WorldWideScience

Sample records for tnf-alpha-induced cyclooxygenase-2 expression

  1. Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF.

    Science.gov (United States)

    Zou, Jing; Pyykkö, Ilmari; Sutinen, Päivi; Toppila, Esko

    2005-04-01

    Transcranial vibration was applied for seven animals at a frequency of 250 Hz for 15 min, and five animals were used as normal controls to investigate cellular and molecular mechanism linked to vibration-induced hearing loss in animal model. Compound action potential (CAP) thresholds were measured by round window niche electrode. The expression of tumour necrosis factor alpha (TNF-alpha) and its receptors (TNF R1, TNF R2), vascular endothelium growth factor (VEGF) and its receptors (VEGF R1, VEGF R2) were analysed by immunohistochemistry. Transcranial vibration caused expression of TNF-alpha, TNF R1 and TNF R2 in the cochlea and the expression of TNF R2 was stronger than that of TNF R1. Vibration also induced VEGF and VEGF R2 expression in the cochlea. The average immediate hearing loss was 62 dB and after three days still 48 dB. It is concluded that transcranial vibration as during temporal bone drilling produces cochlear shear stress that is connected with up-regulation of TNF-alpha and its receptors. Also VEGF and VEGF R2 are up-regulated. These responses may be linked to both the damage and repair process of the cochlea.

  2. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  3. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  4. Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours

    Directory of Open Access Journals (Sweden)

    Vegh Irene

    2007-11-01

    Full Text Available Abstract Background The N-Nitrosomethylurea breast cancer model induced in rats is used for the study of carcinogenesis in mammary cancer, prostate, pancreas, etc. This model is very similar to human neoplastic disease. Methods The present experimental study was designed to assess whether metoclopramide administration has any effect on development of MNU-induced tumours, and evaluate the treatment of goserelin acetate on PRL, TNF alpha and NO expression. NMU was administered to female Wistar rats on 2 occasions (5 mg/100 g body w/rat. PRL and TNF alpha were performed by immune-assay. Nitric Oxide by semi automated-assay and ploidy analyses by flow cytometry. Results The administration of metoclopramide made the induction time shorter and increased the incidence and average of tumours per rat. Tumours development was inhibited by a goserelin chronic administration. The ploidy of adenocarcinoma was polyploid-aneuploid type (average S = 60%. It was higher basal PRL plasma levels in rats with NMU induced tumours than in basal controls without tumour (p Conclusion The increase of blood PRL levels in NMU-induced rats may be an indicator of a poor prognosis of mammary cancer evolution. The metoclopramide administration accelerates tumour growth. However goserelin administration achieves regression in tumour development associated to inhibition PRL, TNF alpha and NO expression.

  5. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  6. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  7. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  8. Leptin potentiates Prevotella intermedia lipopolysaccharide-induced production of TNF-alpha in monocyte-derived macrophages.

    Science.gov (United States)

    Kim, Sung-Jo

    2010-06-01

    In addition to regulating body weight, leptin is also recognized for its role in the regulation of immune function and inflammation. The purpose of this study was to investigate the effect of leptin on Prevotella (P.) intermedia lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production in differentiated THP-1 cells, a human monocytic cell line. LPS from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. The amount of TNF-alpha and interleukin-8 secreted into the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). TNF-alpha and Ob-R mRNA expression levels were determined by semi-quantitative reverse transcription-polymerase chain reaction analysis. Leptin enhanced P. intermedia LPS-induced TNF-alpha production in a dose-dependent manner. Leptin modulated P. intermedia LPS-induced TNF-alpha expression predominantly at the transcriptional level. Effect of leptin on P. intermedia LPS-induced TNF-alpha production was not mediated by the leptin receptor. The ability of leptin to enhance P. intermedia LPS-induced TNF-alpha production may be important in the establishment of chronic lesion accompanied by osseous tissue destruction observed in inflammatory periodontal disease.

  9. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  10. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  11. TNF-{alpha} mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom-Jun [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Bae, Sung Jin [Health Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Lee, Sun-Young; Lee, Young-Sun; Baek, Ji-Eun; Park, Sook-Young [Asan Institute for Life Sciences, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Lee, Seung Hun [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Koh, Jung-Min, E-mail: jmkoh@amc.seoul.kr [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Kim, Ghi Su [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. Black-Right-Pointing-Pointer TNF-{alpha} increases the activity and expression of MEF2 in UMR-106 cells. Black-Right-Pointing-Pointer TNF-{alpha} blocker prevents the stimulation of bony sclerostin expression by ovariectomy. Black-Right-Pointing-Pointer No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude mice was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 {mu}g/kg {beta}-estradiol five times per week for three weeks, or 10 mg/kg TNF-{alpha} blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-{alpha}, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-{alpha} also increased the nuclear MEF2 expression. Furthermore, the TNF-{alpha} blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between ovariectomized

  12. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  13. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  14. NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.

    Science.gov (United States)

    Chengedza, Shylet; Benbrook, Doris Mangiaracina

    2010-03-01

    Treatment of cancer with tumor necrosis factor-alpha (TNF-alpha) is hindered by resistance and toxicity. The flexible heteroarotinoid, SHetA2, sensitizes resistant ovarian cancer cells to TNF-alpha-induced extrinsic apoptosis, and also induces intrinsic apoptosis as a single agent. This study tested the hypothesis that nuclear factor-kappaB (NF-kappaB) is involved in SHetA2-regulated intrinsic and extrinsic apoptosis. SHetA2 inhibited basal and TNF-alpha-induced or hydrogen peroxide-induced NF-kappaB activity through counter-regulation of upstream kinase (IkappaB kinase) activity, inhibitor protein (IkappaB-alpha) phosphorylation, and p-65 NF-kappaB subunit nuclear translocation, but independently of reactive oxygen species generation. Ectopic over-expression of p-65, or treatment with TNF-alpha receptor 1 (TNFR1) small interfering RNA or a caspase-8 inhibitor, each attenuated synergistic apoptosis by SHetA2 and TNF-alpha, but did not affect intrinsic apoptosis caused by SHetA2. In conclusion, NF-kappaB repression is involved in SHetA2 circumvention of resistance to TNF-alpha-induced extrinsic apoptosis, but not in SHetA2 induction of intrinsic apoptosis.

  15. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    Science.gov (United States)

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  16. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study.

    Science.gov (United States)

    Ding, Yun-Hong; Mrizek, Michael; Lai, Qin; Wu, Yimin; Reyes, Raul; Li, Jie; Davis, William W; Ding, Yuchuan

    2006-11-01

    Exercise reduces ischemia and reperfusion injury in rat stroke models. We investigated whether gradual increases in tumor necrosis factor-alpha (TNF-alpha) reported during exercise down-regulates expression of TNF-alpha receptors I and II (TNFRI and II) in stroke, leading to reduced brain damage. Adult male Sprague Dawley rats were subjected to 30 minutes of exercise on a treadmill each day for 3 weeks. Then, stroke was induced by a 2-hour middle cerebral artery (MCA) occlusion using an intra-luminal filament. Expressions of TNFRI and II mRNA in the brain were detected using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Protein expressions of TNFRI and II were determined by enzyme-linked immunoabsorbant assay (ELISA) in serum and brain homogenates. Spatial distribution of TNF-alpha receptors in brain regions was determined with immunocytochemistry. In human umbilical vein endothelial cells (HUVEC), we addressed the causal effect of TNF-alpha pretreatment on TNF I and II expression using ELISA and real-time PCR. In exercised rats after stroke, brain infarct was significantly (p<0.01) reduced in the entire MCA supplied regions, associated with a mild expression of TNFRI and II mRNA and protein. The TNF-alpha receptors were restricted to the ischemic core. In contrast, a robust expression of TNFRI and II molecules was found in non-exercised rats subjected to similar ischemia/reperfusion insults. An in vitro study revealed a causal link between TNF-alpha pretreatment and reduced cellular expression of TNF-alpha receptors under hypoxic/reoxygenated conditions. Our results suggest that reduced-brain damage in ischemic rats after exercise preconditioning may be attributable to the reduced expression of TNF-alpha receptors. Chronically increased TNF-alpha expression was also found to reduce TNFI and II responding to acute ischemia/reperfusion insult.

  17. Ubiquitous hazardous metal lead induces TNF-{alpha} in human phagocytic THP-1 cells: Primary role of ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohd Imran [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Islam, Najmul [Department of Biochemistry, J.N Medical College, Aligarh Muslim University, Aligarh (India); Sahasrabuddhe, Amogh A. [Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow (India); Mahdi, Abbas Ali [Department of Biochemistry, C.S.M. Medical University, Lucknow (India); Siddiqui, Huma; Ashquin, Mohd [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Ahmad, Iqbal, E-mail: ahmadi@sify.com [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India)

    2011-05-15

    Induction of tumor necrosis factor-{alpha} (TNF-{alpha}) in response to lead (Pb) exposure has been implicated in its immunotoxicity. However, the molecular mechanism by which Pb upregulates the level of TNF-{alpha} is wagely known. An attempt was therefore made to elucidate the mechanistic aspect of TNF-{alpha} induction, mainly focusing transcriptional and post transcriptional regulation via mitogen activated protein kinases (MAPKs) activation. We observed that exposure of Pb to human monocytic THP-1 cells resulted in significant enhanced production of TNF-{alpha} m-RNA and protein secretion. Moreover, the stability of TNF-{alpha} m-RNA was also increased as indicated by its half life. Notably, activation of ERK 1/2, p38 and JNK in Pb exposed THP-1 was also evident. Specific inhibitor of ERK1/2, PD 98059 caused significant inhibition in production and stability of TNF-{alpha} m-RNA. However, SB 203580 partially inhibited production and stability of TNF-{alpha} m-RNA. Interestingly, a combined exposure of these two inhibitors completely blocked modulation of TNF-{alpha} m-RNA. Data tends to suggest that expression and stability of TNF-{alpha} induction due to Pb exposure is mainly regulated through ERK. Briefly, these observations are useful in understanding some mechanistic aspects of proinflammatory and immunotoxicity of Pb, a globally acknowledged key environmental contaminant.

  18. Alcohol depletes coenzyme-Q10 associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells

    International Nuclear Information System (INIS)

    Vidyashankar, Satyakumar; Nandakumar, Krishna S.; Patki, Pralhad S.

    2012-01-01

    Highlights: ► Ethanol induced cytotoxicity in HepG2 cells in absence of lipogenesis. ► Ethanol inhibited HMG-CoA reductase activity. ► Ethanol induced HMG-CoA reductase inhibition is due to decreased cell viability. ► Incubation with mevalonate could not increase the cholesterol. ► Cytotoxicity brought about by CoQ10 depletion and increased TNF-alpha. -- Abstract: Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP 450 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP 450 2E1. The results showed that ethanol at 100 mM concentration caused 40% cytotoxicity at 72 h as determined by MTT assay. The incorporation of labeled [2- 14 C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24 h incubation, whereas incorporation of labeled [2- 14 C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q 10 which is detrimental for cell viability. But vitamin E (10 mM) could partially restore coenzyme-Q 10 and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained

  19. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    OpenAIRE

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2013-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK...

  20. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  1. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  2. Fanconi anemia protein, FANCG, is a phosphoprotein and is upregulated with FANCA after TNF-alpha treatment.

    Science.gov (United States)

    Futaki, M; Watanabe, S; Kajigaya, S; Liu, J M

    2001-02-23

    Fanconi anemia (FA) is a genetic syndrome characterized by bone marrow failure, birth defects, and a predisposition to malignancy. At this time, six FA genes have been identified, and several gene products have been found to interact in a protein complex. FA cells appear to overexpress the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). We therefore examined the effects of TNF-alpha on the regulation of FA complementation group proteins, FANCG and FANCA. We found that treatment with TNF-alpha induced FANCG protein expression. FANCA was induced concurrently with FANCG, and the FANCA/FANCG complex was increased in the nucleus following TNF-alpha treatment. Inactivation of inhibitory kappa B kinase-2 modulated the expression of FANCG. We also found that both nuclear and cytoplasmic FANCG fractions were phosphorylated. These results show that FANCG is a phosphoprotein and suggest that the cellular accumulation of FA proteins is subject to regulation by TNF-alpha signaling.

  3. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25.

    Science.gov (United States)

    Li, Ying; Sheng, Kangliang; Chen, Jingyu; Wu, Yujing; Zhang, Feng; Chang, Yan; Wu, Huaxun; Fu, Jingjing; Zhang, Lingling; Wei, Wei

    2015-12-15

    This study was to investigate PGE2 and TNF-alpha signaling pathway involving in the maturation and activation of bone marrow dendritic cells (DCs) and the effect of CP-25. Bone marrow DCs were isolated and stimulated by PGE2 and TNF-alpha respectively. The markers of maturation and activation expressed on DCs, such as CD40, CD80, CD83, CD86, MHC-II, and the ability of antigen uptake of DCs were analyzed by flow cytometry. The proliferation of T cells co-cultured with DCs, the signaling pathways of PGE2-EP4-cAMP and TNF-alpha-TRADD-TRAF2-NF-κB in DCs were analyzed. The results showed that both PGE2 and TNF-alpha up-regulated the expressions of CD40, CD80, CD83, CD86, and MHC-II, decreased the antigen uptake of DCs, and DCs stimulated by PGE2 or TNF-alpha could increase T cell proliferation. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased significantly the expressions of CD40, CD80, CD83, CD86 and MHC-II, increased the antigen uptake of DCs, and suppressed T cell proliferation induced by DCs. PGE2 increased the expressions of EP4, NF-κB and down-regulated cAMP level of DCs. TNF-alpha could also up-regulate TNFR1, TRADD, TRAF2, and NF-κB expression of DCs. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased the expressions of EP4 and NF-κB, increased cAMP level in DCs stimulated by PGE2. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) also could down-regulate significantly TNFR1, TRADD, TRAF2, and NF-κB expression in DCs stimulated by TNF-alpha. These results demonstrate that PGE2 and TNF-alpha could enhance DCs functions by mediating PGE2-EP4-cAMP pathway, TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathway respectively. CP-25 might inhibit the function of DCs through regulating PGE2-EP4-cAMP and TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Generation, characterization and therapeutic potential of anti-feline TNF-alpha MAbs for feline infectious peritonitis.

    Science.gov (United States)

    Doki, Tomoyoshi; Takano, Tomomi; Nishiyama, Yuri; Nakamura, Michiyo; Hohdatsu, Tsutomu

    2013-12-01

    Feline infectious peritonitis (FIP) is a lethal infectious disease affecting domestic and wild cats. Several reports suggested that TNF-alpha is related to the progression of FIP. Thus, the administration of a feline TNF-alpha-neutralizing antibody to cats with FIP may reduce the disease progression. In this study, we have prepared nine monoclonal antibodies (MAbs) that recognize feline TNF-alpha. All MAbs neutralized recombinant TNF-alpha. The 50% inhibitory concentrations (IC50) of the MAbs for the cytotoxicity of recombinant TNF-alpha were 5-684 ng/ml. MAb 2-4 exhibited high neutralizing activity against natural TNF-alpha derived from FIPV-infected macrophages, and was confirmed to inhibit the following feline TNF-alpha-induced conditions in vitro: (i) an increase in the survival rate of neutrophils from cats with FIP, (ii) aminopeptidase N (APN) mRNA expression in macrophages, and (iii) apoptosis of a feline T-lymphocyte cell line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Therapeutic effect of anti-feline TNF-alpha monoclonal antibody for feline infectious peritonitis.

    Science.gov (United States)

    Doki, Tomoyoshi; Takano, Tomomi; Kawagoe, Kohei; Kito, Akihiko; Hohdatsu, Tsutomu

    2016-02-01

    Feline infectious peritonitis virus (FIPV) replication in macrophages/monocytes induced tumor necrosis factor (TNF)-alpha production, and that the TNF-alpha produced was involved in aggravating the pathology of FIP. We previously reported the preparation of a feline TNF-alpha (fTNF-alpha)-neutralizing mouse monoclonal antibody (anti-fTNF-alpha mAb). This anti-fTNF-alpha mAb 2-4 was confirmed to inhibit the following fTNF-alpha-induced conditions in vitro. In the present study, we investigated whether mAb 2-4 improved the FIP symptoms and survival rate of experimentally FIPV-inoculated SPF cats. Progression to FIP was prevented in 2 out of 3 cats treated with mAb 2-4, whereas all 3 cats developed FIP in the placebo control group. Plasma alpha1-glycoprotein and vascular endothelial growth factor levels were improved by the administration of mAb 2-4, and the peripheral lymphocyte count also recovered. These results strongly suggested that the anti-fTNF-alpha antibody is effective for the treatment of FIP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    Directory of Open Access Journals (Sweden)

    Mejía Salvador

    2006-02-01

    Full Text Available Abstract Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  7. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    Science.gov (United States)

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  8. Corn silk induced cyclooxygenase-2 in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  9. Visfatin, TNF-alpha and IL-6 mRNA expression is increased in mononuclear cells from type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, P C; Tsigos, C; Yfanti, E; Anastasiou, E; Vikentiou, M; Psarra, K; Papasteriades, C; Raptis, S A

    2007-10-01

    Visfatin, is a new adipokine, highly expressed in the visceral fat of both mice and humans. To examine whether visfatin is expressed in human peripheral monocyte-enriched mononuclear cells and whether its expression is altered in type 2 diabetes (DM2), we compared 24 DM2 women [17 overweight (BMI >25) and 7 lean (BMIwomen (14 overweight and 12 lean), all premenopausal. Relative visfatin mRNA levels were significantly higher (approximately 3-fold) in DM2 compared to healthy control women (pDM2 compared to control women (p=0.001 and p=0.004, respectively), an increase observed in both lean and overweight DM2 women. By contrast, circulating visfatin, TNF-alpha, and IL-6 levels showed no difference between DM2 and control women, while adiponectin plasma levels were significantly decreased in the DM2 women (pDM2 and control women, while IL-6 plasma levels were significantly higher in both overweight subgroups compared to their lean counterparts. In conclusion, visfatin, TNF-alpha, and IL-6 mRNA expressions are increased in peripheral mononuclear-monocytic cells from women with type 2 diabetes, independent of their BMI, which may enhance the effects of their adipose-derived levels and may contribute to the increased insulin resistance and atherogenic risk of these patients.

  10. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  11. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  12. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    Science.gov (United States)

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  13. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    International Nuclear Information System (INIS)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-01-01

    Highlights: ► TNFinduces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  14. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    Full Text Available Ling Ma,1 Yong Jiang,2 Yanan Dong,2 Jun Gao,2 Bin Du,2 Dianwei Liu2 1Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Background: Subarachnoid hemorrhage (SAH can induce apoptosis in many regions of the brain including the cortex and hippocampus. However, few studies have focused on apoptosis in the hypothalamus after SAH. Although some antiapoptotic strategies have been developed for SAH, such as anti-tumor necrosis factor-alpha (TNF-α antibody, the molecular mechanisms underlying this condition have yet to be elucidated. Therefore, the purpose of this study was to evaluate whether SAH could induce apoptosis in the hypothalamus and identify the potential molecular mechanisms underlying the actions of anti-TNF-α antibody, as a therapeutic regimen, upon apoptosis. Materials and methods: SAH was induced in a rat model. Thirty minutes prior to SAH, anti-TNF-α antibody or U0126, an extracellular signal-regulated kinase (Erk inhibitor, was microinjected into the left lateral cerebral ventricle. In addition, phorbol-12-myristate-13-acetate was injected intraperitoneally immediately after the anti-TNF-α antibody microinjection. Then, real-time polymerase chain reaction, Western blotting and immunohistochemistry were used to detect the expression of caspase-3, bax, bcl-2, phosphorylated Erk (p-Erk and Erk. Finally, anxiety-like behavior was identified by using open field. Results: Levels of caspase-3, bax and bcl-2, all showed a temporary rise after SAH in the hypothalamus, indicating the induction of apoptosis in this brain region. Interestingly, we found that the microinjection of anti-TNF-α antibody could selectively block the elevated levels of bax, suggesting the potential role of anti-TNF-α antibody in the inhibition of SAH-induced

  15. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  16. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNFinduced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNFinduces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNFinduces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNFinduces

  17. Evaluation of pGL1-TNF-alpha therapy in combination with radiation

    Science.gov (United States)

    Li, J.; Andres, M. L.; Fodor, I.; Nelson, G. A.; Gridley, D. S.

    1998-01-01

    Long-term control of high-grade brain tumors is rarely achieved with current therapeutic regimens. In this study a new plasmid-based human tumor necrosis factor-alpha (TNF-alpha) expression vector was synthesized (pGL1-TNF-alpha) and evaluated together with radiation in the aggressive, rapidly growing C6 rat glioma model. pGL1-TNF-alpha was successfully transfected into C6 cells in vitro using a cationic polyamine method. Expression was detected up to 7 days and averaged 0.4 ng of TNF-alpha in the culture medium from 1x10(5) cells. The expressed protein was biologically functional, as evidenced by growth inhibition of L929, a TNF-alpha-susceptible cell line. Using fluorescence-labeled monoclonal antibodies and laser scanning cytometry, we confirmed that both the P55 and P75 receptors for TNF-alpha were present on the C6 cell membrane. However, the receptors were present at low density and P55 was expressed more than the P75 receptor. These findings were in contrast to results obtained with TNF-alpha-susceptible L929 cells. Tests in athymic mice showed that pGL1-TNF-alpha administered intratumorally 16-18 h before radiation (each modality given three times) significantly inhibited C6 tumor progression (Palpha alone did not slow tumor growth and radiation alone had little effect on tumor growth. These results indicate that pGL1-TNF-alpha has potential to augment the antitumor effects of radiation against a tumor type that is virtually incurable.

  18. Molecular mechanisms underlying mancozeb-induced inhibition of TNF-alpha production

    International Nuclear Information System (INIS)

    Corsini, Emanuela; Viviani, Barbara; Birindelli, Sarah; Gilardi, Federica; Torri, Anna; Codeca, Ilaria; Lucchi, Laura; Bartesaghi, Stefano; Galli, Corrado L.; Marinovich, Marina; Colosio, Claudio

    2006-01-01

    Mancozeb, a polymeric complex of manganese ethylenebisdithiocarbamate with zinc salt, is widely used in agriculture as fungicide. Literature data indicate that ethylenebisdithiocarbamates (EBDTCs) may have immunomodulatory effects in humans. We have recently found in agricultural workers occupationally exposed to the fungicide mancozeb a statistically significant decrease in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF) production in leukocytes. TNF is an essential proinflammatory cytokine whose production is normally stimulated during an infection. The purpose of this work was to establish an in vitro model reflecting in vivo data and to characterize the molecular mechanism of action of mancozeb. The human promyelocytic cell line THP-1 was used as in vitro model to study the effects of mancozeb and its main metabolite ethylenthiourea (ETU) on LPS-induced TNF release. Mancozeb, but not ETU, at non-cytotoxic concentrations (1-100 μg/ml), induced a dose- and time-dependent inhibition of LPS-induced TNF release, reflecting in vivo data. The modulatory effect observed was not limited to mancozeb but also other EBDTCs, namely zineb and ziram, showed similar inhibitory effects. Mancozeb must be added before or simultaneously to LPS in order to observe the effect, indicating that it acts on early events triggered by LPS. It is known that nuclear factor-κB (NF-κB) tightly regulates TNF transcription. We could demonstrate that mancozeb, modulating LPS-induced reactive oxygen species generation, prevented IκB degradation and NF-κB nuclear translocation, which in turn resulted in decreased TNF production. To further understand the mechanism of the effect of mancozeb on TNF transcription, THP-1 cells were transfected with NF-κB promoter-luciferase construct, and the effect of mancozeb on luciferase activity was measured. Cells transfected with promoter constructs containing κB site showed decreased LPS-induced luciferase activity relative to control

  19. Regulation of PPAR{gamma} function by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jianping [Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 (United States)], E-mail: yej@pbrc.edu

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.

  20. Drug-Induced Endoplasmic Reticulum and Oxidative Stress Responses Independently Sensitize Toward TNF alpha-Mediated Hepatotoxicity

    NARCIS (Netherlands)

    Fredriksson, Lisa; Wink, Steven; Herpers, Bram; Benedetti, Giulia; Hadi, Mackenzie; de Bont, Hans; Groothuis, Geny; Luijten, Mirjam; Danen, Erik; de Graauw, Marjo; Meerman, John; van de Water, Bob

    Drug-induced liver injury (DILI) is an important clinical problem. Here, we used a genomics approach to in detail investigate the hypothesis that critical drug-induced toxicity pathways act in synergy with the pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha) to cause cell death of

  1. Adrenergic stimulation promotes T-wave alternans and arrhythmia inducibility in a TNF-alpha genetic mouse model of congestive heart failure.

    Science.gov (United States)

    Shusterman, Vladimir; McTiernan, Charles F; Goldberg, Anna; Saba, Samir; Salama, Guy; London, Barry

    2010-02-01

    T-wave alternans (TWA) is a proarrhythmic repolarization instability that is common in congestive heart failure (CHF). Although transgenic mice are commonly used to study the mechanisms of arrhythmogenesis in CHF, little is known about the dynamics of TWA in these species. We hypothesized that TWA is present in a TNF-alpha model of CHF and can be further promoted by adrenergic stimulation. We studied 16 TNF-alpha mice and 12 FVB controls using 1) in vivo intracardiac electrophysiological testing and 2) ambulatory telemetry during 30 min before and after an intraperitoneal injection of isoproterenol. TWA was examined using both linear and nonlinear filtering applied in the time domain. In addition, changes in the mean amplitude of the T wave and area under the T wave were computed. During intracardiac electrophysiological testing, none of the animals had TWA or inducible arrhythmias before the injection of isoproterenol. After the injection, sustained TWA and inducible ventricular tachyarrhythmias were observed in TNF-alpha mice but not in FVB mice. In ambulatory telemetry, before the isoproterenol injection, the cardiac cycle length (CL) was longer in TNF-alpha mice than in FVB mice (98 +/- 9 and 88 +/- 3 ms, P = 0.04). After the injection of isoproterenol, the CL became 8% and 6% shorter in TNF-alpha and FVB mice (P mice, the magnitude of TWA was 1.5-2 times greater than in FVB mice both before and after the isoproterenol injection. The magnitude of TWA increased significantly after the isoproterenol injection compared with the baseline in TNF-alpha mice (P = 0.003) but not in FVB mice. The mean amplitude of the T wave and area under the T wave increased 60% and 80% in FVB mice (P = 0.006 and 0.009) but not in TNF-alpha mice. In conclusion, TWA is present in a TNF-alpha model of CHF and can be further promoted by adrenergic stimulation, along with the enhanced susceptibility for ventricular arrhythmias.

  2. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  3. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  4. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  5. Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNFExpression and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min Kyung Chae

    2012-01-01

    Full Text Available Background. Pentoxifylline (PTX anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD- diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet and treatment (normal saline or PTX injection over a period of 4 weeks: group I (chow + saline, n=4, group II (chow + PTX, group III (MCD + saline, and group IV (MCD + PTX. Hep3B cells were treated with 100 ng/ml TNF-α (24 h in the absence or presence of PTX (1 mM. Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation in vivo. PTX (1 mM reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress.

  6. TNF-a-induced down-regulation of CDX2 suppresses MEP1A expression in colitis

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Anders Krüger; Holm, Thomas Lindebo

    2012-01-01

    was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-a-treated Caco-2 cells by reverse transcription...

  7. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.

    Science.gov (United States)

    Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J

    2006-06-01

    Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.

  8. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  9. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  10. Cyclooxygenase-2 Expression in Chronic Gastritis and Gastric Carcinoma, Correlation with Prognostic Parameters

    International Nuclear Information System (INIS)

    Samaka, R.M.; Abdou, A.G.; Abd El-Wahed, M.M.; Kandil, M.A.; El-Kady, N.M.

    2006-01-01

    Background: Cyclooxygenase-2 (Cox-2) is the inducible form of cyclooxygenase enzyme. Cox-2 is induced in numerous processes such as cellular growth, differentiation, inflammation and tumorigenesis. Purpose: Assessment of Cox-2 expression in chronic gastritis s and gastric carcinoma. Material and Methods: Sixteen chronic gastritis (CG) and 43 gastric carcinoma cases were subjected to an immunohistochemical approach using anti Cox-2 antibody. Results: All CG cases displayed positive epithelial Cox-2 expression with only 25% positivity for stromal expression. Eighty six percent of gastric carcinoma showed epithelial Cox-2 expression that was significantly correlated with lymph node involvement (p=0.01), advanced stage (p=0.01), high micro vessel density (MVD) (p=0.0001), vascular invasion (p=0.002), peri neural invasion (p=0.0 I) and low apoptotic count (p<0.0001). Stromal Cox-2 expression was seen in 79% of gastric carcinoma cases and was significantly associated with low apoptotic count (p=0.0007), vascular invasion (p=0.001) and high micro vessel density (MVD) (p=0.0003). Only stromal Cox2 expression was significantly higher in gastric carcinoma than chronic gastritis (p=0.0001). Conclusions: Cox-2 appears to be involved in gastric carcinoma progression as it promotes angio genesis, suppresses apoptosis and facilitates invasion and metastasis Double expression of Cox-2 in gastric carcinoma epithelium and stroma and significant association between them demonstrate a paracrine cross effect between stromal and malignant epithelium

  11. [Anti-TNF alpha in dermatology].

    Science.gov (United States)

    Mahe, E; Descamps, V

    2002-12-01

    The discovery of the major role of TNF alpha in the physiopathology of certain inflammatory diseases and notably in rheumatoid arthritis and Crohn's disease has led to the development of anti-TNF alpha drugs. These new therapeutic arms issued from bio-technology have rapidly demonstrated their efficacy in the treatment of these two diseases. The anti-TNF alpha arsenal is currently dominated by etanercept, a fusion protein composed of a soluble TNF alpha receptor, and infliximab, a chimeric monoclonal antibody. However, new molecules will soon enrich this arsenal. TNF alpha is a major cytokine of inflammatory diseases of the skin. Many dermatological diseases will probably benefit from these new treatments. Two studies have already demonstrated their interest in cutaneous and articular psoriasis. Encouraging sporadic results suggest other potential indications (Behcet's disease, bullous dermatitis, neutrophilic dermatitis, toxic epidermal necrolysis, systemic vascularitis,.). These promising new treatments, although expensive, and with yet unknown long term side effects, justify rigorous assessment of their efficacy and tolerance in each indication. Here again the dermatologist has a major role to play in post-marketing pharmacovigilance.

