare-loaded serum. In summary, V. axillare-loaded serum has significantly protective effect on GES-1 against ethanol-induced injury. The protective effect was likely linked to downregulation of TNF-α based NF-κB signal pathway.

  6. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  7. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    Science.gov (United States)

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  8. HTLV-1 Tax-induced NFκB activation is independent of Lys-63-linked-type polyubiquitination

    International Nuclear Information System (INIS)

    Gohda, Jin; Irisawa, Masato; Tanaka, Yuetsu; Sato, Shintaro; Ohtani, Kiyoshi; Fujisawa, Jun-ichi; Inoue, Jun-ichiro

    2007-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax-induced activation of nuclear factor-κB (NFκB) is thought to play a critical role in T-cell transformation and onset of adult T-cell leukemia. However, the molecular mechanism of the Tax-induced NFκB activation remains unknown. One of the mitogen-activated protein kinase kinase kinses (MAP3Ks) members, TAK1, plays a critical role in cytokine-induced activation of NFκB, which involves lysine 63-linked (K63) polyubiquitination of NEMO, a noncatalytic subunit of the IκB kinase complex. Here we show that Tax induces K63 polyubiquitination of NEMO. However, TAK1 is dispensable for Tax-induced NFκB activation, and deubiquitination of the K63 polyubiquitin chain failed to block Tax-induced NFκB activation. In addition, silencing of other MAP3Ks, including MEKK1, MEKK3, NIK, and TPL-2, did not affect Tax-induced NFκB activation. These results strongly suggest that unlike cytokine signaling, Tax-induced NFκB activation does not involve K63 polyubiquitination-mediated MAP3K activation

  9. Neuroprotective Effect of Ginkgolide B on Bupivacaine-Induced Apoptosis in SH-SY5Y Cells

    Science.gov (United States)

    Li, Le; Zhang, Qing-guo; Lai, Lu-ying; Wen, Xian-jie; Zheng, Ting; Cheung, Chi-wai; Zhou, Shu-qin; Xu, Shi-yuan

    2013-01-01

    Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property. PMID:24228138

  10. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    Science.gov (United States)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  11. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  12. Induction of cell-cell fusion from without by human herpesvirus 6B

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Øster, Bodil; Bundgaard, Bettina

    2006-01-01

    Human herpesvirus (HHV) 6A induce fusion from without (FFWO), whereas HHV-6B is believed to be ineffective in this process. Here, we demonstrate that HHV-6B induces rapid fusion in both epithelial cells and lymphocytes. The fusion was identified 1 h postinfection, could be inhibited by antibodies...

  13. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  14. Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets.

    Science.gov (United States)

    Raia, Valentina; Schilling, Marcel; Böhm, Martin; Hahn, Bettina; Kowarsch, Andreas; Raue, Andreas; Sticht, Carsten; Bohl, Sebastian; Saile, Maria; Möller, Peter; Gretz, Norbert; Timmer, Jens; Theis, Fabian; Lehmann, Wolf-Dieter; Lichter, Peter; Klingmüller, Ursula

    2011-02-01

    Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) share a frequent constitutive activation of JAK (Janus kinase)/STAT signaling pathway. Because of complex, nonlinear relations within the pathway, key dynamic properties remained to be identified to predict possible strategies for intervention. We report the development of dynamic pathway models based on quantitative data collected on signaling components of JAK/STAT pathway in two lymphoma-derived cell lines, MedB-1 and L1236, representative of PMBL and cHL, respectively. We show that the amounts of STAT5 and STAT6 are higher whereas those of SHP1 are lower in the two lymphoma cell lines than in normal B cells. Distinctively, L1236 cells harbor more JAK2 and less SHP1 molecules per cell than MedB-1 or control cells. In both lymphoma cell lines, we observe interleukin-13 (IL13)-induced activation of IL4 receptor α, JAK2, and STAT5, but not of STAT6. Genome-wide, 11 early and 16 sustained genes are upregulated by IL13 in both lymphoma cell lines. Specifically, the known STAT-inducible negative regulators CISH and SOCS3 are upregulated within 2 hours in MedB-1 but not in L1236 cells. On the basis of this detailed quantitative information, we established two mathematical models, MedB-1 and L1236 model, able to describe the respective experimental data. Most of the model parameters are identifiable and therefore the models are predictive. Sensitivity analysis of the model identifies six possible therapeutic targets able to reduce gene expression levels in L1236 cells and three in MedB-1. We experimentally confirm reduction in target gene expression in response to inhibition of STAT5 phosphorylation, thereby validating one of the predicted targets.

  15. Activated T cells can induce high levels of CTLA-4 expression on B cells

    NARCIS (Netherlands)

    Kuiper, H. M.; Brouwer, M.; Linsley, P. S.; van Lier, R. A.

    1995-01-01

    Engagement of the TCR/CD3 complex together with ligation of CD28 by its counterstructures B7-1 (CD80) and B7-2 (CD86) on APC are required for mitogenic T cell activation. After activation, T cells not only express B7-1 and B7-2 molecules, but a second receptor for the B7 ligands, CTLA-4, can be

  16. N-Cadherin Attenuates High Glucose-Induced Nucleus Pulposus Cell Senescence Through Regulation of the ROS/NF-κB Pathway.

    Science.gov (United States)

    Hou, Gang; Zhao, Huiqing; Teng, Haijun; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Guo, Zhiliang; Wei, Li; Yao, Hui; Xu, Yichun

    2018-05-11

    Diabetes mellitus (DM) is a potential etiology of disc degeneration. N-cadherin (N-CDH) helps maintain the cell viability, cell phenotype and matrix biosynthesis of nucleus pulposus (NP) cells. Here, we mainly aimed to investigate whether N-CDH can attenuate high glucose-induced NP cell senescence and its potential mechanism. Rat NP cells were cultured in a base culture medium and base culture medium with a 0.2 M glucose concentration. Recombinant lentiviral vectors were used to enhance N-CDH expression in NP cells. Senescence-associated β-galactosidase (SA-β-Gal) activity was measured by SA-β-Gal staining. NP cell proliferation was evaluated by CCK-8 assay. Telomerase activity and intracellular reactive oxygen species (ROS) content were tested by specific chemical kits according to the manufacturer's instructions. G0/G1 cell cycle arrest was evaluated by flow cytometry. Real-time PCR and Western blotting were used to analyze mRNA and protein expressions of senescence markers (p16 and p53) and matrix macromolecules (aggrecan and collagen II). Additionally, p-NF-κB expression was also analyzed by Western blotting to evaluate NF-κB pathway activity. High glucose significantly decreased N-CDH expression, increased ROS generation and NF-κB pathway activity, and promoted NP cell senescence, which was reflected in the increase in SA-β-Gal activity and senescence marker (p16 and p53) expression, compared to the control group. High glucose decreased telomerase activity and cell proliferation potency. However, N-CDH overexpression partially attenuated NP cell senescence, decreased ROS content and inhibited the activation of the NF-κB pathway under the high glucose condition. High glucose decreases N-CDH expression and promotes NP cell senescence. N-CDH overexpression can attenuate high glucose-induced NP cell senescence through the regulation of the ROS/ NF-κB pathway. This study suggests that N-CDH is a potential therapeutic target to slow DM-mediated disc NP