  12. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Anti-inflammatory effect of resveratrol on TNF-α-induced MCP-1 expression in adipocytes

    International Nuclear Information System (INIS)

    Zhu Jian; Yong Wei; Wu Xiaohong; Yu Ying; Lv Jinghuan; Liu Cuiping; Mao Xiaodong; Zhu Yunxia; Xu Kuanfeng; Han Xiao; Liu Chao

    2008-01-01

    Chronic low-grade inflammation characterized by adipose tissue macrophage accumulation and abnormal cytokine production is a key feature of obesity and type 2 diabetes. Adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, induced by cytokines, has been shown to play an essential role in the early events during macrophage infiltration into adipose tissue. In this study we investigated the effects of resveratrol upon both tumor necrosis factor (TNF)-α-induced MCP-1 gene expression and its underlying signaling pathways in 3T3-L1 adipoctyes. Resveratrol was found to inhibit TNF-α-induced MCP-1 secretion and gene transcription, as well as promoter activity, which based on down-regulation of TNF-α-induced MCP-1 transcription. Nuclear factor (NF)-κB was determined to play a major role in the TNF-α-induced MCP-1 expression. Further analysis showed that resveratrol inhibited DNA binding activity of the NF-κB complex and subsequently suppressed NF-κB transcriptional activity in TNF-α-stimulated cells. Finally, the inhibition of MCP-1 may represent a novel mechanism of resveratrol in preventing obesity-related pathologies

  14. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenwen; Zheng, Xuexing [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Liu, Shue [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Ouyang, Hongsheng [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Levitt, Roy C.; Candiotti, Keith A. [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Hao, Shuanglin, E-mail: shao@med.miami.edu [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  15. Effects of Puerariae Radix Extract on Endotoxin Receptors and TNFExpression Induced by Gut-Derived Endotoxin in Chronic Alcoholic Liver Injury

    Directory of Open Access Journals (Sweden)

    Jing-Hua Peng

    2012-01-01

    Full Text Available Kudzu (Pueraria lobata is one of the earliest medicinal plants used to treat alcohol abuse in traditional Chinese medicine for more than a millennium. However, little is known about its effects on chronic alcoholic liver injury. Therefore, the present study observed the effects of puerariae radix extract (RPE on chronic alcoholic liver injury as well as Kupffer cells (KCs activation to release tumor necrosis factor alpha (TNFinduced by gut-derived endotoxin in rats and macrophage cell line. RPE was observed to alleviate the pathological changes and lipids deposition in liver tissues as well as the serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, and hepatic gamma-glutamyl transpeptidase (GGT activity. Meanwhile, RPE inhibited KCs activation and subsequent hepatic TNFexpression and downregulated the protein expression of endotoxin receptors, lipopolysaccharide binding protein (LBP, CD14, Toll-like receptor (TLR 2, and TLR4 in chronic alcohol intake rats. Furthermore, an in vitro study showed that RPE inhibited the expression of TNF-α and endotoxin receptors, CD14 and TLR4, induced by LPS in RAW264.7 cells. In summary, this study demonstrated that RPE mitigated liver damage and lipid deposition induced by chronic alcohol intake in rats, as well as TNF-α release, protein expression of endotoxin receptors in vivo or in vitro.

  16. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2017-12-01

    Full Text Available Paeoniflorin-6′-O-benzene sulfonate (code: CP-25 was the chemistry structural modifications of Paeoniflorin (Pae. CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF or Tumor necrosis factor alpha (TNF-alpha. CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19+ B cells, CD19+CD20+ B cells, CD19+CD27+ B cells and CD19+CD20+CD27+ B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  17. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents.

    Science.gov (United States)

    Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei

    2017-01-01

    Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  18. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Krakowski, M; Piccirillo, C

    1995-01-01

    in the pathology of multiple sclerosis and its animal model experimental allergic encephalomyelitis (EAE). We used reverse transcriptase (RT)-PCR to study the kinetics, cellular source, and regulation of cytokine gene expression in the central nervous system (CNS) of SJL/J mice with myelin basic protein......, the majority of which were identified as microglia and macrophages by their Mac-1 phenotype. Microglia could be discriminated by their low expression of CD45. Incubation of freshly derived, adult microglia from normal, uninfiltrated, CNS with activated Th1 supernatant induced the production of TNF-alpha m...

  19. TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells

    International Nuclear Information System (INIS)

    Pregi, Nicolas; Wenker, Shirley; Vittori, Daniela; Leiros, Claudia Perez; Nesse, Alcira

    2009-01-01

    The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-α. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-α or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-α. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-κB nuclear translocation, TNFinduced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-κB, through mechanisms involving Jak/STAT and PI3K signalling pathways

  20. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wu

    Full Text Available Orientia (O. tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF-α reduced cell injury from a cytokine storm. Since TNF-α production is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE inhibitors on TNF-α production in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB, but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70 expression associated with ERK activation; upregulated TNF-α production in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNF-α production was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.

  1. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    Science.gov (United States)

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  2. Basal cell carcinoma is associated with high TNF-alpha release but nor with TNF-alpha polymorphism at position--308

    DEFF Research Database (Denmark)

    Skov, Lone; Allen, Michael H; Bang, Bo

    2003-01-01

    secretion of TNF-alpha has been identified in humans. We have therefore investigated the association of the --308 polymorphism with the risk of basal cell carcinoma (BCC) in humans. The frequency of TNF G and TNF A alleles among Caucasian patients with a previous BCC (n=191) and health adults (n-107) were...... compared. For the TNF--308 polymorphism there was significant association between the genotype or allele frequencies and having BCC. To determine whether patients with a previous BCC had an increased capacity to secrete TNF-alpha, mononuclear cells were stimulated with lipopolysaccharide. Mononuclear cells...... from patients with a previous BCC (n=15) demonstrated a significantly increased release of TNF-alpha upon stimulation with lipopolysaccharide (Pcells age-matched control subjects (n=16). Further studies of other polymorphisms of the TNF-alpha gene associated...

  3. α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Felicia Carotenuto

    2016-11-01

    Full Text Available Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a positive impact on muscle diseases. We recently demonstrated that the dietary n3-fatty acid, alpha-linolenic acid (ALA, exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we investigate here on the expression level of the anti- and pro-apototic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of TNF. The results demonstrated that ALA protective effect on C2C12 myoblasts was associated to an increased Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescue Bcl-2 expression and decrease Bax expression both affected in an opposite way by TNF treatment. This effect was associated with a decrease in caspase-3 activity by ALA. TNF is a major pro-inflammatory cytokine that is expressed in damaged skeletal muscle, therefore, counteract inflammatory signals in the muscle microenvironment represents a critical strategy to ameliorate skeletal muscle pathologies

  4. TNF-alpha, leptin, and lymphocyte function in human aging

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    2000-01-01

    Aging is associated with increased inflammatory activity and concomitant decreased T cell mediated immune responses. Leptin may provide a link between inflammation and T cell function in aging. The aim of the study was to investigate if plasma levels of tumor necrosis factor (TNF)-alpha were...... there was no difference with regard to IL-2 production. Furthermore, there were no age-related differences in serum levels of leptin, However, women had higher levels than men. In the elderly people, serum levels of leptin were correlated with TNF-alpha in univariate regression analysis and in a multiple linear...... regression analysis adjusting for the effect of gender and body mass index. Furthermore, TNF-alpha, but not leptin, was positively correlated to sIL-2R and negatively correlated to IL-2 production. In conclusion, increased plasma levels of TNF-alpha in aging is associated with poor IL-2 production ex vivo...

  5. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    Science.gov (United States)

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  6. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Science.gov (United States)

    Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang

    2012-01-01

    The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNFexpression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food

  7. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Directory of Open Access Journals (Sweden)

    Qiang-Song Wang

    Full Text Available The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO and prostaglandin E(2 (PGE(2 were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, interleukin (IL-6, and tumor necrosis factor alpha (TNF-α was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB α, Inhibitor of NF-κB Kinase (IKK α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNFexpression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional

  8. Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries.

    Science.gov (United States)

    Eid, A H; Maiti, K; Mitra, S; Chotani, M A; Flavahan, S; Bailey, S R; Thompson-Torgerson, C S; Flavahan, N A

    2007-09-01

    Raynaud's phenomenon, which is characterized by intense cold-induced constriction of cutaneous arteries, is more common in women compared with men. Cold-induced constriction is mediated in part by enhanced activity of alpha(2C)-adrenoceptors (alpha(2C)-ARs) located on vascular smooth muscle cells (VSMs). Experiments were therefore performed to determine whether 17beta-estradiol regulates alpha(2C)-AR expression and function in cutaneous VSMs. 17beta-Estradiol (0.01-10 nmol/l) increased expression of the alpha(2C)-AR protein and the activity of the alpha(2C)-AR gene promoter in human cultured dermal VSMs, which was assessed following transient transfection of the cells with a promoter-reporter construct. The effect of 17beta-estradiol was associated with increased accumulation of cAMP and activation of the cAMP-responsive Rap2 GTP-binding protein. Transient transfection of VSMs with a dominant-negative mutant of Rap2 inhibited the 17beta-estradiol-induced activation of the alpha(2C)-AR gene promoter, whereas a constitutively active mutant of Rap2 increased alpha(2C)-AR promoter activity. The effects of 17beta-estradiol were inhibited by the estrogen receptor (ER) antagonist, ICI-182780 (1 micromol/l), and were mimicked by a cell-impermeable form of the hormone (estrogen:BSA) or by the selective ER-alpha receptor agonist 4,4',4'''-(4-propyl-[(1)H]-pyrazole-1,3,5-triyl)tris-phenol (PPT; 10 nmol/l) or the selective ER-beta receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nmol/l). Therefore, 17beta-estradiol increased expression of alpha(2C)-ARs by interacting with cell surface receptors to cause a cAMP/Rap2-dependent increase in alpha(2C)-AR transcription. In mouse tail arteries, 17beta-estradiol (10 nmol/l) increased alpha(2C)-AR expression and selectively increased the cold-induced amplification of alpha(2)-AR constriction, which is mediated by alpha(2C)-ARs. An estrogen-dependent increase in expression of cold-sensitive alpha(2C)-ARs may contribute

  9. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  10. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  11. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  12. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  13. Effect of gene-targeted mutation in TNF receptor (p55) on contact hypersensitivity and ultraviolet B-induced immunosuppression

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Seiji; Wang, Binghe; Fujisawa, Hiroshi [Univ. of Toronto, Ontario (Canada)] [and others

    1995-10-15

    Tumor necrosis factor {alpha} (TNF-{alpha}) is a pleiotropic proinflammatory cytokine. TNF-{alpha} has been implicated in the pathogenesis of delayed-type hypersensitivity reactions such as allergic contact hypersensitivity and has been suggested as a mediator of ultraviolet B (UVB)-induced immunosuppression. Conflicting reports, however, exist concerning the effects of TNF-{alpha} on contact hypersensitivity (CHS). To determine the role of TNF-{alpha} in the generation and regulation of CHS, gene-targeted mutant mice lacking TNF-receptor (p55) gene (TNF-R1(-) mice) were treated with dinitrofluorobenzene (DNFB) to induce CHS. TNF-R1(-) mice showed significant hyperresponsiveness in CHS (152.8 {+-} 20.9%, p < 0.025) compared with normal syngeneic mice (C57BL/6) assessed by ear swelling. To determine whether UVB can induce suppression in TNF-R1(-) mice, mice were irradiated on the shaved abdomen with 96 ml/cm{sup 2} UVB and 3 days later they were painted with 0.5% DNFB (sensitization dose), followed 5 days later with 0.2% DNFB to the left ear (challenge dose). Significant suppression of CHS was observed both locally (sensitization on irradiated site) and systemically (sensitization on unirradiated site) in UVB-irradiated TNF-R1(-) mice as well as in normal mice. To rule out possible signaling through p75 TNF-R, the mice were treated with anti-TNF-{alpha} Ab (V1q), which can neutralize any TNF effects through either receptor. V1q had no effect on these phenomena observed in TNF-R1(-) mice. These results suggest that TNF-{alpha} plays a regulatory role in CHS but is not required to induce UVB-mediated immunosuppression. 45 refs., 5 figs.

  14. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    Science.gov (United States)

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  15. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul; Chung, Jin Ho

    2008-01-01

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNFinduced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  16. TNF-alpha impairs the S-G2/M cell cycle checkpoint and cyclobutane pyrimidine dimer repair in premalignant skin cells: Role of the PI3K-Akt pathway

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.; Calay, D.

    2008-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is induced by UVB radiation and has been implicated in the early stages of skin carcinogenesis. Here, we show that in normal keratinocytes and the transformed keratinocyte cell lines, HaCaT and A431, TNF-alpha stimulates protein kinase B/Akt, which results...... cycling. TNF-alpha enhanced apoptosis less potently and did not increase the level of CPD or stimulate cell cycle progression in normal keratinocytes. Our data suggest that TNF-alpha overrides the G2/M checkpoint in premalignant skin cells and allows for some cells containing unrepaired CPD to enter...... in activation of the survival complex mTORC1 (mammalian target of rapamycin complex 1) and inhibition of the proapoptotic proteins Bad and Fox03a. In UVB-irradiated HaCaT cells (10-20 mJ cm(-2)), TNF-alpha increased the proportion of cycling cells and enhanced the rate of apoptosis. A significantly higher...

  17. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    Science.gov (United States)

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  18. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  19. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  20. Predictive utility of cyclo-oxygenase-2 expression by colon and rectal cancer.

    Science.gov (United States)

    Lobo Prabhu, Kristel C; Vu, Lan; Chan, Simon K; Phang, Terry; Gown, Allen; Jones, Steven J; Wiseman, Sam M

    2014-05-01

    Cyclo-oxygenase-2 (COX-2), an inducible enzyme expressed in areas of inflammation, is a target of interest for colorectal cancer therapy. Currently, the predictive significance of COX-2 in colorectal cancer remains unclear. Tissue microarrays were constructed using 118 colon cancer and 85 rectal cancer specimens; 44 synchronous metastatic colon cancer and 22 rectal cancer lymph nodes were also evaluated. COX-2 expression was assessed by immunohistochemistry. Univariate analysis was used to determine the predictive significance of clinicopathologic variables. Overall survival, disease-specific survival, and disease-free survival were the main outcomes examined. COX-2 was found to be expressed in 93% of colon cancers and 87% of rectal cancers. Decreased COX-2 expression was related to decreased disease-specific survival (P = .016) and decreased disease-free survival (P = .019) in the rectal cancer cohort but not in the colon cancer cohort. COX-2 expression has predictive utility for management of rectal but not colon cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Mycobacterium tuberculosis Upregulates TNFExpression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Wei-Lin Chen

    Full Text Available Tumor necrosis factor (TNF-α and matrix metalloproteinases (MMPs are elevated in pleural fluids of tuberculous pleuritis (TBP where pleural mesothelial cells (PMCs conduct the first-line defense against Mycobacterium tuberculosis (MTB. However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear.We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18 or heart failure (n = 18 as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa on the expression of TNF-α and MMPs.As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNFexpression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation.MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.

  2. Cytosolic phospholipase A2-alpha expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2012-02-01

    BACKGROUND: The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)alpha expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines. METHODS: The importance of differential cPLA(2)alpha activity in clinical breast cancer was established by relating the expression of cPLA(2)alpha in tissue samples from breast cancer patients, and two microarray-based gene expression datasets to different clinicopathological and therapeutic parameters. RESULTS: High cPLA(2)alpha mRNA expression correlated with clinical parameters of poor prognosis, which are characteristic of highly invasive tumours of the HER2-positive and basal-like subtype, including low oestrogen receptor expression and high EGFR expression. High cPLA(2)alpha expression decreased overall survival in patients with luminal cancers, and correlated with a reduced effect of tamoxifen treatment. The cPLA(2)alpha expression was an independent predictive parameter of poor response to endocrine therapy in the first 5 years of follow-up. CONCLUSION: This study shows a role of cPLA(2)alpha in luminal breast cancer progression, in which the enzyme could represent a novel therapeutic target and a predictive marker.

  3. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring.

    Science.gov (United States)

    Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje

    2017-09-01

    Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNFexpression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  5. Response of tumour necrosis factor alpha (TNF ) in blood and spleen mice that vaccinated with P.berghei radiation

    International Nuclear Information System (INIS)

    Darlina; Tur R; Teja K

    2015-01-01

    Tumor necrosis factor is a glycoprotein derived from helper T lymphocytes that play an important role in the body's response against malaria infection. However, TNF-α has double play that is on appropriate levels will provide protection and healing, while at excessive levels which may be a response to hyperparasitemia. Thus investigated the expression of TNF alpha secreted blood lymphocytes and spleen cells the mice that's infected with 1 x 10 7 P.berghei infectious or inactivated by radiation. Levels of TNF alpha serum and spleen cell culture medium was monitored on days 2, 7, 14 post infection. Monitoring of parasite growth every two days for 60 days. Determination of TNF alpha levels were measure using ELISA. The results showed parasitaemia mice infected with 175 Gy irradiated parasites have pre patent period of 16 days longer than the control (non-irradiated parasites) with low parasitaemia. TNF alpha concentration that secreted spleen cells of mice vaccinated higher than control mice. Concentration of TNF alpha that secreted blood lymphocyte of mice vaccinated lower than control mice. It was concluded that the secretion of TNF alpha by blood lymphocytes caused more pathogenic factors of the parasite, while the secretion of TNF alpha in spleen due to an immune response against the parasite. (author)

  6. Changes in the Expression of Cyclooxygenase-2 in Polycystic Ovary Syndrome in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Karimzadeh L

    2011-12-01

    Full Text Available Background: Cyclooxygenase 2 is a key enzyme which converts arachidonic acid into prostaglandins. Cyclooxygenase 2 is triggered by inflammatory stimuli, such as cytokines. Its expression increases in tumors and Alzheimer's disease and ovarian hyperstimulation syndrome. Polycystic ovarian syndrome is a heterogeneous disease characterized by pathological angiogenesis and chronic anovulation. In the present study, the probable role of cyclooxygenase 2 in Wistar rats with polycystic ovarian syndrome was investigated.Methods: Thirty female Wistar rats (170-200 gr were equally divided into three groups: 2 mg estradiol valerate was intramuscularly administered to each rat in the experiment group or group 1; the rats in group 2 were regarded as the sham group and received sesame oil injections and group 3 or the control group received no injections. After 60 days of treatment, animals were anaesthetized with chloroform and killed by decapitation. Ovaries were collected for histological and immunohistochemical evaluations. All the experiments were repeated three times.Results: Morphologically, ovaries from the control group exhibited follicles in various stages of development and many fresh corpus luteum. In estradiol valerate group small follicles in early development were observed in addition to follicles showing evidence of atresia and many large cysts with thickened theca cell layer. Corpus luteum was rare or absent in group 2. The immunohistochemical analysis for cyclooxygenase 2 expression showed an increased expression of cyclooxygenase 2 enzyme in group 1.Conclusion: The results suggested the involvement of cyclooxygenase 2 in the progression to polycystic ovarian syndrome in a rat model.

  7. Effects of TNF-alpha on Endothelial Cell Collective Migration

    Science.gov (United States)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  8. CD44 and Bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation

    International Nuclear Information System (INIS)

    Sakai, Minako; Iwakawa, Mayumi; Ohta, Toshie; Tsujii, Hirohiko; Imai, Takashi; Iwakura, Yoichiro

    2008-01-01

    To understand the molecular mechanisms that underlie radiation pneumonitis, we examined whether knockout of the tumor necrosis factor (TNF) or the interleukin (IL)-6 gene could give mice an inherent resistance to radiation in the acute phase of alveolar damage after thoracic irradiation. The temporal expression of inflammation (CD44) and apoptosis (Bak) markers in lung after thoracic irradiation was measured to determine the degree of alveolar damage. At 4 weeks post-irradiation (10 Gy), small inflammatory foci were observed in all mice, but there were no obvious histological differences between control (C57BL/6JSlc), TNF-alpha knockout (TNF KO), and IL-6 knockout (IL-6 KO) mice. However, immunohistochemical analysis of CD44 and Bak expression over a time course of 2 weeks highlighted significant differences between the three groups. C57BL/6JSlc and TNF KO mice had increased numbers of both CD44-positive and Bak-positive cells after irradiation, while the IL-6 KO mice showed stable levels of CD44 and Bak. In conclusion, the radioresistant status of IL-6 KO mice in the acute phase of alveolar damage after irradiation suggested an important role for IL-6 in radiation pneumonitis. (author)

  9. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  10. In vitro secretion of TNF-{alpha} from bone marrow mononuclear cells incubated on amino group modified TiO{sub 2} nano-composite under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuzono, T., E-mail: furuzono@ri.ncvc.go.jp [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Masuda, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Nitta, N.; Kaya, A.; Yamane, T. [Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564 (Japan); Okada, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan)

    2010-10-15

    It is recently known that titanium dioxide (TiO{sub 2}) can be excited by ultrasound and release of OH radicals on the surface. In this study, secretion of an indirect angiogenic factor, tumor necrosis factor-{alpha} (TNF-{alpha}), from bone marrow mononuclear cells (BM-MNC) incubated on amino group modified TiO{sub 2} nano-particles covalently coated on polyester fabric (TiO{sub 2}/PET) under ultrasonic irradiation was examined in vitro. The cell viability and TNF-{alpha} secretion were measured under ultrasound irradiation condition with 255 mW/cm{sup 2} of intensity, which is below the highest output (1 W/cm{sup 2}) specified in the safety standard for a medical ultrasonic diagnostic apparatus. The living cell number on the TiO{sub 2}/PET and original PET with/without continuous ultrasound irradiation was unchanged statistically by ANOVA test. TNF-{alpha} secretion level from BM-MNC remarkably increased on the TiO{sub 2}/PET under ultrasonic irradiation without cell damage. It was, therefore, thought that the high level of TNF-{alpha} secretion on the TiO{sub 2} nano-composite by ultrasound irradiation was due to oxidative stress induced from OH radicals on TiO{sub 2}.

  11. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  12. Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease

    NARCIS (Netherlands)

    Hoozemans, J. J.; Veerhuis, R.; Janssen, I.; Rozemuller, A. J.; Eikelenboom, P.

    2001-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of developing Alzheimer's disease (AD). Cyclooxygenase 2 (COX-2), one of the targets of NSAIDs, is increasingly expressed in neuronal cells in AD brain. In this study, of the cytokines that are found at increased levels in AD brain

  13. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  14. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  15. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Sara Palacios-Ortega

    2015-07-01

    Full Text Available Background/Aims: Tumor necrosis factor-α (TNF-α-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1 is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days in the presence TNF-α (10 ng/mL and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.

  16. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...

  17. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    Science.gov (United States)

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  18. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    Science.gov (United States)

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus).

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Lee, Jae-Seong; Jung, Sung-Ju; Choi, Cheol Young; Lee, Jehee

    2010-01-01

    The lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel family nuclear factor kappaB (Rel/NF-kB) are two important transcription factors which play major roles in the regulating inflammatory cytokine, apoptosis and immune related genes. Here, we report the discovery of disk abalone LITAF (AbLITAF) and Rel/NF-kB (AbRel/NF-kB) homologues and their immune responses. Full-length cDNA of AbLITAF consists of 441 bp open reading frame (ORF) that translates into putative peptide of 147 aa. Analysis of AbLITAF sequence showed it has characteristic LITAF (Zn(+2)) binding domain with two CXXC motifs. Phylogenetic analysis results further revealed that AbLITAF is a member of LITAF family. AbRel/NF-kB is 584 aa protein that contains several characteristic motifs including Rel homology domain (RHD), Rel protein signature, DNA binding motif, nuclear localization signal (NLS) and transcription factor immunoglobulin - like fold (TIG) similar to their invertebrate and vertebrate counterparts. Tissue specific analysis results showed that both AbLITAF and AbRel/NF-kB mRNA was expressed ubiquitously in all selected tissues in constitutive manner. However, constitutive expression of AbLITAF was higher than AbRel/NF-kB in all tissues except mantle. Upon immune challenge by bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) and viral hemoragic septicemia virus (VHSV), AbLITAF showed the significant up-regulation in gills while AbRel/NF-kB transcription was not change significantly. Based on transcriptional response against immune challenge, we could suggest that regulation of TNF-alpha expression may have occurred mainly by LITAF activation rather than NF-kB in disk abalone. The cumulative data from other molluscs and our data with reference to TNF-alpha, LITAF and Rel/NF-kB from disk abalone provide strong evidence that LITAF and NF-kB are independent pathways likely to occur throughout the Phylum mollusca. 2010 Elsevier Ltd. All rights reserved.

  20. TNF-α Upregulates Expression of BMP-2 and BMP-3 Genes in the Rat Dental Follicle – Implications for Tooth Eruption

    Science.gov (United States)

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.

    2011-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNFexpression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418

  1. Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J

    2004-07-16

    Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.

  2. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  3. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    Science.gov (United States)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  4. Clinical Significance and Expression of PAF and TNF-alpha in Seminal Plasma of Leukocytospermic Patients

    Directory of Open Access Journals (Sweden)

    Chaodong Liu

    2012-01-01

    Full Text Available Objective. Discuss the changes and roles of PAF in the reproductive tract infection by observing the expression of platelet activating factor (PAF and tumor necrosis factor α (TNF-α in seminal plasma of patients with leukocytospermia. Methods. The seminal plasma was obtained from 22 cases of leukocytospermia and 15 cases of normal males; the peroxidase dyeing method was adopted for seminal plasma white blood count; the ELISA was adopted to test PAF and TNF-α concentration in seminal plasma. Result. PAF concentration ( ng/mL of leukocytospermia group was significantly lower than the normal group ( ng/mL, while TNF-α ( ng/mL was significantly higher than that of normal group ( ng/mL. There was negative correlation between PAF and TNF-α , (, ; the same situation existed in PAF and WBC (, ; but TNF-α was positively correlated to WBC (, . Conclusion. (1 Low expression of PAF and high expression of TNF-α in leukocytospermia affect the sperm motility, which is one of the reasons that leads to infertility. (2 Lower expression of PAF has its particularity during the reproductive tract infection.

  5. Altered TNF-Alpha, Glucose, Insulin and Amino Acids in Islets Langerhans Cultured in a Microgravity Model System

    Science.gov (United States)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.

    2001-01-01

    The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-1 17,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (palpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  6. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  7. Early growth response protein 1 (EGR1) regulates pro-inflammatory gene expression in response to palmitate and TNF alpha in human placenta cells and is induced in obese placenta

    Science.gov (United States)

    Maternal obesity has been hypothesized to induce a pro-inflammatory response in the placenta. However, the specific factors contributing to this pro-infalmmatory response are yet to be determined. Our objective was to examine the effects of palmitic acid (PA), tumor necrosis factor alpha (TNF alph...

  8. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  9. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  10. ArF excimer laser modulation of TNF-alpha and gelatinase B in NIH 3T3 cells; Modulation de l`expression du TNF-alpha et de la gelatinase B, apres irradiation de fibroblastes NIH 3T3 par un laser a excimeres a 193 NM

    Energy Technology Data Exchange (ETDEWEB)

    Naudy-Vives, C.; Courant, D.; Perot, J.C.; Garcia, J.; Fretier, P.; Court, L.; Dormont, D.

    1995-12-31

    The effects on TNF-alpha and gelatinase B activity in mammalian cells induced by 193 nm argon fluoride excimer laser have been investigated. The data show that a secretion of 92 kDa type IV collagenase and TNF-alpha were increased in cell culture supernatants. Moreover, the 193 nm laser radiation produces a decrease of cell proliferation and an increase of cell activation 8 hours after irradiation. The total protein amount increases with the delivered dose. Same, but less effects were obtained after exposure to a conventional UV lamp at 254 nm. (author). 8 refs.

  11. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro.

    Science.gov (United States)

    Rathore, Kusum; Alexander, Mary; Cekanova, Maria

    2014-08-01

    Development and characterization of animal models for human cancers is important for the improvement of diagnosis and therapy. The oral squamous cell carcinoma (OSCC) of domestic animals resembles human OSCC in many aspects; thus, cell lines derived from OSCC of cats and dogs are a valuable model for human OSCC. We characterized 1 feline OSCC (FeOSCC-Sidney) and 1 canine OSCC (K9OSCC-Abby) cell line and compared their characteristics with human OSCC cell line hSCC-25. We calculated the doubling time of the new OSCC cell lines and evaluated the expression profiles of cancer-related markers and cell-cycle proteins such as c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, cyclooxygenase (COX)-1, COX-2, and p27 by immunocytochemistry and Western blot analysis. We evaluated the effects of novel receptor tyrosine kinase inhibitor (Masitinib, AB1010) and the nonsteroidal anti-inflammatory drug piroxicam on the previously mentioned OSCC cells. Interestingly, AB1010 increased expression levels of COX-2 in all tested OSCCs. Cotreatment of piroxicam with Masitinib significantly inhibited cell proliferation of OSCC as compared to either drug alone through the c-kit and AKT signaling pathways. Piroxicam inhibited Masitinib-induced COX-2 expression in all tested OSCCs. Therefore, targeting these two signaling pathways simultaneously was more efficient for inhibition of OSCCs across these species. Copyright © 2014 Mosby, Inc. All rights reserved.

  12. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    Science.gov (United States)

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Simulated Microgravity Reduces TNF-Alpha Activity, Suppresses Glucose Uptake and Enhances Arginine Flux in Pancreatic Islets of Langerhans

    Science.gov (United States)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The present studies were designed to determine effects of microgravity upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF - alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-117,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS 3) static culture, 4) static culture plus LPS TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (palpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV paradigm. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  14. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  15. Platelet cyclooxygenase expression in normal dogs.

    Science.gov (United States)

    Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A

    2011-01-01

    Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  16. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities.

    Science.gov (United States)

    Kim, In-Tae; Park, Young-Mi; Won, Jong-Heon; Jung, Hyun-Ju; Park, Hee-Juhn; Choi, Jong-Won; Lee, Kyung-Tae

    2005-01-01

    As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects.

  17. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes

    DEFF Research Database (Denmark)

    Plomgaard, P; Nielsen, A R; Fischer, C P

    2007-01-01

    AIMS/HYPOTHESIS: Clear evidence exists that TNF-alpha inhibits insulin signalling and thereby glucose uptake in myocytes and adipocytes. However, conflicting results exist with regard to the role of TNF-alpha in type 2 diabetes. METHODS: We obtained blood and biopsy samples from skeletal muscle...... and subcutaneous adipose tissue in patients with type 2 diabetes (n = 96) and healthy controls matched for age, sex and BMI (n = 103). RESULTS: Patients with type 2 diabetes had higher plasma levels of fasting insulin (p ...) uptake (VO2/kg) in the diabetes group (p type 2 diabetic patients. Immunohistochemistry revealed more TNF-alpha protein...

  18. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  19. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    Directory of Open Access Journals (Sweden)

    Vanessa Moreira

    2014-01-01

    Full Text Available Phospholipases A2 (PLA2 are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PGE2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2. Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

  20. A fish oil diet does not reverse insulin resistance despite decreased adipose tissue TNF-alpha protein concentration in ApoE-3*Leiden mice

    NARCIS (Netherlands)

    Muurling, Martin; Mensink, Ronald P.; Pijl, Hanno; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2003-01-01

    Dietary interventions with fish oil have been found to protect against the development of high-fat diet-induced insulin resistance and to decrease the expression of tumor necrosis factor (TNF)-alpha. However, the effect of fish oil administration on preexisting insulin resistance is subject to

  1. Hematologic interactions of endotoxin, tumor necrosis factor alpha (TNF alpha), interleukin 1, and adrenal hormones and the hematologic effects of TNF alpha in Corynebacterium parvum-primed rats.

    Science.gov (United States)

    Ulich, T R; del Castillo, J; Ni, R X; Bikhazi, N

    1989-06-01

    Endotoxin reduces the release among other cytokines of tumor necrosis factor (TNF) and interleukin 1 (IL-1) and causes peripheral lymphopenia and a dose-response-dependent initial neutropenia followed by a monophasic neutrophilia. TNF alone induces lymphopenia and an initial neutropenia followed by a biphasic neutrophilia. IL-1 alone induces lymphopenia and a monophasic neutrophilia. TNF-plus-IL-1 caused a greater lymphopenia than either monokine alone, suggesting that both monokines contribute to LPS-induced lymphopenia. TNF-plus-IL-1 induced neutropenia similar in magnitude to that induced by TNF alone and induced a neutrophilia significantly greater than that induced by either monokine alone, suggesting that LPS-induced neutropenia is caused by TNF, while LPS-induced neutrophilia is due to the combined effects of TNF and II-1. TNF and IL-1 were administered together with LPS to simulate the in vivo condition of endogenous monokine release during gram-negative bacteremia. TNF combined with LPS increased both the duration and magnitude of LPS-induced lymphopenia, LPS-induced neutropenia, and LPS-induced neutrophilia. TNF-plus-LPS treated rats at 2 hours after injection exhibited a striking 93% decrease in bone marrow neutrophils even though no peripheral neutrophilia was yet apparent, suggesting that the subsequent neutrophilia was due to demargination and recirculation of neutrophils sequestered in the peripheral vasculature immediately after their release from the bone marrow. Epinephrine, which causes neutrophilia by demargination but not by release of marrow neutrophils, reversed the initial neutropenia in TNF-plus-LPS-treated rats and increased the neutrophilia. IL-1 combined with LPS increased LPS-induced neutrophilia, suggesting that endogenous IL-1 also contributed to LPS-induced neutrophilia. Corynebacterium parvum-primed rats with hyperplasia of the monocyte-macrophage system and treated with TNF differed from naive rats treated with TNF in that the

  2. Estradiol increases the expression of TNF-α and TNF receptor 1 in lactotropes.

    Science.gov (United States)

    Zaldivar, Verónica; Magri, María Laura; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Radl, Daniela; Ferraris, Jimena; Pisera, Daniel; Seilicovich, Adriana

    2011-01-01

    Estrogens are recognized modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that plays an important role in tissue homeostasis modulating cell proliferation, differentiation and death. We previously demonstrated that TNF-α-induced apoptosis of anterior pituitary cells from female rats is estrogen-dependent and predominant in cells from rats at proestrus when estradiol levels are the highest. Considering that one of the mechanisms involved in the apoptotic action of estrogens can result from increased expression of cytokines and/or their receptors, the aim of the present study was to evaluate the effect of estrogens on the expression of TNF-α and its receptor, TNF receptor 1 (TNFR1), in anterior pituitary cells. TNFR1 expression, determined by Western blot, was higher in anterior pituitary glands from rats at proestrus than at diestrus. Incubation of anterior pituitary cells from ovariectomized rats with 17β-estradiol enhanced TNFR1 protein expression. As determined by double immunocytochemistry, the expression of TNF-α and TNFR1 was detected in prolactin-, GH-, LH- and ACTH-bearing cells. 17β-estradiol increased the percentage of TNF-α and TNFR1-immunoreactive lactotropes but did not modify the number of GH-bearing cells expressing TNF-α or TNFR1. Our results demonstrate that estradiol increases the expression of TNF-α and TNFR1 in anterior pituitary cells, especially in lactotropes. The sensitizing action of estrogens to proapoptotic stimuli at proestrus in the anterior pituitary gland may involve changes in the expression of the TNF-α/TNFR1 system. Copyright © 2011 S. Karger AG, Basel.

  3. The small-molecule TNF-alpha modulator, UTL-5g, reduces side effects induced by cisplatin and enhances the therapeutic effect of cisplatin in vivo.

    Science.gov (United States)

    Shaw, JiaJiu; Chen, Ben; Huang, Wen-Hsin; Lee, An-Rong; Media, Joseph; Valeriote, Frederick A

    2011-01-01

    We investigated a small-molecule modulator of tumor necrosis factor alpha (TNF-alpha), UTL-5g (also referred to as GBL-5g), as a potential chemoprotective agent against cisplatin-induced side effects including nephrotoxicity, hepatotoxicity and hematotoxicity. Pretreatment of UTL-5g i.p. in BDF1 mice reduced the levels of blood urea nitrogen (BUN) and creatinine induced by cisplatin treatment. The levels of both aspartate transaminase (AST) and alanine transaminase (ALT) in these animals were also reduced by UTL-5g. Pretreatment of UTL-5g did not significantly affect the number of white blood cells (WBC) under current experimental conditions, yet it markedly increased blood platelet counts by more than threefold. Therapeutic assessment in SCID mice inoculated with human HCT-15 tumor cells showed that UTL-5g did not attenuate the anti-tumor effect of cisplatin but increased the therapeutic efficacy of cisplatin. The LD50 of UTL-5g was determined to be > 2,000 mg/kg by an acute toxicity study. In summary, our studies showed that 1) UTL-5g significantly reduces nephrotoxicity and hepatotoxicity induced by cisplatin in mice, presumably by lowering the levels of TNF-alpha, 2) UTL-5g markedly increased blood platelet counts in mice and 3) UTL-5g treatment increased the therapeutic efficacy of cisplatin against HCT-15 cells inoculated in SCID mice.

  4. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  5. Modulation of tumor necrosis factor {alpha} expression in mouse brain after exposure to aluminum in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, M.; Sharma, R.P. [Georgia Univ., Athens (Greece). College of Veterinary Medicine

    1999-11-01

    Aluminum, a known neurotoxic substance and a ground-water pollutant, is a possible contributing factor in various nervous disorders including Alzheimer's disease. It has been hypothesized that cytokines are involved in aluminum neurotoxicity. We investigated the alterations in mRNA expression of tumor necrosis factor {alpha} (TNF{alpha}), interleukin-1{beta} (IL-1{beta}), and interferon {gamma} (IFN{gamma}), cytokines related to neuronal damage, in cerebrum and peripheral immune cells of mice after exposure to aluminum through drinking water. Groups of male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 ppm aluminum for 1 month. An additional group received 250 ppm ammonium as ammonium sulfate. After treatment, the cerebrum, splenic macrophages and lymphocytes were collected. The expression of TNF{alpha} mRNA in cerebrum was significantly increased among aluminum-treated groups compared with the control, in a dose-dependent manner. Other cytokines did not show any aluminum-related effects. In peripheral cells, there were no significant differences of cytokine mRNA expressions among treatment groups. Increased expression of TNF{alpha} mRNA by aluminum in cerebrum may reflect activation of microglia, a major source of TNF{alpha} in this brain region. Because the aluminum-induced alteration in cytokine message occurred at aluminum concentrations similar to those noted in contaminated water, these results may be relevant in considering the risk of aluminum neurotoxicity in drinking water. (orig.)

  6. Infliximab TNF-alpha antagonist decreases intraabdominal adhesions

    International Nuclear Information System (INIS)

    Kurukahvecioglu, O.; Koksal, H.; Yazicioglu, O.; Kerem, M.; Taneri, F.; Gulbahar, O.; Erdem, O.; Engin, D.

    2007-01-01

    Objective was to evaluate the effect of infliximab on adhesion formation and its associated morbidity and complications. This study was performed in the Faculty of Medicine, Gaze University, Turkey between July 2005 and October 2005. Thirty-five rats were randomly divided into 4 groups. Laparotomy was performed in the Sham group (n=5), whereas cecal abrasion was carried out in all other groups. After cecal abrasion 0.9% sodium chloride was administered in the saline group (n=10), infliximab was administered to the study group (n=10) and nothing was administered to the last group (n=10). Adhesion formation was evaluated with macroscopic adhesion scoring systems. Peritoneal fluid samples and mesenteric lymph node biopsies were taken to rule out bacterial peritonitis. Blood and peritoneal irrigation fluids samples were taken to measure the Tumor necrosis factor-alpha (TNF-alpha) levels. Macroscopic adhesion scores showed fewer adhesions in the infliximab group. The infliximab group had significantly fewer adhesions than the abrasion control and saline groups. According to the histological findings, there were no statistically significant differences between the groups. Early blocking of the activity of TNF-alpha after cecal abrasion resulted in lower rates of adhesion formation, macroscopically. The TNF-alpha, a proinflammatory cytokine appears to be an important mediator for postoperative adhesion formation. (author)

  7. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    Science.gov (United States)

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  8. TNF-alpha stimulates Akt by a distinct aPKC-dependent pathway in premalignant keratinocytes

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    , ERK1/2 and p38. The specific peptide blocking the activity of the atypical protein kinase C (aPKC) species zeta and iota/lambda abrogated the effects of TNF-alpha on Akt and ERK1/2 but increased the activation of p38. The TNF-alpha-dependent phosphorylation of Akt-ERK1/2 was slightly decreased by NF...

  9. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  10. Response of normal and colon cancer epithelial cells to TNF-family apoptotic inducers

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Kozubík, Alois

    2008-01-01

    Roč. 19, č. 2 (2008), s. 567-573 ISSN 1021-335X R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) KJB500040508 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * TNF-related apoptosis inducing ligand * TNF-alpha Subject RIV: BO - Biophysics Impact factor: 1.524, year: 2008

  11. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  12. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1.

    Science.gov (United States)

    Dinarello, C A; Cannon, J G; Wolff, S M; Bernheim, H A; Beutler, B; Cerami, A; Figari, I S; Palladino, M A; O'Connor, J V

    1986-06-01

    Recombinant human tumor necrosis factor (rTNF alpha) injected intravenously into rabbits produces a rapid-onset, monophasic fever indistinguishable from the fever produced by rIL-1. On a weight basis (1 microgram/kg) rTNF alpha and rIL-1 produce the same amount of fever and induce comparable levels of PGE2 in rabbit hypothalamic cells in vitro; like IL-1, TNF fever is blocked by drugs that inhibit cyclooxygenase. At higher doses (10 micrograms/kg) rTNF alpha produces biphasic fevers. The first fever reaches peak elevation 45-55 min after bolus injection and likely represents a direct action on the thermoregulatory center. During the second fever peak (3 h later), a circulating endogenous pyrogen can be shown present using passive transfer of plasma into fresh rabbits. This likely represents the in vivo induction of IL-1. In vitro, rTNF alpha induces the release of IL-1 activity from human mononuclear cells with maximal production observed at 50-100 ng/ml of rTNF alpha. In addition, rTNF alpha and rIFN-gamma have a synergistic effect on IL-1 production. The biological activity of rTNF alpha could be distinguished from IL-1 in three ways: the monophasic pyrogenic activity of rIL-1 was destroyed at 70 degrees C, whereas rTNF alpha remained active; anti-IL-1 neutralized IL-1 but did recognize rTNF alpha or natural cachectin nor neutralize its cytotoxic effect; and unlike IL-1, rTNF alpha was not active in the mitogen-stimulated T cell proliferation assay. The possibility that endotoxin was responsible for rTNF alpha fever and/or the induction of IL-1 was ruled-out in several studies: rTNF alpha produced fever in the endotoxin-resistant C3H/HeJ mice; the IL-1-inducing property of rTNF alpha was destroyed either by heat (70 degrees C) or trypsinization, and was unaffected by polymyxin B; pyrogenic tolerance to daily injections of rTNF alpha did not occur; levels of endotoxin, as determined in the Limulus amebocyte lysate, were below the minimum rabbit pyrogen dose; and

  13. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Koehler Raymond C

    2010-07-01

    Full Text Available Abstract Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P 2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P 2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical

  14. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    Science.gov (United States)

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  15. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  16. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy

    Directory of Open Access Journals (Sweden)

    Leslie Chavez-Galan

    2017-08-01

    Full Text Available Pleural tuberculosis (TB is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2, but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.

  17. Fisetin inhibits TNF-α/NF-κB-induced IL-8 expression by targeting PKCδ in human airway epithelial cells.

    Science.gov (United States)

    Lee, Seoghyun; Ro, Hyunju; In, Hyun Ju; Choi, Ji-Hee; Kim, Mun-Ock; Lee, Jinhyuk; Hong, Sung-Tae; Lee, Su Ui

    2018-08-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a natural flavonoid, is a therapeutic agent for respiratory inflammatory diseases such as chronic obstructive pulmonary disease (COPD). However, detailed molecular mechanisms regarding the target protein of fisetin remain unknown. Fisetin significantly reduces tumour necrosis factor alpha (TNF-α)-induced interleukin (IL)-8 levels by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors. We show that fisetin prevents interactions between protein kinase C (PKC)δ and TNF receptor-associated factor 2 (TRAF2), thereby inhibiting the inhibitor of kappa B kinase (IKK)/NF-κB downstream signalling cascade. Furthermore, we found that fisetin directly binds to PKCδ in vitro. Our findings provide evidence that fisetin inhibits the TNF-α-activated IKK/NF-κB cascade by targeting PKCδ, thereby mediating inflammatory diseases such as COPD. These data suggest that fisetin is a good therapeutic drug for the treatment of inflammatory lung diseases, such as COPD, by inhibiting the TNF-α/NF-κB signalling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.

    Science.gov (United States)

    Tanabe, Atsushi; Konno, Junpei; Tanikawa, Kenya; Sahara, Hiroeki

    2014-02-01

    We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNFinduces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Cytokines and malaria. A study of TNF-alpha, IL1-beta, IL6 and IL2R in 28 patients].

    Science.gov (United States)

    Nicolas, P; Hovette, P; Merouze, F; Touze, J E; Martet, G

    1994-01-01

    Authors have studied TNF alpha, IL1 bêta, IL6 and RIL2s in 28 malaria illness patients. Increased levels of TNF, IL1 bêta and RIL2s in serum, are observed on admission to hospital. These cytokine levels are decreased, eight days later, after patients are treated. In discussion, TNF levels as a prognosis component is evocated.

  20. Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity.

    Science.gov (United States)

    Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E

    2004-02-01

    Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.

  1. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. PGBR extract ameliorates TNFinduced insulin resistance in hepatocytes

    Directory of Open Access Journals (Sweden)

    Fu-Chih Chen

    2018-01-01

    Full Text Available Pre-germinated brown rice (PGBR could ameliorate metabolic syndrome, however, not much research estimates the effect of PGBR extract on insulin resistance. The aim of this study is to examine the effects of PGBR extract in TNFinduced insulin resistance. HepG2 cells, hepatocytes, were cultured in DMEM medium and added with 5 μM insulin or with insulin and 30 ng/ml TNF-α or with insulin, TNF-α and PGBR extract (50, 100, 300 μg/ml. The glucose levels of the medium were decreased by insulin, demonstrating insulin promoted glucose uptake into cell. However, TNF-α inhibited glucose uptake into cells treated with insulin. Moreover, insulin increased the protein expressions of AMP-activated protein kinase (AMPK, insulin receptor substrate-1 (IRS-1, phosphatidylinositol-3-kinase-α (PI3K-α, serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB, glucose transporter-2 (GLUT-2, glucokinase (GCK, peroxisome proliferator activated receptor-α (PPAR-α and PPAR-γ. TNF-α activated p65 and MAPKs (JNK1/2 and ERK1/2 which worsened the expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, glycogen synthase kinase-3 (GSK-3, PPAR-α and PPAR-γ. Once this relationship was established, we added PGBR extract to cell with insulin and TNF-α. We found glucose levels of medium were lowered and that the protein expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, GSK-3, PPAR-α, PPAR-γ and p65, JNK1/2 were also recovered. In conclusion, this study found that TNF-α inhibited insulin stimulated glucose uptake and aggravated related proteins expressions, suggesting that it might cause insulin resistance. PGBR extract was found to ameliorate this TNFinduced insulin resistance, suggesting that it might be used in the future to help control insulin resistance.

  3. Lyme neuroborreliosis in a patient treated with TNF-alpha inhibitor.

    Science.gov (United States)

    Merkac, Maja Ivartnik; Tomazic, Janez; Strle, Franc

    2015-12-01

    A 57-year-old woman, receiving TNF-alpha inhibitor adalimumab for psoriasis, presented with early Lyme neuroborreliosis (Bannwarth's syndrome). Discontinuation of adalimumab and 14-day therapy with ceftriaxone resulted in a smooth course and favorable outcome of Lyme borreliosis. This is the first report on Lyme neuroborreliosis in a patient treated with TNF-alpha inhibitor.

  4. The MC160 Protein Expressed by the Dermatotropic Poxvirus Molluscum Contagiosum Virus Prevents Tumor Necrosis Factor Alpha-Induced NF-κB Activation via Inhibition of I Kappa Kinase Complex Formation

    Science.gov (United States)

    Nichols, Daniel Brian; Shisler, Joanna L.

    2006-01-01

    The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960

  5. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  6. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang; Saeki, Munenori; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-01-08

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.

  7. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    International Nuclear Information System (INIS)

    Morioka, Norimitsu; Tomori, Mizuki; Zhang, Fang Fang; Saeki, Munenori; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-01-01

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.

  8. Ultraviolet B irradiation of skin induces mast cell degranulation and release of tumour necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, L.J. [University of Queensland, Brisbane, QLD (Australia). Dept. of Dentistry, Immunopathology Unit

    1995-06-01

    In the `sunburn` response in skin, dermal blood vessels are activated and traffic of dendritic Langerhans` cells altered. While these changes have been attributed to the cytokine TNF-{alpha}, the source of this acutely released TNF has not been identified. This report demonstrates that the `sunburn` response, both in vivo and in vitro, is accompanied by rapid degranulation of cutaneous mast cells, with consequential release of intracellular stores of TNF. Epidermal keratinocytes were only minor contributors to local TNF production. Expression of the TNF-inducible CD62E (E-selectin/ELAM-1) and CD54 adhesion molecules on cutaneous endothelium occurred 2 hours following mast cell degranulation, and this event was sensitive to blockade of mast cells with disodium cromoglycate. These results indicate that TNF release in skin in the acute sunburn response can largely be attributed to mast cells. 47 refs., 5 tabs., 2 figs.

  9. Effects of garlic extract on TNFexpression and oxidative stress status in the kidneys of rats with STZ + nicotinamide-induced diabetes.

    Science.gov (United States)

    Ziamajidi, Nasrin; Nasiri, Abolfazl; Abbasalipourkabir, Roghayeh; Sadeghi Moheb, Somayeh

    2017-12-01

    Allium sativum L. (Liliaceae) (garlic) is a medicinal plant that is widely used in herbal medicine. Nephropathy is a complication of diabetes that is induced by long-term hyperglycaemia. The effects of aqueous extract of garlic (AGE) on the expression of tumour necrosis factor-alpha (TNF-α) and oxidative stress status were studied in the kidneys of rats with streptozotocin (STZ) + nicotinamide-induced diabetes. Twenty-four Wistar rats were divided into four groups: control rats, rats with STZ + nicotinamide-induced diabetes that received a single dose of STZ (65 mg/kg) and nicotinamide (110 mg/kg) intraperitoneally, diabetic rats that were treated with garlic (2 g/kg/d, gavage), and normal rats that received garlic (2 g/kg/d, gavage). The glucose level was determined in the start of study, 7 d after induction of diabetes and 33 d after treatment with garlic. At the end of the treatment period, urea, uric acid and creatinine levels were estimated in sera. Malondialdehyde (MDA), total oxidant status (TOS), nitric oxide (NO) levels and TNF-α gene and protein expression were measured in the renal tissues of the rats. The glucose, uric acid, and urea levels increased in the serum of diabetic rats compared with control rats, and decreased in garlic-treated diabetic rats compared with diabetic rats (p garlic-treated diabetic rats compared with diabetic rats (p garlic, it was close to the normal level (p garlic extract has hypoglycaemic, antioxidant and anti-inflammatory properties; therefore, it can be useful for the alleviation of diabetic complications.

  10. Endometrial IL-1beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis. Effects of estrous cycle, artificial insemination and immunomodulation.

    Science.gov (United States)

    Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A

    2003-11-15

    Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression

  11. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report

    Directory of Open Access Journals (Sweden)

    Ventura Elisa

    2011-11-01

    Full Text Available Abstract Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG, a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN, which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.

  12. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  13. Tumour necrosis factor-alpha (TNF-alpha) transcription and translation in the CD4+ T cell-transplanted scid mouse model of colitis

    DEFF Research Database (Denmark)

    Williams, A M; Whiting, C V; Bonhagen, K

    1999-01-01

    The adoptive transfer of activated CD4+ alpha/beta T cell blasts from the spleens of immunocompetent C.B-17+/+ or BALB/cdm2 mice into C.B-17scid/scid (scid) mice induces a colitis in the scid recipient within 8 weeks, which progresses to severe disease within 16 weeks. T cells isolated from......-labelled riboprobes were used. The prominent myeloid cell infiltrate in diseased tissues comprised F4/80+, Mac-l+ macrophages, neutrophils, dendritic cells and activated macrophages. TNF-alpha transcription and translation were associated with activated macrophages in the lamina propria. Activated macrophages...

  14. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    Science.gov (United States)

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  15. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    International Nuclear Information System (INIS)

    Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.; Singh, Amar B.; Dhawan, Punita

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.

  16. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Ajaz A. [Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Ahmad, Rizwan; Uppada, SrijayaPrakash B. [Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Singh, Amar B. [From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Dhawan, Punita, E-mail: punita.dhawan@unmc.edu [From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022 (United States)

    2016-11-15

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.

  17. TNF alpha induces ABCA1 through NF-kappa B in macrophages and in phagocytes ingesting apoptotic cells

    NARCIS (Netherlands)

    Gerbod-Giannone, Marie-Christine; Li, Yankun; Holleboom, Adriaan; Han, Seongah; Hsu, Li-Chung; Tabas, Ira; Tall, Alan R.

    2006-01-01

    Recent evidence suggests that tumor necrosis factor alpha (TNF alpha) signaling in vascular cells can have antiatherogenic consequences, but the mechanisms are poorly understood. TNFa is released by free cholesterol loaded apoptotic macrophages, and the clearance of these cells by phagocytic

  18. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress.

    Science.gov (United States)

    Luo, Ying; Kuang, Shengnan; Li, Huan; Ran, Dongzhi; Yang, Junqing

    2017-05-30

    To investigate the mechanism of cyclooxygenase 2 (COX2) in learning and memory impairments in rats subjected to chronic unpredictable mild stress (CUMS), meloxicam was used intragastrically to inhibit the activity of cyclooxygenase 2. Moreover, cyclooxygenase 2 over-expressing or RNA interfere lentivirus was injected intraventricularly to increase or decrease the enzyme's expression, respectively. The body weights and sucrose consumption were used to analyze depressive behaviors, while the Morris water maze and step-down-type passive avoidance tests were carried out to evaluate the learning-memory functions. The levels of inflammatory cytokines were measured to estimate inflammation and the contents of cyclic adenosine monophosphate (cAMP) were used to measure the levels of the second messenger. Changes in cyclooxygenase 2 mRNA levels were analyzed using reverse transcription polymerase chain reaction. Moreover, the expression of cyclooxygenase 2, brain-derived neurotrophic factor (BDNF), prostaglandins receptor 3 (EP3), protein kinase A (PKA), cAMP response element binding protein (CREB), and phosphorylated CREB were estimated using immunohistochemical staining or western blotting. The results showed that CUMS led to significant depressive-like behaviors and learning and memory dysfunctions. Also, the cAMP levels decreased significantly, while levels of inflammatory cytokines and prostaglandins E2 increased significantly. The expressions of PKA, BDNF, phosphorylated CREB/CREB declined and cyclooxygenase 2 was increased. Meloxicam and cyclooxygenase 2 RNA interfere lentivirus reversed the changes caused by CUMS while cyclooxygenase 2-overexpressing lentivirus worsened these abnormalities. The findings also showed that CUMS increased cyclooxygenase 2 expression, which can cause learning and memory impairments, mainly through activating the hippocampal neuronal cAMP/PKA-CREB-BDNF signaling pathways.

  19. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF

    International Nuclear Information System (INIS)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-01-01

    Highlights: → TNF-α inhibits POEM gene expression. → Inhibition of POEM gene expression is caused by NF-κB activation by TNF-α. → Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-α. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  20. ArF excimer laser modulation of TNF-alpha and gelatinase B in NIH 3T3 cells

    International Nuclear Information System (INIS)

    Naudy-Vives, C.; Courant, D.; Perot, J.C.; Garcia, J.; Fretier, P.; Court, L.; Dormont, D.

    1995-01-01

    The effects on TNF-alpha and gelatinase B activity in mammalian cells induced by 193 nm argon fluoride excimer laser have been investigated. The data show that a secretion of 92 kDa type IV collagenase and TNF-alpha were increased in cell culture supernatants. Moreover, the 193 nm laser radiation produces a decrease of cell proliferation and an increase of cell activation 8 hours after irradiation. The total protein amount increases with the delivered dose. Same, but less effects were obtained after exposure to a conventional UV lamp at 254 nm. (author)

  1. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  2. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  3. Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia.

    Science.gov (United States)

    Hill, M R; Clarke, S; Rodgers, K; Thornhill, B; Peters, J M; Gonzalez, F J; Gimble, J M

    1999-07-01

    Inflammatory mediators orchestrate the host immune and metabolic response to acute bacterial infections and mediate the events leading to septic shock. Tumor necrosis factor (TNF) has long been identified as one of the proximal mediators of endotoxin action. Recent studies have implicated peroxisome proliferator-activated receptor alpha (PPARalpha) as a potential target to modulate regulation of the immune response. Since PPARalpha activators, which are hypolipidemic drugs, are being prescribed for a significant population of older patients, it is important to determine the impact of these drugs on the host response to acute inflammation. Therefore, we examined the role of PPARalpha activators on the regulation of TNF expression in a mouse model of endotoxemia. CD-1 mice treated with dietary fenofibrate or Wy-14,643 had fivefold-higher lipopolysaccharide (LPS)-induced TNF plasma levels than LPS-treated control-fed animals. Higher LPS-induced TNF levels in drug-fed animals were reflected physiologically in significantly lower glucose levels in plasma and a significantly lower 50% lethal dose than those in LPS-treated control-fed animals. Utilizing PPARalpha wild-type (WT) and knockout (KO) mice, we showed that the effect of fenofibrate on LPS-induced TNF expression was indeed mediated by PPARalpha. PPARalpha WT mice fed fenofibrate also had a fivefold increase in LPS-induced TNF levels in plasma compared to control-fed animals. However, LPS-induced TNF levels were significantly decreased and glucose levels in plasma were significantly increased in PPARalpha KO mice fed fenofibrate compared to those in control-fed animals. Data from peritoneal macrophage studies indicate that Wy-14,643 modestly decreased TNF expression in vitro. Similarly, overexpression of PPARalpha in 293T cells decreased activity of a human TNF promoter-luciferase construct. The results from these studies suggest that any anti-inflammatory activity of PPARalpha in vivo can be masked by other

  4. Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway

    International Nuclear Information System (INIS)

    Woo, Kyung Jin; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-01-01

    Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1α protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl 2 ) induced accumulation of HIF-1α protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1α protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1α protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1α, suggesting that DFX-induced increase of HIF-1α and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1α accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1α accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1α protein by modulating cyclooxygenase-2 signaling pathway

  5. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  6. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  7. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Mestre, Francisco; Gutiérrez, Antonio; Rodriguez, Jose; Ramos, Rafael; Garcia, Juan Fernando; Martinez-Serra, Jordi; Casasus, Marta; Nicolau, Cristina; Bento, Leyre; Herraez, Ines; Lopez-Perezagua, Paloma; Daumal, Jaime; Besalduch, Joan

    2015-01-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2 + patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2 − patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2 + and COX-2 − patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT

  8. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  9. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  10. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  11. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related

    International Nuclear Information System (INIS)

    Beggs, Kevin M.; Maiuri, Ashley R.; Fullerton, Aaron M.; Poulsen, Kyle L.; Breier, Anna B.; Ganey, Patricia E.; Roth, Robert A.