  17. NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1, Bcl-2 or Bcl-w.

    Science.gov (United States)

    Casanelles, Elisenda; Gozzelino, Raffaella; Marqués-Fernández, Fernando; Iglesias-Guimarais, Victoria; Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Solé, Carme; Moubarak, Rana S; Comella, Joan X; Yuste, Victor J

    2013-05-01

    TNFα can promote either cell survival or cell death. The activation of NF-κB plays a central role in cell survival while its inhibition makes TNFα-triggered cytotoxicity possible. Here, we report that the overexpression of a non-degradable mutant of the inhibitor of NF-κB (super-repressor (SR)-IκBα) sensitizes HeLa cells towards TNFα-induced apoptosis, involving caspases activation and cytocrome C release from the mitochondria. Interestingly, we describe that the specific knockdown of Bcl-xL, but not that of Bcl-2, Bcl-w or Mcl-1, renders cells sensitive to TNFα-induced apoptosis. This cytotoxic effect occurs without altering the activation of NF-κB. Then, the activation of the NF-κB pathway is not sufficient to protect Bcl-xL-downregulated cells from TNFα-induced cell death, meaning that TNFα is not able to promote cell survival in the absence of Bcl-xL. In addition, Bcl-xL silencing does not potentiate the cytotoxicity afforded by the cytokine in SR-IκBα-overexpressing cells. This indicates that TNFα-induced apoptosis in SR-IκBα-overexpressing cells relies on the protein levels of Bcl-xL. We have corroborated these findings using RD and DU-145 cells, which also become sensitive to TNFα-induced apoptosis after Bcl-xL knockdown despite that NF-κB remains activated. Altogether, our results point out that the impairment of the anti-apoptotic function of Bcl-xL should make cells sensitive towards external insults circumventing the TNFα-triggered NF-κB-mediated cytoprotective effect. Hence, the specific inhibition of Bcl-xL could be envisaged as a promising alternative strategy against NF-κB-dependent highly chemoresistant proliferative malignancies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  19. B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex.

    Science.gov (United States)

    Wallace, Caroline H; Wu, Bill X; Salem, Mohammad; Ansa-Addo, Ephraim A; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J; Liu, Bei; Li, Zihai

    2018-04-05

    GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell-independent antibody production. In contrast, B cell-specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell-dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.

  20. UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion.

    Science.gov (United States)

    Sullivan, Nicholas J; Tober, Kathleen L; Burns, Erin M; Schick, Jonathan S; Riggenbach, Judith A; Mace, Thomas A; Bill, Matthew A; Young, Gregory S; Oberyszyn, Tatiana M; Lesinski, Gregory B

    2012-03-01

    Skin cancer incidence and mortality are higher in men compared with women, but the causes of this sex discrepancy remain largely unknown. UV light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1(+)CD11b(+) myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present in the skin, has been associated with skin carcinogenesis. We used the outbred, immune-competent Skh-1 hairless mouse model of UVB-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1(+)CD11b(+) myeloid cell percentage. Acute UVB exposure induced Gr-1(+)CD11b(+) myeloid cell skin infiltration, which was inhibited to a greater extent in male mice by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1(+)CD11b(+) myeloid cells was 55% higher in male tumor-bearing mice compared with their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced generation of Gr-1(+)CD11b(+) myeloid cells and subsequent skin carcinogenesis.

  1. B-cell inhibition by cross-linking CD79b is superior to B-cell depletion with anti-CD20 antibodies in treating murine collagen-induced arthritis

    Czech Academy of Sciences Publication Activity Database

    Bruhl, H.; Cihak, J.; Talke, Y.; Rodriguez-Gomez, M.; Hermann, F.; Goebel, N.; Renner, K.; Plachý, Jiří; Stangassinger, M.; Archemann, S.; Nimmerjahn, F.; Mack, M.

    2015-01-01

    Roč. 45, č. 3 (2015), s. 705-715 ISSN 0014-2980 Institutional support: RVO:68378050 Keywords : Arthritis * B cells * B-cell depletion * B-cell inhibition * CD79b * Humoral immune response Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.179, year: 2015

  2. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density.

    Science.gov (United States)

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2017-02-01

    The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Specific Antibody Production by Blood B Cells is Retained in Late Stage Drug-naïve HIV-infected Africans

    Directory of Open Access Journals (Sweden)

    Lydie Béniguel

    2004-01-01

    Full Text Available Unseparated peripheral blood mononuclear cells (PBMCs obtained from drug-naïve African individuals living in a context of multi-infections and presenting with high viral load (VL, were cultured in vitro and tested for their ability to produce antibodies (Abs reacting with HIV-1 antigens. Within these PBMCs, circulating B cells were differentiated in vitro and produced IgG Abs against not only ENV, but also GAG and POL proteins. Under similar experimental conditions, HAART treated patients produced Abs to ENV proteins only. The in vitro antibody production by drug-naïve individuals' PBMCs depended on exogenous cytokines (IL-2 and IL-10 but neither on the re-stimulation of reactive cells in cultures by purified HIV-1-gp 160 antigen nor on the re-engagement of CD40 surface molecules. Further, it was not abrogated by the addition of various monoclonal Abs (mAbs to co-stimulatory molecules. This suggests that the in vitro antibody production by drug-naïve individuals' PBMCs resulted from the maturation of already envelope and core antigen-primed, differentiated B cells, presumably pre-plasma cells, which are not known to circulate at homeostasy. As in vitro produced Abs retained the capacity of binding antigen and forming complexes, this study provides pre-clinical support for functional humoral responses despite major HIV- and other tropical pathogen-induced B cell perturbations.

  4. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2

    International Nuclear Information System (INIS)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.; Tzeng, T.-T.; Sun, Y.-W.; Wung, B.-S.

    2008-01-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFα-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-κB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IκB-α, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFα-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods

  5. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  6. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  7. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  8. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    International Nuclear Information System (INIS)

    Carter, Charleata A.; Hamm, Jonathan T.

    2009-01-01

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  9. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    Science.gov (United States)

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  10. The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA.

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Lee

    Full Text Available MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA, higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2, another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.

  11. Study of B7.1 costimulatory molecule neoexpression induced by γ irradiation of different dose in various human tumor cells

    International Nuclear Information System (INIS)

    Zhou Jianghua; Su Liaoyuan; Tong Jian; Zhu Minqing; Xue Lian

    2001-01-01

    The relationship between irradiation and B7.1 co-stimulative molecule expression of human tumor cells was studied to explore the reason of enhanced tumor cells immunity. The effect of γ ray irradiation on B7.1 molecule expression in various human tumor cells which were irradiated with 30 Gy, 40 Gy, 50 Gy, 60 Gy γ ray was investigated. At 24 h, 48 h, 72 h and 96 h after irradiation the changes of B7.1 molecule was measured by flow cytometry (FCM) with immunofluorescence technique. The activation of lymphocyte toxin upon tumor target cell after exposure was determined by using radiation release method. The results showed that a few of tumor cells after γ-ray irradiation express B7.1 co-stimulative molecule. Furthermore, B7.1 molecule membrane expression after γ ray irradiation is shown to enhance the activation of lymphocyte toxin. The data could explain the enhanced immunogenicity of tumor cells after irradiation, and could lead to new immunotherapy protocols. The experiments suggested that γ ray irradiation could induce human tumor cells to express B7.1 co-stimulative molecules and enhance tumor cell immunity

  12. Evidence for idiotypic- and antiidiotypic B-B cellular interaction with the use of cloned antiidiotypic B cell line.

    Science.gov (United States)

    Bitoh, S; Fujimoto, S; Yamamoto, H

    1990-03-15

    Immunization of BALB/c mice with MOPC104E myeloma protein induces antiidiotypic B lymphocytes that have Id-specific enhancing activity on antibody production. The B-B cell interaction was restricted to both Igh and class II MHC. However, anti-Thy-1 and C-treated splenic B cells were maintained for more than 1 y in a mixture of Con A-stimulated splenocyte culture supernatant and synthetic medium. In applying the long term culture method, we have established a cloned B cell line named B19-1d, B19-1d cells are specific to MOPC104E or J558 cross-reactive Id and they express surface mu, lambda but no Ly-1. B19-1d do not spontaneously secrete Ig but produce them upon stimulation with bacterial LPS. The effect of B19-1d cell line on idiotypic antibody production was tested. Addition of only 10 to 100 B19-1d cells into dextran-immune B cell culture greatly enhanced the Id+ antidextran antibody responses. On the contrary, the antidextran antibody production was suppressed by the higher doses of B19-1d cells. The effective cooperation between dextran-immune B cells and B19-1d cloned B cells was restricted to class II MHC. The role of idiotypic- and antiidiotypic B-B cell interaction in immune regulation and repertoire generation was suggested.

  13. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  14. CD25+ B-1a Cells Express Aicda

    Directory of Open Access Journals (Sweden)

    Hiroaki Kaku

    2017-06-01

    Full Text Available B-1a cells are innate-like B-lymphocytes producing natural antibodies. Activation-induced cytidine deaminase (AID, a product of the Aicda gene, plays a central role in class-switch recombination and somatic hypermutation in B cells. Although a role for Aicda in B-1a cells has been suggested on the basis of experiments with knock out (KO mice, whether B-1a cells express Aicda, and if so, which B-1a cell subpopulation expresses Aicda, remains unknown. Here, we demonstrate that B-1 cells express Aicda, but at a level below that expressed by germinal center (GC B cells. We previously reported that B-1a cells can be subdivided based on CD25 expression. We show here that B-1a cell Aicda expression is concentrated in the CD25+ B-1a cell subpopulation. These results suggest the possibility that previous studies of memory B cells identified on the basis of Aicda expression may have inadvertently included an unknown number of CD25+ B-1a cells. Although B-1a cells develop normally in the absence of Aicda, a competitive reconstitution assay reveals enhanced vigor for AID KO B-1a cell bone marrow (BM progenitors, as compared with wild-type BM B-1 cell progenitors. These results suggest that AID inhibits the development of B-1a cells from BM B-1 cell progenitors in a competitive environment.

  15. Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB.

    Science.gov (United States)

    Song, In-Hwan; Jung, Kyong-Jin; Lee, Tae-Jin; Kim, Joo-Young; Sung, Eon-Gi; Bae, Young Chul; Park, Yong Hoon

    2018-05-01

    This study aimed to evaluate the molecular mechanism mitigating progress of chronic nephropathy by mesenchymal stem cells (MSCs). Rats were divided into normal control (Normal), adriamycin (ADR)+vehicle (CON), and ADR+MSC (MSC) groups. Nephropathy was induced by ADR (4 mg/kg) and MSCs (2 × 10 6 ) were injected. Rats were euthanized 1 or 6 weeks after ADR injection. NF-kB, MAPKs, inflammation, oxidative stress, profibrotic molecules, and nephrin expression were evaluated. Electron and light microscopy were used for structural analysis. MSCs were co-cultured with renal tubular epithelial cells or splenocytes to evaluate relation with oxidative stress and inflammatory molecules RESULTS: Adriamycin treatment upregulated inflammation, oxidative stress, and profibrotic molecules; this was mitigated by MSCs. Glomerulosclerosis and interstitial fibrosis were observed in ADR-treated groups, and were more prominent in the CON group than in the MSC group. Fusion of foot processes and loss of slit diaphragms were also more prominent in the CON group than in the MSC group. In vitro, MSCs reduced oxidative stress related molecules, inflammatory cytokines, and NF-kB transcription. MSC- or ADR-induced regulation of NF-kB transcriptional activity was confirmed by a luciferase reporter assay. Mesenchymal stem cells attenuate ADR-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of NF-kB. © 2017 Asian Pacific Society of Nephrology.

  16. ST2 suppresses IL-6 production via the inhibition of IκB degradation induced by the LPS signal in THP-1 cells

    International Nuclear Information System (INIS)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko; Aoki, Shinsuke; Yanagisawa, Ken; Endo, Hitoshi; Tominaga, Shin-ichi

    2006-01-01

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-κB to the IL-6 promoter. Furthermore, the degradation of IκB in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated that ST2 negatively regulates LPS-induced IL-6 production via the inhibition of IκB degradation in THP-1 cells

  17. Stability Analysis of Buffer Storage Large Basket and Temporary Storage Pre-packaging Basket Used in the Type B Radwaste Process Area

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    The ITER radioactive waste (radwaste) treatment and storage systems are currently being designed to manage Type B, Type A and dust radwastes generated during the ITER machine operation. The Type B management system is to be in the hot cell building basement with temporary storage and the modular type storages outside the hot cell building for the pre-packed Type B radwaste during the ITER operation of 20 years. In order to store Type B radwaste components in onsite storage, the waste treatment chain process for Type B radwastes was developed as follows. First, Type B full components filled in a large basket are imported from Tokamak to the hot cell basement and they are stored in the buffer storage before treatment. Second, they are cut properly with a laser cutting machine or band saw machine and sliced waste parts are filled in a pre-packaging basket. Third, the sampling of Type B components is performed and then the tritium removal treatment is done in an oven to remove tritium from the waste surface and then the sampling is performed again. Forth, the characterization is performed by using a gamma spectrometry. Fifth, the pre-packaging operation is done to ensure the final packaging of the radwaste. Sixth, the pre-packaging baskets are stored in the temporary storage for 6 months and then they are sent to the extension storage and stored until export to host country. One of issues in the waste treatment scheme is to analyze the stacking stability of a stack of large baskets and pre-packaging baskets in the storage system. The baseline plan is to stack the large baskets in two layers in the buffer storage and to stack the pre-packaging baskets in three layers in the temporary storage and extension storage. In this study, the stacking stability analysis for the buffer storage large basket and temporary storage pre-packaging basket was performed for various stack failure modes

  18. TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells

    International Nuclear Information System (INIS)

    Zhang, Siyang; Guo, Dawei; Luo, Wenting; Zhang, Qingfu; Zhang, Ying; Li, Chunyan; Lu, Yao; Cui, Zeshi; Qiu, Xueshan