    2015-01-01

    Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress

  12. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    International Nuclear Information System (INIS)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-01-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  13. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNFinduces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  14. Chemioxyexcitation (delta pO2/ROS)-dependent release of IL-1 beta, IL-6 and TNF-alpha: evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium.

    Science.gov (United States)

    Haddad, J J; Safieh-Garabedian, B; Saadé, N E; Kanaan, S A; Land, S C

    2001-02-07

    The signalling mechanisms in oxidative stress mediated by cytokines in the perinatal alveolar epithelium are not well known. In an in vitro model of fetal alveolar type II epithelial cells, we investigated the profile of cytokines in response to ascending Deltap O(2)regimen (oxyexcitation). The peak of TNF-alpha (4 h) preceded IL-1beta and IL-6 (6-9 h), indicating a positive feedback autocrine loop confirmed by exogenous rmTNF-alpha. Reactive oxygen species (ROS) induced a dose-dependent release of cytokines, an effect specifically obliterated by selective antioxidants of the hydroxyl radical (*OH) and superoxide anion (O(2)-). Actinomycin and cycloheximide blocked the induced production of cytokines, implicating transcriptional and translational control. Whilst the dismutating enzymes superoxide dismutase (SOD) and catalase were ineffective in reducing ROS-induced cytokines, MnP, a cell-permeating SOD mimetic, abrogated xanthine/xanthine oxidase-dependent cytokine release. Desferrioxamine mesylate, which inhibits the iron-catalysed generation of *OH via the Fenton reaction, exhibited a mild effect on the release of cytokines. Dynamic variation in alveolar p O(2)constitutes a potential signalling mechanism within the perinatal lung allowing upregulation of cytokines in an ROS-dependent manner. Copyright 2001 Academic Press.

  15. Inhibiting HIF-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Jixue Yang

    2016-01-01

    Full Text Available Background/Aims: A recent study demonstrates that pro-inflammatory cytokines (PICs, i.e., IL-1β, IL-6 and TNF-α in specific brain regions of rats play a role in regulating kainic acid (KA-induced status epilepticus (SE via a GABAergic mechanism. The purposes of this report were to examine contributions of hypoxia inducible factor subtype 1α (HIF-1α to expression of PICs in these specific brain regions in epileptic rats. Particularly, we investigated the parietal cortex, hippocampus and amygdala. In addition, we further examined expression of Caspase-3 indicating cell apoptosis in those brain regions of epileptic rats after infusing 2-methoxyestradiol (2-MET, inhibitor of HIF-1α and etanercept (TNF-α receptor antagonist. Methods: ELISA was used to determine the levels of HIF-1α and PICs and western blot analysis was used to examine Caspase-3 expression. Results: Our data show that HIF-1α was significantly increased in the parietal cortex, hippocampus and amygdala 1, 3 and 7 days after induction of SE (Pvs. control rats. Our results also show that inhibiting HIF-1α by central infusion of 2-MET significantly decreased the amplified TNFexpression in these brain regions evoked by SE (Pvs. vehicle control, but did not modify IL-1β and IL-6. Our results demonstrate that 2-MET and etanercept attenuated an increase in Caspase-3 evoked by SE. Conclusion: Overall, we suggest that HIF-1α activated by SE is likely to contribute to epileptic activity via a TNF-α pathway, which has pharmacological implications to target specific HIF-1α and TNF-α pathways for neuronal dysfunction and vulnerability related to epilepsy.

  16. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells.

    Science.gov (United States)

    Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan

    2017-04-01

    Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNFinduced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.

  17. In whole blood, LPS, TNF-alpha and GM-CSF increase monocyte uptake of {sup 99m}technetium stannous colloid but do not affect neutrophil uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Stuart C. [Townsville Nuclear Medicine, Mater Hospital, Pimlico, Queensland 4812 (Australia) and School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)]. E-mail: stuart.ramsay1@jcu.edu.au; Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Powell, Kellie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia); Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)

    2006-07-15

    Introduction: {sup 99m}Technetium stannous colloid (TcSnC) is used in white cell scanning. It labels neutrophils and monocytes via phagocytosis, with uptake mediated by the phagocytic receptor CD11b/CD18 in neutrophils. Uptake of TcSnC is altered by gram-negative infection, possibly due to the endotoxin component lipopolysaccharide (LPS) or to cytokines released during infection (e.g., TNF-alpha and IFN-gamma). Endotoxemia and increased TNF-alpha levels also occur in inflammatory bowel disease. Another potential confounder in cell labeling is that sepsis patients may be treated with GM-CSF and G-CSF, which alter phagocytic cell function. This study aimed to determine how these factors affect TcSnC cellular uptake. Methods: Whole blood from six healthy volunteers was incubated with LPS, TNF-alpha, IFN-gamma, GM-CSF or G-CSF. Samples were then mixed with TcSnC. Blood was separated across density gradients and imaged using a gamma camera. Three radioactive count peaks were observed in each tube: free plasma activity, mononuclear cell uptake and neutrophil uptake. Results: Compared with controls, significant increases in mononuclear cell uptake were induced by LPS, TNF-alpha and GM-CSF stimulation. It was incidentally noted that exogenous estrogens appear to affect TcSnC labeling and may influence the neutrophil response to stimulation. Neutrophil uptake and plasma activity were not significantly affected. IFN-gamma and G-CSF had no significant effect. Conclusions: In whole blood, the effect of LPS on TcSnC monocyte uptake is different to its effect on neutrophils, consistent with previously reported differences in CD11b/CD18 expression. TNF-alpha response parallels LPS response. GM-CSF also increases TcSnC uptake by monocytes. These effects should be considered when using TcSnC for imaging purposes, as they will tend to increase monocyte labeling. Estrogens may also affect TcSnC labeling. Responses to IFN-gamma and G-CSF are consistent with previously reported effects

  18. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  19. Interleukin-1beta and TNF-alpha: reliable targets for protective therapies in Parkinson´s Disease?

    Directory of Open Access Journals (Sweden)

    María Celeste Leal

    2013-04-01

    Full Text Available Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson´s Disease (PD. Two prototypic pro-inflammatory cytokines Interleukin-1beta (IL-1 and Tumor necrosis factor-alpha (TNF have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g. their expression is not induced by each other and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN. In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1 or TNF expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti IL-1 or TNF therapies against PD.

  20. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  1. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  2. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  3. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects.

    Science.gov (United States)

    Kamer, Angela R; Craig, Ronald G; Pirraglia, Elizabeth; Dasanayake, Ananda P; Norman, Robert G; Boylan, Robert J; Nehorayoff, Andrea; Glodzik, Lidia; Brys, Miroslaw; de Leon, Mony J

    2009-11-30

    The associations of inflammation/immune responses with clinical presentations of Alzheimer's disease (AD) remain unclear. We hypothesized that TNF-alpha and elevated antibodies to periodontal bacteria would be greater in AD compared to normal controls (NL) and their combination would aid clinical diagnosis of AD. Plasma TNF-alpha and antibodies against periodontal bacteria were elevated in AD patients compared with NL and independently associated with AD. The number of positive IgG to periodontal bacteria incremented the TNF-alpha classification of clinical AD and NL. This study shows that TNF-alpha and elevated numbers of antibodies against periodontal bacteria associate with AD and contribute to the AD diagnosis.

  4. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    Science.gov (United States)

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  5. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  6. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  7. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  8. Anti-Inflammatory Activities of Licorice Extract and Its Active Compounds, Glycyrrhizic Acid, Liquiritin and Liquiritigenin, in BV2 Cells and Mice Liver

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Yu

    2015-07-01

    Full Text Available This study provides the scientific basis for the anti-inflammatory effects of licorice extract in a t-BHP (tert-butyl hydrogen peroxide-induced liver damage model and the effects of its ingredients, glycyrrhizic acid (GA, liquiritin (LQ and liquiritigenin (LG, in a lipopolysaccharide (LPS-stimulated microglial cell model. The GA, LQ and LG inhibited the LPS-stimulated elevation of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor (TNF-alpha, interleukin (IL-1beta and interleukin (IL-6 in BV2 (mouse brain microglia cells. Furthermore, licorice extract inhibited the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6 in the livers of t-BHP-treated mice models. This result suggested that mechanistic-based evidence substantiating the traditional claims of licorice extract and its three bioactive components can be applied for the treatment of inflammation-related disorders, such as oxidative liver damage and inflammation diseases.

  9. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  10. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    International Nuclear Information System (INIS)

    Wang, Gui-Jun; Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi; Liu, Pei

    2012-01-01

    We investigated whether Ca 2+ /calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca 2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca 2+ ] i transients, CaMKIIδ B and CaN were evaluated by the Lowry method, [ 3 H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNFinduced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca 2+ ] i transients, the total protein content, cell size, and [ 3 H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca 2+ chelator. The increases in protein content, cell size and [ 3 H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ B by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNFinduces increases in [Ca 2+ ] i , CaMKIIδ B and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca 2+ /CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF

  11. Anti-hemolytic and anti-inflammatory activities of the methanolic extract of Solenostemon Monostachyus (P.Beauv.) Briq. leaves in 2-butoxyethanol-hemolytic induced rats

    Science.gov (United States)

    Osikoya, Iyanuoluwa Olubukola; Afolabi, Israel Sunmola; Rotimi, Solomon Oladapo; Okafor, Adaobi Mary-Joy

    2018-04-01

    Traditional medicine is largely used to sustain global health requirements. Determining the biological activities of Solenostemon monostachyus is essential to provide a platform for treating hemolytic diseases. The methanolic extract of the leaves was orally administered for 5 days at 150 mg/kg, 200 mg/kg and 250 mg/kg of body weight doses to determine concentration of tumor necrosis factor-alpha (TNF-α), and the activities of the heme oxygenase-1 (HO-1) and cyclooxygenase 2 (COX-2) of plasma in the kidney, spleen and liver of 2-butoxyethanol hemolytic-induced rats. A dose of 150 mg of extract/kg of body weight significantly increased (p<0.05) HO-1 in the kidney. COX-2 activity was significantly reduced (p<0.05) mainly in the kidney untreated hemolytic induced rats. All treatments significantly increased (p<0.05) TNF-α concentrations in the kidney and spleen. HO-1 gene expression was downregulated, indicating stress reduction in the liver, by an extract dose of 200 mg/kg of body weight and caffeic acid and was upregulated, indicating stress in the spleen, by an extract dose of 150-200 mg/kg of body weight. A dose of 200-250 mg of extract/kg of body weight resulted in relatively good anti-inflammatory properties, and may possess healing properties in patients with hemolytic related diseases.

  12. Expression of tumor necrosis factor-alpha and receptor I(P55in pterygium

    Directory of Open Access Journals (Sweden)

    Bing Wu

    2014-06-01

    Full Text Available AIM:To observe the expression of tumor necrosis factor- alpha(TNF-αand its receptor I(P55in different pterygium and discuss the role of TNF-α and receptor I(P55in pterygium.METHODS: Immunohistochemistical staining method(PVwas adopted to detect the expression of TNF-α and receptor I in pterygium(72 eyesand para-pterygium conjunctival tissue(30 eyes. The relationship between the expression and clinical-pathological parameters was also analyzed. RESULTS: The positive rates of TNF-α were 65.3%(47/72, 26.7%(8/30in pterygium and para-pterygium conjunctival tissue. The positive expression of TNF-α had statistic difference between the two groups(χ2=12.706, Pχ2=13.875, Pχ2=6.547, P=0.011. There had no statistically significance of the expression intensity between the two groups(F=1.288, P=0.393; the positive rate in advanced pterygium group was higher than quiescent pterygium group(χ2=4.082, P=0.043. The expression intensity had no statistically significance between the two groups(F=0.489, P=0.708. The positive rate of P55 in recurrent pterygium group was higher than primary pterygium group(χ2=9.907, P=0.002. There had no statistically significance of the two group's expression intensity(F=1.175, P=0.424; the positive rate in advanced pterygium group was higher than in quiescent pterygium group(χ2=11.140, P=0.001. The expression intensity had no statistically significance between the two groups(F=0.665, P=0.621. CONCLUSION:The expression of TNF-α and P55 are changing according to the development of clinical staging and onset. The expression of TNF-α and P55 may be related to clinical classification, staging and patient's working conditions of pterygium. There has no significant difference expression intensity of TNF-α and P55 in clinical staging and onset of pterygium.

  13. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions.

    Science.gov (United States)

    Liu, Maoxi; Du, Kunli; Fu, Zhongxue; Zhang, Shouru; Wu, Xingye

    2015-01-01

    Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that phospholipase D2 (PLD2) plays significant roles in cancer progression. In this study, correlation between the expression of PLD2 and the change in the protein level of hypoxia-inducible factor 1-alpha (HIF1-α) was studied. Thirty human colon cancer tissues were examined for the expression of HIF1-α and PLD2 protein, and mRNA levels. SW480 and SW620 cells were exposed to normoxia (20 %) or hypoxia (Hypoxic stress induced PLD2 mRNA and protein expression in SW480 and SW620 cells. Cells transfected with HIF1-α siRNA showed attenuation of hypoxia stress-induced PLD2 expression. In vivo growth decreased in response to HIF1-α and PLD2 inhibition. These results suggest that PLD2 expression in colon cancer cells is up-regulated via HIF1-α in response to hypoxic stress and underscores the crucial role of HIF1-α-induced PLD2 in tumor growth.

  14. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK

    Science.gov (United States)

    Huang, Shujie; Zhu, Pengli

    2016-01-01

    Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNFinduced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs. PMID:26799794

  15. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  16. Myeloablative radioimmunotherapy with {sup 188}Re-CD66mAb before stem cell transplantation. No increase of proinflammatory cytokine levels of TNF-{alpha}; Myeloablative Radioimmuntherapie mit {sup 188}Re-CD66mAb vor Stammzelltransplantation. Kein Anstieg proinflammatorischer Zytokinspiegel von TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Mutschler, J.; Reske, S.N. [Universitaetsklinik Ulm (Germany). Klinik fuer Nuklearmedizin; Steinbach, G. [Universitaetsklinik Ulm (Germany). Abt. Klinische Chemie; Bunjes, D. [Universitaetsklinik Ulm (Germany). Medizinische Klinik III; Buchmann, I. [Universitaetsklinik Heidelberg (Germany). Abt. fuer Nuklearmedizin

    2009-07-01

    Tumour necrosis factor-{alpha} (TNF-{alpha}) serum levels may increase due to intensive conditioning regimes with high-dose chemotherapy and total body irradiation (TBI) before stem cell transplantation. This increases the risk for developing acute graft versus host disease (aGvHD) after stem cell transplantation. In this prospective study we investigated the influence of radioimmunotherapy with {sup 188}Re-CD-66-mAb on changes on TNF-{alpha} serum levels. Patients, methods: In 18 patients we measured TNF-{alpha} before and up to 96 hours after radioimmunotherapy, in 2 patients in addition following TBI, in 9 patients also following chemotherapy. For measuring TNF-{alpha} we used an automated immunochemiluminescence assay (Immulite 1000 DPC Biermann, Bad Nauheim). The mean follow up period to record incidence of aGVHD was 100 days after stem cell transplantation. Compared to the basal levels before, the levels of TNF-{alpha} after conditioning with {sup 188}Re-CD-66-mAb did not increase significantly and remained in the physiological range. In contrast, these initial physiological cytokine levels increased and became pathological following 48 h after total body irradiation (13.2 {+-} 6.6 pg/ml) and chemotherapy (10.8 {+-} 15.7 pg/ml). In our study we found a low incidence of aGvHD (22.2%, n = 4/18). Conclusion: These results demonstrate that additional conditioning therapy with {sup 188}Re-CD-66-mAb does not increase proinflammatory cytokine levels of TNF-{alpha}. This finding may indicate that additive radioimmunotherapy may not be a significant factor for increasing the rate of conditioning- associated aGvHD. (orig.)

  17. Circulating TNF-alpha and IL-6 concentrations and TNF-alpha -308 G>A polymorphism in children with premature adrenarche

    Directory of Open Access Journals (Sweden)

    Pauliina eUtriainen

    2010-11-01

    Full Text Available Premature adrenarche (PA, the early rise in adrenal androgen production leading to prepubertal signs of androgen action, has been connected with adverse metabolic features. The metabolic syndrome is characterized by low grade inflammation which in turn is associated with increases in circulating proinflammatory cytokines, like tumor necrosis factor alpha (TNF-α and interleukin-6 (IL-6. We tested the hypothesis that serum concentrations of TNF-α and IL-6 are increased in PA by studing 73 children with PA and 98 age- and gender-matched controls. Serum TNF-α and IL-6 concentrations were measured using a multiplex bead array. The subjects were genotyped for the TNF-α gene -308 G>A polymorphism (known to affect TNF-α gene transcription, and genotype-phenotype associations were studied. The mean serum TNF-α concentration was higher in the PA than control children (20.4 vs. 18.4 pg/ml, P=0.048, whereas there was no significant difference in the mean serum IL-6 concentrations between the study groups. The difference in TNF-α was not explained by excess body weight in the PA subjects as the difference remained significant after BMI-adjustment (P=0.038. In the PA group, TNF-α concentration was not associated with metabolic-endocrine features, but high IL-6 was associated with lower birth weight. There was no difference in the genotype distribution of the TNF-α gene -308 G>A polymorphism between the PA and control groups. In conclusion, PA was associated with increased serum TNF-α concentrations which, unexpectedly, were not connected with BMI or insulin resistance. The TNF-α gene -308 G>A polymorphism does not seem to be associated with the development of PA.

  18. Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    International Nuclear Information System (INIS)

    Yeoh, Ann S.J.; Bowen, Joanne M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2005-01-01

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NFκB and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NFκB and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NFκB and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis

  19. Protective specific immunity induced by doxorubicin plus TNF-alpha combination treatment of EL4 lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Ehrke, M J; Verstovsek, S; Maccubbin, D L; Ujházy, P; Zaleskis, G; Berleth, E; Mihich, E

    2000-07-01

    The therapeutic efficacy of a single (day 8), moderate dose (4 mg/kg, i.v.) of doxorubicin (DOX, Adriamycin) combined with recombinant human TNF-alpha (3 different doses and 5 different schedules, i.v.) was evaluated in C57BL/6 mice bearing an implant (s.c.) of the DOX-sensitive, TNF-alpha-resistant EL4 lymphoma. In parallel to monitoring survival, the levels of several host anti-tumor cytolytic effector functions of splenocytes and thymocytes were evaluated throughout the treatment period and in long-term survivors (LTS). DOX treatment alone resulted in a moderate (approx. 20%) increase in life span but no cures. TNF-alpha alone, at any tested dose or schedule, had little or no positive effect on survival. The combinations of DOX and TNF-alpha were only slightly better than DOX alone with respect to the time to death of mice that died (approx. 29% increase); however, each of the combinations involving 1,000 U TNF-alpha/injection produced a fraction (20% to 80%) of LTS. The host defense activities examined included those of splenic and thymic cytolytic T lymphocytes (CTL) and lymphokine-activated killer cells as well as splenic tumoricidal macrophages. Although most activities were modulated by tumor growth and/or treatment, only CTL responsiveness appeared to correlate with survival. CTL activity in the treated groups with LTS was significantly higher than in control groups late in the treatment period. Finally, ex vivo analyses of splenocytes and thymocytes together with the rejection of implanted tumor at 17 months established that LTS displayed specific long-term immune memory. Copyright 2000 Wiley-Liss, Inc.

  20. TNFexpression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis?

    Science.gov (United States)

    Gupta, Mamta; Babic, Ana; Beck, Andrew H.; Terry, Kathryn

    2016-01-01

    Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR=0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity=0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR=2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNFexpression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies. PMID:27068525

  1. Aloin Suppresses Lipopolysaccharide-Induced Inflammatory Response and Apoptosis by Inhibiting the Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Xuan Luo

    2018-02-01

    Full Text Available Numerous herbal-derived natural products are excellent anti-inflammatory agents. Several studies have reported that aloin, the major anthraquinone glycoside obtained from the Aloe species, exhibits anti-inflammatory activity. However, the molecular mechanism of this activity is not well understood. In this report, we found that aloin suppresses lipopolysaccharide-induced pro-inflammatory cytokine secretion and nitric oxide production, and downregulates the expression of tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2. Aloin inhibits the phosphorylation and acetylation of the NF-κB p65 subunit by suppressing the upstream kinases p38 and Msk1, preventing LPS-induced p65 translocation to the nucleus. We have also shown that aloin inhibits LPS-induced caspase-3 activation and apoptotic cell death. Collectively, these findings suggest that aloin effectively suppresses the inflammatory response, primarily through the inhibition of NF-κB signaling.

  2. TNF-Alpha Levels in Tears: A Novel Biomarker to Assess the Degree of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    C. Costagliola

    2013-01-01

    Full Text Available We assess the level of tumour necrosis factor alpha (TNF-alpha in tear fluids and other serum parameters associated with diabetes in different degrees of diabetic retinopathy. We have performed a prospective, nonrandomized, observational study. Study population consisted of 16 healthy subjects (controls and 32 type 2 diabetic patients: 16 affected by proliferative diabetic retinopathy (PDR and 16 with nonproliferative retinopathy (NDPR, background/preproliferative. Body mass index, urinary albumin, blood glucose, HbA1c, and tear levels of TNF-alpha were measured in all subjects. The value of glycaemia, microalbuminurea, and Body mass index in diabetic retinopathy groups were higher than those in control group (. Glycemia in NPDR: 6.6 mmol/L (range: 5.8–6.3; in PDR: 6.7 mmol/L (range: 6.1–7.2; in control: 5.7 mmol/L (range: 4.9–6.1; microalbuminurea in NPDR: 10.6 mg/L (range: 5.6–20; in PDR: 25.2 mg/L (range: 17–40; in control: 5.3 mg/L (range: 2.6–10; Body mass index in NPDR: 26 Kg/m2 (range: 20.3–40; in PDR: 28 Kg/m2 (range 20.3–52; in control: 21 Kg/m2 (range 19–26. The TNF-alpha concentrations in tears increase with the severity of pathology and were lower in control group than in diabetic subjects. In the end, the level of TNF-alpha is highly correlated with severity of diabetic retinopathy and with nephropathy. Tear fluid collection may be a useful noninvasive method for the detection of proliferative diabetic retinopathy.

  3. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    Science.gov (United States)

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  4. Therapeutic Non-Toxic Doses of TNF Induce Significant Regression in TNFR2-p75 Knockdown Lewis Lung Carcinoma Tumor Implants

    Science.gov (United States)

    Sasi, Sharath P.; Bae, Sanggyu; Song, Jin; Perepletchikov, Aleksandr; Schneider, Douglas; Carrozza, Joseph; Yan, Xinhua; Kishore, Raj; Enderling, Heiko; Goukassian, David A.

    2014-01-01

    Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (ptumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics. PMID:24664144

  5. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  6. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2011-06-01

    Full Text Available Dimeric procyanidin B2 (PB2 is one of phenolic compounds in apple pomace, an agro-industrial byproduct in apple juice processing. This work focused on purification of PB2 from apple pomace using sephadex column chromatography and its potential effect on lipopolysaccharide (LPS-induced inflammation using RAW264.7 macrophages. PB2 with the purity of 72.28 ± 1.85% was successfully afforded using resin and gel column chromatographic technique. Anti-inflammatory tests suggested that the expression of cyclooxygenase-2 (COX-2 in LPS-induced murine RAW264.7 macrophages was suppressed in a PB2 concentration-dependent manner. PB2 at no less than 50 μg·mL-1 could significantly suppress inflammation in the LPS-induced cells. Moreover, this suppressive effect was not correlated with PB2 pretreating. However, the COX-2 expression was not reduced in LPS pretreatment way followed by PB2 exposure, which suggested that PB2 has no repairing function. The results showed that high pure PB2 prepared from apple pomace has a remarkable anti-inflammatory property.

  7. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    Science.gov (United States)

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  8. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-?B Activation in BV-2 Microglial Cells

    OpenAIRE

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-?),...

  9. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ohkawara

    Full Text Available Membrane type 1-matrix metalloproteinase (MT1-MMP functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt in tumor necrosis factor (TNF-α-induced signaling pathways of vascular responses, including tissue factor (TF procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs. TNF-α (10 ng/mL induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNFinduced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1-dependent signaling pathway and nuclear factor-kB (NF-kB activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNFinduced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  10. The Janus kinase inhibitor tofacitinib inhibits TNF-α-induced gliostatin expression in rheumatoid fibroblast-like synoviocytes.

    Science.gov (United States)

    Kawaguchi, Yohei; Waguri-Nagaya, Yuko; Tatematsu, Naoe; Oguri, Yusuke; Kobayashi, Masaaki; Nozaki, Masahiro; Asai, Kiyofumi; Aoyama, Mineyoshi; Otsuka, Takanobu

    2018-01-15

    Gliostatin (GLS) is known to have angiogenic and arthritogenic activity, and GLS expression levels in serum from patients with rheumatoid arthritis (RA) are significantly correlated with the disease activity. Tofacitinib is a novel oral Janus kinase (JAK) inhibitor and is effective in treating RA. However, the mechanism of action of tofacitinib in fibroblast-like synoviocytes (FLSs) has not been elucidated. The purpose of this study was to investigate the modulatory effects of tofacitinib on serum GLS levels in patients with RA and GLS production in FLSs derived from patients with RA. Six patients with RA who had failed therapy with at least one TNF inhibitor and were receiving tofacitinib therapy were included in the study. Serum samples were collected to measure CRP, MMP-3 and GLS expression. FLSs derived from patients with RA were cultured and stimulated by TNFα with or without tofacitinib. GLS expression levels were determined using reverse transcription-polymerase chain reaction (RT-PCR), EIA and immunocytochemistry, and signal transducer and activator of transcription (STAT) protein phosphorylation levels were determined by western blotting. Treatment with tofacitinib decreased serum GLS levels in all patients. GLS mRNA and protein expression levels were significantly increased by treatment with TNF-α alone, and these increases were suppressed by treatment with tofacitinib, which also inhibited TNF-α-induced STAT1 phosphorylation. JAK/STAT activation plays a pivotal role in TNF-α-mediated GLS up-regulation in RA. Suppression of GLS expression in FLSs has been suggested to be one of the mechanisms through which tofacitinib exerts its anti-inflammatory effects.

  11. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  12. TNF-α inhibits SCF, ghrelin, and substance P expressions through the NF-κB pathway activation in interstitial cells of Cajal.

    Science.gov (United States)

    Ren, Keyu; Yong, Chunming; Yuan, Hao; Cao, Bin; Zhao, Kun; Wang, Jin

    2018-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNFinduced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.

  13. TNF-alpha-308G>A polymorphism and the risk of familial CAD in a Pakistani population.

    Science.gov (United States)

    Hussain, Sabir; Iqbal, Tahir; Javed, Qamar

    2015-01-01

    A case-control and trio-families study was performed to establish a potential association between TNF-alpha gene promoter SNPs at -308 and -238, and occurrence of CAD in a Pakistani population. In the first phase, 150 patients and 150 controls were enrolled in the case-control association study. In the second phase, heritability of susceptible alleles was investigated from 88 trio-families with CAD affected offspring. Biochemical analysis of lipids and hs-CRP was carried out spectrophotometrically, while serum TNF-alpha concentrations were determined by enzyme-linked immunosorbent assay. Genotyping of the TNF-alpha SNPs were determined by PCR-RFLP method. Elevated serum TNF-alpha and hs-CRP were observed from CAD vs. controls (PA polymorphism in case-control study revealed that the said SNP was significantly associated with the increased risk of CAD. The findings demonstrated a significant link between the TNF-alpha variant allele A at -308 and CAD (P=0.0035), whereas the -238 SNP was not associated with the disease. Haplotype A-G of the TNF-alpha gene at -308G>A and -238G>A showed higher frequency in the patient group compared with controls (PA polymorphism is associated with CAD in the study population. Furthermore, for the first time, we showed that the TNF-alpha-308A allele was significantly associated with the familial CAD in our high risk population. Copyright © 2014. Published by Elsevier Inc.

  14. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells. RESEARCH DESIGN AND METHODS: Fluorescence-activated cell sorter-purified rat beta-cells were exposed to IL-1beta + IFN-gamma or TNF-alpha + IFN-gamma for 6 or 24 h......-cells, with temporal differences in the number of genes modulated by IL-1beta + IFNgamma or TNF-alpha + IFN-gamma. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression...... of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine...

  15. Anti-TNF-alpha therapy for sight threatening uveitis.

    NARCIS (Netherlands)

    E.W. Lindstedt (Eric); G.S. Baarsma (Seerp); R.W.A.M. Kuijpers (Robert); P.M. van Hagen (Martin)

    2005-01-01

    textabstractAIM: To describe the effect of additional treatment with anti-TNF-alpha therapy in a case series of 13 patients with serious sight threatening uveitis. METHODS: 13 patients with serious sight threatening uveitis were included, of whom six had Behcet's disease, five had idiopathic

  16. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR{alpha

  17. Interferon beta 1, an intermediate in the tumor necrosis factor alpha- induced increased MHC class I expression and an autocrine regulator of the constitutive MHC class I expression

    OpenAIRE

    1987-01-01

    In conclusion, our observations indicate that the constitutive MHC class I expression is regulated by autocrine production of IFN-beta 1. TNF-alpha acts as an enhancer of the autocrine production of IFN-beta 1, and consequently as an enhancer of the MHC class I expression and viral protection.

  18. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    Institute of Scientific and Technical Information of China (English)

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  19. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  20. Expression of hypoxia-induced factor-1 alpha in early-stage and in metastatic oral squamous cell carcinoma.

    Science.gov (United States)

    Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F

    2017-04-01

    To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.

  1. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hee; Lee, Chang Ki [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Oral Cancer Research Institute, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Hwang, Young Sun [Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Park, Kwang-Kyun [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Chung, Won-Yoon [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of)], E-mail: wychung@yuhs.ac

    2008-07-03

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H{sub 2}O{sub 2} formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-{kappa}B activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-{kappa}B signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.