    2010-01-01

    Aberrant regulation in the invasion of cancer cells is closely associated with their metastatic potentials. TrkB functions as a receptor tyrosine kinase and is considered to facilitate tumor metastasis. Pyk2 is a non-receptor tyrosine kinase and integrates signals in cell invasion. However, little is known about the expression of TrkB in NSCLC and whether Pyk2 is involved in TrkB-mediated invasion of A549 cells. The expression of TrkB was investigated in NSCLC by immunohistochemical staining. Both HBE and A549 cells were treated with BDNF. The expression of TrkB, Pyk2 and ERK phosphorylations were assessed by western blot. Besides, A549 cells were transfected with TrkB-siRNA or Pyk2-siRNA, or treated with ERK inhibitor where indicated. Transwell assay was performed to evaluate cell invasion. 40 cases (66.7%) of NSCLC were found higher expression of TrkB and patients with more TrkB expression had significant metastatic lymph nodes (p = 0.028). BDNF facilitated the invasion of A549 cells and the activations of Pyk2 in Tyr402 and ERK. However, the effects of BDNF were not observed in HBE cells with lower expression of TrkB. In addition, the increased Pyk2 and ERK activities induced by BDNF were significantly inhibited by blocking TrkB expression, so was the invasion of A549 cells. Knockdown studies revealed the essential role of Pyk2 for BDNF-induced cell invasion, since the invasion of A549 cells was abolished by Pyk2-siRNA. The application of ERK inhibitor also showed the suppressed ERK phosphorylation and cell invasion. These data indicated that higher expression of TrkB in NSCLC was closely correlated with lymph node metastasis, and BDNF probably via TrkB/Pyk2/ERK promoted the invasion of A549 cells

  19. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis.

    Science.gov (United States)

    Eeva, J; Nuutinen, U; Ropponen, A; Mättö, M; Eray, M; Pellinen, R; Wahlfors, J; Pelkonen, J

    2009-12-01

    During the germinal centre reaction (GC), B cells with non-functional or self-reactive antigen receptors are negatively selected by apoptosis to generate B cell repertoire with appropriate antigen specificities. We studied the molecular mechanism of Fas/CD95- and B cell receptor (BCR)-induced apoptosis to shed light on the signalling events involved in the negative selection of GC B cells. As an experimental model, we used human follicular lymphoma (FL) cell line HF1A3, which originates from a GC B cell, and transfected HF1A3 cell lines overexpressing Bcl-x(L), c-FLIP(long) or dominant negative (DN) caspase-9. Fas-induced apoptosis was dependent on the caspase-8 activation, since the overexpression of c-FLIP(long), a natural inhibitor of caspase-8 activation, blocked apoptosis induced by Fas. In contrast, caspase-9 activation was not involved in Fas-induced apoptosis. BCR-induced apoptosis showed the typical characteristics of mitochondria-dependent (intrinsic) apoptosis. Firstly, the activation of caspase-9 was involved in BCR-induced DNA fragmentation, while caspase-8 showed only marginal role. Secondly, overexpression of Bcl-x(L) could block all apoptotic changes induced by BCR. As a novel finding, we demonstrate that caspase-9 can enhance the cytochrome-c release and collapse of mitochondrial membrane potential (DeltaPsi(m)) during BCR-induced apoptosis. The requirement of different signalling pathways in apoptosis induced by BCR and Fas may be relevant, since Fas- and BCR-induced apoptosis can thus be regulated independently, and targeted to different subsets of GC B cells.

  20. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  1. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Science.gov (United States)

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  2. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  3. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  4. Non-invasive bioluminescence imaging to monitor the immunological control of a plasmablastic lymphoma-like B cell neoplasia after hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Martin Chopra

    Full Text Available To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Igha(tm1(MycJanz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Igha(tm1(MycJanz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.

  5. Sulfasalazine Attenuates Staphylococcal Enterotoxin B-Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2015-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. The excessive release of proinflammatory cytokines from these cells mediates the toxic effects of SEB. This study examined the inhibitory activities of an anti-inflammatory drug, sulfasalazine, on SEB-stimulated human peripheral blood mononuclear cells (PBMC. Sulfasalazine dose-dependently inhibited tumor necrosis factor α, interleukin 1 (IL-1 β, IL-2, IL-6, interferon γ (IFNγ, and various chemotactic cytokines from SEB-stimulated human PBMC. Sulfasalazine also potently blocked SEB-induced T cell proliferation and NFκB activation. These results suggest that sulfasalazine might be useful in mitigating the toxic effects of SEB by blocking SEB-induced host inflammatory cascade and signaling pathways.

  6. Very late onset small intestinal B cell lymphoma associated with primary intestinal lymphangiectasia and diffuse cutaneous warts

    OpenAIRE

    Bouhnik, Y; Etienney, I; Nemeth, J; Thevenot, T; Lavergne-Slove, A; Matuchansky, C

    2000-01-01

    As only a handful of lymphoma cases have been reported in conjunction with primary intestinal lymphangiectasia, it is not yet clear if this association is merely fortuitous or related to primary intestinal lymphangiectasia induced immune deficiency. We report on two female patients, 50 and 58 years old, who developed small intestinal high grade B cell lymphoma a long time (45 and 40 years, respectively) after the initial clinical manifestations of primary intestinal lymphangiectasia. They pre...

  7. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate

    Science.gov (United States)

    Noviski, Mark; Mueller, James L; Satterthwaite, Anne; Garrett-Sinha, Lee Ann; Brombacher, Frank

    2018-01-01

    Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn−/− B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells. PMID:29521626

  8. The phenotype of FancB-mutant mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  9. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  10. Pre-existing Periapical Inflammatory Condition Exacerbates Tooth Extraction–induced BRONJ Lesions in Mice

    Science.gov (United States)

    Song, Minju; Alshaikh, Abdullah; Kim, Terresa; Kim, Sol; Dang, Michelle; Mehrazarin, Shebli; Shin, Ki-Hyuk; Kang, Mo; Park, No-Hee; Kim, Reuben H.

    2016-01-01

    Introduction Surgical interventions such as tooth extraction increase a chance of developing osteonecrosis of the jaw (ONJ) in patients receiving bisphosphonates (BPs) for treatment of bone-related diseases. Tooth extraction is often performed to eliminate pre-existing pathological inflammatory conditions that make the tooth unsalvageable; however, the role of such conditions on bisphosphonate-related ONJ (BRONJ) development following tooth extraction is not clearly defined. Here, we examined the effects of periapical periodontitis on tooth extraction-induced BRONJ development in mice. Methods Periapical periodontitis was induced by exposing the pulp of the maxillary first molar for 3 weeks in C57/BL6 mice that were intravenously administered with BP. The same tooth was extracted, and after 3 additional weeks, the mice were harvested for histological, histomorphometric, and histochemical staining analyses. Results Pulp exposure induced periapical radiolucency as demonstrated by increased inflammatory cells, TRAP+ osteoclasts, and bone resorption. When BP was administered, pulp exposure did not induce apical bone resorption despite the presence of inflammatory cells and TRAP+ osteoclasts. While tooth extraction alone induced BRONJ lesions, pulp exposure further increased tooth extraction-induced BRONJ development as demonstrated by the presence of more bone necrosis. Conclusion Our study demonstrates that pre-existing pathological inflammatory condition such as periapical periodontitis is a predisposing factor that may exacerbate BRONJ development following tooth extraction. Our study further provides a clinical implication whereby periapical periodontitis should be controlled before performing tooth extraction in BP-users in order to reduce the risk of developing BRONJ. PMID:27637460

  11. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Directory of Open Access Journals (Sweden)

    Seong Gyu Jeon

    Full Text Available Specific intestinal microbiota has been shown to induce Foxp3(+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+ dendritic cells (DCs mediated B. breve-induced development of IL-10-producing T cells. CD103(+ DCs from Il10(-/-, Tlr2(-/-, and Myd88(-/- mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+ DCs failed to induce IL-10 production from co-cultured Il27ra(-/- T cells. B. breve treatment of Tlr2(-/- mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+ T cells from wild-type mice, but not Il10(-/- mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  12. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Science.gov (United States)

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  13. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    International Nuclear Information System (INIS)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke; Feltens, Ralph; Kohse, Franziska; Bergen, Martin von; Moerbt, Nora; Eder, Klaus; Duschl, Albert; Lehmann, Irina

    2008-01-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  14. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    Directory of Open Access Journals (Sweden)

    Mejía Salvador

    2006-02-01

    Full Text Available Abstract Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  15. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    Science.gov (United States)

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  16. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells.

    Science.gov (United States)

    Silván, Jose Manuel; Reguero, Marina; de Pascual-Teresa, Sonia

    2016-02-01

    Increased exposure to solar ultraviolet B (UVB) radiation causes oxidative damage that may promote age related macular degeneration (AMD) and other ocular pathologies. This study is aimed to demonstrate the protective effects of some anthocyanins and xanthophylls against the UVB-induced oxidative damage to retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with 5 μM cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, lutein, zeaxanthin or a mixture of cyanidin-3-O-glucoside:zeaxanthin prior to UVB exposure (500 J m(-2)). Cell viability and mitogen-activated protein kinase (MAPK) phosphorylation were determined by MTT assay and western blot analysis, respectively. Oxidative damage was evaluated by measuring the intracellular reactive oxygen species (ROS). The data showed that UVB irradiation reduces the cell viability to 46% with increasing of intracellular ROS levels and phosphorylation of MAPKs. However, pre-treatment (60 min) with 5 μM cyanidin-3-O-glucoside, lutein or zeaxanthin significantly reduced cellular ROS levels and phosphorylation of MAPKs (JNK1/2 and p38) mediated by UVB irradiation and subsequently increased cell viability. Thus, results show that UVB irradiation is able to induce apoptosis in ARPE-19 cells through oxidative stress; however anthocyanins and xanthophylls pre-treatment can attenuate this damage. This suggests that cyanidin-3-O-glucoside, lutein and zeaxanthin are effective in preventing UVB-induced damage in RPE cells and may be suitable as chemoprotective factors for the prevention of ocular damage. The use of natural dietary antioxidants might reduce ocular oxidative damage caused by UVB radiation.

  17. Induced pluripotent stem cells (iPSCs) derived from af pre-symptomatic carrier of a R406W mutation in microtubule-associated protein tau (MAPT) causing frontotemporal dementia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena Elisabeth; Hasholt, Lis Frydenreich

    2016-01-01

    Skin fibroblasts were obtained from a 28-year-old pre-symptomatic woman carrying a R406W mutation in microtubule-associated protein tau (MAPT), known to cause frontotemporal dementia. Induced pluripotent stem cell (iPSCs) were established by electroporation with episomal plasmids containing hOCT4...

  18. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis

    International Nuclear Information System (INIS)

    Martin, S.J.; Cotter, T.G.

    1991-01-01

    UV radiation is known to be a potent agent for the induction of programmed cell death (apoptosis) in human skin. However, the mechanistic aspects of UV-induced apoptosis remain ill-defined. In this study the effects of varying periods of UV-irradiation on the human leukaemia HL-60 cell line and on five other human cell lines were investigated.HL-60 cells were found to rapidly undergo apoptosis en masse after short periods of UV-irradiation whereas prolonged exposure of these cells to this form of radiation induced a more rapid form of cell death which was suggestive of necrosis, the pathological mode of cell death. UV-induced apoptosis in cell lines was characterized by morphological changes as well as DNA fragmentation into unit multiples of ∼ 200 bp, which was indicative of endogenous endonuclease activation. This DNA fragmentation pattern was not detected in cells immediately after UV-irradiation, and was therefore not the result of direct UV-induced DNA damage. UV-induced apoptosis of the HL-60 cell line was found to require extracellular calcium and to be inhibited in a dose-dependent way by zinc added to the culture medium. (author)

  19. Long-Term Maintenance Therapy Using Rituximab-Induced Continuous B-Cell Depletion in Patients with ANCA Vasculitis

    Science.gov (United States)

    Pendergraft, William F.; Cortazar, Frank B.; Wenger, Julia; Murphy, Andrew P.; Rhee, Eugene P.; Laliberte, Karen A.; Niles, John L.

    2014-01-01

    Background and objectives Remission in the majority of ANCA vasculitis patients is not sustained after a single course of rituximab, and risk of relapse warrants development of a successful strategy to ensure durable remission. Design, setting, participants, & measurements A retrospective analysis of ANCA vasculitis patients who underwent maintenance therapy using rituximab-induced continuous B-cell depletion for up to 7 years was performed. Maintenance therapy with rituximab was initiated after achieving remission or converting from other prior maintenance therapy. Continuous B-cell depletion was achieved in all patients by scheduled rituximab administration every 4 months. Disease activity, serologic parameters, adverse events, and survival were examined. Results In the study, 172 patients (mean age=60 years, 55% women, 57% myeloperoxidase–ANCA) treated from April of 2006 to March of 2013 underwent continuous B-cell depletion with rituximab. Median remission maintenance follow-up time was 2.1 years. Complete remission (Birmingham Vasculitis Activity Score [BVAS]=0) was achieved in all patients. Major relapse (BVAS≥3) occurred in 5% of patients and was associated with weaning of other immunosuppression drugs. Remission was reinduced in all patients. Survival mirrored survival of a general age-, sex-, and ethnicity-matched United States population. Conclusion This analysis provides evidence for long-term disease control using continuous B-cell depletion. This treatment strategy in ANCA vasculitis patients also seems to result in survival rates comparable with rates in a matched reference population. These findings suggest that prospective remission maintenance treatment trials using continuous B-cell depletion are warranted. PMID:24626432

  20. Carbenoxolone induced depression of rhythmogenesis in the pre-Bötzinger Complex

    Directory of Open Access Journals (Sweden)