  2. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    International Nuclear Information System (INIS)

    Park, Jae Hee; Lee, Chang Ki; Hwang, Young Sun; Park, Kwang-Kyun; Chung, Won-Yoon

    2008-01-01

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H 2 O 2 formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-κB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-κB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent

  3. Membrane Type 1–Matrix Metalloproteinase/Akt Signaling Axis Modulates TNF-α-Induced Procoagulant Activity and Apoptosis in Endothelial Cells

    Science.gov (United States)

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNFinduced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNFinduced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582

  4. Tanshinone II A Attenuates TNF-α-Induced Expression of VCAM-1 and ICAM-1 in Endothelial Progenitor Cells by Blocking Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Yang

    2016-11-01

    Full Text Available Background/Aims: Tanshinone IIA (Tan IIA is effective in the treatment of inflammation and atherosclerosis. The adhesion of inflammatory cells to vascular endothelium plays important role in atherogenic processes. This study examined the effects of Tan IIA on expression of adhesion molecules in tumor necrosis factor-α (TNF-α-induced endothelial progenitor cells (EPCs. Methods: EPCs were pretreated with Tan IIA and stimulated with TNF-α. Mononuclear cell (MNC adhesion assay was performed to assess the effects of Tan IIA on TNF-α-induced MNC adhesion. Expression of vascular cell adhesion molecule-1 (VCAM-1/intracellular adhesion molecule-1 (ICAM-1 and activation of Nuclear factor κB (NF-κB signaling pathway were measured. Results: The results showed that the adhesion of MNCs to TNF-α-induced EPCs and expression of VCAM-1/ICAM-1 in EPCs were promoted by TNF-α, which were reduced by Tan IIA. TNF-α increased the amount of phosphorylation of NF-κB, IκB-α and IKKα/β in cytosolic fractions and NF-κB p65 in nucleus, while Tan IIA reduced its amount. Conclusion: This study demonstrated a novel mechanism for the anti-inflammatory/anti-atherosclerotic activity of Tan IIA, which may involve down-regulation of VCAM-1 and ICAM-1 through partial blockage of TNF-α-induced NF-κB activation and IκB-α phosphorylation by the inhibition of IKKα/β pathway in EPCs.

  5. A correlation study between high resolution CT appearances and expression of transforming growth factor-β, tumor necrosis factor-α in radiation-induced lung injury of rats

    International Nuclear Information System (INIS)

    Guo Lili; Cheng Guangjun; Li Shaodong; Xu Kai

    2008-01-01

    Objective: To study the correlation between high resolution computed tomography manifestations and expression of transforming growth factor beta, tumor necrosis factor alpha in radiation- induced lung injury of rats, and to investigate the values of cytokine detection and HRCT scanning for the prediction and early diagnosis of radiation-induced lung injury. Methods: Forty-eight Sprague-Dawley (SD) rats were randomly divided into eight groups, group A was normal control group, and group B- H were irradiated with a single dose of 15 Gy to the lungs. HRCT scanning was performed before and 1 week, 2, 4, 8, 12, 16, 24 weeks after radiation in group A-H respectively. The expression of TGF-beta and TNF-alpha were detected with ELISA. All the rats were killed to observe pathological changes of their lungs. HRCT signs, levels of cytokine were simultaneously compared and analyzed. The t-test and Spearman rank correlation were used for the statistics. Results: Four HRCT signs were observed during the 24 weeks after radiation, including ground-glass opacity (1 case), patchy consolidation (8 cases), massive consolidation (7 cases) and fibrosis (3 cases). The average levels of TGF-beta in group B-H [(3.33± 0.47), (3.20±0.65), (3.12±0.45), (3.54±0.80), (3.30±1.13), (2.49±0.67), (4.19± 0.22) μg/L, respectively] were higher than the control group [(0.45±0.14) μg/L, P 0.05). There were no rank correlations between HRCT manifestations and expression of TGF-beta and TNF-alpha (r s = 0.5570 and 0.1013,P>0.05). HRCT signs were correlated with pathological changes. Conclusions: The monitoring of TGF-beta and TNF-alpha in the serum after irradiation can predict the development of radiation-induced lung injury. There are no rank correlations between HRCT manifestations and expression of TGF-beta and TNF-alpha. (authors)

  6. Direct inhibition of TNF-α promoter activity by Fanconi anemia protein FANCD2.

    Directory of Open Access Journals (Sweden)

    Nobuko Matsushita

    Full Text Available Fanconi anemia (FA, an inherited disease, is associated with progressive bone marrow failure, predisposition to cancer, and genomic instability. Genes corresponding to 15 identified FA complementation groups have been cloned, and each gene product functions in the response to DNA damage induced by cross-linking agents and/or in protection against genome instability. Interestingly, overproduction of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α and aberrant activation of NF-κB-dependent transcriptional activity have been observed in FA cells. Here we demonstrated that FANCD2 protein inhibits NF-κB activity in its monoubiquitination-dependent manner. Furthermore, we detected a specific association between FANCD2 and an NF-κB consensus element in the TNF-α promoter by electrophoretic mobility shift assays (EMSA and chromatin immunoprecipitation (ChIP assay. Therefore, we propose FANCD2 deficiency promotes transcriptional activity of the TNF-α promoter and induces overproduction of TNF-which then sustains prolonged inflammatory responses. These results also suggest that artificial modulation of TNFα production could be a promising therapeutic approach to FA.

  7. Molecular mechanisms of topical anti-inflammatory effects of lipoxin A(4) in endotoxin-induced uveitis.

    Science.gov (United States)

    Medeiros, Rodrigo; Rodrigues, Gustavo Büchele; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Menezes-de-Lima, Octavio; Passos, Giselle Fazzioni; Calixto, João Batista

    2008-07-01

    Lipoxin A(4) (LXA(4)) is a lipid mediator that plays an important role in inflammation resolution. We assessed the anti-inflammatory effect of LXA(4) on endotoxin-induced uveitis (EIU) in rats. The inflammatory cell number and levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), prostaglandin E(2) (PGE(2)), and protein, as well as expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), in the anterior chamber of the eye were determined 24 h after lipopolysaccharide (LPS; 200 mug/paw) intradermal injection. The immunohistochemical reactivities of nuclear factor-kappaB (NF-kappaB) and c-Jun were also examined. Topical LXA(4) (1-10 ng/eye) pretreatment decreased the number of inflammatory cells and the protein leakage into the aqueous humor (AqH). In addition, topical LXA(4) (10 ng/eye) inhibited the LPS-induced production of IL-1beta, TNF-alpha, and PGE(2), and expression of COX-2 and VEGF. A decreased activation of NF-kappaB and c-Jun was also found in LXA(4)-treated eyes. It is very interesting that an anti-inflammatory effect was achieved even when LXA(4) (10 ng/eye) was applied topically after LPS challenge, as indicated by the reduction in the cellular and protein extravasations into the AqH. Moreover, topical treatment of corticosteroid prednisolone (200 mug/eye) beginning before or after LPS injection reduced all of the molecular and biochemical alterations promoted on EIU rats in an efficacy similar to that of LXA(4). Together, the present results provide clear evidence that pharmacological activation of LXA(4) signaling pathway potently reduces the EIU in rats. Therefore, LXA(4) stable analogs could represent promising agents for the management of ocular inflammatory diseases.

  8. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  9. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    International Nuclear Information System (INIS)

    Kuge, Yuji; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi; Sugimoto, Yukihiko; Aita, Kazuki; Seki, Koh-ichi; Tamaki, Nagara; Saji, Hideo

    2009-01-01

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of 125 I-FIMA were assessed in control and linterfero/interferon-γ-stimulated macrophages. The biodistribution of 125 I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC 50 =2.46 μM) was higher than that of indomethacin (IC 50 =20.9 μM) and was comparable to lumiracoxib (IC 50 =0.77 μM) and diclofenac (IC 50 =0.98 μM). The IC 50 ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. 125 I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of 125 I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  10. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan)], E-mail: kuge@med.hokudai.ac.jp; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Sugimoto, Yukihiko [Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Aita, Kazuki [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Seki, Koh-ichi [Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan); Saji, Hideo [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-11-15

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of {sup 125}I-FIMA were assessed in control and linterfero/interferon-{gamma}-stimulated macrophages. The biodistribution of {sup 125}I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC{sub 50}=2.46 {mu}M) was higher than that of indomethacin (IC{sub 50}=20.9 {mu}M) and was comparable to lumiracoxib (IC{sub 50}=0.77 {mu}M) and diclofenac (IC{sub 50}=0.98 {mu}M). The IC{sub 50} ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. {sup 125}I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of {sup 125}I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  11. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-α-mediated endothelial apoptosis via regulating vimentin cytoskeleton.

    Science.gov (United States)

    Yang, Lifeng; Tang, Lian; Dai, Fan; Meng, Guoliang; Yin, Runting; Xu, Xiaole; Yao, Wenjuan

    2017-08-15

    Both RhoA/ROCK and Raf-1/CK2 pathway play essential roles in cell proliferation, apoptosis, differentiation, and multiple other common cellular functions. We previously reported that vimentin is responsible for TNF-α-induced cell apoptosis. Herein, we investigated the regulation of RhoA/ROCK and Raf-1/CK2 signaling on vimentin filaments and endothelial apoptosis mediated by TNF-α. Treatment with TNF-α significantly induced the activation of RhoA and ROCK, and the expression of ROCK1. RhoA deficiency could obviously inhibit ROCK activation and ROCK1 expression induced by TNF-α. Both RhoA deficiency and ROCK activity inhibition (Y-27632) greatly inhibited endothelial apoptosis and preserved cell viability in TNF-α-induced human umbilical vein endothelial cells (HUVECs). Also vimentin phosphorylation and the remodeling of vimentin or phospho-vimentin induced by TNF-α were obviously attenuated by RhoA suppression and ROCK inhibition. TNF-α-mediated vimentin cleavage was significantly inhibited by RhoA suppression and ROCK inhibition through decreasing the activation of caspase3 and 8. Furthermore, TNF-α treatment greatly enhanced the activation of Raf-1. Suppression of Raf-1 or CK2 by its inhibitor (GW5074 or TBB) blocked vimentin phosphorylation, remodeling and endothelial apoptosis, and preserved cell viability in TNF-α-induced HUVECs. However, Raf-1 inhibition showed no significant effect on TNF-α-induced ROCK expression and activation, suggesting that the regulation of Raf-1/CK2 signaling on vimentin was independent of ROCK. Taken together, these results indicate that both RhoA/ROCK and Raf-1/CK2 pathway are responsible for TNF-α-mediated endothelial cytotoxicity via regulating vimentin cytoskeleton. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNFinduced gene expression.

    Science.gov (United States)

    Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M

    2011-06-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNFinduced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.

  13. Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis.

    LENUS (Irish Health Repository)

    Aherne, Carol M

    2009-10-01

    Expression of the orphan nuclear receptor NR4A2 is controlled by pro-inflammatory mediators, suggesting that NR4A2 may contribute to pathological processes in the inflammatory lesion. This study identifies the chemoattractant protein, interleukin 8 (IL-8\\/CXCL8), as a molecular target of NR4A2 in human inflammatory arthritis and examines the mechanism through which NR4A2 modulates IL-8 expression. In TNF-alpha-activated human synoviocyte cells, enhanced expression of IL-8 mRNA and protein correspond to temporal changes in NR4A2 transcription and nuclear distribution. Ectopic expression of NR4A2 leads to robust changes in endogenous IL-8 mRNA levels and co-treatment with TNF-alpha results in significant (p<0.001) secretion of IL-8 protein. Transcriptional effects of NR4A2 on the human IL-8 promoter are enhanced in the presence of TNF-alpha, suggesting molecular crosstalk between TNF-alpha signalling and NR4A2. A dominant negative IkappaB kinase antagonizes the combined effects of NR4A2 and TNF-alpha on IL-8 promoter activity. Co-expression of NR4A2 and the p65 subunit of NF-kappaB enhances IL-8 transcription and functional studies indicate that transactivation occurs independently of NR4A2 binding to DNA or heterodimerization with additional nuclear receptors. The IL-8 minimal promoter region is sufficient to support NR4A2 and NF-kappaB\\/p65 co-operative activity and NR4A2 can interact with NF-kappaB\\/p65 on a 39bp sequence within this region. In patients treated with methotrexate for active inflammatory arthritis, a reduction in NR4A2 synovial tissue levels correlate significantly (n=10, r=0.73, p=0.002) with changes in IL-8 expression. Collectively, these data delineate an important role for NR4A2 in modulating IL-8 expression and reveal novel transcriptional responses to TNF-alpha in human inflammatory joint disease.

  14. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    Science.gov (United States)

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  15. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  16. 17-AAG, a Hsp90 inhibitor, attenuates the hypoxia-induced expression of SDF-1alpha and ILK in mouse RPE cells.

    Science.gov (United States)

    Wang, Ye Qing; Zhang, Xiao Mei; Wang, Xiao Dan; Wang, Bin Jie; Wang, Wei

    2010-03-01

    The aim of this study was to investigate the changes of SDF-1alpha and ILK expression in mouse retinal pigment epithelium (RPE) cells in response to hypoxia, and the effect of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (Hsp90) inhibitor, on the hypoxia-induced expression of SDF-1alpha and ILK. RPE cells were cultured with 200 micromol/L cobalt chloride (CoCl(2)) for different times (1, 3, 6, 12, 24, 72 h) to imitate chemical hypoxia. Pretreatment of 17-AAG was 1 h prior to hypoxic insult. Cellular viability after 17-AAG treatment was assessed by MTT assay, and the changes of SDF-1alpha and ILK expression were examined by RT-PCR and Western blot. Up-regulation of SDF-1alpha and ILK expression in response to hypoxia was observed. One hour pretreatment of 17-AAG could remarkably decreased the hypoxia-induced SDF-1alpha and ILK expression in vitro. Our results indicated that SDF-1alpha and ILK involved in the hypoxic response of RPE cells, and 1 h pretreatment of 17-AAG had an inhibitive effect on the hypoxia-induced SDF-1alpha and ILK expression.

  17. [Effects of shoutai pills on expression of Th1/Th2 cytokine in maternal-fetal interface and pregnancy outcome].

    Science.gov (United States)

    Lai, Maohua; You, Zhaoling; Ma, Hongxia; Lei, Lei; Lu, Fangguo; He, Dongmei; Liu, Huiping; Yin, Sheng

    2010-11-01

    To evaluate its mechanism of inducing the maternal-fetal immune tolerance by studying the effects of Shoutai pills on the expression of Th1/Th2 cytokine and pregnancy in maternal-fetal interface of mice with recurrent spontaneous abortion (RSA). The normal pregnancy and RSA model were respectively induced with CBA/J x BALB/c and CBA/J x DBA/2. The mice with RSA were randomly divided into model group and low, middle and high dose groups of Shoutai pills. The mice were killed in 14 days after administration and embryo resorption rate was counted and their decidual and placental tissues were co-cultured to detect the expressions of IL-4, IL-10, IFN-gamma and TNF-alpha with ELISA. The embryo resorption rate of the model group was significantly higher than the normal pregnancy, middle and high dose groups of Shoutai pills could decreased the embryo resorption rate of the mice with RSA (P pills could decreased the expression of IFN-gamma and TNF-alpha (P pills. Middle and high doses of Shoutai pills could increased the expression of IL-4 and IL-10 (P pills. The mechanism about Shoutai pills can change Th1 /Th2 cytokine towards Th2 bias, which induced the maternal-fetal immune tolerance.

  18. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Jacek Nikliński

    2010-05-01

    Full Text Available The aim of the present study was to characterize the expression pattern of tumor necrosis factor (TNF-alpha and its receptors (TNF-Rs in the epithelial ovarian cancer (EOC and compare these results with the outcome of 126 patients. Presence of TNF-alpha, TNFR-1 and TNFR-2 were studied by Western blotting and immunohistochemistry. The proportion of samples positive for TNF-alpha and TNF-R2 was higher in epithelial ovarian cancer patients than in benign ovarian diseases (p<0.001 and p=0.016, respectively. Immunostaining intensity of TNF-R2 were correlated with tumor stage (p<0.001 and with reduced mean survival time (MST (p=0.002. The results of the present study suggested that tissue expression of TNF-R2 in epithelial ovarian cancer was correlated with the highest risk of cancer progression. Thus, the clinical value of activated TNF system in epithelial ovarian cancer needs to be further investigated.

  19. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line.

    Science.gov (United States)

    Baker, Olga J; Camden, Jean M; Redman, Robert S; Jones, Jonathan E; Seye, Cheikh I; Erb, Laurie; Weisman, Gary A

    2008-11-01

    Sjögren's syndrome (SS) is an autoimmune disorder characterized by inflammation and dysfunction of salivary glands, resulting in impaired secretory function. The production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) is elevated in exocrine glands of patients with SS, although little is known about the effects of these cytokines on salivary epithelial cell functions necessary for saliva secretion, including tight junction (TJ) integrity and the establishment of transepithelial ion gradients. The present study demonstrates that chronic exposure of polarized rat parotid gland (Par-C10) epithelial cell monolayers to TNF-alpha and IFN-gamma decreases transepithelial resistance (TER) and anion secretion, as measured by changes in short-circuit current (I(sc)) induced by carbachol, a muscarinic cholinergic receptor agonist, or UTP, a P2Y(2) nucleotide receptor agonist. In contrast, TNF-alpha and IFN-gamma had no effect on agonist-induced increases in the intracellular calcium concentration [Ca(2+)](i) in Par-C10 cells. Furthermore, treatment of Par-C10 cell monolayers with TNF-alpha and IFN-gamma increased paracellular permeability to normally impermeant proteins, altered cell and TJ morphology, and downregulated the expression of the TJ protein, claudin-1, but not other TJ proteins expressed in Par-C10 cells. The decreases in TER, agonist-induced transepithelial anion secretion, and claudin-1 expression caused by TNF-alpha, but not IFN-gamma, were reversible by incubation of Par-C10 cell monolayers with cytokine-free medium for 24 h, indicating that IFN-gamma causes irreversible inhibition of cellular activities associated with fluid secretion in salivary glands. Our results suggest that cytokine production is an important contributor to secretory dysfunction in SS by disrupting TJ integrity of salivary epithelium.

  20. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes......Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  1. Alpha particles induce expression of immunogenic markers on tumour cells

    International Nuclear Information System (INIS)

    Gorin, J.B.; Gouard, S.; Cherel, M.; Davodeau, F.; Gaschet, J.; Morgenstern, A.; Bruchertseifer, F.

    2013-01-01

    The full text of the publication follows. Radioimmunotherapy (RIT) is an approach aiming at targeting the radioelements to tumours, usually through the use of antibodies specific for tumour antigens. The radiations emitted by the radioelements then induce direct killing of the targeted cells as well as indirect killing through bystander effect. Interestingly, it has been shown that ionizing radiations, in some settings of external radiotherapy, can foster an immune response directed against tumour cells. Our research team is dedicated to the development of alpha RIT, i.e RIT using alpha particle emitters, we therefore decided to study the effects of such particles on tumour cells in regards to their immunogenicity. First, we studied the effects of bismuth 213, an alpha emitter, on cellular death and autophagy in six different tumour cell lines. Then, we measured the expression of 'danger' signals and MHC molecules at the cell surface to determine whether irradiation with 213 Bi could cause the tumour cells to be recognized by the immune system. Finally a co-culture of dendritic cells with irradiated tumour cells was performed to test whether it would induce dendritic cells to mature. No apoptosis was detected within 48 hours after irradiation in any cell line, however half of them exhibited signs of autophagy. No increase in membrane expression of 'danger' signals was observed after treatment with 213 Bi, but we showed an increase in expression of MHC class I and II for some cell lines. Moreover, the co-culture experiment indicated that the immunogenicity of a human adenocarcinoma cell line (LS 174T) was enhanced in vitro after irradiation with alpha rays. These preliminary data suggest that alpha particles could be of interest in raising an immune response associated to RIT. (authors)

  2. Interfering RNA against PKC-α Inhibits TNF-α-induced IP3R1 Expression and Improves Glomerular Filtration Rate in Rats with Fulminant Hepatic Failure.

    Science.gov (United States)

    Wang, Dong-Lei; Dai, Wen-Ying; Wang, Wen; Wen, Ying; Zhou, Ying; Zhao, Yi-Tong; Wu, Jian; Liu, Pei

    2018-01-10

    We have reported that tumor necrosis factor- (TNF-α) is critical for reduction of glomerular filtration rate (GFR) in rats with fulminant hepatic failure (FHF). The present study aims to evaluate the underlying mechanisms of decreased GFR during acute hepatic failure. Rats with FHF induced by D-galactosamine plus lipopolysaccharide (GalN/LPS) were injected intravenously with recombinant lentivirus harboring shRNA against the protein kinase C-α (PKC-α) gene (Lenti-shRNA-PKC-α). GFR, serum levels of aminotransferases, creatinine, urea nitrogen, potassium, sodium, chloride, TNF-α and endothelin-1 (ET-1), as well as type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) expression in renal tissue were assessed. The effects of PKC-α silencing on TNF-α-induced IP3R1, specificity protein 1 (SP-1) and c-Jun N-terminal kinase (JNK) expression, as well as cytosolic calcium content were determined in glomerular mesangial cell (GMCs) with RNAi against PKC-α. Renal IP3R1 overexpression was abrogated by pre-treatment with Lenti-shRNA-PKC-α. The PKC- silence significantly improved the compromised GFR, reduced Cr levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. TNF-α treatment increased expression of PKC-α, IP3R1, specificity protein 1 (SP-1), JNK and p-JNK in GMCs, and increased Ca2+ release and binding activity of SP-1 to the IP3R1 promoter. These effects were blocked by transfection of siRNA against the PKC-α gene, and the PKC-α gene silence also restored cytosolic [Ca2+]i. RNAi targeting PKC-α inhibited TNF-α-induced IP3R1 overexpression, and in turn improved compromised GFR in the development of acute kidney injury during FHF in rats.

  3. Preventive and therapeutic anti-inflammatory effects of systemic and topical thalidomide on endotoxin-induced uveitis in rats.

    Science.gov (United States)

    Rodrigues, Gustavo Büchele; Passos, Giselle Fazzioni; Di Giunta, Gabriella; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Medeiros, Rodrigo; Calixto, João B

    2007-03-01

    The present study examined the outcomes of systemic or topical treatment with thalidomide, a compound that possesses anti-inflammatory, immunomodulatory and anti-angiogenic properties, in rats subjected to endotoxin-induced uveitis (EIU). The effects of thalidomide were evaluated on endotoxin-induced leucocyte and protein infiltration and also on the production of interleukin (IL)-1beta and tumour necrosis factor (TNF)-alpha in rat aqueous humour (AqH). Moreover, the actions of thalidomide were assessed on the cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) protein expression in retinal tissue. EIU was produced by a hindpaw injection of lipopolysaccharide (LPS), in male Wistar rats. Thalidomide (5, 25 and 50 mg/kg) was administered orally 1 h before LPS injection. In another set of experiments, to evaluate the therapeutic efficacy, 5% thalidomide was applied topically to both eyes at 6, 12 and 18 h after LPS administration. The oral pre-treatment with thalidomide decreased, in a dose-dependent manner, the number of inflammatory cells, the protein concentration, and the levels of IL-1beta and TNF-alpha in the AqH. Similar results were found in the AqH of rats that received a topical application of thalidomide. Furthermore, oral (50 mg/kg) and local (5%) thalidomide treatment also reduced expression of the pro-inflammatory proteins COX-2 and iNOS in the posterior segment of the eye. Thalidomide exhibited marked preventive and curative ocular effects in EIU in rats, a property that might be associated with its ability to inhibit the production of inflammatory cytokines and the expression of COX-2 and iNOS. This assembly of data provides additional molecular and functional insights into beneficial effects of thalidomide as an agent for the management of ocular inflammation.

  4. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice

    DEFF Research Database (Denmark)

    Clausen, Bettina H; Lambertsen, Kate L; Babcock, Alicia A

    2008-01-01

    BACKGROUND: Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are expressed by microglia and infiltrating macrophages following ischemic stroke. Whereas IL-1beta is primarily neurotoxic in ischemic stroke, TNF-alpha may have neurotoxic and/or neuroprotective effects. We inv...

  5. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  6. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  7. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  8. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance.

    Science.gov (United States)

    Pincelli, A I; Brunani, A; Scacchi, M; Dubini, A; Borsotti, R; Tibaldi, A; Pasqualinotto, L; Maestri, E; Cavagnini, F

    2001-01-01

    The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. These data indicate

  9. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha.

    Directory of Open Access Journals (Sweden)

    Sara Leschner

    Full Text Available BACKGROUND: Several facultative anaerobic bacteria with potential therapeutic abilities are known to preferentially colonize solid tumors after systemic administration. How they efficiently find and invade the tumors is still unclear. However, this is an important issue to be clarified when bacteria should be tailored for application in cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: We describe the initial events of colonization of an ectopic transplantable tumor by Salmonella enterica serovar Typhimurium. Initially, after intravenous administration, bacteria were found in blood, spleen, and liver. Low numbers were also detected in tumors associated with blood vessels as could be observed by immunohistochemistry. A rapid increase of TNF-alpha in blood was observed at that time, in addition to other pro-inflammatory cytokines. This induced a tremendous influx of blood into the tumors by vascular disruption that could be visualized in H&E stainings and quantified by hemoglobin measurements of tumor homogenate. Most likely, together with the blood, bacteria were flushed into the tumor. In addition, blood influx was followed by necrosis formation, bacterial growth, and infiltration of neutrophilic granulocytes. Depletion of TNF-alpha retarded blood influx and delayed bacterial tumor-colonization. CONCLUSION: Our findings emphasize similarities between Gram-negative tumor-colonizing bacteria and tumor vascular disrupting agents and show the involvement of TNF-alpha in the initial phase of tumor-colonization by bacteria.

  10. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  11. Elevated plasma levels of TNF-alpha and Interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders

    Directory of Open Access Journals (Sweden)

    Ellinghaus Peter

    2009-11-01

    Full Text Available Abstract Background Diabetes mellitus (DM has reached epidemic proportions and is an important risk factor for heart failure (HF. Left ventricular diastolic dysfunction (LVDD is recognized as the earliest manifestation of DM-induced LV dysfunction, but its pathophysiology remains incompletely understood. We sought to evaluate the relationship between proinflammatory cytokine levels (TNF-alpha, IL-6 and tissue Doppler derived indices of LVDD in patients with stable coronary artery disease. Methods We enrolled 41 consecutive patients (mean age 65+/-10 years submitted for coronary angiography. Echocardiographic assessment was performed in all patients. Pulsed tissue Doppler imaging was performed at the mitral annulus and was characterized by the diastolic early relaxation velocity Em. Conventional transmitral flow was measured with pw-doppler. Early (E transmitral flow velocity was measured. LVDD was defined as E/Em ratio ≥ 15, E/Em 8-14 was classified as borderline. Plasma levels of TNF-alpha and IL-6 were determined in all patients. A standardized oral glucose tolerance test was performed in subjects without diabetes. Results Patients with E/Em ratio ≥ 15, classified as LVDD and those with E/Em ratio 8-14 (classified as borderline had significantly higher IL-6 (P = 0,001, TNF-alpha (P Conclusion This study reveals that increased plasma levels of IL-6 and TNF-alpha were associated with LVDD. These findings suggest a link between low-grade inflammation and the presence of LVDD. An active proinflammatory process may be of importance in the pathogenesis of diastolic dysfunction.

  12. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alpha-induced adhesion molecule expression in human umbilical vein endothelial cells

    NARCIS (Netherlands)

    Weber, Nina C.; Kandler, Jennis; Schlack, Wolfgang; Grueber, Yvonne; Frädorf, Jan; Preckel, Benedikt

    2008-01-01

    BACKGROUND: The barrier properties of the endothelium are of critical importance during pathophysiologic processes. These barrier properties depend on an intact cytoskeleton and are regulated by cell adhesion molecules. Tumor necrosis factor alpha (TNF-alpha) is known to induce cell adhesion

  13. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Maria; Bruunsgaard, Helle; Weis, Nina

    2003-01-01

    The purpose of the current study was to test the hypothesis that an altered fat distribution in elderly healthy subjects and in patients with type-2 diabetes contributes to high circulating levels of interleukin (IL)-6 and tumor necrotic factor (TNF)-alpha, which secondly is related to lower muscle...... mass. Twenty young controls, (20-35 yr), 20 healthy elderly subjects (65-80 yr) and 16 elderly patients with type 2 diabetes (65-80 yr) were included in a cross sectional study. Plasma levels of TNF-alpha and IL-6 were measured after an overnight fast. Dual-energy X-ray absorptiometry and total body...... to lower ASM and BCM in elderly men both in a univariate regression analysis and a multivariate regression analysis. In conclusion, high plasma levels of TNF-alpha and IL-6 in elderly healthy people and in patients with type 2 diabetes are associated with increased truncal fat mass, suggesting...

  14. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2014-01-01

    In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase-2 (COX-2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium......, and inactive pGSK-3β in collecting duct; a blocker of COX-2 does not prevent cell proliferation, cyst formation, or GSK-3β inactivation. It is concluded that COX-2 activity is not the primary cause for microcysts and polyuria in a NaCl-substituted rat model of lithium nephropathy. COX-1 is a relevant candidate...

  15. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells

    International Nuclear Information System (INIS)

    Ulanova, Marina; Marcet-Palacios, Marcelo; Munoz, Samira; Asfaha, Samuel; Kim, Moo-Kyung; Schreiber, Alan D.; Befus, A. Dean

    2006-01-01

    We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in β1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via β1 integrins, suggesting that TNF and β1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-κB. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders

  16. Diverging mechanisms for TNF-alpha receptors in normal mouse brains and in functional recovery after injury: From gene to behavior

    DEFF Research Database (Denmark)

    Quintana, Albert; Molinero, Amalia; Florit, Sergi

    2007-01-01

    Cytokines, such as tumour necrosis factor (TNF)-alpha and lymphotoxin-alpha, have been described widely to play important roles in the brain in physiologic conditions and after traumatic injury. However, the exact mechanisms involved in their function have not been fully elucidated. We give some...... to the somatosensorial cortex. The effect of the cryolesion on motor function was evaluated with the horizontal ladder beam test, and the results showed that both TNFR1KO and TNFR2KO mice made fewer errors, suggesting a detrimental role for TNFR1/TNFR2 signaling for coping with brain damage. Expression of approximately...... of TNFR1/TNFR2 receptors may be beneficial after a traumatic brain injury....

  17. Differential effects of NF-kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL-1 beta-induced proinflammatory status of endothelial cells in vitro

    NARCIS (Netherlands)

    Kuldo, JM; Westra, J; Asgeirsdottir, SA; Kok, RJ; Oosterhuis, K; Rots, MG; Schouten, JP; Limburg, PC; Molema, G

    Differential effects of NF- kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL- 1 beta- induced proinflammatory status of endothelial cells in vitro. Am J Physiol Cell Physiol 289: C1229 - C1239, 2005. First published June 22, 2005; doi: 10.1152/ ajpcell. 00620.2004.

  18. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway.

    Science.gov (United States)

    Zhao, Feng; Wang, Lu; Liu, Ke

    2009-04-21

    Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet. To investigate the anti-inflammatory mechanism of arctigenin. Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2. Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-alpha and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin. These results indicated that potent inhibition on NO, TNF-alpha and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.

  19. Involvement of CDX2 in the cross talk between TNF-α and Wnt signaling pathway in the colon cancer cell line Caco-2

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Anders Krüger; Bzorek, Michael

    2014-01-01

    buddings in areas with TNFexpression in the surrounding inflammatory cells. In vitro studies revealed that TNF-α treatment showed a dose-dependent decrease of CDX2 messenger RNA (mRNA) and protein expression in Caco-2 cells. Inhibition of nuclear factor-kappaB or p38 pathways showed...... targets were significantly elevated in TNF-α-treated Caco-2 cells. These findings were associated with reduced binding of CDX2 to promoter or enhancer regions of APC, AXIN2 and GSK3β. In conclusion, it was found that TNFinduces the expression of Wnt signaling components through a downregulation......Tumor necrosis factor-α (TNF-α) is highly upregulated in inflammation and reduces the expression of the intestinal transcription factor, Caudal-related homeobox transcription factor 2 (CDX2). Wnt/β-catenin signaling is critical for intestinal cell proliferation, but a decreased CDX2 expression has...

  20. Prostaglandin F2alpha elevates blood pressure and promotes atherosclerosis

    DEFF Research Database (Denmark)

    Yu, Ying; Lucitt, Margaret B; Stubbe, Jane

    2009-01-01

    that exhibit mild polyuria and polydipsia. Atherogenesis is retarded by deletion of the FP, despite the absence of detectable receptor expression in aorta or in atherosclerotic lesions in Ldlr KOs. Although vascular TNF(alpha), inducible nitric oxide enzyme and TGF(beta) are reduced and lesional macrophages...... are depleted in the FP/Ldlr double KOs, this result reflects the reduction in lesion burden, as the FP is not expressed on macrophages and its deletion does not alter macrophage cytokine generation. Blockade of the FP offers an approach to the treatment of hypertension and its attendant systemic vascular...

  1. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  2. Influence of High Aspect Ratio Vessel Cell Culture on TNF-Alpha, Insulin Secretion and Glucose Homeostasis in Pancreatic Islets of Langerhans from Wistar Furth Rats

    Science.gov (United States)

    Tobin, Brian W.a; Leeper-Woodford, Sandra K.

    1999-01-01

    The present studies were carried out to determine the influence of a ground based microgravity paradigm, utilizing the High Aspect Ratio Vessel (HARV) cell culture upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) production of pancreatic islets of Langerhans. An additional aim was to elucidate alterations in insulin secretion and glucose utilization using the HARV low shear, gravity averaged vector, cell culture technique. Islets were isolated (1726 +/- 117, 150 micron islet equivalent units) from Wistar Furth rats and assigned to four treatment groups: 1) HARV, 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. Following 48 hours of culture, insulin concentration was increased in both HARV and static cultures (palpha (L929 cytotoxicity assay) and was measured at selected time points for 48 hours. TNF-alpha was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (palpha is associated with a decreased insulin secretion is intriguing, both as it relates to in-flight investigations, and as it may provide insight into the pathophysiology of Type I and Type 11 diabetes. Glucose concentration in islet medium was lesser throughout the experiment in static cultures, suggesting a decreased reliance upon glucose as a metabolic substrate in the islets cultured in HARVS. In conclusion, the present studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF production in the microgravity HARV paradigm. Additionally, alterations in fuel homeostasis may be promulgated by HARV culture. The clinical and physiological significance of these observations remains to be determined.

  3. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  4. Off-label use of TNF-alpha inhibitors in a dermatological university department

    DEFF Research Database (Denmark)

    Sand, Freja Lærke; Thomsen, Simon Francis

    2015-01-01

    (four), Sweet's syndrome (four), Well's syndrome (one), benign familial pemphigus (one), lichen planus (one), and folliculitis decalvans (one). A significant number of these patients went into remission during therapy with TNF-alpha inhibitors. A total of 11 patients (9%) experienced severe adverse......-alpha inhibitors for these conditions....

  5. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    International Nuclear Information System (INIS)

    Shim, Su Jung; Yang, Woo-Ick; Shin, Eunah; Koom, Woong Sub; Kim, Yong Bae; Cho, Jae Ho; Suh, Chang Ok; Kim, Joo Hang; Kim, Gwi Eon

    2007-01-01

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type

  6. Substance P ameliorates tumor necrosis factor-alpha-induced endothelial cell dysfunction by regulating eNOS expression in vitro.

    Science.gov (United States)

    Piao, Jiyuan; Hong, Hyun Sook; Son, Youngsook

    2018-04-01

    The aim of this study was to explore the beneficial effects of SP on NO production and inflammation-induced vascular endothelium cell death. To mimic the inflammatory environment, TNF-α was treated with HUVECs, and SP was added prior to TNF-α to determine its protective effect. WST-1 assay was performed to detect cell viability. NO level in conditioned medium was measured by Griess Reagent System. The protein level of cleaved caspase-3, eNOS, and phosphorylated Akt was detected by Western blot analysis. TNF-α declined endothelial cell viability by downregulating Akt and NO production. TNF-α-induced cell death was reliably restored by NO, confirming the requirement of NO for cell survival. By contrast, pretreatment of SP attenuated TNF-α-induced cellular apoptosis, accompanied by an increase in the phosphorylation of Akt, eNOS expression, and NO production. Blockage of NK-1R, phosphorylated Akt or eNOS by CP-96345, A6730, or L-NAME entirely eliminated the effect of SP. SP can protect the vascular endothelium against inflammation-induced damage through modulation of the Akt/eNOS/NO signaling pathway. © 2018 John Wiley & Sons Ltd.

  7. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Maria; Bruunsgaard, Helle; Weis, Nina

    2003-01-01

    The purpose of the current study was to test the hypothesis that an altered fat distribution in elderly healthy subjects and in patients with type-2 diabetes contributes to high circulating levels of interleukin (IL)-6 and tumor necrotic factor (TNF)-alpha, which secondly is related to lower muscle...... mass. Twenty young controls, (20-35 yr), 20 healthy elderly subjects (65-80 yr) and 16 elderly patients with type 2 diabetes (65-80 yr) were included in a cross sectional study. Plasma levels of TNF-alpha and IL-6 were measured after an overnight fast. Dual-energy X-ray absorptiometry and total body...... potassium counting measured truncal fat, appendicular skeletal muscle mass (ASM) and body cell mass (BCM), respectively. TNF-alpha, IL-6 and the relative truncal fat mass were higher in elderly compared with young controls. ASM was lower in diabetic men than in young controls and BCM was lower in elderly...

  8. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 2: biochemical aspects.

    Science.gov (United States)

    Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2017-11-01

    Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm 2 ; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm 2 ), 3 J (107.1 J/cm 2 ), and 9 J (321.4 J/cm 2 ) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p levels of COX-2 only in relation to the injury group (p levels of cytokines TNF-α, interleukin (IL)-1β, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.

  9. TNF-alpha -308G>A polymorphism is associated with suicide attempts in major depressive disorder.

    Science.gov (United States)

    Kim, Yong-Ku; Hong, Jin-Pyo; Hwang, Jung-A; Lee, Heon-Jeong; Yoon, Ho-Kyoung; Lee, Bun-Hee; Jung, Han-Yong; Hahn, Sang-Woo; Na, Kyoung-Sae

    2013-09-05

    Despite the substantial role of the cytokine network in depression and suicide, few studies have investigated the role of genetic polymorphisms of pro- and anti-inflammatory cytokines in suicide in major depressive disorder (MDD). The aim of this study was to investigate whether tumor necrosis factor-alpha (TNF-alpha) -308G>A, interferon-gamma (IFN-gamma) +874A>T, and interleukin-10 (IL-10) -1082A>G are associated with increased risk for suicide attempts in MDD. Among patients with MDD, 204 patients who had attempted suicide and 97 control patients who had not attempted suicide were recruited. A chi-square test was used to identify a possible risk genotype or allele type for suicide. A subsequent multivariate logistic regression analysis was conducted to investigate the influence of a risk genotype or allele type adjusted for other environmental factors. The lethality of the suicide attempt was also tested between genotype and allele types among suicidal patients with MDD. The GG genotype of the TNF-alpha -308G>A polymorphism was found to significantly increase risk for suicide attempt (adjusted OR=2.630, 95% CI=1.206 to 5.734). IFN-gamma +874A>T and IL-10 -1082A>G were not associated with risk for suicide. Lethality of the suicide attempt was not associated with any of the three cytokine genotypes or allele types. Limitations include a relatively small sample size and a cross-sectional design. TNF-alpha -308G>A polymorphism is an independent risk factor for suicide attempts in MDD. Future studies should clarify the neural mechanisms by which the GG genotype of TNF-alpha -308G>A influences suicide in MDD. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Study of Osteoarthritis Treatment with Anti-Inflammatory Drugs: Cyclooxygenase-2 Inhibitor and Steroids

    Directory of Open Access Journals (Sweden)

    Hongsik Cho

    2015-01-01

    Full Text Available Patients with osteoarthritis (OA, a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs, and cyclooxygenase-2 (COX-2 selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM. To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2. The chondrocytes were then treated with either a steroid (prednisone, a nonspecific COX inhibitor NSAID (piroxicam, or a COX-2 selective NSAID (celecoxib. Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  11. IL-10 ameliorates TNFinduced meniscus degeneration in mature meniscal tissue in vitro.

    Science.gov (United States)

    Behrendt, P; Häfelein, K; Preusse-Prange, A; Bayer, A; Seekamp, A; Kurz, B

    2017-05-16

    Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.

  12. Temporary reversal by topotecan of marked insulin resistance in a patient with myelodysplastic syndrome: case report and possible mechanism for tumor necrosis factor alpha (TNF-alpha)-induced insulin resistance.

    Science.gov (United States)

    Huntington, M O; Krell, K E; Armour , W E; Liljenquist, J E

    2001-06-01

    Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor. We report here a remarkable degree of insulin resistance in a patient with adult respiratory distress syndrome and myelodysplasia.

  13. Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever.

    Science.gov (United States)

    Brito, Haissa Oliveira; Barbosa, Felipe L; Reis, Renata Cristiane Dos; Fraga, Daniel; Borges, Beatriz S; Franco, Celia R C; Zampronio, Aleksander Roberto

    2016-04-15

    Substance P (SP) is involved in fever that is induced by lipopolysaccharide (LPS) but not by interleukin-1β or macrophage inflammatory protein-1α. Intracerebroventricular (i.c.v.) administration of the neurokinin-1 (NK1) receptor antagonist SR140333B in rats reduced fever that was induced by an i.c.v. injection of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), corticotropin-releasing factor (CRF), endothelin-1 (ET-1), and morphine (MOR). Furthermore, an i.c.v. injection of SP induced a febrile response that was inhibited by indomethacin concomitant with an increase in PGE2 levels in cerebrospinal fluid. Lipopolysaccharide and PGE2 caused higher expression and internalization of NK1 receptors in the hypothalamus which were prevented by SR140333B. These data suggest that SP is an important mediator of fever, in which it induces a prostaglandin-dependent response and is released after TNF-α, IL-6, PGE2, CRF, endogenous opioids, and ET-1. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin.

    Science.gov (United States)

    Delage, Barbara; Bairras, Céline; Buaud, Benjamin; Pallet, Véronique; Cassand, Pierrette

    2005-10-10

    Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.

  15. Divergent effects of 17-β-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-α-induced neointima formation

    International Nuclear Information System (INIS)

    Nintasen, Rungrat; Riches, Kirsten; Mughal, Romana S.; Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa; Turner, Neil A.; Porter, Karen E.

    2012-01-01

    Highlights: ► TNF-α augments neointimal hyperplasia in human saphenous vein. ► TNFinduces detrimental effects on endothelial and smooth muscle cell function. ► Estradiol exerts modulatory effects on TNF-induced vascular cell functions. ► The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). TNF-α can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-α on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-α (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-α, an effect that was abolished by co-culture with E2. TNF-α increased SV–SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1–50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV–SMC proliferation to a level comparable to that of TNF-α alone. SV–EC migration was significantly impaired by TNF-α (42% of control), and co-culture with E2 partially restored the ability of SV–EC to migrate and repair the wound. In contrast, TNF-α increased SV–SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-α potently induced ICAM-1 and VCAM-1 expression in both SV–EC and SV–SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNFinduced SV neointima formation, increased SMC proliferation and migration, impaired

  16. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  17. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-01-01

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10 mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20 mg/kg) ip injection. Mice were sacrificed 24 h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity

  18. Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ER{alpha} in the liver of male lizard Podarcis sicula

    Energy Technology Data Exchange (ETDEWEB)

    Verderame, Mariailaria; Prisco, Marina; Andreuccetti, Piero [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Aniello, Francesco [Department of Biological Sciences, Genetic and Molecular Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Limatola, Ermelinda, E-mail: limatola@unina.it [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy)

    2011-05-15

    Endocrine Disruptor Chemicals (EDCs) with estrogen-like properties i.e nonylphenol (NP) induce vitellogenin (VTG) synthesis in males of aquatic and semi-aquatic specie. In the oviparous species VTG is a female-specific oestrogen dependent protein. Males are unable to synthesize VTG except after E{sub 2} treatment. This study aimed to verify if NP, administered via food and water, is able to induce the expression of VTG even in males of vertebrates with a terrestrial habitat such as the lizard Podarcis. By means of ICC, ISH, W/B and ELISA we demonstrated that NP induces the presence of VTG in the plasma and its expression in the liver. VTG, undetectable in untreated males, reaches the value of 4.34 {mu}g/{mu}l in the experimental ones. Expression analysis and ISH in the liver showed that an NP-polluted diet also elicits the expression of ER{alpha} in the liver which is known to be related to VTG synthesis in Podarcis. - Highlights: > Nonylphenol (NP) polluted diet induces VTG synthesis in a terrestrial vertebrate. > VTG and ER{alpha} genes are unexpressed in the liver of untreated male lizards Podarcis. > In the liver cells of NP-treated males the expression of both VTG and ER{alpha} occurs. > In treated males VTG synthesis is coupled with ER{alpha} expression as in breeding females. - NP-polluted diet induces the expression of ER{alpha} and VTG in the liver.

  19. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with

  20. TNF-alpha -308G/A and -238G/A polymorphisms and its protein network associated with type 2 diabetes mellitus.

    Science.gov (United States)

    Jamil, Kaiser; Jayaraman, Archana; Ahmad, Javeed; Joshi, Sindhu; Yerra, Shiva Kumar

    2017-09-01

    Several reports document the role of tumor necrosis factor alpha ( TNF-α ) and lipid metabolism in the context of acute inflammation as a causative factor in obesity-associated insulin resistance and as one of the causative parameter of type 2 diabetes mellitus (T2DM). Our aim was to investigate the association between -308G/A and -238G/A polymorphisms located in the promoter region of the TNF-α gene in T2DM in the Indian population with bioinformatics analysis of TNF-α protein networking with an aim to find new target sites for the treatment of T2DM. Demographics of 100 diabetes patients and 100 healthy volunteers were collected in a structured proforma and 3 ml blood samples were obtained from the study group, after approval of Institutional Ethics Committee of the hospital (IEC). The information on clinical parameters was obtained from medical records. Genomic DNA was extracted; PCR-RFLP was performed using TNF-α primers specific to detect the presence of SNPs. Various bioinformatics tools such as STRING software were used to determine its network with other associated genes. The PCR-RFLP studies showed that among the -238G/A types the GG genotype was 87%, GA genotype was 12% and AA genotype was 1%. Almost a similar pattern of results was obtained with TNF-α -308G/A polymorphism. The results obtained were evaluated statistically to determine the significance. By constructing TNF-α protein interaction network we could analyze ontology and hubness of the network to identify the networking of this gene which may influence the functioning of other genes in promoting T2DM. We could identify new targets in T2DM which may function in association with TNF-α . Through hub analysis of TNF-α protein network we have identified three novel proteins RIPK1, BIRC2 and BIRC3 which may contribute to TNF- mediated T2DM pathogenesis. In conclusion, our study indicated that some of the genotypes of TNF-α -308G/A, -238G/A were not significantly associated to type 2 diabetes

  1. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis.

    Science.gov (United States)

    Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G

    1996-08-01

    The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.

  2. Role of reactive oxygen species and Bcl-2 family proteins in TNF-α-induced apoptosis of lymphocytes.

    Science.gov (United States)

    Ryazanceva, N V; Novickiy, V V; Zhukova, O B; Biktasova, A K; Chechina, O E; Sazonova, E V; Belkina, M V; Chasovskih, N Yu; Khaitova, Z K

    2010-08-01

    We studied the in vitro apoptosis-inducing effect of recombinant TNF-α (rTNF-α) on blood lymphocytes from healthy donors. rTNF-α-induced apoptosis was accompanied by an increase in the number of cells with low mitochondrial transmembrane potential, increased intracellular content of reactive oxygen species, reduced content of Bcl-2, Bcl-xL, and Bax proteins, and elevated Bad content. The molecular mechanisms of these changes are discussed.

  3. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO and prostaglandin E2 (PGE2, mediated by inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone's effects on tumor necrosis factor alpha (TNF-α, iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB and mitogen activated protein kinase (MAPK pathways. LPS (30 ng/ml upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.

  4. Enhancement of alpha particles-induced cell transformation by oxygen free radicals and tumor necrosis factor released from phagocytes

    International Nuclear Information System (INIS)

    Gong Yifen; Guo Renfeng; Zhu Maoxiang; Shou Jiang; Ge Guixiu; Yang Zhihua; Hieber, L.; Peters, K.; Schippel, C.

    1997-01-01

    To illustrate the role of several endogenous factors released from phagocytes under chronic inflammation in radiation-induced cancer. C 3 T 10 T 1/2 and SHE cells were used as targets, and 238 Pu alpha source was used in alpha irradiation. The enhancement of TF in alpha particles-induced cell transformation by PMA-stimulated human blood and zymosan-stimulated U-937 cells was studied using formation of transformed foci. Transformation frequency (TF) of C 3 H 10 T 1/2 cells exposed to alpha particles of 0.5 Gy increased 2.1 and 2.8 fold by PMA-and PMA-stimulated neutrophils, respectively. TF of irradiated SHE cells at a dose of 0.5 Gy increased 12 fold by the addition of the supernatant of macrophage-like U-937 cell line. It was shown that TF of irradiated SHE cells at above dose increased 8 fold by the supernatant treated with anti-TNF-α could be subcultured continuously in vitro. The cells at 40 th passage and two lines of monoclone cells have the ability to develop malignant tumors in nude mice. The overdose of free radicals and TNF-α released from neutrophils and macrophages have played an important role in low dose radiation-induced cancer

  5. The future role of anti-tumour necrosis factor (TNF) products in the treatment of rheumatoid arthritis.

    Science.gov (United States)

    Camussi, G; Lupia, E

    1998-05-01

    Tumour necrosis factor-alpha (TNF alpha) is a pleiotropic cytokine which is overproduced in rheumatoid joints primarily by macrophages. This cytokine has a potential pathogenic role in the establishment of rheumatoid synovitis, in the formation of pannus tissue and in the process of joint destruction, as it increases synoviocyte proliferation and triggers a cascade of secondary mediators involved in the recruitment of inflammatory cells, in neo-angiogenesis and in the process of joint destruction. These findings made TNF alpha a potential target for anticytokine therapy. Experimental studies have shown that TNF alpha blockade by monoclonal antibodies or by soluble TNF receptor reduced the extent and severity of arthritis both in collagen-induced arthritis in mice and in transgenic mice overexpressing TNF alpha, which develop a rheumatoid-like destructive arthritis. Clinical studies based on the use of anti-TNF alpha antibodies or soluble receptors have suggested a potential beneficial effect of TNF alpha-blocking therapy in inducing amelioration of inflammatory parameters in patients with long-standing active disease. In these patients anti-TNF alpha therapy induces a rapid improvement in multiple clinical assessment of disease activity, including morning stiffness, pain score, Ritchie articular index and swollen joint count. The clinical benefits are associated with an improvement in some serological parameters, such as C-reactive protein and serum amyloid-A, erythrocyte sedimentation rate, blood cytokine levels, haemoglobin, white cells and platelet counts, rheumatoid factor titre and histological features of the synovium. However, it remains to be determined whether anti-TNF alpha therapy may be useful in the long term management of rheumatoid patients and in the achievement of better outcomes of disease. Because TNF alpha production also serves a specific function in host defence against infections and tumours, the adverse effects of long term anti-TNF alpha

  6. Adalimumab, a fully human anti-TNF-alpha monoclonal antibody, treatment does not influence experimental UV response in the skin of rheumatoid arthritis patients.

    NARCIS (Netherlands)

    Tjioe, M.; Gerritsen, M.J.P.; Broeder, A. den; Hooijdonk, C.A.E.M. van; Kroot, E.J.A.; Riel, P.L.C.M. van; Barrera Rico, P.; Kerkhof, P.C.M. van de

    2003-01-01

    TNF-alpha is known to play an important role in UV-induced immunomodulation and photodamage. It plays a role in UVB-mediated induction of apoptosis and is a strong inducer of the c-Jun N-terminal kinase (JNK) pathway, which eventually leads to the loss of dermal collagen and elastin content.

  7. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  8. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  9. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    Science.gov (United States)

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J

    1997-01-01

    Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... the release of IL-8 and TNF-alpha, human monocytes were cultured in the presence of purified MSG. MSG-stimulated cells released significant amounts of IL-8 within 4 h, and at 20 h, cells stimulated with MSG released 45.5 +/- 9.3 ng of IL-8/ml versus 3.7 +/- 1.1 ng/ml for control cultures (P = 0.......01). In a similar fashion, MSG elicited release of TNF-alpha. Initial increases were also seen at 4 h, and at 20 h, TNF-alpha levels reached 6.4 +/- 1.1 ng/ml, compared to 0.08 +/- 0.01 ng/ml for control cultures (P alpha secretion was observed at 20 h...

  11. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-beta (= lymphotoxin-alpha) and cytolysin appeared early and before onset of clinical...... signs of EAE; (ii) TNF-alpha peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-gamma (IFN-gamma) mRNA shown previously is consistent with a role of IL-12 in promoting...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...

  13. Rat hepatocyte invasion by Listeria monocytogenes and analysis of TNF-alpha role in apoptosis Invasão de hepatócitos de rato por Listeria monocytogenes e análise do papel do TNF-alfa na apoptose

    Directory of Open Access Journals (Sweden)

    Sânia Alves dos Santos

    2005-04-01

    Full Text Available Listeria monocytogenes, etiological agent of severe human foodborne infection, uses sophisticated mechanisms of entry into host cytoplasm and manipulation of the cellular cytoskeleton, resulting in cell death. The host cells and bacteria interaction may result in cytokine production as Tumor Necrosis Factor (TNF alpha. Hepatocytes have potential to produce pro-inflammatory cytokines as TNF-alpha when invaded by bacteria. In the present work we showed the behavior of hepatocytes invaded by L. monocytogenes by microscopic analysis, determination of TNF-alpha production by bioassay and analysis of the apoptosis through TUNEL technique. The presence of bacterium, in ratios that ranged from 5 to 50,000 bacteria per cell, induced the rupture of cellular monolayers. We observed the presence of internalized bacteria in the first hour of incubation by electronic microscopy. The levels of TNF-alpha increased from first hour of incubation to sixth hour, ranging from 0 to 3749 pg/mL. After seven and eight hours of incubation non-significant TNF-alpha levels decrease occurred, indicating possible saturation of cellular receptors. Thus, the quantity of TNF-alpha produced by hepatocytes was dependent of the incubation time, as well as of the proportion between bacteria and cells. The apoptosis rate increased in direct form with the incubation time (1 h to 8 + 24 h, ranging from 0 to 43%, as well as with the bacteria : cells ratio. These results show the ability of hepatocyte invasion by non-hemolytic L. monocytogenes, and the main consequences of this phenomenon were the release of TNF-alpha by hepatocytes and the induction of apoptosis. We speculate that hepatocytes use apoptosis induced by TNF-alpha for release bacteria to extracellular medium. This phenomenon may facilitate the bacteria destruction by the immune system.Listeria monocytogenes, agente etiológico de infecção grave de origem alimentar, utiliza mecanismos sofisticados de entrada no citoplasma

  14. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  15. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  16. Rare pneumoconiosis induced by long-term amorphous silica exposure: the histological characteristics and expression of cyclooxygenase-2 as an antifibrogenic mediator in macrophages.

    Science.gov (United States)

    Kumasaka, Toshio; Akaike, Yasushi; Nakamura, Osamu; Yamazaki, Kazuma; Moriyama, Hiroshi; Takemura, Tamiko

    2011-11-01

    Pneumoconiosis induced by non-crystalline silica is considered rare, although silicosis resulting from contact with crystalline silica is a well-known hazard associated with progressive pulmonary fibrosis. Here we describe a patient with pneumoconiosis induced by diatomaceous earth composed of amorphous silica detected by two-dimensional imaging of chemical elements. The histology revealed that the disease was characterized by a granulomatous reaction in the lung. A large number of macrophages laden with yellow and black pigments accumulated in alveolar spaces and were incorporated into the interstitial sites. Bronchiolar walls were destroyed by palisade macrophages, suggesting airflow obstruction. Packed macrophages adhering to and covering the denuded interstitium indicated that macrophages might be incorporated into pulmonary interstitium in this fashion. Immunohistochemistry showed that cyclooxygenase-2, an antifibrogenic mediator, was intensely expressed in the macrophages compared with macrophages in control lungs. No birefringent material was found in the tissues. When two-dimensional analysis of chemical elements was performed using an electron probe microanalyzer with a wavelength-dispersive spectrometer, the resultant fine mapping of silicon and oxygen on the tissue indicated that the pigments phagocytosed by macrophages corresponded to amorphous silica. In conclusion, two-dimensional analysis of elements is very useful for pathologists in correlating the presence of chemical elements with histological changes. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  17. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNFexpression upon lipopolysaccharide stimulation in human monocytes.

    Science.gov (United States)

    Murata, H; Hattori, T; Maeda, H; Takashiba, S; Takigawa, M; Kido, J; Nagata, T

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNFexpression. To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNFexpression. Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNFexpression. Knockdown of TDP-43 in THP-1 cells downregulated TNFexpression. We identified TDP-43 as one of the novel

  18. HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.

    Directory of Open Access Journals (Sweden)

    Freya M Mowat

    2010-06-01

    Full Text Available Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators.We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF and erythropoietin (Epo by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO.Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation plays a key role in regulating the response of Müller glia to hypoxia.

  19. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  20. Changes in serum tumor necrosis factor (TNF-alpha) with kami-shoyo-san administration in depressed climacteric patients.

    Science.gov (United States)

    Ushiroyama, Takahisa; Ikeda, Atsushi; Sakuma, Kou; Ueki, Minoru

    2004-01-01

    An herbal medicine (kampo) is widely used to prevent or treat climacteric symptoms. In order to investigate the potential involvement of tumor necrosis factor (TNF)-alpha in susceptibility to mood disorder in climacteric women and to clarify the relationship between immune function and the efficacy of herbal medicine, we compared serum TNF-alpha levels in two treated groups, with and without concurrent use of herbal medicine. This study included 113 consecutive depressed menopausal patients who visited the gynecological and psychosomatic medicine outpatient clinic of the Osaka Medical College Hospital in Japan. Fifty-eight patients were administered kami-shoyo-san according to the definition of above sho. In contrast, 55 patients who were different in sho of kami-shoyo-san were administered antidepressants. Hamilton Rating Scale for depression (HAM-D) scores were determined at baseline and 12 weeks after starting treatment (endpoint). TNF-alpha concentrations were analyzed before and after 12 weeks of treatment. Kami-shoyo-san significantly increased plasma concentrations of TNF-alpha after 12 weeks of treatment, to 17.22 +/- 6.13 pg/ml from a baseline level of 14.16 +/- 6.27 pg/ml (p = 0.048). The percent change in plasma concentration of TNF-alpha differed significantly between the kami-shoyo-san therapy group and the antidepressant therapy group at 4 weeks (12.0 +/- 7.8% and -1.22 +/- 0.25%, respectively, p emotional status via the central nervous system and may be regulated by herbal medicines, although the interactions are very complex.

  1. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    Science.gov (United States)

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  2. Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia.

    Science.gov (United States)

    Siragy, Helmy M; Xue, Chun; Webb, Randy L

    2006-05-01

    The aim of this study was to determine if myocardial inflammation is increased after myocardial ischemia and whether angiotensin-converting enzyme inhibitors, calcium channel blockers, or diuretics decrease mediators of inflammation in rats with induced myocardial ischemia. Changes in cardiac interstitial fluid (CIF) levels of nitric oxide metabolites (NOX), cyclic guanosine 3',5'-monophosphate (cGMP), angiotensin II (Ang II), and tumor necrosis factor-alpha (TNF-alpha) were monitored with/without oral administration of benazepril, amlodipine, combined benazepril-amlodipine, or hydrochlorothiazide. Using a microdialysis technique, levels of several mediators of inflammation were measured after sham operation or 30-minute occlusion of the left anterior descending coronary artery. Compared with sham animals, levels of CIF NOX and cGMP were decreased in animals with ischemia (P Benazepril or amlodipine significantly increased NOX levels (P benazepril significantly increased cGMP (P benazepril-amlodipine further increased CIF NOX and cGMP (P benazepril alone, or combined benazepril-amlodipine significantly reduced TNF-alpha (P benazepril-amlodipine may be beneficial for managing cardiac ischemia.