    VanDam Richard J

    2008-05-01

    Full Text Available Abstract Background Carbenoxolone (CBX, a gap junction uncoupler, alters the functioning of the pre-Bötzinger Complex (preBötC, a central pattern generating neuronal network important for the production of respiratory rhythm in mammals. Even when isolated in a 1/2 mm-thick slice of medulla oblongata from neonatal mouse the preBötC continues producing periodic bursts of action potentials, termed population bursts that are thought to be important in generating various patterns of inspiration, in vivo. Whether gap junction communication contributes to preBötC rhythmogenesis remains unresolved, largely because existing gap junction uncouplers exert numerous non-specific effects (e.g., inhibition of active transport, alteration of membrane conductances. Here, we determined whether CBX alters preBötC rhythmogenesis by altering membrane properties including input resistance (Rin, voltage-gated Na+ current (INa, and/or voltage-gated K+ current (IK, rather than by blocking gap junction communication. To do so we used a medullary slice preparation, network-level recordings, whole-cell voltage clamp, and glycyrrhizic acid (GZA; a substance used as a control for CBX, since it is similar in structure and does not block gap junctions. Results Whereas neither of the control treatments [artificial cerebrospinal fluid (aCSF or GZA (50 μM] noticeably affected preBötC rhythmogenesis, CBX (50 μM decreased the frequency, area and amplitude of population bursts, eventually terminating population burst production after 45–60 min. Both CBX and GZA decreased neuronal Rin and induced an outward holding current. Although neither agent altered the steady state component of IK evoked by depolarizing voltage steps, CBX, but not GZA, increased peak INa. Conclusion The data presented herein are consistent with the notion that gap junction communication is important for preBötC rhythmogenesis. By comparing the effects of CBX and GZA on membrane properties our data a

  1. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death

    DEFF Research Database (Denmark)

    Hollmann, C Annette; Owens, Trevor; Nalbantoglu, Josephine

    2006-01-01

    CD40 promotes survival, proliferation, and differentiation of normal B cells but can cause activation-induced cell death in malignant B lymphocytes. CD40 ligand and anti-CD40 antibodies have been used successfully to induce apoptosis in lymphoma lines both in vitro and in xenograft tumor models. ...

  2. Mouse dendritic cells pulsed with capsular polysaccharide induce resistance to lethal pneumococcal challenge: roles of T cells and B cells.

    Directory of Open Access Journals (Sweden)

    Noam Cohen

    Full Text Available Mice are exceedingly sensitive to intra-peritoneal (IP challenge with some virulent pneumococci (LD50 = 1 bacterium. To investigate how peripheral contact with bacterial capsular polysaccharide (PS antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1 The PS co-localized with MHC molecules on the BMDC surface; 2 PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3 Type-specific resistance to lethal IP challenge was manifested only after day 5; 4 Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5 Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6 Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.

  3. Hepatitis B virus induces cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma by targeting programmed cell death protein4 (PDCD4 and phosphatase and tensin homologue (PTEN.

    Directory of Open Access Journals (Sweden)

    Preeti Damania

    Full Text Available Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell proliferation and the target proteins were analyzed. To confirm the role of miRNA-21 in HBx-induced proliferation, Hep G 2.2.1.5 cells (a cell line that expresses HBV stably were used for miRNA-21 inhibition studies. HBx over-expression enhanced proliferation (3.7- and 4.5-fold increase; n = 3; p<0.01 and miRNA-21 expression (24- and 36-fold increase, normalized with 5S rRNA; p<0.001 in Huh 7 and Hep G2 cells respectively. HBx also resulted in the inhibition of miRNA-21 target proteins, PDCD4 and PTEN. miRNA-21 resulted in a significant increase in proliferation (2- and 2.3-fold increase over control cells; p<0.05 in Huh 7 and Hep G2 cells respectively and decreased target proteins, PDCD4 and PTEN expression. Anti-miR-21 resulted in a significant decrease in proliferation (p<0.05 and increased miRNA-21 target protein expression. We conclude that HBV infection enhances cell proliferation, at least in part, via HBx-induced miRNA-21 expression during hepatocellular carcinoma progression.

  4. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung; Lim, Seul Ki [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Yoon, Tae-Jin [Department of Dermatology, School of Medicine, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Young Ho [Department of Anatomy, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Sohn, Kyung-Cheol; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jeung-Hoon, E-mail: jhoon@cnu.ac.kr [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Skin Med Company, Daejeon (Korea, Republic of)

    2015-04-17

    Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal.

  5. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation

    International Nuclear Information System (INIS)

    Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung; Lim, Seul Ki; Yoon, Tae-Jin; Lee, Young Ho; Sohn, Kyung-Cheol; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok; Lee, Jeung-Hoon

    2015-01-01

    Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal

  6. Tanshinone II A Attenuates TNF-α-Induced Expression of VCAM-1 and ICAM-1 in Endothelial Progenitor Cells by Blocking Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Yang

    2016-11-01

    Full Text Available Background/Aims: Tanshinone IIA (Tan IIA is effective in the treatment of inflammation and atherosclerosis. The adhesion of inflammatory cells to vascular endothelium plays important role in atherogenic processes. This study examined the effects of Tan IIA on expression of adhesion molecules in tumor necrosis factor-α (TNF-α-induced endothelial progenitor cells (EPCs. Methods: EPCs were pretreated with Tan IIA and stimulated with TNF-α. Mononuclear cell (MNC adhesion assay was performed to assess the effects of Tan IIA on TNF-α-induced MNC adhesion. Expression of vascular cell adhesion molecule-1 (VCAM-1/intracellular adhesion molecule-1 (ICAM-1 and activation of Nuclear factor κB (NF-κB signaling pathway were measured. Results: The results showed that the adhesion of MNCs to TNF-α-induced EPCs and expression of VCAM-1/ICAM-1 in EPCs were promoted by TNF-α, which were reduced by Tan IIA. TNF-α increased the amount of phosphorylation of NF-κB, IκB-α and IKKα/β in cytosolic fractions and NF-κB p65 in nucleus, while Tan IIA reduced its amount. Conclusion: This study demonstrated a novel mechanism for the anti-inflammatory/anti-atherosclerotic activity of Tan IIA, which may involve down-regulation of VCAM-1 and ICAM-1 through partial blockage of TNF-α-induced NF-κB activation and IκB-α phosphorylation by the inhibition of IKKα/β pathway in EPCs.

  7. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Directory of Open Access Journals (Sweden)

    Zhang Dong

    2011-11-01

    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  8. Th1 and Th2 help for B cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1995-01-01

    that IL-5 (125 U/ml) synergizes with Th1 cells to induce B cell responses to IL-2, that are maintained following T-cell removal, e.g. autonomous. Th1 help in the absence of IL-5 resulted in weak or undetectable responses following T cell removal. The mechanism of IL-5 synergy involved persistence of IL-2R...... anti-Ig did not circumvent the need for IL-5 for autonomous IL-2 responses. Consistent with the above, interaction with an IL-5-producing Th2 clone induced strong autonomous B cell responses to IL-2. Qualitative differences of Th2 help over that of Th1 may thus be attributable to their differential...

  9. Differentiation of purified malignant B cells induced by PMA or by activated normal T cells

    NARCIS (Netherlands)

    van Kooten, C.; Rensink, I.; Aarden, L.; van Oers, R.

    1993-01-01

    We studied the in vitro differentiation (immunoglobulin production) of purified malignant B cells of 21 patients with different B-cell malignancies, including chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HCL) and non-Hodgkin lymphoma (NHL). Direct

  10. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells.

    Science.gov (United States)

    Farley, J R; Stilt-Coffing, B

    2001-01-01

    Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation-is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-a, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-a and okadiac acid caused dose- and time-dependent increases in apoptosis in the SaOS-2 cells (r = 0.78 for doses of TNF-a and r = 0.93 for doses of okadiac acid, P sALP activity (e.g., r = 0.89 for TNF-a and r = 0.75 for okadiac acid, P sALP activity (P sALP activity (P sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cells in vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.