  3. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K.; Ahmed, Salahuddin, E-mail: salah.ahmed@wsu.edu

    2015-09-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p < 0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p < 0.05; n = 4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p < 0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNFinduced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. - Highlights: • Evolving evidence suggests that ASK1 plays a central role in rheumatic arthritis (RA). • TNF-α activates ASK1, which regulate downstream signaling through JNK/p38 activation in RA-FLS. • ASK1 may be used as a potential therapeutic target in RA. • Thymoquinone was able to selectively inhibit TNF-α-induced phosphorylation of ASK1 in RA-FLS. • Thymoquinone might serve as a potential small

  4. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  5. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    Science.gov (United States)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  6. Modulation by Blood-cooling and Blood Flow-promoting Herbs to the expression of TNF-α and bFGF in radiation induced lung damage of rats

    International Nuclear Information System (INIS)

    Yang Minghui; Zang Qian; Dou Yongqi; Feng Linchun

    2007-01-01

    Objective: To observe the modulation by Blood-cooling and Blood Flow-promoting Herbs to expressions of tumor necrosis factor α (TNF-α) and basic fibroblast growth factors (bFGF) in radiation-induced lung injury of rats at different radiation times, and explore the mechanism of prevention and curative effect of the herbs on radiation lung injury. Methods: 160 wistar rats were randomly allocated into irradiation group, treatment group, herb-fracture group and control group. The first two groups were irradiated to right hemithorax with a dose of 30 Gy/10 fraction/5 weeks. Animals were sacrificed at weeks 3,5,8,12 and 26 post irradiation. The level of immunoreactivity of cytokine TNF-α and bFGF was evaluated. Results: The acute radiation-induced pneumonia occurred at weeks 3 and was most serious at weeks 5 and pulmonary fibrosis was remarkable at the late phase in irradiation group. The pneumonia and fibrosis of treatment group were lighter than that of irradiation group. Expressions of TNF-α and bFGF reached their peaks at weeks 5 and 26 of respectively. The expressions in treatment group was significantly lower than that the irradiation group( P<0.01). Conclusions: Blood-cooling and Blood Flow-promoting Herbs can prevent and treat the radiation-reduced lung injury by restraining the expression of TNF-α and bFGF. (authors)

  7. Potentiation of contraction of rabbit airway smooth muscle by some cyclooxygenase products.

    Science.gov (United States)

    Armour, C L; Johnson, P R; Black, J L

    1988-06-01

    An alteration in smooth muscle sensitivity may be one of the mechanisms of the airway hyperresponsiveness observed in asthma. Indomethacin inhibits experimentally induced airway hyperresponsiveness. We thus examined the effects of the cyclooxygenase products PGD2, PGF2 alpha and a thromboxane A2 analogue U46619 on contractile responses of rabbit airway smooth muscle to histamine, carbachol and electrical field stimulation (EFS). PGD2 did not potentiate any contractile responses. When PGF2 alpha (1 microM) was administered 30 min before cumulative concentration-response curves to histamine and carbachol, no potentiation was observed. However, PGF2 alpha (1 microM) added immediately before EFS and bolus doses of histamine potentiated the contractile responses. U46619 increased the cumulative concentration-responses to both histamine and carbachol. The fact that we could alter smooth muscle sensitivity in vitro with PGF2 alpha and a thromboxane analogue suggests that these mediators may be involved in the airway hyperresponsiveness observed in asthma.

  8. [Anti-TNF-alpha therapy in ulcerative colitis].

    Science.gov (United States)

    Lakatos, Péter László; Lakatos, László

    2008-05-18

    The most important factors that determine treatment strategy in ulcerative colitis (UC) are disease extent and severity. Orally-topically administered 5-aminosalicylates (5-ASA) remain the treatment of choice in mild-to-moderate UC. In contrast, the treatment of refractory (to steroids, azathioprine or 5-ASA) and fulminant cases is still demanding. New evidence supports a role for infliximab induction and/or maintenance therapy in these subgroup of patients leading to increased remission and decreased colectomy rates. The aim of this paper is to review the rationale for the use of TNF-alpha inhibitors in the treatment of UC.

  9. A potent and selective p38 inhibitor protects against bone damage in murine collagen-induced arthritis : a comparison with neutralization of mouse TNF alpha

    NARCIS (Netherlands)

    Mihara, K.; Almansa, C.; Smeets, R. L.; Loomans, E. E. M. G.; Dulos, J.; Vink, P. M. F.; Rooseboom, M.; Kreutzer, H.; Cavalcanti, F.; Boots, A. M.; Nelissen, R. L.

    Background and purpose: The p38 kinase regulates the release of proinflammatory cytokines including tumour-necrosis factor-alpha (TNF alpha) and is regarded as a potential therapeutic target in rheumatoid arthritis (RA). Using the novel p38 inhibitor Org 48762-0, we investigated the therapeutic

  10. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Morris, Jessica D; Brooks, Michelle N; Carlson, Tracy K; Bakthavachalu, Baskar; Schoenberg, Daniel R; Torrelles, Jordi B; Schlesinger, Larry S

    2011-10-18

    Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPK-activated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3' UTR region of TNF mRNA and destabilizes the transcript, whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M.tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M.tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M.tb to subvert host immunity and potentially increase its virulence.

  11. TNF-α mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    International Nuclear Information System (INIS)

    Kim, Beom-Jun; Bae, Sung Jin; Lee, Sun-Young; Lee, Young-Sun; Baek, Ji-Eun; Park, Sook-Young; Lee, Seung Hun; Koh, Jung-Min; Kim, Ghi Su

    2012-01-01

    Highlights: ► Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. ► TNF-α increases the activity and expression of MEF2 in UMR-106 cells. ► TNF-α blocker prevents the stimulation of bony sclerostin expression by ovariectomy. ► No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude mice was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 μg/kg β-estradiol five times per week for three weeks, or 10 mg/kg TNF-α blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-α, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-α also increased the nuclear MEF2 expression. Furthermore, the TNF-α blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between ovariectomized nude mice and sham-operated nude mice. In conclusion, these results suggest that TNF-α originating from T cells may be at least in part

  12. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    Science.gov (United States)

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (Peffect of PA. A decrease in the intracellular calcium level (Peffect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  13. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You Ah Kim

    2015-08-01

    Full Text Available The inhibitory effect of three chromones 1–3 and two coumarins 4–5 on the production of nitric oxide (NO was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1, a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2 production and expression of cytokines such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6.

  14. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-01-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE 2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE 2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  15. Effects of morphine on the expression of cytokines and inflammatory mediators in a rabbit model of endotoxin-induced experimental uveitis

    Directory of Open Access Journals (Sweden)

    Kethye P. Ortencio

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effects of 1% morphine instillation on clinical parameters, aqueous humor turbidity, and expression levels of tumor necrosis factor alpha (TNF-α, interleukin-1 beta (IL-1beta, prostaglandin E2 (PGE2, and myeloperoxidase (MPO in rabbits with endotoxin-induced experimental uveitis. Methods: Twenty four New Zealand white rabbits were divided into four groups (n=6 each: control (CG, morphine (MG, naloxone (NG, and morphine-naloxone (MNG groups. Under dissociative anesthesia, 0.1 mL of solution containing 0.2 µg of lipopolysaccharide (LPS endotoxin from the Salmonella typhimurium cell wall was injected in the vitreous chamber. Clinical evaluations (conjunctical hyperemia, chemosis blepharospasm, and ocular discharge and laser flaremetry were performed before (baseline, and 10 and 20 hours after induction of uveitis. Rabbits were subsequently euthanized and eyes were enucleated to quantify expression levels of TNF-α, IL-1 beta, PGE2, and MPO. Results: No significant differences in clinical parameters and flare values were observed between the study groups. TNF-α and IL-1 beta levels increased significantly in the CG, MG, NG, and MNG groups compared to baseline (P0.05. Conclusions: Morphine has no effect on clinical parameters, flare, or expression levels of inflammatory mediators in a rabbit model of uveitis induced by intravitreal injection of LPS.

  16. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    International Nuclear Information System (INIS)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-01-01

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin

  17. Cyclooxygenase expression in canine platelets and Madin-Darby canine kidney cells.

    Science.gov (United States)

    Kay-Mugford, P A; Benn, S J; LaMarre, J; Conlon, P D

    2000-12-01

    To examine cyclooxygenase (COX) expression in canine platelets and Madin-Darby canine kidney (MDCK) cells in culture. Canine platelets and MDCK cells. Total RNA was recovered from isolated canine platelets and MDCK cells. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR), using complementary DNA probes and primers designed from the human COX sequences, were used to determine COX-1 and -2 (cyclooxygenase isoforms 1 and 2) messenger RNA (mRNA) expression. Following northern blot analysis, canine platelets were found to express only the 2.8-kb COX-1 transcript; COX-2 was not detected. Canine MDCK cells expressed the 4.5-kb COX-2 transcript, in addition to the 2.8-kb COX-1 transcript. A single DNA band of 270 base pairs was identified following gel electrophoresis of the product obtained from RT-PCR of mRNA from canine platelets. Sequencing revealed that this PCR product was 90% homologous to a portion of the human COX-1 gene (Genbank M59979). Detection of COX-1 by RT-PCR of RNA obtained from canine platelets is a novel finding. The 90% homology of the PCR product with the human sequence suggests strong conservation between the canine and human COX-1 gene. Cloning and sequencing of the canine gene will be required to fully characterize homologous regions. Because of the importance of COX in the inflammatory process and as a potential target of currently available nonsteroidal anti-inflammatory drugs (NSAID), a better understanding of canine COX may improve our ability to use NSAID appropriately, achieve efficacy, and avoid potential adverse drug effects in dogs.

  18. Kinetics of IFN-gamma and TNF-alpha gene expression and their relationship with disease progression after infection with Mycobacterium tuberculosis in guinea pigs.

    Science.gov (United States)

    Roh, In Soon; Cho, Sungae; Eum, Seok-Yong; Cho, Sang-Nae

    2013-05-01

    Guinea pig is one of the most suitable animal models for Mycobacterium tuberculosis (M. tb) infection since it shows similarities to pulmonary infection in humans. Although guinea pig shows hematogenous spread of M. tb infection into the whole body, immunological studies have mainly focused on granulomatous tissues in lungs and spleens. In order to investigate the time-course of disease pathogenesis and immunological profiles in each infected organ, we performed the following approaches with guinea pigs experimentally infected with M. tb over a 22-week post-infection period. We examined body weight changes, M. tb growth curve, cytokine gene expression (IFN-γ and TNF-α), and histopathology in liver, spleen, lungs and lymph nodes of infected guinea pigs. The body weights of infected guinea pigs did not increase as much as uninfected ones and the number of M. tb bacilli in their organs increased except bronchotracheal lymph node during the experimental period. The gene expression of IFN-γ and TNF-α was induced between 3 and 6 weeks of infection; however, kinetic profiles of cytokine gene expression showed heterogeneity among organs over the study period. Histophathologically granulomatous lesions were developed in all four organs of infected guinea pigs. Although IFN-γ and TNF-α gene expression profiles showed heterogeneity, the granuloma formation was clearly observed in every organ regardless of whether the number of bacilli increased or decreased. However, this protective immunity was accompanied with severe tissue damage in all four organs, which may lead to the death of guinea pigs.

  19. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    Science.gov (United States)

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  20. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection

    Science.gov (United States)

    Feng, Jianjun; Guan, Ruizhang; Guo, Songlin; Lin, Peng; Zadlock, Frank

    2014-09-01

    As a potent pleiotropic cytokine, tumor necrosis factor-alpha (TNF-α) plays an important role in innate immune responses. The cDNA sequence and genomic structure of the TNF-α gene ( Aj TNF-α) in the Japanese eel ( Anguilla japonica) were identified and characterized. The full-length AjTNF-α cDNA was 1 546 bp, including a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 879 bp and an open reading frame of 654 bp encoding a protein of 218 amino acids. The full-length genomic sequence of AjTNF-α was 2 392 bp and included four exons and three introns. The putative AjTNF-α protein contained TNF family signature motifs, including a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Quantitative real-time reverse transcription PCR analysis revealed AjTNFexpression in a wide range of tissues, with predominant expression in blood and liver. Lower levels of expression were seen in spleen, gills, kidney, intestine, heart, and skin, with very low levels in muscle. The modulation of AjTNFexpression after injection of eels with lipopolysaccharide (LPS), the viral mimic, poly I:C, or Aeromonas hydrophila was assessed in blood, liver, and kidney. In blood, TNF-α mRNA levels increased rapidly and then rapidly decreased after stimulation with LPS, poly I:C or A. hydrophila. However, the response to LPS and A. hydrophila peaked at 6 h while for poly I:C the peak was at 12 h. In liver, after injection with A. hydrophila, an up- and down-regulation of AjTNFexpression occurred twice, peaking at 6 h and 24 h, respectively. No remarkable increase of AjTNFexpression appeared in liver until 72 h after LPS or poly I:C treatment. In kidney, AjTNFexpression increased significantly only at 72 h post-stimulation with LPS or A. hydrophila. Our results suggest that AjTNF-α plays an important role in fish in the defense against viral and bacterial infection.

  1. Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ.

    Science.gov (United States)

    Castan-Laurell, Isabelle; Vítkova, Michaela; Daviaud, Danièle; Dray, Cédric; Kováciková, Michaela; Kovacova, Zuzana; Hejnova, Jindriska; Stich, Vladimir; Valet, Philippe

    2008-06-01

    Apelin is a novel adipokine acting on APJ receptor, regulated by insulin and tumor necrosis factor-alpha (TNF-alpha) in adipose tissue (AT). Plasma apelin levels are increased in obese hyperinsulinemic subjects. The aim was to investigate whether the hypocaloric diet associated with weight loss modifies the elevated plasma apelin levels and the expression of apelin and APJ receptor in AT in obese women. Fasting plasma levels of apelin and TNF-alpha as well as mRNA levels of apelin and APJ in AT were measured before and after a 12-week hypocaloric weight-reducing diet in 20 obese women (body mass index (BMI) before diet 32.2+/-6.4 kg/m(2)). Twelve healthy women with a BMI of 20.7+/-0.6 kg/m(2) served as reference. Plasma levels of apelin and TNF-alpha were higher in obese compared with lean controls. The hypocaloric diet resulted in a significant decrease of BMI to 29.8+/-6.3 kg/m(2), plasma insulin (8.16+/-0.73 to 6.58+/-0.66 mU/l), apelin (369+/-25 pg/ml to 257+/-12 pg/ml), TNF-alpha levels (0.66+/-0.04 pg/ml to 0.56+/-0.04 pg/ml), and AT mRNAs of apelin and APJ. In addition, changes in AT mRNA apelin were related to changes in AT mRNA APJ levels. The hypocaloric diet associated with weight loss reduces the increased plasma and AT expression of apelin in obese women. This reduced apelin expression in AT could contribute to decreased circulating apelin levels.

  2. Protective effects of total glucosides of paeony and the underlying mechanisms in carbon tetrachloride-induced experimental liver injury

    Science.gov (United States)

    Qin, Ying; Tian, Ya-ping

    2011-01-01

    Introduction We explored the protective effects of total glucosides of paeony (TGP) and the underlying mechanisms in carbon tetrachloride (CCl4)-induced experimental liver injury in mice. Material and methods Chronic liver damage was induced by intraperitoneal injection of CCl4 (0.5 µl/g) three times per week for 8 weeks. Mice also received 25, 50 or 100 mg/kg TGP. Liver sections were stained with haematoxylin/eosin. Serum amino transferases, lipid peroxidation and tumour necrosis factor-α (TNF-α) levels were determined using commercial assays. Quantitative real-time polymerase chain reaction was used to determine the changes in hepatic TNF-α, COX-2, iNOS and HO-1 expression. Protein levels of nitric oxide synthase, cyclooxygenase-2, haem oxygenase-1 and cytochrome P450 2E1 were determined by western blotting. Results Histological results showed that TGP improved the CCl4-induced changes in liver structure and alleviated lobular necrosis. The increases in serum protein and hepatic mRNA expression of TNFinduced by CCl4 treatment were suppressed by TGP. Total glucosides of paeony also attenuated the increase the expression in iNOS and CYP2E1 but augmented the increase in HO-1.The mRNA and protein expression levels of inducible HO-1 increased significantly after CCl4 treatment. Conclusions Total glucosides of paeony protects hepatocytes from oxidative damage induced by CCl4. Total glucosides of paeony may achieve these effects by enhancing HO-1 expression and inhibiting the expression of proinflammatory mediators. PMID:22291795

  3. Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment

    Science.gov (United States)

    de M. Souza, Carlos H.; Toledo-Piza, Evandro; Amorin, Renee; Barboza, Andrigo; Tobias, Karen M.

    2009-01-01

    Canine inflammatory mammary carcinoma (IMC) is a rare, locally aggressive, highly metastatic tumor that is poorly responsive to treatment. The purposes of this study were to retrospectively evaluate the history, signalment, and clinical signs of dogs with IMC; compare the outcome of affected dogs treated with traditional chemotherapy with those treated with piroxicam; evaluate Cox-2 expression of IMC cells; and correlate Cox-2 expression with outcome based on treatment. Strong cyclooxygenase-2 expression was present in all tumors. Improvement in clinical condition and disease stability was achieved in all dogs treated with piroxicam, with mean and median progression-free survival of 171 and 183 days, respectively. Median survival time of 3 dogs treated with doxorubicin-based protocols was 7 days, which was significantly less than that of dogs treated with piroxicam (median, 185 days). In conclusion, piroxicam should be considered as a single agent for the treatment of dogs with inflammatory mammary carcinoma. PMID:19436636

  4. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta.

    Science.gov (United States)

    Zhang, Xian-Ming; Chen, Jia; Xia, Yu-Gui; Xu, Qiang

    2005-03-01

    In our previous study, quercetin was found to induce apoptosis of murine melanoma B16-BL6 cells. The cellular and molecular mechanism of quercetin-induced apoptosis was investigated in the present study. Nuclear morphology was determined by fluorescence microscopy. DNA fragmentation was analyzed by electrophoresis and quantified by the diphenylamine method. The transmembrane potential of mitochondria was measured by flow cytometry. Bcl-2, Bcl-X(L), PKC-alpha, PKC-beta, and PKC-delta were detected by Western blotting. Caspase activity was determined spectrophotometrically. Quercetin induced the condensation of nuclei of B16-BL6 cells in a dose-dependent pattern as visualized by Hoechst 33258 and propidium iodide dying. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly enhanced apoptosis induced by quercetin, while doxorubicin, a PKC inhibitor, markedly decreased it. Both PMA and doxorubicin showed a consistent effect on the fragmentation of nuclear DNA caused by various dosages of quercetin. Quercetin dose-dependently led to loss of the mitochondrial membrane potential, which was also significantly reinforced or antagonized by PMA and doxorubicin, respectively. Moreover, PMA showed reinforcement, while doxorubicin showed significant antagonization, of the quercetin-mediated decrease in the expression of Bcl-2. Quercetin promoted caspase-3 activity in a dose-dependent manner, which was also regulated by PMA and doxorubicin with a pattern similar to that seen in their effect on apoptosis, mitochondrial membrane potential and Bcl-2 expression, but none of these were directly affected by PMA and doxorubicin. Free fatty acid and chlorpromazine, a PKC activator and inhibitor, respectively, did not interfere with these effects of quercetin. B16-BL6 cells expressed PKC-alpha, PKC-beta, and PKC-delta. Quercetin dose-dependently inhibited the expression of PKC-alpha but not that of PKC-beta and PKC-delta. Doxorubicin almost completely blocked the effect of

  5. Reduction in high blood tumor necrosis factor-alpha levels after manipulative therapy in 2 cervicogenic headache patients.

    Science.gov (United States)

    Ormos, Gábor; Mehrishi, J N; Bakács, Tibor

    2009-09-01

    This case report discusses the treatment of 2 patients with cervicogenic headache (CHA) attending the Outpatient Clinic of the Hungarian National Institute for Rheumatology and Physiotherapy (Budapest, Hungary) and reviews the pathophysiology, therapeutic strategy, and problems associated with the treatment of CHA. Patient 1 was a 27-year-old female who sustained a whiplash injury. A sharp, shooting headache developed, readily induced, and aggravated by just bending the neck backward or by turning her head. Magnetic resonance imaging revealed a disk protrusion at C4-C5 pressing the anterior cerebrospinal space. Patient 2 was a 62-year-old female who sustained a whiplash injury; her cervical movements became restricted, which precipitated headaches. Magnetic resonance imaging revealed a paramedian disk hernia between the C4 and C5 vertebrae that intruded into the right ventral cerebrospinal space. After 4 weeks of manipulative therapy for patient 1, both active and passive range of motion returned to normal, and the high tumor necrosis factor-alpha (TNF-alpha) level (63 pg/mL) was substantially reduced (28 pg/mL). Patient 2 was started on manipulative therapy twice a week for 4 weeks; after 2 months, the patient became symptom-free, and high TNF-alpha level (72 pg/mL) was reduced greatly (35 pg/mL). Two patients with whiplash injury and disk herniation developed CHA associated with very high TNF-alpha levels. After manipulative therapy, these patients became symptom-free, and their TNF-alpha levels decreased substantially.

  6. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Zhai, Yue; Wu, Bo; Li, Jia; Yao, Xi-ying; Zhu, Ping; Chen, Zhi-nan

    2016-01-01

    TNF is highly expressed in synovial tissue of rheumatoid arthritis (RA) patients, where it induces proinflammatory cytokine secretion. However, in other cases, TNF will cause cell death. Considering the abnormal proliferation and activation of rheumatoid arthritis synovioblasts, the proper rate of synovioblast apoptosis could possibly relieve arthritis. However, the mechanism mediating TNF-induced synovioblast survival versus cell death in RA is not fully understood. Our objective was to study the role of CD147 in TNF downstream pathway preference in RA synovioblasts. We found that overexpressing TNF in synovial tissue did not increase the apoptotic level and, in vitro, TNF-induced mild synovioblast apoptosis and promoted IL-6 secretion. CD147, which was highly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), increased the resistance of synovioblasts to apoptosis under TNF stimulation. Downregulating CD147 both increased the apoptotic rate and inhibited IκB kinase (IKK)/IκB/NF-κB pathway-dependent proinflammatory cytokine secretion. Further, we determined that it was the extracellular portion of CD147 and not the intracellular portion that was responsible for synovioblast apoptosis resistance. CD147 monoclonal antibody inhibited TNF-induced proinflammatory cytokine production but had no effect on apoptotic rates. Thus, our study indicates that CD147 is resistant to TNF-induced apoptosis by promoting IKK/IκB/NF-κB pathway, and the extracellular portion of CD147 is the functional region. CD147 inhibits TNF-stimulated RASF apoptosis. CD147 knockdown decreases IKK expression and inhibits NF-κB-related cytokine secretion. CD147's extracellular portion is responsible for apoptosis resistance. CD147 antibody inhibits TNF-related cytokine secretion without additional apoptosis.

  7. iRhom2 deficiency relieves TNF-α associated hepatic dyslipidemia in long-term PM2.5-exposed mice.

    Science.gov (United States)

    Ge, Chen-Xu; Qin, Yu-Ting; Lou, De-Shuai; Li, Qiang; Li, Yuan-Yuan; Wang, Zhong-Ming; Yang, Wei-Wei; Wang, Ming; Liu, Nan; Wang, Zhen; Zhang, Peng-Xing; Tu, Yan-Yang; Tan, Jun; Xu, Min-Xuan

    2017-12-02

    Accumulating researches reported that particulate matter (PM2.5) is a risk factor for developing various diseases, including metabolic syndrome. Recently, inactive rhomboid protein 2 (iRhom2) was considered as a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells. TNF-α, a major pro-inflammatory cytokine, was linked to various pathogenesis of diseases, including dyslipidemia. Here, wild type (WT) and iRhom2-knockout (iRhom2 -/- ) mice were used to investigate the effects of iRhom2 on PM2.5-induced hepatic dyslipidemia. The hepatic histology, inflammatory response, glucose tolerance, serum parameters and gene expressions were analyzed. We found that long-term inhalation of PM2.5 resulted in hepatic steatosis. And a significant up-regulation of iRhom2 in liver tissues was observed, accompanied with elevated TNF-α, TNF-α converting enzyme (TACE), TNFα receptor (TNFR)2 and various inflammatory cytokines expressions. Additionally, PM2.5 treatment caused TG and TC accumulation in serum and liver, probably attributed to changes of genes modulating lipid metabolism. Intriguingly, hepatic injury and dyslipidemia were attenuated by iRhom2 -/- in mice with PM2.5 challenge. In vitro, iRhom2-knockdwon reduced TNFexpressions and its associated inflammatory cytokines in Kupffer cells, implying that liver-resident macrophages played an important role in regulating hepatic inflammation and lipid metabolism in cells treated with PM2.5. The findings indicated that long-term PM2.5 exposure caused hepatic steatosis and dyslipidemia through triggering inflammation, which was, at least partly, dependent on iRhom2/TNF-α pathway in liver-resident macrophages. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Protective specific immunity induced by cyclophosphamide plus tumor necrosis factor alpha combination treatment of EL4-lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Krawczyk, C M; Verstovsek, S; Ujházy, P; Maccubbin, D; Ehrke, M J

    1995-06-01

    A combination treatment protocol initiated 12 days after tumor injection, when the tumor was large, by administering cyclophosphamide (CY, 150 or 250 mg/kg) intraperitoneally followed by intravenous tumor necrosis factor alpha (TNF alpha, 1000 units injection) on days 13, 16, 18, 21, and 23, resulted in about 60% long-term survival (i.e., survival for at least 60 days) in the syngeneic C57BL/6 mouse/EL4 lymphoma model system. The establishment of a specific antitumor immune memory and its possible therapeutic relevance was verified by reinjecting 60-day survivors with EL4 cells; all 60-day survivors that had received the combination treatments rejected the implants and survived for a further 60 days. Thymic cellularity was reduced during treatment and its recovery appeared to correlate with long-term survival and immunity. Thymocytes from mice treated with the combination were found to express significant levels of specific anti-EL4 cytolytic activity following a 4-day stimulation culture with X-irradiated EL4 cells and low concentrations of interleukin-2. This response could not be generated with thymocytes from naive animals. In each case the effect seen with the combination of a moderate CY dose (150 mg/kg) with TNF alpha was better than that seen with either dose of CY alone and equal to or better than that seen with the higher dose of CY combined with TNF alpha. These results indicate that treatment with a single moderate dose of CY in combination with TNF alpha is effective against a large, established tumor in this murine model. Furthermore, all the long-term survivors induced by this treatment developed protective immunity against reimplanted tumor and demonstrated a long-term specific immune memory in the thymus.

  9. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea.

    Science.gov (United States)

    Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B

    2007-08-27

    This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.

  10. Regulation of cyclooxygenase expression in cultured vascular cells

    International Nuclear Information System (INIS)

    Pash, J.M.

    1988-01-01

    Arachidonic acid metabolism in vascular tissue results in synthesis of prostacylin. The key enzyme in this synthesis pathway, cyclooxygenase, is down-regulated through self-inactivation. An analogous refractory state is produced by aspirin which irreversibly acetylates the enzyme. To further understand this phenomenon, the inactivation and recovery of cyclooxygenase activity was assayed in cultured ray vascular smooth muscle cells using exogenously added arachidonic acid. Self-inactivation of cyclooxygenase was observed following treatment with micromolar amounts of arachidonic acid. The recovery of cyclooxygenase activity following self-inactivation was analogous to that observed following aspirin-inactivation in that it depended on protein synthesis and required either serum or EGF. Two additional factors, TGF-β and uric acid, were found to enhance the stimulation of cyclooxygenase recovery by EGF. A defined medium containing 10 ng/mL EGF, 1 ng/mL TGFβ and 0.1 mM uric acid duplicated the cyclooxygenase recovery activity of 10% serum. Stimulation of cyclooxygenase activity by EGF and TGF-β was inhibited by cycloheximide but not by actinomycin-D, indicating a link to increased translation of pre-existing mRNA. A lack of significant effect on overall protein synthesis by EGF and TGF-β, measured by [ 35 S]-methionine incorporation under conditions where a multi-fold increase in cyclooxygenase activity was seen, indicates that the translational regulation of a small fraction of total mRNA and possibly cyclooxygenase is occurring

  11. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Science.gov (United States)

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  13. Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis.

    Science.gov (United States)

    Choi, Sung Hee; Kim, Byung-Gyu; Robinson, Janet; Fink, Steve; Yan, Min; Sporn, Michael B; Markowitz, Sanford D; Letterio, John J

    2014-06-01

    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-α, IFN-γ, iNOS, IL-6, IL-1β; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-β signaling inhibitors in vitro. Furthermore, CDDO-Me-dependent 15-PGDH induction was not observed in Smad3-/- mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfate-induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans.

  14. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade

    Energy Technology Data Exchange (ETDEWEB)

    El-Gowelli, Hanan M., E-mail: dr_Hanan_el_gowali@hotmail.com; Saad, Evan I.; Abdel-Galil, Abdel-Galil A.; Ibrahim, Einas R.

    2015-11-01

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5 mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. - Highlights: • Lipoic acid is more effective than

  15. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  16. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer.

    Science.gov (United States)

    Liu, Zhenhua; Brooks, Ryan S; Ciappio, Eric D; Kim, Susan J; Crott, Jimmy W; Bennett, Grace; Greenberg, Andrew S; Mason, Joel B

    2012-10-01

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  18. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  19. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    Science.gov (United States)

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  20. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  1. In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis.

    Science.gov (United States)

    Küsters, S; Tiegs, G; Alexopoulou, L; Pasparakis, M; Douni, E; Künstle, G; Bluethmann, H; Wendel, A; Pfizenmaier, K; Kollias, G; Grell, M

    1997-11-01

    The significance of tumor necrosis factor receptor 1 (TNFR1) for TNF function in vivo is well documented, whereas the role of TNFR2 so far remains obscure. In a model of concanavalin A (Con A)-induced, CD4+ T cell-dependent experimental hepatitis in mice, in which TNF is a central mediator of apoptotic and necrotic liver damage, we now provide evidence for an essential in vivo function of TNFR2 in this pathophysiological process. We demonstrate that a cooperation of TNFR1 and TNFR2 is required for hepatotoxicity as mice deficient of either receptor were resistant against Con A. A significant role of TNFR2 for Con A-induced hepatitis is also shown by the enhanced sensitivity of transgenic mice overexpressing the human TNFR2. The ligand for cytotoxic signaling via both TNF receptors is the precursor of soluble TNF, i.e. transmembrane TNF. Indeed, transmembrane TNF is sufficient to mediate hepatic damage, as transgenic mice deficient in wild-type soluble TNF but expressing a mutated nonsecretable form of TNF developed inflammatory liver disease.

  2. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  3. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-01-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-α)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNFinduces various biological effects on vascular cells, TNF-α dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-α concentrations, we adopted the lower TNF-α (0.2 ng/ml) to rule out the possible involvement of other TNF-α-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-α-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-α-induced nuclear factor-kappaB (NF-κB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-α. Inhibition of ERK, JNK, or NF-κB attenuates TNF-α-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNFinduces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-κB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-α. Although AP-1 activation by the lower TNF-α was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-α-induced adhesion molecule expression

  4. Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis.

    Science.gov (United States)

    Gonzalez-Gay, M A; Garcia-Unzueta, M T; Berja, A; Gonzalez-Juanatey, C; Miranda-Filloy, J A; Vazquez-Rodriguez, T R; de Matias, J M; Martin, J; Dessein, P H; Llorca, J

    2009-01-01

    The adipocytokine leptin regulates weight centrally and participates in the regulation of the immune and inflammatory responses. Chronic systemic inflammation is of major importance in the development of atherosclerosis in rheumatoid arthritis (RA). In the present study we investigated whether inflammation, obesity or both of these characteristics are potential determinants of circulating leptin concentrations in a group of RA patients on periodical treatment with the TNF-alpha-blocker-infliximab due to severe disease. We also assessed whether the infusion of infliximab may alter circulating leptin concentrations in patients with severe RA. We investigated 33 patients with RA on periodical treatment with infliximab. Serum leptin levels were determined immediately prior to and after infliximab infusion. There was a positive correlation between body mass index of RA patients and baseline serum level of leptin (rho=0.665, pghrelin or the cumulative prednisone dose at the time of the study were found. Leptin levels did not change upon infliximab infusion (p=0.48). In RA patients on TNF-alpha blocker treatment, circulating leptin levels are unrelated to disease activity but constitute a manifestation of adiposity. The beneficial effect of anti-TNF-alpha therapy on cardiovascular mortality in RA does not seem to be mediated by reduction in serum levels of leptin.

  5. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  6. CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN

    Directory of Open Access Journals (Sweden)

    Diana Legarda

    2016-06-01

    Full Text Available Tumor necrosis factor (TNF induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS-induced necroptosis was abrogated in Tnf−/− macrophages, a soluble TNF antagonist was not able to do so in Tnf+/+ macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk.

  7. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  8. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Poulsen, Lars K.; Bindslev-Jensen, Carsten

    2013-01-01

    IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have...

  9. Mechanism of inhibitory effect of atorvastatin on resistin expression induced by tumor necrosis factor-α in macrophages

    Directory of Open Access Journals (Sweden)

    Chua Su-Kiat

    2009-05-01

    Full Text Available Abstract Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNFinduced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.

  10. TNF-α Regulates Mast Cell Functions by Inhibiting Cell Degranulation

    Directory of Open Access Journals (Sweden)

    Yuwei Gao

    2017-11-01

    Full Text Available Background/Aims: The aim of this study was to investigate the involvement of inducible co-stimulatory ligand (ICOSL expression in stimulation of mast cells (MCs by TNF-α and the ability of TNF-α stimulation of MCs to influence CD4+ T cell differentiation and function. The mechanisms underlying TNF-α stimulation of MCs were also explored. Methods: Mast cells and CD4+ T cells were prepared from C57BL/6 mice (aged 6–8 weeks. ICOSL expression by MCs was measured by real-time PCR and flow cytometry, and levels of IL-4, IL-10 and IFN-γ were measured by ELISA. Results: ICOSL expression by MCs was increased by TNF-α stimulation, and resulted in interaction with CD4+ T cells. The IL-4 and IL-10 levels in the co-culture system increased, while IFN-γ levels decreased. Furthermore, CD4+CD25+Foxp3+ T cell proliferation was induced by co-culture with TNF-α-stimulated MCs. The mechanism by which TNF-α stimulated MCs was dependent on the activation of the MAPK signaling pathway. Conclusion: TNF-α upregulated the expression of ICOSL on mast cells via a mechanism that is dependent on MAPK phosphorylation. TNF-α-treated MCs promoted the differentiation of regulatory T cells and induced a shift in cytokine expression from a Th1 to a Th2 profile by up-regulation ICOSL expression and inhibition of MC degranulation. Our study reveals a novel mechanism by which mast cells regulate T cell function.

  11. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    Science.gov (United States)

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  12. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  13. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  14. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    Science.gov (United States)

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  15. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Mayara Fernanda Maggioli

    2016-10-01

    Full Text Available Central memory T cells (Tcm and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB; however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated. BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection, non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.

  16. Effect of tumor necrosis factor-alpha infusion on the incretin effect in healthy volunteers

    DEFF Research Database (Denmark)

    Nielsen, Signe Tellerup; Lehrskov-Schmidt, Louise; Krogh-Madsen, Rikke

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance, impaired incretin effect, and increased plasma levels of tumor necrosis factor-alpha (TNF-α). Whereas TNF-α infusion at a dose that induces systemic inflammation in healthy volunteers has been demonstrated to induce...

  17. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-01-01

    Highlights: ► PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. ► Metformin suppressed TNF-α-induced COX-2 and iNOS mRNA expression. ► Compound C and bpv (pic) increased iNOS and COX-2 protein expression. ► NF-κB activation was restored by inhibiting AMPK and PTEN. ► AMPK and PTEN regulated TNF-α-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK–PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the

  18. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells.

    Science.gov (United States)

    Chuang, Chun-Wei; Pan, Mei-Ren; Hou, Ming-Feng; Hung, Wen-Chun

    2013-02-01

    Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  19. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways

    International Nuclear Information System (INIS)

    Wang Xia; Chen Wenshu; Lin Yong

    2007-01-01

    Blockage of either nuclear factor-κB (NF-κB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-κB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-κB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-κB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-κB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-κB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-κB and Akt, which may be applied in lung cancer therapy

  20. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase.

    Science.gov (United States)

    Park, Yong Seek; Kim, Jayoung; Misonou, Yoshiko; Takamiya, Rina; Takahashi, Motoko; Freeman, Michael R; Taniguchi, Naoyuki

    2007-06-01

    Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.

  2. Inhibiting TNF-α signaling does not attenuate induction of endotoxin tolerance

    Directory of Open Access Journals (Sweden)

    Loosbroock C

    2014-12-01

    Full Text Available Christopher Loosbroock, Kenneth W Hunter Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA Abstract: Tumor necrosis factor-alpha (TNF-α is a central mediator of inflammatory responses elicited by Toll-like receptor agonists, such as the Gram-negative bacterial outer membrane antigen lipopolysaccharide (LPS. TNF-α is responsible for altering vascular permeability and activating infiltrating inflammatory cells, such as monocytes and neutrophils. Interestingly, TNF-α has also demonstrated the ability to induce tolerance to subsequent challenges with TNF-α or LPS in monocyte and macrophage cell populations. Tolerance is characterized by the inability to mount a typical inflammatory response during subsequent challenges following the initial exposure to an inflammatory mediator such as LPS. The ability of TNF-α to induce a tolerant-like state with regard to LPS is most likely a regulatory mechanism to prevent excessive inflammation. We hypothesized that the induction of tolerance or the degree of tolerance is dependent upon the production of TNF-α during the primary response to LPS. To investigate TNF-α-dependent tolerance, human monocytic THP-1 cells were treated with TNF-α-neutralizing antibodies or antagonistic TNF-α receptor antibodies before primary LPS stimulation and then monitored for the production of TNF-α during the primary and challenge stimulation. During the primary stimulation, anti-TNF-α treatment effectively attenuated the production of TNF-α and interleukin-1β; however, this reduced production did not impact the induction of endotoxin tolerance. These results demonstrate that interfering with TNF-α signaling attenuates production of inflammatory cytokines without affecting the induction of tolerance. Keywords: endotoxin tolerance, lipopolysaccharide, tumor necrosis factor-alpha, anti-tumor necrosis factor-alpha, THP-1 cells

  3. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  4. Role of golimumab, a TNF-alpha inhibitor, in the treatment of the psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    Melissa A Michelon

    2010-05-01

    Full Text Available Melissa A Michelon1, Alice B Gottlieb1,21Tufts University School of Medicine, 2Department of Dermatology, Tufts Medical Center, Boston, MA, USAAbstract: Psoriatic arthritis (PsA is an inflammatory arthritis that affects many psoriasis patients and can often have a debilitating disease progression. Golimumab is a new tumor necrosis factor (TNF antagonist recently approved by the FDA for controlling signs and symptoms of psoriatic arthritis. In a Phase III clinical trial in patients with PsA, patients receiving golimumab showed significant improvement in the signs and symptoms of disease. It was usually well tolerated, but adverse events generally occurred more in patients receiving golimumab compared to placebo. Golimumab has also recently shown efficacy in slowing structural damage in PsA. This new biologic therapy provides physicians with another option in the treatment of this inflammatory arthritis while offering patients certain advantages over other TNF antagonists.Keywords: golimumab, psoriatic arthritis, TNF-alpha inhibitor

  5. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  6. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice.

    Science.gov (United States)

    Guo, Yanling; Wu, Xiaxia; Wu, Qin; Lu, Yuanfu; Shi, Jingshan; Chen, Xiuping

    2018-04-01

    Ulcerative colitis (UC) is a chronic and relapsing inflammatory disorder of the colon and rectum with increasing morbidity in recent years. 15,16-dihydrotanshinone Ӏ (DHT) is a natural product with multiple bioactivities. In this study, we aimed to investigate the protective effect and potential mechanisms of DHT on UC. Dextran sulfate sodium salt (DSS) was administrated in drinking water for 7 days to induce UC in mice. DHT (10 and 25 mg/kg) significantly alleviated DSS-induced body weight loss, disease activity index (DAI) scores, and improved histological alterations of colon tissues. DHT inhibited the myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in colon tissues and decreased serum levels of TNF-α, IL-1β, IL-6, and high-mobility group box 1 (HMGB1). Furthermore, increased expression of kinases receptor-interacting protein 1 (RIP1), RIP3, mixed lineage kinase domain-like protein (MLKL) and decreased expression of caspase-8 in colon tissues were partially restored by DHT. In LPS-stimulated RAW264.7 macrophages, DHT significantly inhibited generation of nitric oxide, IL-6, TNF-α and protein expression of iNOS, COX-2. In addition, increased expression of iNOS, COX-2, and phosphorylated RIP1, RIP3, MLKL in response to LPS plus Z-VAD (LZ) were also suppressed by DHT. DHT had no effect on TNF-α + BV6 + Z-VAD (TBZ) induced phosphorylation of RIPs and MLKL in HT29 cells. Especially, DHT showed no effect on LZ and TBZ-induced necroptosis in RAW264.7 and HT29 cells, respectively. In summary, DHT alleviated DSS-induced UC in mice by suppressing pro-inflammatory mediators and regulating RIPs-MLKL-caspase-8 axis. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  8. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    Science.gov (United States)

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  9. Compensatory increase in alpha 1-globin gene expression in individuals heterozygous for the alpha-thalassemia-2 deletion.

    OpenAIRE

    Liebhaber, S A; Cash, F E; Main, D M

    1985-01-01

    alpha-Globin is encoded by the two adjacent genes, alpha 1 and alpha 2. Although it is clearly established that both alpha-globin genes are expressed, their relative contributions to alpha-globin messenger RNA (mRNA) and protein synthesis are not fully defined. Furthermore, changes that may occur in alpha-globin gene activity secondarily to the loss of function of one or more of these genes (alpha-thalassemia [Thal]) have not been directly investigated. This study further defines the expressi...

  10. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  11. Interleukin-10 to tumor necrosis factor-alpha ratio is a predictive biomarker in nonalcoholic fatty liver disease: interleukin-10 to tumor necrosis factor-alpha ratio in steatohepatitis.

    Science.gov (United States)

    Hashem, Reem M; Mahmoud, Mona F; El-Moselhy, Mohamed A; Soliman, Hala M

    2008-10-01

    Fatty liver disease is commonly associated with diabetes mellitus (DM). Insulin resistance (IR) as an investigative biomarker is only concerned with fatty liver that results from DM type 2 associated with metabolic syndrome. Irrespective of IR, DM is generally characterized by overproduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), whereas action of the latter is modulated by the anti-inflammatory cytokine interleukin-10 (IL-10). The aim of this study was to investigate the efficacy of using TNF-alpha alone or IL-10/TNF-alpha ratio compared to IR, as a promising biomarker for fatty liver assessment in DM. Furthermore, we hypothesized that using garlic as an immunomodulator may decrease TNF-alpha and increase IL-10 production to improve steatohepatitis. DM was induced metabolically by a high-fat diet to bring about IR, or chemically by alloxan, producing insulin deficiency, in male albino rats. Garlic powder was supplemented (15 mg/kg per day) for 3 weeks. Fatty liver was depicted histologically and biochemically (aspartic aminotransferase, alanine aminotransferase, HOMA-IR, TNF-alpha, IL-10, IL-10/TNF-alpha ratio). We found that, in contrast to obese rats, garlic decreased IL-10/TNF-alpha ratio, despite decreasing TNF-alpha in alloxan diabetic rats in agreement with the histology, which revealed more prominent improvement in the obese group. Moreover, the effect of garlic was not linked to improvement of IR in obese rats. We conclude that IL-10/TNF-alpha ratio may be considered as a convenient biomarker for investigation of fatty liver of different grades, apart from being associated with IR, and immunomodulation of this ratio in favor of increasing it may exert significant improvement.

  12. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    Science.gov (United States)

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  13. Chemopreventive effects of NSAIDs as inhibitors of cyclooxygenase-2 and inducers of apoptosis in experimental lung carcinogenesis.

    Science.gov (United States)

    Setia, Shruti; Vaish, Vivek; Sanyal, Sankar Nath

    2012-07-01

    Roles of cyclooxygenase (COX) enzyme and intrinsic pathway of apoptosis have been explored for the chemopreventive effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 9,10-dimethyl benz(a)anthracene (DMBA)-induced lung cancer in rat model. 16 weeks after the administration of DMBA, morphological analysis revealed the occurrences of tumours and lesions, which were regressed considerably with the co-administration of indomethacin and etoricoxib, the two NSAIDs under investigation. DMBA group was marked by hyperplasia and dysplasia as observed by histological examination, and these features were corrected to a large extent by the two NSAIDs. Elevated levels of COX-2 were seen in the DMBA group, the enzyme responsible for prostaglandin synthesis during inflammation and cancer, whilst the expression of the constitutive isoform, COX-1, was equally expressed in all the groups. Apoptosis was quantified by studying the activities of apaf-1, caspase-9, and 3 by immunofluorescence and western blots. Their activities were found to diminish in the DMBA-treated animals as compared to the other groups. Fluorescent co-staining of the isolated broncho-alveolar lavage cells showed reduced number of apoptotic cells in the DMBA group, indicating decrease in apoptosis after carcinogen administration. The present results thus suggest that the mechanism of cancer chemoprevention of NSAIDs may include the suppression of COX-2 and the induction of apoptosis.

  14. Pre-operative use of anti-TNF-alpha agents and the risk of post-operative complications in patients with Crohn's disease--a nationwide cohort study

    DEFF Research Database (Denmark)

    Nørgård, Bente Mertz; Nielsen, J.; Qvist, N.

    2013-01-01

    BACKGROUND: A possible negative role of pre-operative use of antitumour necrosis factor-alpha (anti-TNF-alpha) agents on post-operative outcomes in Crohn's disease (CD) patients is still debated. AIM: To examine the impact of pre-operative anti-TNF-alpha agents on post-operative outcomes 30 and 6...

  15. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  16. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  17. Anti-inflammatory and antioxidant effect of Kerabala: a value-added ayurvedic formulation from virgin coconut oil inhibits pathogenesis in adjuvant-induced arthritis.

    Science.gov (United States)

    Ratheesh, M; Sandya, S; Pramod, C; Asha, S; Svenia, Jose P; Premlal, S; GrishKumar, B

    2017-02-01

    Kerabala (CB) is a novel ayurvedic formulation used for treating various inflammatory diseases. This formulation was made from virgin coconut oil and it comprises extracts of Sida cordifolia, coconut milk and sesame oil. The current study was performed to evaluate the anti-inflammatory action of CB on carrageenan-induced acute and adjuvant-induced chronic experimental models. 5 mg/kg bwt was found to be potent dose from carrageenan model and evaluated its effect in adjuvant-induced chronic arthritic model. The antioxidant assays like SOD, catalase, glutathione peroxidase, lipid peroxidation product, nitrate level and GSH were measured in paw tissue. Hematological parameters like hemoglobin (HB) count, ESR, WBC count, plasma CRP levels were analyzed. By RT-PCR, the inflammatory markers like cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) expressions were evaluated. The extracellular matrix proteins like MMP-2 and MMP-9 were determined by zymography and its expression by western blotting. Histopathology and cytology of paw tissue and synovium were analyzed. The result indicated that there was a significant increment in the levels of antioxidant enzymes on CB administration. The hematological markers such as ESR, WBC and plasma CRP levels were reduced by CB treatment and it also increases the HB level. The upregulated gene level expressions of inflammatory markers like COX-2, iNOS, TNF-α and IL-6 were down regulated by administration of CB. MMP-2 and MMP-9 expression significantly reduced by CB administration. Massive influx of inflammatory cell infiltration, proliferative collagen in histological analysis of paw tissue of arthritic rat was decreased by CB administration. Synovial cytology of CB administrated group shows reduced number of reactive mesothelial cells and synovial inflammatory cells. This current study shows that ayurvedic drug CB has an antioxidant, anti-inflammatory and

  18. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-01-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  19. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  20. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    Science.gov (United States)

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  1. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.; Jin, X.D.; Gu, C.H. [China Medical University, Shenyang (China)

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  2. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients.

    Science.gov (United States)

    Das, Chandana Ray; Tiwari, Diptika; Dongre, Anita; Khan, Mohammad Aasif; Husain, Syed Akhtar; Sarma, Anirudha; Bose, Sujoy; Bose, Purabi Deka

    2018-05-01

    Multiple factors are associated with human papillomavirus (HPV) infection related cervical anomalies and its progression to cervical carcinoma (CaCx), but data vary with respect to the underlying HPV genotype and with population being studied. No data are available regarding the role of immunological imbalance in HPV infected CaCx pathogenesis from Northeast India, which has an ethnically distinct population, and was aimed to be addressed through this study. The study included 76 CaCx cases, 25 cervical intraepithelial neoplasia (CIN) cases, and 50 healthy female controls. HPV screening and genotyping were performed by PCR. Differential expression of tumor necrosis factor alpha (TNF-α) was studied at serum level by enzyme-linked immunosorbent assay and tissue level by immunohistochemistry and messenger RNA (mRNA) level by real-time PCR. The data were correlated with interferon gamma (IFN-γ) and NF-κβp65 levels at protein level, as well as HPV16 E6 and E7 expression at transcript level statistically. HPV infection and HPV16 genotype were predominant in the studied cohort. TNF-α was found to be downregulated at both mRNA and protein levels in CaCx cases compared to controls; and the gradient downregulation correlated with progression of the disease from normal→CIN→CaCx. TNFexpression correlated with insufficient modulation of both IFN-γ and NF-κβp65. The HPV16 E6 and E7 transcripts were found to be sharply upregulated in CaCx cases strongly inversely correlated with the TNFexpression. Significant role of TNF-α downregulation associated with insufficient IFN-γ and total NF-κβp65 modulation and the resulting significant upregulation of viral transcripts E6 and E7 are key to the HPV16 infection mediated CaCx pathogenesis in northeast Indian patients.

  3. The ERK1/2 Inhibitor U0126 Attenuates Diabetes-Induced Upregulation of MMP-9 and Biomarkers of Inflammation in the Retina

    Directory of Open Access Journals (Sweden)

    Ghulam Mohammad

    2013-01-01

    Full Text Available This study was conducted to determine the expression of matrix metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 in a time-dependent manner and the effect of extracellular-signal-regulated kinases-1/2 (ERK1/2 inhibition on the expressions of MMP-9, TIMP-1, and inflammatory biomarkers in the retinas of diabetic rats. The expression of MMP-9 was quantified by zymography, and the mRNA level of MMP-9 and TIMP-1 was quantified by RT-PCR. The expression of inducible nitric oxide synthase (iNOS, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α was examined by Western blot analysis. MMP-9 expression was significantly higher in diabetic rat retinas compared to controls at all time points.TIMP-1 expression was nonsignificantly upregulated at 1week of diabetes and was significantly downregulated at 4 and 12 weeks of diabetes. Intravitreal administration of the ERK1/2 inhibitor U0126 prior to induction of diabetes decreased ERK1/2 activation, attenuated diabetes-induced upregulation of MMP-9, iNOS, IL-6, and TNF-α and upregulated TIMP-1 expression. In MMP-9 knockout mice, diabetes had no effect on retinal iNOS expression and its level remained unchanged. These data provide evidence that ERK1/2 signaling pathway is involved in MMP-9, iNOS, IL-6, and TNF-α induction in diabetic retinas and suggest that ERK1/2 can be a novel therapeutic target in diabetic retinopathy.

  4. Expressions of toll-like receptors 2 and 4, and relative cellular ...

    African Journals Online (AJOL)

    Purpose: To investigate the expressions of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), IFN-γ (IFN- gamma), interleukin 2 (IL-2), interleukin 6 (IL-6) and interleukin 10 (IL-10) in human immunodeficiency virus (HIV) patients with tuberculosis (TB) infection. Methods: Two groups of ...

  5. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    Science.gov (United States)

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNFexpression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  6. Polimorfismo del TNF-alpha en autoinmunidad y tuberculosis.

    Directory of Open Access Journals (Sweden)

    Paula A. Correa

    2004-06-01

    Full Text Available El factor de necrosis tumoral alfa (TNF-a está incriminado tanto en enfermedades autoinmunes como en infecciosas. En el presente estudio se examinó el polimorfismo de la región promotora -308 del gen del TNF-a en enfermedades autoinmunes [lupus eritematoso sistémico (LES, artritis reumatoidea (AR, síndrome de Sjögren primario (SSp] y en tuberculosis. La genotipificación del polimorfismo -308 del TNF-a se realizó en ADN de pacientes con AR (N=165, LES (N=118, SSp (N=67, tuberculosis (N=138 y controles sanos (N=419, mediante reacción en cadena de la polimerasa con polimorfismos en los tamaños de los fragmentos de restricción (PCR-RFLP. El alelo TNF2 se asoció con la AR (OR=1,6; IC95% 1,2-2,3, p=0,008, el LES (OR=2,3; IC95% 1,6-3,3, p

  7. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    Science.gov (United States)

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  8. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.

    Science.gov (United States)

    Shenoi, Mithun M; Iltis, Isabelle; Choi, Jeunghwan; Koonce, Nathan A; Metzger, Gregory J; Griffin, Robert J; Bischof, John C

    2013-05-06

    Surgery, radiation and chemotherapy remain the mainstay of current cancer therapy. However, treatment failure persists due to the inability to achieve complete local control of the tumor and curtail metastatic spread. Vascular disrupting agents (VDAs) are a class of promising systemic agents that are known to synergistically enhance radiation, chemotherapy or thermal treatments of solid tumors. Unfortunately, there is still an unmet need for VDAs with more favorable safety profiles and fewer side effects. Recent work has demonstrated that conjugating VDAs to other molecules (polyethylene glycol, CNGRCG peptide) or nanoparticles (liposomes, gold) can reduce toxicity of one prominent VDA (tumor necrosis factor alpha, TNF-α). In this report, we show the potential of a gold conjugated TNF-α nanoparticle (NP-TNF) to improve multimodal cancer therapies with VDAs. In a dorsal skin fold and hindlimb murine xenograft model of prostate cancer, we found that NP-TNF disrupts endothelial barrier function and induces a significant increase in vascular permeability within the first 1-2 h followed by a dramatic 80% drop in perfusion 2-6 h after systemic administration. We also demonstrate that the tumor response to the nanoparticle can be verified using dynamic contrast-enhanced magnetic resonance imaging (MRI), a technique in clinical use. Additionally, multimodal treatment with thermal therapies at the perfusion nadir in the sub- and supraphysiological temperature regimes increases tumor volumetric destruction by over 60% and leads to significant tumor growth delays compared to thermal therapy alone. Lastly, NP-TNF was found to enhance thermal therapy in the absence of neutrophil recruitment, suggesting that immune/inflammatory regulation is not central to its power as part of a multimodal approach. Our data demonstrate the potential of nanoparticle-conjugated VDAs to significantly improve cancer therapy by preconditioning tumor vasculature to a secondary insult in a targeted

  9. Taheebo Polyphenols Attenuate Free Fatty Acid-Induced Inflammation in Murine and Human Macrophage Cell Lines As Inhibitor of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2017-12-01

    Full Text Available Aim of studyTaheebo polyphenols (TP are water extracts of Tabebuia spp. (Bignoniaceae, taken from the inner bark of the Tabebuia avellanedae tree, used extensively as folk medicine in Central and South America. Some anti-inflammatory drugs act by inhibiting both cyclooxygenase-2 (COX-2 and COX-1 enzymes. COX-2 syntheses prostaglandin (PG E2, which is a species of endogenous pain-producing substance, whereas COX-1 acts as a house-keeping enzyme. Inhibiting both COX-1 and -2 simultaneously can have side effects such as gastrointestinal bleeding and renal dysfunction. Some polyphenols have been reported for its selective inhibiting activity toward COX-2 expression. Our study aimed to demonstrate the potential and mechanisms of TP as an anti-inflammation action without the side effects of COX-1 inhibition.Materials and methodsFree fatty acid-stimulated macrophage cell lines were employed to mimic macrophage behaviors during lifestyle-related diseases such as atherosclerosis and non-alcoholic steatohepatitis. Real-time polymerase chain reaction was used to detect expression of inflammatory cytokine mRNA. Griess assay was used to measure the production of nitric oxide (NO. ELISA was used to measure PG E2 production. Molecular docking was adopted to analyze the interactions between compounds from T. avellanedae and COX-2.ResultsTP significantly suppressed the production of NO production, blocked the mRNA expression of iNOS, and COX-2 in both cell lines, blocked the mRNA expression of TNF-α, IL-1β, IL-6, and PGE2 in the murine cell line. However, there was no inhibitory effect on COX-1. Molecular docking result indicated that the inhibitory effects of TP on COX-2 and PGE2 could be attributed to acteoside, which is the main compound of TP that could bind to the catalytic zone of COX-2. After the interaction, catalytic ability of COX-2 is possibly inhibited, followed by which PGE2 production is attenuated. COX inhibitor screening assay showed TP as a

  10. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-02-03

    Tolerance to bacterial cell-wall components may represent an essential regulatory mechanism during bacterial infection. We have demonstrated previously that the inhibition of nuclear factor (NF)-kappaB and mitogen-activated protein kinase activation was present in bacterial lipoprotein (BLP) self-tolerance and its cross-tolerance to lipopolysaccharide (LPS). In this study, the effect of BLP-induced tolerance on the myeloid differentiation factor 88 (MyD88)-dependent upstream signaling pathway for NF-kappaB activation in vitro was examined further. When compared with nontolerant human monocytic THP-1 cells, BLP-tolerant cells had a significant reduction in tumor necrosis factor alpha (TNF-alpha) production in response to a high-dose BLP (86+\\/-12 vs. 6042+\\/-245 ng\\/ml, P < 0.01) or LPS (341+\\/-36 vs. 7882+\\/-318 ng\\/ml, P < 0.01) stimulation. The expression of Toll-like receptor 2 (TLR2) protein was down-regulated in BLP-tolerant cells, whereas no significant differences in TLR4, MyD88, interleukin-1 receptor-associated kinase 4 (IRAK-4), and TNF receptor-associated factor 6 expression were observed between nontolerant and BLP-tolerant cells, as confirmed by Western blot analysis. The IRAK-1 protein was reduced markedly in BLP-tolerant cells, although IRAK-1 mRNA expression remained unchanged as revealed by real-time reverse transcriptase-polymerase chain reaction analysis. Furthermore, decreased MyD88-IRAK immunocomplex formation, as demonstrated by immunoprecipitation, was observed in BLP-tolerant cells following a second BLP or LPS stimulation. BLP pretreatment also resulted in a marked inhibition in total and phosphorylated inhibitor of kappaB-alpha (IkappaB-alpha) expression, which was not up-regulated by subsequent BLP or LPS stimulation. These results demonstrate that in addition to the down-regulation of TLR2 expression, BLP tolerance is associated with a reduction in IRAK-1 expression, MyD88-IRAK association, and IkappaB-alpha phosphorylation. These

  11. Guidelines for screening, prophylaxis and critical information prior to initiating anti-TNF-alpha treatment

    DEFF Research Database (Denmark)

    Nordgaard-Lassen, Inge; Dahlerup, Jens Frederik; Belard, Erika

    2012-01-01

    a history of previous malignancies (cases of malignant disease within 5 years of anti-TNF-alpha treatment should be carefully considered). The physical examination should include lung/heart auscultation and lymph node examination, and the