  11. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  12. A magnesium-induced triplex pre-organizes the SAM-II riboswitch.

    Directory of Open Access Journals (Sweden)

    Susmita Roy

    2017-03-01

    Full Text Available Our 13C- and 1H-chemical exchange saturation transfer (CEST experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.

  13. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice...... with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+T cells from patients with ALF have increased...

  14. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  15. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  16. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  17. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    Science.gov (United States)

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  18. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  19. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  20. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  1. Tumor necrosis factor-α induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-κB in A549 cells

    International Nuclear Information System (INIS)

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung; Lee, Chiang-Wen; Wu, C.-Y.; Cheng, C.-Y.; Yang, C.-M.

    2008-01-01

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-α (TNF-α) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-α in human A549 cells remain unclear. Here, we showed that TNF-α induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-κB (helenalin), and transfection with dominant negative mutants of ERK2 (ΔERK) and JNK (ΔJNK), and siRNAs for MEK1, p42 and JNK2. TNF-α-stimulated phosphorylation of p42/p44 MAPK and JNK were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of ΔERK and ΔJNK. Furthermore, the involvement of NF-κB in TNF-α-induced MMP-9 production was consistent with that TNF-α-stimulated degradation of IκB-α and translocation of NF-κB into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-κB was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-α in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-α-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-κB MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-α-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-κB are essential for TNF-α-induced MMP-9 gene expression

  2. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes.

    Science.gov (United States)

    Zhang, X M; Xu, Q

    2001-12-01

    Nitric oxide (NO) is known to facilitate tumour metastasis through the promotion of angiogenesis, vascular dilation, platelet aggregation, etc. In the present study we explored its novel role in producing dysfunction of the host immune system in the metastasis of murine metastatic melanoma B16-BL6 cells. A significant reduction in the mixed lymphocyte reaction (MLR) was observed in the spleen cells from B16-BL6-bearing mice, but not in those from mice bearing the parent cell B16. When B16-BL6 cells were added in vitro to the MLR, a significant decrease was also found, even when they were co-cultured with the lymphocytes in two compartments of a Transwell chamber separated by an 8.0 microm filter. The supernatant from cultured B16-BL6 but not B16 cells, which had a greatly increased NO activity, significantly inhibited concanavalin A- and lipopolysaccharide-induced lymphocyte proliferation. A remarkably higher expression of inducible NO synthase (iNOS) was detected in B16-BL6 cells than in B16 cells. Nomega-Nitro-l-arginine (l-NNA), a NO synthase inhibitor and superoxide dismutase, significantly antagonized the above inhibition by B16-BL6 cells, while l-arginine, a NO precursor, and S-nitroso-N-acetyl-d,l-penicillamine, a NO donor, strengthened the inhibition. Furthermore, l-NNA significantly inhibited lung metastasis of B16-BL6 cells, while l-arginine tended to enhance the metastasis. The cytotoxicity of B16-BL6-specific T-cells was significantly decreased by pre-culture with B16-BL6 cells in a Transwell chamber or the culture supernatants of B16-BL6 cells, whereas l-iminoethyl-lysine, a selective inhibitor of iNOS, showed a significant recovery from the disease. These results suggest that NO released by metastatic tumour cells may impair the immune system, which facilitates the escape from immunosurveillance and metastasis of tumour cells.

  3. Perivascular Adipose Tissue Harbors Atheroprotective IgM-Producing B Cells

    Directory of Open Access Journals (Sweden)

    Prasad Srikakulapu

    2017-09-01

    Full Text Available Adipose tissue surrounding major arteries (Perivascular adipose tissue or PVAT has long been thought to exist to provide vessel support and insulation. Emerging evidence suggests that PVAT regulates artery physiology and pathology, such as, promoting atherosclerosis development through local production of inflammatory cytokines. Yet the immune subtypes in PVAT that regulate inflammation are poorly characterized. B cells have emerged as important immune cells in the regulation of visceral adipose tissue inflammation and atherosclerosis. B cell-mediated effects on atherosclerosis are subset-dependent with B-1 cells attenuating and B-2 cells aggravating atherosclerosis. While mechanisms whereby B-2 cells aggravate atherosclerosis are less clear, production of immunoglobulin type M (IgM antibodies is thought to be a major mechanism whereby B-1 cells limit atherosclerosis development. B-1 cell-derived IgM to oxidation specific epitopes (OSE on low density lipoproteins (LDL blocks oxidized LDL-induced inflammatory cytokine production and foam cell formation. However, whether PVAT contains B-1 cells and whether atheroprotective IgM is produced in PVAT is unknown. Results of the present study provide clear evidence that the majority of B cells in and around the aorta are derived from PVAT. Interestingly, a large proportion of these B cells belong to the B-1 subset with the B-1/B-2 ratio being 10-fold higher in PVAT relative to spleen and bone marrow. Moreover, PVAT contains significantly greater numbers of IgM secreting cells than the aorta. ApoE−/− mice with B cell-specific knockout of the gene encoding the helix-loop-helix factor Id3, known to have attenuated diet-induced atherosclerosis, have increased numbers of B-1b cells and increased IgM secreting cells in PVAT relative to littermate controls. Immunostaining of PVAT on human coronary arteries identified fat associated lymphoid clusters (FALCs harboring high numbers of B cells, and flow

  4. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  5. Nuclear Factor-Kappa B Activity Regulates Brain Expression of P-Glycoprotein in the Kainic Acid-Induced Seizure Rats

    Directory of Open Access Journals (Sweden)

    Nian Yu

    2011-01-01

    Full Text Available This study was aimed to investigate the effect of NF-κB activity on the seizure susceptibility, brain damage, and P-gp expression in kainic acid- (KA- induced seizure rats. Male SD rats were divided into saline control group (NS group, KA induced epilepsy group (EP group, and epilepsy group intervened with NF-κB inhibitor-pyrrolidine dithiocarbamate salt (PDTC group or with dexamethasone (DEX group. No seizures were observed in the rats of NS group. Compared with NS group, increased P-gp expression and NF-κB activation in the rat brain of the EP group were observed after KA micro-injection. Both PDTC and DEX pre-treatment significantly increased the latency to grade III or V seizure onset compared to EP group but failed to show neuron-protective effect as the number of survival neurons didn't significantly differ from that in EP group. Furthermore, PDTC pre-treatment significantly decreased P-gp expression along with NF-κB activation in the hippocampus CA3 area and amygdala complex of rats compared with the EP group, implying that NF-κB activation involved in the seizure susceptibility and seizure induced brain P-gp over-expression. Additionally, DEX pre-treatment only decreased P-gp expression level without inhibition of NF-κB activation, suggesting NF-κB independent pathway may also participate in regulating seizure induced P-gp over-expression.

  6. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation

    Directory of Open Access Journals (Sweden)

    Shaobo Du

    2017-01-01

    Full Text Available Lycium barbarum polysaccharides (LBPs have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB- induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2, and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH2-terminal kinase (JNK triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  7. Interactions between SNPs affecting inflammatory response genes are associated with multiple myeloma disease risk and survival

    DEFF Research Database (Denmark)

    Nielsen, Kaspar René; Rodrigo-Domingo, Maria; Steffensen, Rudi

    2017-01-01

    The origin of multiple myeloma depends on interactions with stromal cells in the course of normal B-cell differentiation and evolution of immunity. The concept of the present study is that genes involved in MM pathogenesis, such as immune response genes, can be identified by screening for single......3L1 gene promoters. The occurrence of single polymorphisms, haplotypes and SNP-SNP interactions were statistically analyzed for association with disease risk and outcome following high-dose therapy. Identified genes that carried SNPs or haplotypes that were identified as risk or prognostic factors......= .005). The 'risk genes' were analyzed for expression in normal B-cell subsets (N = 6) from seven healthy donors and we found TNFA and IL-6 expressed both in naïve and in memory B cells when compared to preBI, II, immature and plasma cells. The 'prognosis genes' CHI3L1, IL-6 and IL-10 were differential...

  8. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    International Nuclear Information System (INIS)

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-01-01

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression

  9. Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin's lymphomas of germinal-center phenotype

    NARCIS (Netherlands)

    Smit, Laura A.; Bende, Richard J.; Aten, Jan; Guikema, Jeroen E. J.; Aarts, Wilhelmina M.; van Noesel, Carel J. M.

    2003-01-01

    Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of the immunoglobulin (IG) genes in B cells. It has recently been proposed that AID, as the newly identified DNA mutator in man, may be instrumental in initiation and progression of

  10. CD79B limits response of diffuse large B cell lymphoma to ibrutinib.

    Science.gov (United States)

    Kim, Joo Hyun; Kim, Won Seog; Ryu, Kyungju; Kim, Seok Jin; Park, Chaehwa

    2016-01-01

    Blockage of B cell receptor signaling with ibrutinib presents a promising clinical approach for treatment of B-cell malignancies. However, many patients show primary resistance to the drug or develop secondary resistance. In the current study, cDNA microarray and Western blot analyses revealed CD79B upregulation in the activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) that display differential resistance to ibrutinib. CD79B overexpression was sufficient to induce resistance to ibrutinib and enhanced AKT and MAPK activation, indicative of an alternative mechanism underlying resistance. Conversely, depletion of CD79B sensitized primary refractory cells to ibrutinib and led to reduced phosphorylation of AKT or MAPK. Combination of the AKT inhibitor or the MAPK inhibitor with ibrutinib resulted in circumvention of both primary and acquired resistance in ABC-DLBCL. Our data collectively indicate that CD79B overexpression leading to activation of AKT/MAPK is a potential mechanism underlying primary ibrutinib resistance in ABC-DLBCL, and support its utility as an effective biomarker to predict therapeutic response to ibrutinib.

  11. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    Science.gov (United States)

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  12. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells

    International Nuclear Information System (INIS)

    Lu Haitian; Crawford, Robert B.; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2011-01-01

    Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells. - Highlights: → In this study primary human and mouse B cell toxicity to TCDD was compared. → TCDD altered the expression of Blimp-1 and Pax5 in mouse but not human B cells. → TCDD markedly suppressed human B cell activation as characterized by CD80, CD86 and CD69 expression. → TCDD inhibited ERK, p38, and Akt phosphorylation in human B cells.

  13. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    Science.gov (United States)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells.

    Science.gov (United States)

    Kyung, Sun Young; Kim, Yu Jin; Son, Eun Suk; Jeong, Sung Hwan; Park, Jeong Woong

    2018-04-01

    Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  15. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  16. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  17. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  18. Ia-restricted B-B cell interaction. I. The MHC haplotype of bone marrow cells present during B cell ontogeny dictates the self-recognition specificity of B cells in the polyclonal B cell activation by a B cell differentiation factor, B151-TRF2

    International Nuclear Information System (INIS)

    Ono, S.; Takahama, Y.; Hamaoka, T.

    1987-01-01

    We have demonstrated that B cell recognition of Ia molecules is involved in polyclonal B cell differentiation by B151-TRF2. The present study was undertaken to examine the Ia recognition specificity of B151-TRF2-responsive B cells in fully major histocompatibility complex (MHC)-allogeneic P1----P2, semiallogeneic P1----(P1 x P2)F1, and double donor (P1 + P2)----(P1 x P2)F1 and (P1 + P2)----P1 radiation bone marrow chimeras. The B cells from both P1----P2 and P1----(P1 x P2)F1 chimeras could give rise to in vitro immunoglobulin M-producing cells upon stimulation with B151-TRF2 comparable in magnitude to that of normal P1 B cells, and their responses were inhibited by anti-I-AP1 but not by anti-I-AP2 monoclonal antibody even in the presence of mitomycin C-treated T cell-depleted P2 spleen cells as auxiliary cells. In contrast, the B151-TRF2 responses of P1 B cells isolated from both (P1 + P2)----(P1 x P2)F1 and (P1 + P2)----P1 double bone marrow chimeras became sensitive to the inhibition of not only anti-I-AP1 but also anti-I-AP2 monoclonal antibody only when the culture was conducted in the presence of P2 auxiliary cells, demonstrating that they adaptively differentiate to recognize as self-structures allogeneic as well as syngeneic Ia molecules. Moreover, the experiments utilizing B cells from H-2-congenic mice and B cell hybridoma clones as auxiliary cells revealed that B151-TRF2-responsive B cells recognize Ia molecules expressed on B cells. Taken together, these results demonstrate that B151-TRF2-responsive B cells recognize Ia molecules expressed by B cells as self-structures and that their self-recognition specificity is dictated by the MHC haplotype of bone marrow cells present during the B cell ontogeny but not by the MHC haplotype of a radiation-resistant host environment

  19. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  20. Phase II/III Study of Radiofrequency Ablation Combined with Cytokine-Induced Killer Cells Treating Colorectal Liver Metastases

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2016-11-01

    Full Text Available Purpose: This phase II/III, non-randomized clinical trial aimed to determine the efficacy and safety of the combination of radiofrequency ablation (RFA and cytokine-induced killer (CIK cells transfusion for patients with colorectal liver metastases (CRLMs. Experimental Design: A total of 60 eligible patients with CRLMs were enrolled and divided into Group A (RFA alone, n = 30 and Group B (RFA plus CIK, n = 30, and following enzyme-linked immunosorbent spot assay was performed in 8 patients with CEA > 50 ng/mL pre-RFA and 7 days post-RFA and CIK treatment, respectively. Results: The median progression-free survival (PFS times of Group A and Group B were 18.5 months and 23 months, respectively (P = 0.0336. The 3-year progression-free rates were 13.3% in Group A and 20.3% in Group B, respectively. The median overall survival time was 43 months in Group A, and not reached in Group B. The 3-year survival rates were 64.6% in Group A and 81.0% in Group B, respectively (P = 0.1187. Among the 8 patients with CEA > 50ng/mL, 6 had increase of circulating CEA-specific T cells after RFA (P = 0.010. After CIK cell therapy, the number of CEA-specific T cells increased in all the 8 patients comparing with that pre-treatment (P = 0.001 and in 7 patients comparing with that post-RFA (P = 0.028. Conclusions: We firstly confirm that the combination of RFA and CIK cells boosts CEA-specific T cell response and shows to be an efficacious and safe treatment modality for patients with CRLMs.